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Background
Cerebrovascular disease, and in particular stroke, is a major public health challenge. It 
is a leading cause of death and disability [1]. While there have been advances in preven-
tion and treatment in the past—e.g., mechanical thrombectomy for acute stroke treat-
ment—the overall prevention and treatment results still remain poor [2]. A potential 
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game-changer of stroke treatment success is precision medicine [3, 4]. It aims to provide 
personalized therapy recommendations based on the individual features of the patient. 
It utilizes today’s plethora of available patient data as well as mathematical modeling to 
offer individualized predictions for patients [4]. While highly promising, precision medi-
cine relies on the presence of informative data allowing the differentiation of pathology 
patterns [4, 5]. In cerebrovascular disease, important information about the severity of 
stroke risk and potential response to treatment is encoded in individual pathophysi-
ological parameters—in biomarkers—which can be recorded to aid decision-making. 
Here, one of the most important parameters is the hemodynamic status [6]. This bio-
marker is already used in a precision medicine approach to identify individual patients 
benefiting from thrombolysis beyond the currently established treatment time windows 
which is crucial since often treatment is denied due to time constraints [7]. In chronic 
cerebrovascular disease, it might aid by identifying areas which are highly vulnerable to 
stroke [8, 9]. In the clinical setting, however, this data is only available using specialized 
methodologies, i.e., Dynamic Susceptibility-weighted Contrast-enhanced Magnetic Res-
onance Imaging (DSC-MRI) perfusion, computed-tomography (CT)-perfusion, arterial 
spin labeling (ASL) perfusion or functional MRI [10–14]. These techniques may harm 
patients through contrast agents, significantly prolong the time to treatment and lead to 
increased costs. Also, standardization of these complex methods is highly challenging [6, 
15, 16].

An alternative approach to derive biomarkers for precision medicine is the transfor-
mation of routinely acquired data by mechanistic simulations [17]. These simulations 
integrate domain knowledge by mathematically describing known disease-driving core 
processes [17]. Interestingly for cerebrovascular disease, several works in the past have 
developed general mechanistic simulations of the blood flow in the brain [18, 19]. These 
simulations have the potential to become a contrast agent-free biomarker of hemody-
namics for the diagnosis and treatment of cerebrovascular diseases. However, for these 
simulations, personalization on an individual patient level is still pending making it not 
applicable in a clinical setting.

Thus, the novel idea presented in this work is a software framework to transform rou-
tine structural vessel imaging data as an input to a mechanistic simulation of individual 
hemodynamics for a given patient. The unique vessel configuration of each patient can 
be used to simulate hemodynamics to potentially identify areas that are vulnerable in 
case of stenosis and occlusion. Several use cases can be envisioned for such a frame-
work. It could allow assessment of stroke risk, pre-operative simulation of interventional 
success like thrombectomy in acute stroke, preventive or therapeutic endarterectomy 
and stenting of brain-supplying vessels, respectively. Another highly interesting, if rather 
rare case is the simulation of the outcome of extracranial–intracranial (EC–IC) bypass 
surgery, e.g., in Moya-Moya disease. Here, there is a special need to predict the success 
of the surgery [20]. Lastly, the simulation information could be used for the prediction 
of stroke outcome in conjunction with other clinical and imaging parameters enabling 
clinicians with an objective criterion for decision support in the acute setting.

Thus, the objective of the presented work was to provide a framework allowing the 
incorporation of individual structural vessel data to simulate areas of higher hemody-
namic vulnerability as a disease biomarker. For this purpose, we developed a pipeline 
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consisting of the following sequential steps: (1) segmentation of vessel information 
from structural data, in our case from time-of-flight (TOF) magnetic resonance imag-
ing (MRI). (2) Annotation of the vessel tree with an easy-to-use graphical user interface 
(GUI). And (3) simulation where results can be inspected, and different blood pressure 
scenarios can be simulated by the user.

The simulation was implemented as a steady-state zero-dimensional lumped model of 
the Circle of Willis (CoW) and major brain artery circulation. We included individual 
vessel resistances by 1-dimensional calculation using the individual length and the width 
of the arteries from patient structural vessel imaging. Hemodynamic measures were 
calculated using an adapted version of the modified nodal analysis (MNA) [21] coined 
AMNA, where we simplify the solution of the matrix equations facilitating easier imple-
mentation and faster runtime. We show the implemented framework in detail—includ-
ing a video of the annotation process—and perform an exploratory visual analysis to 
compare simulation results with perfusion imaging in 67 patients with cerebrovascular 
disease.

Results
The framework architecture

We developed a novel framework for enabling processing of routine imaging (DICOM) 
into a simulation tool that provides additional information about the state of the hemo-
dynamics of an individual patient.

Figure 1 gives an overview of the subsequent steps of the framework:

Fig. 1  The input is a binary vessel (b) mask segmented from a structural TOF-image (a). This image is then 
skeletonized (c). This skeleton can be imported in our annotation tool, where the vessel tree is displayed in a 
3D fashion and annotation is performed (d and e; red = left, blue = right, purple = median). The annotated 
vasculature is transferred to the simulation tool (f)
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1.	 A structural DICOM TOF-image (Fig.  1a) is processed via segmentation into a 
binary vessel mask (Fig. 1b).

2.	 This image is then skeletonized (Fig. 1c).
3.	 The vessel skeleton is imported in our annotation tool, in which the vessel tree is dis-

played in a 3-dimensional fashion and
4.	 Vessel annotation is performed (Fig. 1d and e).
5.	 The annotated vasculature is then transferred to the simulation tool (Fig. 1f ).

The annotation module

The annotation tool is made up of two main components. The segment annotation area, 
where the vessel segments can be chosen and the 3D view, where the imported vessel 
tree can be manipulated. We implemented 22 segments of brain-supplying arteries, 
namely 3 for the carotid artery (common, internal and CoW segment), 7 for the MCA 
(M1, M2 superior, M2 inferior, M3 superior superior, M3 superior inferior, M3 inferior 
superior, M3 inferior inferior), 5 for the ACA (A1, A2, A3 inferior and A3 superior), 4 for 
the PCA (P1, P2 and P3 inferior and P3 superior), as well as the basilar artery, the ver-
tebral artery and the anterior and posterior communicating arteries. There is the option 
to add bypass vessels or collateral vessels manually, e.g., for planning of interventions or 
surgical procedures.

Next to segment also the following additional labels can be chosen: “pre-occlusion”, 
“post-occlusion”, and “occlusion” (in case pre- or post-occlusion cannot be deter-
mined with certainty). To record occlusion next to the type of vessel is important for 
the following simulation step, as subsequently the simulation will ignore segments 
with this flag. A video footage of the annotation process was uploaded to zenodo [22].

The simulation module

The simulation itself consists of a graphical user interface, that is divided function-
ally in the toolbar (Fig. 2b I.), the simulation area (Fig. 2b II.), the pressure selection 
area (4B III.) and the view selection area (Fig. 2b IV.). In the toolbar, simulations can 
be loaded as well as the type of resistance calculation (here, the default is the resist-
ance calculation presented in the methods section). In 4B III., the pressure boundary 
conditions can be chosen, for one the blood pressure which determines the driving 
pressure of the whole system.

Fig. 2  The simulation GUI. It is divided into the toolbar (I.), the simulation area (II.), the pressure selection 
area (III.) and the view selection area (IV.). As shown on the right-hand side (c), additional information can be 
extracted for each edge (a)—in this case a left ICA—and each supply area (b)
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In addition, also the intracranial pressure, which is kept constant for our use case at 
physiological parameters, but can be increased to simulate conditions with increased 
intracranial pressure, e.g., in hemorrhagic stroke. In the view selector area, in 4B IV., 
the normal view and the pressure view can be chosen (please see examples in Fig. 3). 
Finally, in the simulation area, the individualized simulation of the vasculature can 
be inspected. Via right click it is possible to derive more information about an edge 
or a node (Fig. 2a and c, respectively). Supply areas are color coded according to the 
calculated pressure (all values in mmHg: > 70 pink, < 70 yellow, < 60 orange, < 50 red). 
Below 50 mmHg we consider an area being vulnerable to ischemia due to the limits of 
cerebral auto-regulation (see Eq. 5).

Fig. 3  In our visual comparison we found promising initial results for the detection of vulnerabilities by 
mechanistic simulations (see Table 1). In this figure, we exemplify this in two patients. Simulation results 
are shown on the left and DSC-imaging results are shown on the right. In the patient with a proximal 
common carotid occlusion on the right (upper box), no hemodynamic changes are visible in the DSC 
perfusion imaging maps indicative of a sufficient CoW to provide all brain areas with sufficient perfusion. 
The simulation shows correspondingly no areas reaching critical limits, at both normal and lowered blood 
pressure levels. In the patient with the right MCA stenosis (lower box), the DSC perfusion maps show delay in 
TPP, MTT and Tmax maps as well as a lower CBF in the right MCA area. This is in line with our simulation which 
shows critical pressure levels in the M2 inferior node and lowered pressure already at a normal blood pressure 
of 120/80. When blood pressure is lowered to 90/60, both M2 supply areas become critical in contrast to the 
other branches. Supply areas are color coded according to the calculated pressure (all values in mmHg: > 70 
pink, < 70 yellow, < 60 orange, < 50 red)
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Comparison of DSC perfusion imaging and simulation results

67 patients (mean age 57 years) were included. 68% had previous stroke and 18% had 
a previous transitory ischemic attack (TIA). The visual analysis revealed a very high 
specificity and a moderate-to-low sensitivity for the simulation to detect vulnerabil-
ity defined by visual DSC-rating. Results averaged over both hemispheres for each 
perfusion territory were (sensitivity/specificity): ACA 0.42/0.94, MCA 0.47/0.98, PCA 
0.16/0.94. For detailed results please see Table 1.

Sensitivity analysis

An example of the sensitivity analysis is shown in Fig. 4, where we give an example how 
the still normal hemodynamics in a patient with a missing ICA would be affected by 
additional vessel stenosis. The sensitivity analysis successfully allows individualized sim-
ulations of potential disease progressions and blood pressure scenarios.

Discussion
We present the first comprehensive precision medicine pipeline for cerebrovascular dis-
ease that is capable to process routine stroke imaging DICOM images for simulation of 
various boundary conditions to identify brain areas vulnerable for ischemia.

Table 1  Detailed results of the visual vulnerability analysis

Results are given in rows 1 and 2 for each rated region, including averaged values (in bold) for each perfusion territory (ACA, 
MCA, PCA). The visual analysis revealed a very high specificity and a moderate-to-low sensitivity for the simulation to detect 
vulnerability defined by visual DSC-rating. The highest sensitivity was found for the MCA region, followed by the ACA and 
PCA regions

ACA​ anterior cerebral artery, MCA middle cerebral artery, PCA posterior cerebral artery

ACA left ACA 
right

ACA 
averaged

MCA 
left

MCA 
right

MCA 
averaged

PCA left PCA 
right

PCA 
averaged

Sensitivity 0.50 0.33 0.42 0.49 0.46 0.47 0.07 0.25 0.16
Specificity 0.92 0.97 0.94 1 0.95 0.98 0.92 0.97 0.94

Fig. 4  Illustration of the sensitivity analysis. The patient has a right-sided ICA occlusion. All simulation results 
are calculated under normo-tension (120/80 mmHg). In the current state (a), the patient has no changes 
in hemodynamics. Adding a 90% stenosis of the ICA on the other side (b, red arrow) leads to only a little 
drop in perfusion pressure in both MCA supply areas (yellow supply areas). This can be attributed to a very 
marked posterior communicating artery on the left side. Adding a 50% stenosis of the left Pcom leads to high 
vulnerability of the anterior circulation system (red supply areas) of both sides (c, orange arrow). The color 
changes within each segment are graphical features indicating the natural flow direction of the blood and 
are not related to simulation parameters
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Our framework provides annotation of the arterial vasculature derived from neu-
roimaging followed by zero-dimensional individualized simulation of brain hemody-
namics. Implementation was performed by decreasing the computational burden by 
a modified MNA, the development of an easy-to-use web user interface-frontend for 
annotation and a java-based cross-platform simulation tool. An exploratory valida-
tion analysis comparing our simulation results with DSC perfusion in patients with 
steno-occlusive disease revealed promising initial results for the simulation-based 
detection of vulnerable areas. Our results suggest that mechanistic simulation of 
blood flow derived from routine structural imaging can serve as an individual bio-
marker for patients with cerebrovascular disease and might be an alternative to com-
plex and potentially harmful perfusion techniques.

Stroke is a complex disease with a dynamic progression. The initial infarct area—
characterized by rapid neuronal loss—is called the core, which is surrounded by 
tissue that is slowly surrendering to ischemia but is still salvageable. The latter area 
is coined the penumbra and defines the therapeutic target in acute stroke manage-
ment [6]. For the understanding of stroke and its implications on treatment strategy, 
it is essential that the speed of the penumbra-to-core transformation varies greatly 
and is highly individual. In particular, for weighing benefit and risk for stroke treat-
ment the high interindividual variance of brain cell death is crucial: some patients do 
not have salvageable brain tissue already a few hours after stroke, whereas in others 
penumbral tissue was found up to 17 h after stroke [23]. This highly individual and 
variant stroke progression stands in stark contrast to the current “one-size-fits-all” 
treatment approach in stroke where patients receive treatment based on guidelines 
usually only within a predefined time window of up to 4.5 h after stroke [6, 24]. These 
time windows were established by a statistical benefit-to-risk calculation after lump-
ing together all stroke patients with assumed common pathophysiology.

While it is true that there is a net profit for patients when treatment is applied within 
this time window, it is also obvious that many patients do not receive treatment who 
would benefit from it and at the same time patients receive treatment subjecting them to 
risk of intervention such as bleeding without its benefit. This is due to the above-men-
tioned fact that, in reality, several stroke subpopulations exist. Here, precision medicine 
accounts for the individual features and will improve outcome by personalizing treat-
ment [25]. Precision medicine utilizes mathematical techniques and available digital 
data to provide individualized predictions for patients [3]. It relies on the presence of 
informative data allowing the differentiation of pathology patterns [4]. In stroke, it has 
been shown that measuring the penumbra through perfusion as a surrogate is one of 
the most promising approaches [6, 7]. And indeed, perfusion imaging-based selection 
for treatment beyond the established time windows is an evidenced precision medicine 
approach in stroke [7]. For the selection process, predictive modelling might be also 
applicable [5]. A drawback of this approach, however, is the application of perfusion 
measurement techniques which are potentially harmful through contrast agents, inevi-
tably prolong the imaging time and are problematic to standardize across centers [6, 15]. 
Similar considerations apply to chronic steno-occlusive disease. These are patients with 
continuously worsening symptoms of atherosclerosis who have a high likelihood for a 
future stroke event. In these patients, potentially harmful perfusion imaging techniques 
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should not be used a priori. Contrast agent-free perfusion imaging methods can be used 
but are—as mentioned above—hard to standardize. Thus, alternatives are warranted, 
and mechanistic simulations are promising methods. Here, the relevant (patho)physio-
logical biomarker is not directly measured, but mathematically inferred from conditions 
recorded through other measurements.

As suggested by our work, in the case of cerebrovascular disease, we can infer infor-
mation about hemodynamics from the individual vasculature of a given patient. We suc-
cessfully built a pipeline that can extract the vessel information by segmentation, allows 
annotation of the vessels and simulates hemodynamic information which we were able 
to relate to clinical DSC-perfusion imaging through an exploratory visual comparison 
of DSC perfusion and simulation results. While these results need gold standard valida-
tion, they pave the way for further development of techniques that might make the need 
for perfusion imaging in cerebrovascular disease obsolete for some patients while still 
providing the necessary information for precision medicine selection of patients for pre-
vention and treatment. Our results are in line with other recent exploratory validation 
studies [26].

Given that mechanistic simulations work on a priori assumptions about the biological 
system and perfusion measurements actually record dynamic information, it is unlikely 
that the information provided by both systems will always be a complete match. This is 
also evidenced by the low sensitivity and the high specificity. DSC-MRI is sensitive to 
very small changes in perfusion, whereas a mechanistic simulation is expected to distin-
guish between relevant categories. Thus, the simulation was not able to pick up on every 
change noticed by the readers (low sensitivity), but where the simulation found vulner-
abilities they were almost always accompanied by corresponding changes in DSC-MRI 
(high specificity). While the clinical relevance needs to be validated in further studies, 
our results suggest, that the information might be intersecting enough to allow treat-
ment-relevant predictions on an individualized patient level, and consequently to avoid 
harmful imaging procedures. Thus, when the question is for example about a general 
status, i.e., “is there a general vulnerability in the right MCA area for ischemia”, mecha-
nistic simulations might be able to provide this information instead of direct perfusion 
measurements. Also, since many variants of the CoW exist, the simulation could allow 
the identification of patients with high-risk for stroke owing to their individual CoW 
configuration [27].

Another potentially big advantage of mechanistic simulations is the possibility to sim-
ulate interventions. In chronic steno-occlusive disease, like carotid stenosis or Moya-
Moya disease, potential lumen reopening interventions or EC–IC bypass surgery can be 
performed. With our solution as presented in this work, it would be feasible to simulate 
the reopening of a vessel and thus simulate the post-intervention status.

With our framework, it is possible to simulate the response of the vasculature to 
changes in blood pressure. This can potentially be highly important not only for the 
determination of areas-at-risk for ischemia, but also to predict the response to interven-
tions and surgery, e.g., blood pressure drops during surgery. This is not possible with 
perfusion measurements, which can only provide a snap-shot of the status quo. Approx-
imations can be done with acetazolamide challenge measurement [28, 29], but this 
requires repeated measurements, the application of a drug, and can only be performed 
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within the physiologically tolerable range. A clear advantage of direct dynamic perfusion 
measurements, on the other hand, is with high likelihood still the recording of subtle 
changes and small lesions. Importantly, we thus do not claim that mechanistic modeling 
might be able to make all perfusion measurements obsolete.

As a limitation of our work, our results are exploratory and hypothesis-generating 
[30]. While our exploratory validation yielded promising results, further validations are 
needed. We believe, however, that our results are motivating to boost the translation of 
the work done in the past on the translational development of mechanistic modeling of 
hemodynamics into the clinical setting. We implemented a 0-dimensional (D) model of 
hemodynamics which exploits the similarities of such a network to an electric circuit. 
Next to these 1D and 3D models exist; for an overview of existing methods see Leguy 
et al. and Perera et al. [31, 32]. While 1D and 3D models are more suited to model local 
changes, 0D models are more suited to model the general vasculature, but they can be 
combined to provide complementary information [33]. Here, our framework builds on 
existing work, but adds (A) the calculation of the resistance over segments with variable 
diameters. (B) an easy to code-adjusted implementation of the modified nodal analysis 
which reduces computational demands and (C) a graphical user interface tailored for 
inspection and manipulation of the simulation. This facilitates the application of such 
a framework, which is promising as there is much promise in mechanistic modeling of 
blood flow and perfusion for clinical applications in cerebrovascular disease. There is, 
however, a need to personalize these approaches.

Our work has other limitations. First, the simulation values were not compared to a 
gold standard. However, it is very difficult to derive individualized gold standard values 
for arterial flow. Other noninvasive methods are either non-gold standards themselves, 
like MRI flow measurement methods, and/or cannot access the complete vasculature, 
like Doppler-sonography. Intra-operative direct vessel flow measurements recorded dur-
ing EC–IC bypass surgery might be an option for gold standard measurements—which 
we will explore in the future—but were not available for the current study. Second, we 
would like to point out that all relevant pre-processing steps in the pipeline—segmen-
tation, skeletonization, and annotation—were done manually in the pipeline. With the 
advent of powerful machine learning segmentation methods in recent years, it is very 
likely that these steps can be automated with sufficient performance. For segmentation, 
our group has just recently presented deep learning methods to segment the vasculature 
from structural scans with very high accuracy [25, 34]. The application of deep learn-
ing for skeletonization and automated annotation is a current focus of our group. We 
are thus confident that for future potential applications in the clinical setting simulation 
results will be obtainable in real-time, at the scanner console, in a few years.

Conclusion
We present the first precision medicine pipeline for cerebrovascular disease that allows 
annotation of the arterial vasculature derived from structural vessel imaging followed by 
personalized simulation of brain hemodynamics. This enables further development of 
precision medicine in stroke using novel biomarkers and might make the application of 
harmful and complex perfusion methods obsolete for certain use cases.
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Methods
Data accessability

The datasets presented in this article are not readily available because  data protec-
tion laws prohibit sharing the imaging data used in this study at the current time 
point. Requests to access the datasets should be directed to ethikkommission@charite.
de.

Patients

Sixty-seven patients with steno-occlusive disease from an imaging study of cerebral 
perfusion in stroke patients (PEGASUS study [8, 9]) were evaluated as examples for the 
presented framework. Patient characteristics can be found in Table  2. This study was 
approved by the institutional ethics committee of Charité Universitätsmedizin Berlin 
and the patients gave written informed consent.

The framework pipeline

The framework pipeline consists of these chronological steps: (a) segmentation, (b) 
skeletonization, (c) annotation, and (d) simulation. In the following, each of the steps is 
described in detail.

Segmentation

Structural MRI imaging consisted of time-of-flight (TOF)-MR images. To save time, 
all images were first pre-segmented using a high-performing published neural net seg-
mentation model [25]. The pre-segmentation model was applied without modifications. 
All information about the data employed in the training, the architecture, the training 
regime and the performance can be found in the open-access publication of Livne et al. 
[25]. The segmentations were then manually corrected to derive ground-truths stand-
ards. The segmentations are voxel-based binary representations of the vessel tree for 
each individual patient. The imaging parameters for TOF-MR-images in the PEGASUS 
study were: voxel size = (0.5 × 0.5 × 0.7) mm [3]; matrix size: 312 × 384 × 127; TR/
TE = 22 ms/3.86 ms; time of acquisition: 3:50 min, flip angle = 18 degrees.

Table 2  Patient characteristics

NIHSS National Institutes of Health Stroke Scale, TIA  transient ischemic attack

Sex Age (years) NIHSS Modified Rankin 
Scale

Previous 
cerebrovascular events

Female

28 Median: 57 0: 47 0: 47 Stroke: 47

Male

41 Range: 29–82 1–4: 17 1: 10 TIA:12

5–15: 5 2: 6

16–20: 0 3: 3

21–42: 0 4: 3

5/6: 0
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Skeletonization

The segmentations were skeletonized using the DtfSkeletonization module (DtfSkel-
etonization—MeVisLab documentation) of MeVisLab (website: MeVisLab) [35]. Here, a 
one voxel skeleton of the vessel midpoints is created with the radius encoded in the voxel 
value. This skeleton volume is then transferred to the manual annotation module.

Annotation

The annotation module was developed and coded from scratch by the in-house develop-
ment team.

Within the annotation framework, the transferred skeleton volume is transformed into 
a Java-based tree structure—the so-called skeleton graph—representing the skeleton as 
a set of edges containing all necessary geometric information for 3D rendering, and a set 
of junction vertices. This tree structure is loaded via a RESTful service interface in JSON 
format into a JavaScript-based web frontend where it is rendered by using the Three.js 
library as a rotatable and zoomable 3D view.

Within the 3D view, it is possible to select edges and tag them with an item from a 
list of vessels (artery) descriptors and their anatomic location (visualized by color) inter-
actively. The triple consisting of an edge, a tagged vessel item, and an anatomic loca-
tion is defined as an annotation. A set of made annotations can be saved in the backend 
via a RESTful service interface within an appropriate Java presentation. In the final step, 
based on a skeleton graph and a belonging annotation set, a simulation model serving as 
the input for our simulation component can be created once the annotation is finished.

Within our framework, it is possible to annotate 3rd order branches (A3, M3, P3). For 
exemplary patients in our study, annotations were performed until 2nd order branches 
(A2, M2 and P2), since higher order vessels are unlikely to play a crucial role in steno-
occlusive disease.

Simulation

The simulation was developed and coded from scratch in-house. Our model describes 
the cerebral vascular tree by a planar graph, which is given in Fig.  5. The blood flow 
through the vessel tree is modeled in analogy to electric circuits in a modified nodal 
analysis.

Edges in the graph represent blood vessels, while nodes represent either supply areas, 
blood sources or junctions between nodes. Supply areas are marked with square-shaped 
nodes, initial (round) nodes are blood sources and the rest of the (round) nodes are junc-
tions. The arrows of the edges indicate the flow directions to the supply areas or away 
from source nodes. The blood flow into the supply areas is provided by the outgoing seg-
ments (A2, P2 and M1 or M2) of the circle of Willis.

Modeling the flow and vessel network

The cerebral vessel tree retains an overall Reynolds number allowing to describe the cer-
ebral blood flow in terms of a Newtonian fluid. The arteries are modeled as perfect cyl-
inders and the decrease in blood pressure �P along a cerebral artery of length L, with 
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radius r, blood dynamic viscosity μ for a volumetric flow rate Q is determined according 
to Hagen–Poiseuille equation:

Hagen–Poiseuille equation is equivalent to Ohm’s law. Therefore, the resistance of an 
arterial vessel can be defined as:

In the presented use case, the vessel diameter is not homogeneous across the whole 
vessel segment and consequently Eq.  2 is invalid. To account for variable diameters 
over a segment, the fluid dynamics is applied on infinitely small segments with a con-
stant radius to yield the equation for non-constant radii. The resistance can be therefore 
derived using the following integral equation:

In practice, discrete application is used, as a segment is defined by a diameters-vec-
tor of length n−1 = the number of voxels in the segment. To account for the fact that 
an antiderivative can only be determined for segments that can be constantly differ-
entiated, we need to approximate the condition of continuity. For this purpose, the 

(1)�P =
8 · µ · L · Q

πr2
.

(2)R =
8 · µ · L

πr2
.

(3)R =

∫

L

8µ

πr(l)4
dl.

Fig. 5  The circle of Willis represented by edges, nodes and supply areas. The alphanumeric abbreviations 
and AcomA and PcomA stand for certain brain vessels (see legend) represented by edges. The round shapes 
represent nodes, whereas the quadratic shapes represent supply areas. M1: A1: anterior cerebral artery (ACA) 
segment 1, A2: ACA segment 2, M1: middle cerebral artery (MCA) segment 1, P1: posterior cerebral artery(PCA) 
segment 1, P2: PCA segment 2, PcomA and AcomA: posterior and anterior communicating arteries 
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radius r(l) is described by a continuous linear extrapolation function, which connects 
the radius of a given voxel with the next voxel in a linear fashion to allow the calcula-
tion of (3):

where Rext stands for the extrapolated resistance.
According to the mass flow law, the amount of blood entering a node must equal the 

amount of blood that leaves a node (see illustration in Fig. 6a). Mathematically this is 
described according to Kirchhoff’s first law as follows:

where Qinp,i is the input blood flow from source i to node n, for N input sources, and 
Qout,j  is the output from node n through vessel j, for M outputs.

The mass flow conservation can be then applied using this equation for each node 
and the resulting set of equations can be solved to yield the pressures. In the presented 
application, it is applied via a modified nodal analysis (MNA) [21] that incorporates con-
straints on the system to be driven by a system pressure and ensures constant blood sup-
ply to specific regions.

Our network consists of three types of nodes and two types of edges. The primary type 
of node is one that connects different vessels with each other (i.e., junctions between 
vessels). The second type of node is a source that provides the system with blood. The 
third type of node is a supply area, whose resistance depends on the incident pressure 
and the auto-regulation process described in the next section (see Fig. 5). The types of 
edges in our network represent normal arterial blood vessels and vessels that connect 
the supply areas to the sink node. The resistance of the latter is determined via the auto-
regulation function given in the next section.

Modeling auto‑regulation

The simulated vessel network encompasses the circle of Willis and the larger arterial 
segments of 1st and 2nd order of the three major brain arteries: anterior-, medial- and 
posterior cerebral artery (ACA, MCA and PCA). Those are the vasculature segments 
that are (a) accessible for interventions such as surgery or thrombectomy and (b) their 
anatomical architecture can be derived from medical imaging. The vascular downstream 
regions after the above segments including the 3rd order segments represent a network 
of small arteries, finer small arterioles and the capillary bed that can change their radii in 
order to decrease or increase the blood supply. This process is called auto-regulation and 
ensures that the blood supply to the brain remains largely constant within certain limits. 
Most of the vascular network’s resistance originates from these supply areas. Autoregu-
lation was implemented into the simulation framework according to the following equa-
tion based on literature values [36]:

(4)Rext =

n−1
∑

i=1

{

− 8µ
3π (

ri+1−ri
li+1−li

)−1(r−3
i+1 − r−3

i ), ri+1 �= ri
8µ
π
(li+1 − li)(ri)

−4 , ri+1 = ri
, n ∈ N,

(5)
N
∑

i=1

Qinp,i =

M
∑

j=1

Qout,j ,
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where R_auto is the autoregulated resistance of the vessel, P_inp and P_out are the input 
and output blood pressures of the vessel and Q_supply is the blood flow supply to the 
vessel.

In more detail, the blood flow into the supply areas is provided by the outgoing seg-
ments (A2, P2 and M1 or M2) of the circle of Willis, see Fig. 5. The behavior of the sup-
ply areas is modeled according to the autoregulation as described in Eq. 6. This means 
that the peripheral resistance of the supply area adjusts itself such that the blood flow is 
kept constant for a given pressure gradient �P.

(6)Rauto(Pinp,Pout) =











Pinp−Pout
Qsupply

if 150mm Hg > Pinp > 50mm Hg

Rmin =
50mm Hg
Qsupply

if Pinp < 50mm Hg

Rmax = 2.25 ∗ Rmin if Pinp > 150mm Hg

,

Fig. 6  a Graphical illustration of Kirchhoff’s first law. The current entering a node = i2 + i3 must equal 
the current leaving that node = i1 + i4. See blood flow analogy Eq. 5 for the mass flow law. In the figure 
i correspond to current, R represents resistance and v stands for the voltage. b Illustration of a normal 
node representing a vessel junction. Each numbered circle in the figure represents a node and each arrow 
represents a directed edge. The figure illustrates a normal node—numbered as 3—with two incident edges 
(G13 and G23) and three outgoing edges (G34, G35 and G36). The resulted G matrix row vector for node 3 is: 
G(3, 3) = G3,1 + G3,2 + G3,4 + G3,5 + G3,6 ,  

−→
G =

[

−G3,1,−G3,2,G(3, 3),−G3,4,−G3,5,−G3,6
]

 .c Illustration of 
a source node. Each numbered circle in the figure represents a node and each arrow represents a directed 
edge. The figure illustrates a graph segment with a source node (marked as s) and two vessels (GS1 and GS2). 
The resulted G matrix row vector for node s = 0 is: 

−→
G =

(

−1,−Gs,1,−Gs,2
)

=
(

−1,−G0,1,−G0,2
)

 , which 
results in the overall Nodal equation: qs = −(Gs,1 + Gs,2)P0 . d Illustration of a supply node. Each numbered 
circle or square in the figure represents a node and each arrow represents a directed edge. Dashed edges 
correspond to supply areas that are governed by auto-regulation. The figure illustrates two supply node—
numbered 1 and 2. Sink represents the analogy to current sink. The resulted G matrix row vector for the 
supply node 1 is: 

−→
G = −(−Gs,1,Gs,1) , which results in the overall nodal equation: q1 = Qs,1 = −Gs,1 · CPP , 

where CPP stands for cerebral perfusion pressure
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Boundary conditions

The model requires a systemic mean arterial pressure (MAP) that drives the flow 
through the network such that the blood supply to the various supply areas of the brain 
is constant, while the blood flows and pressures are adjusted accordingly. However, the 
auto-regulation model is limited to the region between 50 and 150 mmHg. Blood pres-
sure below or above these boundaries indicates a pathological state in which the body 
cannot maintain the necessary blood pressure to ensure constant blood supply and 
results in hypoperfusion of the brain tissue. Under these conditions, the simulation indi-
cates that the respective supply areas are not sufficiently supplied with blood. Clinically 
speaking, these areas are vulnerable to ischemia. In addition to the system pressure a 
blood flow rate per supply area was provided as Pin being the system pressure, while Qs,i 
for i = {1,…,N} being the blood supply demand of supply area i as physical quantity.

Algorithmic derivation of the blood supply

The blood supply to the specified brain areas is derived using an adjusted modified 
nodal analysis (AMNA). The construction of the matrix equations per type of node 
and edge is detailed in the following. The described system is overdetermined by N 
equations, where N stands for the number of nodes. The last node is taken as the sink 
node, with a pressure value of 0. Therefore, the system is described by N−1 mass flow 
equations. These mass flow equations can be written in terms of a matrix:

where the matrix G represents the network structure and consists of the conductivity 
(e.g., inverse resistances) of the vessels. −→P  is the unknown blood pressure vector and 
−→
Q  is the blood flow vector. The AMNA algorithm yields a reduced size of the solution 
system by removal of known values from the solution vector 

−→
Q  . The following section 

details the determination of the conductivity values and blood flow to construct the 
matrix equations from a vessel graph as depicted in Fig. 5 and followed by the AMNA 
implementation.

Junction nodes

The matrix row vector for a junction node is defined as:

where the diagonal element is the sum of all G values for all connected edges and the 
non-diagonal elements are set to be the negative conductivity value of the corresponding 
edge—or otherwise 0. An exemplary derivation of a junction node vector is described 
under Fig. 6b. The corresponding element of the 

−→
Q  is 0. This represents a flow equation 

as depicted by Eq. 5.

(7)G · �P = �Q,

(8)G(i, j) =

{

−Gi,j , i �= j
∑

j

Gi,j , i = j ,
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Source nodes

The matrix row vector for a source node is defined as:

The diagonal element is G
(

i, j
)

= −1 and all other matrix elements are the negative 
conductivity values of the (connected) corresponding edges and otherwise 0, similarly to 
junction nodes. An exemplary derivation of the vector is described in Fig. 6c. The flow 
into the source node is determined via the supply areas and according to the mass flow 
can be written as:

For the nodes that are directly connected with the source node, the q vector element 
is then:

Figure 6c depicts a graph segment with a source node and two connected vessels.

Supply nodes

To model supply areas, the auto-regulation equation is applied (Eq. 6). The matrix row 
vector for a supply node is defined as:

Similarly to junction nodes, the diagonal element G
(

i, j
)

 is the conductivity sum of 
incident edges, however in case the edge is connected to a sink it does not contribute 
to the sum. An exemplary derivation of the vector is described in Fig. 6d. The q-vector 
values are:
qi = −Qs,i for the supply node i connected to source s.
And qsin k = −Qs,i for the sink connected to supply node i.
Figure 6d depicts a case with two supply areas, denoted by the thick dashed lines that 

are connected to the same sink.

Summary of nodal analysis construction

To summarize, the q-vector has a contribution for a supply area or a source node. If an 
edge connects a source with a supply area, the corresponding q-vectors will have contri-
butions from both the source and the supply area. Table 3 summarizes the terms for the 
q-vector elements in dependence of the node type:

(9)G(i, j) =

{

−Gi,j , i �= j
−1, i = j

.

(10)qs = −P0 ·
∑

Gs,i, for Node i connected to source s.

(11)qconnected = Gs,connected · P0.

(12)G(i, j) =

{

−Gi,j , i �= j
∑

j

Gi,j , i = j, j �= sink .

(13)Gi,j =







R−1
ext , vessel

0, sup ply

R−1
auto , sin k

.
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Here vessel refers to a connection of junction node to junction node, supply refers to a 
connection of junction node to a supply node and sink refers to a connection of a supply 
node to sink. Rext and Rauto are described in formulas 4 and 6, respectively.

Adjusted modified nodal analysis (AMNA)

The AMNA allows to reduce the size of the solution system by removing known values 
from the solution vector 

−→
Q   in consecutive 3 steps. Once the MNA matrix equations are 

determined, all the values of the system matrix that are known given system pressures 
are drawn to the right-side solution vector 

−→
Q  . This pertains the values associated with 

the input pressures of the source nodes, i.e., MAP. As a result of this transition the equa-
tions associated with the source nodes become zero. In a second step, these redundant 
rows and columns are then deleted. Finally, the G matrix columns are swapped to yield 
a diagonal matrix, with the solution vector adjusted accordingly. This process simplifies 
the solution derivation and therefore accelerates its application.

Sensitivity analysis

In order to predict the effects of changes of a certain variable on the system, in this case 
the radius of a blood vessel, we performed a sensitivity analysis. Sensitivity analysis 
quantifies this effect by estimating the partial derivative of a system variable such as the 
blood pressure in this case, with respect to the radius of a given vessel. This is achieved 
by application of Newton–Raphson method using Taylor series expansion [37] as follows 
where—as previously defined—Q is the blood pressure and l is the length of the artery. 
The formula presented shows the sensitivity analysis—as an example—for the internal 
carotid artery denoted as int.car.I.:

Similar Newton steps can be formulated for all relevant system variables and allow to 
estimate how the system reacts to changes of certain system variables.

(14)

∂QA1

∂rInt.Car.I
≈ [QA1(rA1, lA1, ..., rInt.Car.I , lInt.Car.I , pin)

−QA1(rA1, lA1, ..., rInt.Car.I +�rInt.Car.I , lInt.Car.I , pin)]/�rInt.Car.I ].

Table 3  A: Summary of q vector element derivation in the modified nodal analysis (MNA)

B: Summary of the algorithm for the creation and determination of the G-matrix. The edge conductivity is described by 
Eq. (13). Here, the edge conductivity between a supply node and the sink is determined by the auto-regulation function

Type of node Q-vector node Q-vector incident node

A

Source qs = −P0 ·
∑

Gs,i Gs,connected∙P0

Supply area − Qs,is Qs,is

Junction 0 0

Element Value

B

G(i, i) N
∑

i  =j

Gi,j

G(i, j) −Gi,j
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Simulation interface

The simulation interface was implemented as a java application with an integrated 
graphical user interface (GUI) under the loose-coupling paradigm to ensure that com-
ponents can be exchanged easily. The key element of the simulation is a 2D projection 
as a representation of the simulated vessel tree. The interfacé́s main components are the 
simulation view including areas at risk and pressure view, and the possibility to change 
blood pressure as a boundary condition.

Perfusion imaging processing

DSC imaging was processed using the pgui software (Version 1.0, Center for functional 
neuroimaging, Aarhus University). Four arterial input functions were placed contralat-
eral to the stenosis/occlusion in the M2 vessel area and visually assessed for optimal 
shape [16]. Deconvolution was performed according to the parametric method intro-
duced by Mouridsen et al. [38]. Non-deconvolved time-to-peak, and deconvolved cer-
ebral blood flow (CBF), time-to-maximum (Tmax) and mean-transit-time(MTT) maps 
were created and assessed in this study.

Comparison of simulation and perfusion imaging results

In 67 patients, we compared simulation and DSC perfusion imaging results. For this 
purpose, we defined vulnerability for both modalities and determined the detection rate 
of the simulation to identify vulnerabilities in DSC imaging by sensitivity and specificity.

Vulnerability of brain tissue to ischemia was defined in MR-imaging as a visually rated 
TTP and/or Tmax increase and/or CBF decrease. For the simulation, vulnerability was 
defined as a perfusion pressure below 50 mmHg, at normal blood pressure or at a mean-
arterial-pressure of 70. We assessed the sensitivity/specificity of the simulation results 
to detect vulnerability as defined by the visual DSC-analysis. Results were recorded for 
anterior/middle/posterior cerebral artery regions (left/right).
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