Towards the user-centric analysis of the
availability in IaaS

Antonio Manuel Gutiérrez-Fernandez, Pablo Ferndndez, Manuel Resinas,
Antonio Ruiz-Cortés

School of Computer Engineering
University of Seville
{amgutierrez, pablofm, resinas, aruiz}Qus.es

Abstract. Availability is a key property in computational services and,
therefore, is guaranteed by Service Level Agreements (SLAs) from the
majority infrastructure services, such as virtualization (Amazon EC2,
Windows Azure, Google Cloud, Joyent, Rackspace, ...) and storage (Ama-
zon 83, Google Cloud Storage, ...). These SLAs describe availability in
natural language and there are important differences in the scope and
penalties that each service provides. Furthermore, descriptions use spe-
cific domain terms so they are difficult to understand by service cus-
tomers. These circumstances make that availability analysis is a tedious,
error-prone and time-consuming task. In this paper, we describe in de-
tail this problem and provide a first approach to deal with these SLAs
supported on current SLA analysis techniques.

Keywords: Service Level Agreements, Availability, laaS, Cloud

1 Introduction

Nowadays, cloud services are massively used to support enterprise software in-
frastructure. Cloud customers outsource infrastructure services to provide their
own services. Service Level Agreeemnts (SLAs) guarantee the service consump-
tion between the different parties. Cloud customers act as service providers for
third parties. A SLA for typical software provision guarantees availability periods
(24x7, office time, ...) or performance (requests per second, request latencys,...)
and the service provider responsability on these guarantees. As external ser-
vice provision bases on cloud services, customers examine cloud services SLA so
their responsability relates to the infrastructure guarantee. However, main cloud
providers, such Amazon, Google, Rackspace or Joyent provide a non-negotiable
Service Level Agreements (SLAs) where guarantee terms semantic is far away
from software service provision semantics.

These SLAs are described in a natural language so they are easily understood
by customers. SLAs include terms which provider guarantees and penalties poli-
cies. These terms are mainly constraints over some quality conditions such a
availability, latency or performance. The variables constrained depend on ser-
vice type (computation, storage, network, database, etc).

126

Service availability is very important for customers and all cloud service
providers offer guarantees related to availability. In this paper, we focus on anal-
ysis of guarantees over availability domain from the customer perspective. To
plan infrastructure deployment, customers evaluates how the IaaSS providers
gurantees match their own requirements. In spite of natural language guaran-
tees are easily understable, manually evaluating how these guarantees apply to
customer requirements is a time consuming, tedious and error-prone task, so
automating this analysis has an impact on customers business plan [1].

The main infrastructure services are computing and storage resources so we
focus in both kind of services. Particularly, we take SLAs where single machine
availability is guaranteed. Each kind of services have different semantic about
availability and customer preferences are analysed considering these differences.
To afford this analysis, we model usual customer preferences in the form of
Frequently Answered Questions (FAQ). First step to answer these questions, is
translate natural language description to a formal language that can be compu-
tationally operated. WS-Agreement!® is a well-known and widely used schema to
describe Agreement supporting penalties and rewards terms so we used to sup-
port our approach. In a second step, as there is not existing tool or solution which
automate the availability checking and penalties appliance operations, we design
and develop these operations to automate answering the proposal questions.

We introduce three basic questions of interest to analyse providers guarantee
for infrastructure services. These questions are:

— QI: Given Availability guarantee, which is the maximum down time without
penalties?

— Q2: Which is the penalty when a machine has been down for N minutes (in
a row or in separate periods)?

— Q3: Which is the minimun time with the maximum penalty (when the guar-
antee limit is reached)?

In next sections, SLAs from cloud providers are described for computing
(2) and storage services (3). Section 4 identifies research efforts to model SLA
supporting penalties definition in WS-Agreement and design automate solutions
for these questions as analysis operations.

2 Availability in computing services

2.1 Rackspace

In the Rackspace SLA, host availability is defined with the following terms:

We guaranty the functioning of all cloud server hosts including compute,
storage, and hypervisor. If a cloud server host fails, we guaranty that restoration
or repair will be complete within one hour of problem identification. If we fail
to meet a guaranty stated above, you will be eligible for a credit. Credits will be

! http://www.ogf . org/documents/GFD. 107 . pdf

127

calculated as a percentage of the fees for those Cloud Servers adversely affected
by the failure for the current monthly billing period during which the failure
occurred (to be applied at the end of the billing cycle), as follows: Cloud Server
Hosts: 5% of the cloud server fees for each additional hour of downtime, up to
100% of the cloud server fees

According to the SLA defined, the Rackspace availability per machine guar-
antee excludes the first 60 minutes and offers a 5% per every 60 minutes over
the first ones. So the questions proposed can humanly be answered.

— Q1: Maximum down time without penalties is 61 minutes.

— Q2: After N down minutes in a row,
the penalty is 0 if N < 60minutes, 5% of monthly fee if 60 < N < 120
10% of monthly fee if 120 < N < 180 ... 100% of monthly fee if N > 1260

— Q2: After N down minutes in separate periods, the penalty is calculated per
separate period.

— Q3: As in previous question, answer depends on the distribution of offline
periods. Having a distribution of N offline periods, and a 5% of penalty per
60 minutes, maximum penalty, 100%, is reached when the sum of minutes
(minus 60) of every offline period is 20 x 60 minutes (i.e.: 1200 minutes). In
the simple case, a single offline period, maximum penalty is reached in 1260
minutes.

2.2 Joyent

In the Joyent SLA, host availability is defined with the following terms:

Goal: Joyents goal is to achieve 100% Availability for all customers. Remedy:
Subject to exceptions, if the Availability of customers Services is less than 100%,
Joyent will credit the customer 5% of the monthly fee for each 30 minutes of
downtime (up to 100% of customers monthly fee for the affected server).

So, Joyent guarantees any unavailable machine time and the penalty is 5%
per each 30 unavailable minutes. The answer to proposal questions is similar to
Rackspace

— QI: There is no downtime without penalties.

— Q2: Penalty is 5% of monthly time if 0 < N <= 30 minutes, 10% of monthly
fee if 30 < N <60 ... 100% of monthly fee if 300 | N

— Q3: In this case, maximum penalty is 100% and as penalty is 10% per 30
minutes, maximum is reached in 10 x 30 minutes (i.e.: 300 minutes).

3 Availability in storage services

Storage services are usually binded to computing services but as operative nature
is different from computing, availability guarantees are described with different
semantics.

As example scenarios for these questions, we take Google Cloud and Amazon
S3 storage services.

128

3.1 Amazon S3

In the Amazon S3, storage availability guarantee is defined with two key con-
cepts:

— Error Rate: Number of error requests divided by total number of requests in
a b minute time period.

— Monthly Uptime Percentage (MUP): 100% minus the average of error rates
in a month.

This is, monthly uptime percentage depends on the request distribution per
5 minutes periods and the failure rate. Possible penalties depends on the MUP
with following rule:

— MUP is greater or equal than 99% but less than 99.9%, penalty is 10% of
the credit for next payment.
— MUP is lesser than 99%, penalty is 25% of the credit for next payment.

Analysing this SLA, the answer to provided questions are:

— QI1: Maximum time without penalties depends on request distribution. As-
suming 100% failure and at least one request per 5-minute period, there
wouldn’t be any penalty until 9 5-minute intervals (0.1% percent of monthly
5-minutes periods). So, answer to question is that maximum period with-
out penalties is 45 minutes (9 x 5), the specific requests number depends on
request ratio. For example, with 1 request per minute ratio, with 45 failed
requests customer could apply for penalty or with 60 requests per minute
ratio, customer would have 2700 failed requets before apply penalties (i.e.:
considering a distribution of A requests per minute, the maximun failing
requests is 9 X 5 x A requests).

— Q2: For this question, we can consider two cases. In one hand, a distribution
of consecutive 100% failure requests. In this case, the penalty depends en-
tirely of the time period considered. Over 45 minutes, customer gets a 10%
of service credit and over 450 a 25%. In the other hand, if failure requests are
not in a row, penalty applied depends on the distribution of failure requests
through time.

— Q3: Similarly to first question, over 1% percent of the time periods with
100% failed requests (i.e.: over 450 minutes), customers get maximum credit
for next billings (i.e.: 25%). For a failure regular distribution of C failures
per requests (C has to be lesser or equals than 1), the maximum penalty is
applied when 0.01 x MonthlyMinutes <+ C minutes have passed.

3.2 Google Cloud Storage

Google cloud storage SLA describe its availability guarantee, similarly to S3,
around the request error rate. In this case, key concepts are:

129

— Error Rate: Number of error requests divided by total number of valid re-
quests.

— Downtime Period: 10 consecutive minutes interval where Error Rate is bigger
than 5% percent.

— Monthly Uptime Percentage (MUP): Total minutes in a month minus the
number of the minutes in downtime periods divided by total minutes in a
month.

Google offers two different SLAs to guarantee storage availability. We con-
sider standard SLA as the concepts are similar in both of them and differences
are bigger availability at bigger price. Standard SLA offers following penalty:

— MUP is greater or equal than 99% but less than 99.9%, penalty is 10% of
the credit for next payment.

— MUP is greater or equal than 95% but less than 99%, penalty is 25% of the
credit for next payment.

— MUP is lesser than 95%, but penalty is 50% of the credit for next payment.

So, similar to Amazon, the answers to the proposed questions for Google
guarantees depend on the request distribution:

— Q1: Similarly to Amazon S3, considering 100% failure and at least one re-
quest per 10-minute period, until minute 50 (0.1% percent of monthly 10-
minutes periods), there wouldn’t be any penalty. The maximun number re-
quests depend on request ratio on those 50 minutes. Considering a distribu-
tion of A requests/minute, the maximun failing requests is 50 x A requests.

— Q2: To answer this question, again, as in Amazon S3, we can differentiate
between the simple case, i.e.: a distribution of consecutive 100% failed re-
quests (penalty depends exclusively on time) or a non regular failed requests
distribution, where penalty depends on this distribution.

— Q3: In this question, although penalty is calculated in a similar way to
Amazon S3, Google offers higher guarantees for pesimistic scenarios. If time
intervals with failures get a 5% (i.e.: over 2160 minutes with 100% failed re-
quests or, with a C failure distribution, 0.01 x M onthly Minutes-Cminutes)
customer gets a 50% service credit.

4 Our Proposal

As far as we know, existing solutions focus on cloud monitoring or validate
SLAs but no one focuses on the analysis at design time of resource availability
guaranteed by cloud providers.

First step towards supporting automate analysis over availability is modelling
the different guarantees proposed so that their penalties can be checked by a soft-
ware component. Our proposal is based on WS-Agreement which is a standard
that is widely used and that has been successfully applied in the computational
domain. WS-Agreement is the prominent proposal to model SLAs and a number

130

of supporting tools for editing and analysing WS-Agreement documents, such
our agreement management environment IDEAS?2.

4.1 Modelling SLA with WS-Agreement

WS-Agreement specification defines an Agreement document metamodel. This
metamodel is composed of several distinct parts: An optional name, context
and terms. The context section provides information about participants in the
agreement (i.e., service provider and consumer) and agreement’s lifetime. Terms
section describe the agreement itself. There are two different kind of terms,
namely service terms and guarantee terms, that can be recursively composed.

Guarantee Terms define constraints over Service Properties. They constrain
the service execution that an obligated party must fulfill. These constraints are
referred as Service Level Objectives (SLOs). So an SLO is an assertion over mon-
itorable properties defined in Service Propeties. Guarantee Terms definition can
be guarded by a Qualifying Condition (QC), which indicates a precondition to
apply the constraint in the SLO. The valuation of the guarantee is defined using
Business Value List ([2],[4]). Business Value includes the expression of impor-
tance to determine the possible penalties in a determined interval. Expressions
to define SLOs and Penalties are used to operate over Agreements (i.e.: check
an SLO is violated to renegotiate SLA or calculate penalties).

Using WS-Agreement document structure, natural language SLAs provided
by Joyent and Rackspace are defined in a straight way (Figures 1 and 2). Syntax
used in figures is iAgree, a human readable syntax proposed for WS-Agreement
documents that provided a specific language to define SLO expressions. iAgree
is a proposal from [3], which includes mapping from iAgree to WS-Agreement
and the opposite one. Original iAgree proposal does not describe Business Value
List sections so we extend it using same expression language to define Penalty
expressions.

As figures depict, the Availability guaranteed by Rackspace and Joyent cor-
respond to Service Level Objective of Unavailability lower than 60 minutes or
equal to zero minutes, respectively. To simplify scenario, guarantee limitations
(as planned maintenance) is not defined but it could be included as qualifying
conditions for the guarantee terms. Penalties are described in Business Values for
the monthly payment interval using a math expression according to the natural
language definition.

4.2 Automate availability analysis

The analysis of agreements means extracting relevant information from these
documents so it is often useful to define analysis process as operations that take
a set of parameters as input, and return a result as output [3].

With the SLA provided in previous section and the iAgree modelling pro-
posed (Figures 3, 4, 5, 6), we analyse how to define operations that answer to

2 http://www.isa.us.es/IDEAS

131

SLA

|Jovcnt. s poal is to _achieve 100% Availability for all customers |
If the Availability of customer s Services| is less than 100%,
LJO)-’c:nt will credit the customer 5% |of the m¢nthly fee for each

0 minutes of downtime (up to 100% |of customer s |monthly fee

Toll the affected server).

iAgree

G1l: Provider guarantees|MDI = 0.0;

with monthly pens]tyl

4
ServiceCredit = max(100, 5 = MDT 30);'

Fig. 1. Modelling Joyent SLA availability guarantee in iAgree

SLA

We guaranty the functioning of all cloud server hosts including compute,
storage , and hypervisor. IT a cloud server host Tails , we guaranty thatl
restoration or repair will be complete within one hour of problem
identification .

If we fail to meet a guaranty stated above,fyou will be eligible for a
credit. Credits will be calculated as a peycentage of the fees for those
Cloud Servers adversely affected by the failure for the current
|m0nth1y billing period during which the fAilure occurred (to be applied
at the end of the billing cvcle). as follows:

Cloud Seryer Hosts: 5% of the cloud seryer fees for each additional
hour of dB(wntimc. up to 100% of the cln:y{d server fees;

iAgree /

Gl: Providet guaranteed MDRT <= 60.0;

with monthly penalty |

ServiceCredit = jmax(100, 5 = (MDRT—60)/60);

Fig. 2. Modelling Rackspace SLA availability guarantee in iAgree

132

provided questions. In spite of these operations being analysed for the example
providers, we describe them for any cloud provider SLA. As SLO expressions
in iAgree are defined as constraints over service properties, operating with such
expression can be afford with a logic solver, such as Constraint Satisfaction
Problems (CSPs). So we express the proposed questions as analysis operations.

4.3 Maximum failure without penalties operation

Considering the provided scenario, given availability guarantee terms, the op-
eration to answer the question about maximum failure interval returns a time
interval. This interval can be expressed as time interval or number of requests
depending on service type.

To implement these operation, we consider that guarantee term expression is
equivalent to penalty expression (i.e.: whenever an SLO is violated, a penalty is
applied and viceversa). So the answer to this operation does not need evaluate
penalty expression and compensation and can be checked with only Service Level
Objective expression (SLO).

4.4 Applied Penalties operation

Penalty analysis depends on the failure rate. Considering the unavailability Ser-
vice property (MDT in Joyent Agreement, MDRT in Rackspace Agreement or
MUP in Amazon S3 and Google Storage), we get the result of this operation.

Given time input variable, constraint solution should return an expression
over Penalty Value Unit. Unlike previous operation, solution to this operation de-
pends on the availability guarantee is expressed as accumulate value or not accu-
mulate one (i.e.: Joyent offers guarantee over any unavailable time but Rackspace
only for exceding time over 60 minutes per service interruption). So, considering
the simple case, this is, where failure ratio is 100% per unavailable interval, both
solutions are:

— Accumulated value: Solution is calculated using the sum of every unavailable
interval length.

— Non-accumulated value: Solution is the sum of solution for every single un-
available interval length

4.5 Minimum time with maximum penalties operation

Considering the provided scenario, given availability guarantee terms, the ex-
pected answer to the question is the minimum time period where maximum
possible penalty are appliable.

To implement these operation, we consider that penalty expression and solve
for maximum penalties. For instance, in Joyent solving the single penalty ex-
pression:

P =min(100,5 x T =+ 30)

133

Template RackspaceSLA version 1
Provider Rackspace as Responder;

Guarantee Terms
Gl: Provider guarantees MRT <= 60.0
with monthly penalty
ServiceCredit = 5 = (MRT — 60) / 60

Fig. 3. Computing SLA provided by Rackspace iAgree

Template JoyentSLA version 1
Provider Joyent as Responder;

Guarantee Terms
G1l: Provider guarantees MDI = 0.0
with monthly penalty
of ServiceCredit = 5 % MDT / 30

Fig. 4. Computing SLA provided by Joyent iAgree

Template AmazonS3SLA version 1
Provider Amazon as Responder;

Guarantee Terms
Gl: Provider guarantees MUP <= 99.9%

with monthly penalty
of ServiceCredit = 10 if MUP >= 99% AND MUP < 99.9%
of ServiceCredit = 25 if MUP < 99%

Fig. 5. Storage SLA provided by Amazon S3 iAgree

Template GoogleCloudSLA version 1
Provider Google as Responder;

Guarantee Terms
G1l: Provider guarantees MUP <= 99.9%
with monthly penalty
of ServiceCredit = 10 if MUP >= 99% && MUP < 99.9%
of ServiceCredit 25 if MUP >= 95% && MUP < 99%
of ServiceCredit 50 if MUP < 95%

Fig. 6. Storage SLA provided by Google Cloud iAgree

134

Being maximum Penalty = 100%,
MinimunTime = 100 x 30 =5 = 20 x 30 = 600minutes.

In Amazon S3, similarly, Being Maximun Penalty = 25%, it is reached when
unavailability = 1%. With a 100% failed requests ratio: 1% is 86,4 5-minutes
intervals or 432 minutes. For lower failed requests ratio, time to get maximun
penalty would be inverse to the failure ratio:

1 / 3 failed request ratio would take 3 x 86,4 intervals to reach maximun
penalty.

5 Conclusions and Future Work

The contribution of this paper is based on automating availability analysis pro-
cedure which can be applied to any provider with availability guarantees. Avail-
ability guarantees are not expressed in a homogenous semantic in the different
infrastructure providers. Guarante Terms refered to availability usually express
penalties. These penalties easily reflects different proposals from the provider
goals, so it is advisable extend common validation criteria in SLA and its anal-
ysers and compilers to detect related errors.

As questions about availability are not usually straight to answer and, in all
cases, are tedious and error-prone, automating these questions support terms
analysis. Expressing these questions as analysis operations over SLA simplifies
infrastructure solutions design and fasts the development of concept proof and
time to market.

This proposal focuses on analyse availability SLA guarantees in major in-
frastructure providers. However, early analysis detects availability comprises a
wide range of semantics depending on the cloud provider and kind of services.
Therefore, this work can be extended to define validation criteria in providers
where availability concept has a wider scope and greater complexity or different
domains such as Platform as a Service (PaaS) or Software as a Service (SaaS).
Furthermore, analysis operations over availability are designed to check SLAs
guarantees at service design and planning stage but it is not reviewed how this
operations can apply to execution and monitoring phases.

References

1. Copil, G., Moldovan, D., Truong, H.L., Dustdar, S.: Sybl: An extensible language
for controlling elasticity in cloud applications. In: CCGRID. pp. 112-119 (2013)

2. Ludwig, H., Ludwig, H.: Ws-agreement concepts and use agreement-based service-
oriented architectures. Tech. rep. (2006)

3. Miiller, C.: On the Automated Analysis of WS-Agreement Documents. Applications
to the Processes of Creating and Monitoring Agreements. International dissertation,
Universidad de Sevilla (2013)

4. Rana, O., Warnier, M., Quillinan, T., Brazier, F., Cojocarasu, D.: Managing vio-
lations in service level agreements. In: Grid Middleware and Services, pp. 349-358.
Springer US (2008), http://dx.doi.org/10.1007/978-0-387-78446-5_23

135

