
A  Distributed  Solution to Synchronous Multiparty Interaction

RAFAEL CORCHUELO,  DAVID RUIZ , MIGUEL  TORO, JOŚE  L.  ARJONA ,  AND  JOŚE M.  PRIETO 
Departamento  de  Lenguajes y  Sistemas Informáticos

Facultad de  Informática  y  Estadı́stica, Universidad de  Sevilla
Avenida  de  la  Reina  Mercedes s/n, 41.012, Sevilla

ESPAÑ A  —  SPAIN

Abstract:  Multiparty  interactions are  the  key to describe problems where  three  or  more  processes need to col-
laborate  simultaneously in  order  to  solve a problem,  and this paper  aims to  show the way we have implemented 
this mechanism in a  network computer.  The  main feature  of  our  solution is that it is not bound up with the  un-
derlying  network,  so  it  is highly  portable.  We also  report  some experimental  results that  show  that  our  prototype 
performs quite  well on low cost computers.

Key  words:  Multiparty interaction, network computers, fairness, IP,  SR.  

1 Introduction
When describing the behaviour of a system implies
that more than two processes need to collaborate sim-
ultaneously in order to solve a problem, classical
inter–process interaction primitives such as rendez–
vous or remote procedure calls are not adequate be-
cause the solution is usually too sophisticated. These
primitives are examples of the classical client/server
model that emphasises two entities exchanging mes-
sages, and they are clearly insufficient in these situ-
ations because we need to decompose natural multi-
party interactions into several low–level interactions
that turn our solutions into tricky descriptions.

This motivated several researchers to introduce
multiparty interaction constructs into languages for
the description of distributed, reactive systems.
Scripts, Raddle or UNITY are good examples, but
IP (Interacting Processes) [7] stands out because it
is intended to have a dual role: on the one hand, it
is intended to be a distributed system specification
language equipped with sound semantics that turn it
into a language amenable to formal reasoning; on the
other hand, it is intended to be an assembler language
supporting more sophisticated high–level specifica-
tion languages such as LOTOS or ESTELLE. IP is
equipped with a rich set of statements, being the most
important the interaction statements that are used to
describe coordination among a set of processes.

Several algorithms that implement the multiparty
interaction statements IP incorporates have been de-
scribed in the literature [4, 8, 9], but they are closely
related to the underlying network architecture and
they cannot be easily adapted to other networks. This
is problematical because it makes them difficult to
port, and incorporating the notion of fairness into
them is usually quite tricky. Fairness is an important
property that ensures that every interaction is given
a chance to be executed. In general, several interac-
tions may be ready for execution at the same time,
but IP semantics states that only one can be fired at
each synchronisation point. Thus, when a conflict oc-
curs, one interaction is executed to the detriment of
the rest. Fairness enforces that no interaction is neg-
lected forever, but incorporating it into the algorithms
we have cited is rather difficult. As a result, few IP
implementations are available. The one described in
[1] is the state–of–the–art compiler, but it is not in
wide spread use because it runs on a transputer and it
is only intended for terminating programs.

This paper aims to describe a solution we have
implemented to this interaction mechanism on a net-
work computer, which is a collection of workstations
whose links can be logically rearranged at runtime.
This allows us for easy distribution, it is efficient
enough, and makes incorporation of fairness ex-



tremely easy while preserving portability. We have
organised it as follows: section 2 recalls the notion
of multiparty interaction by means of well–known
problems; section 3 describes our implementation,
the algorithm we have implemented to deal with fair
selection of conflicting interactions, and we also re-
port some experimental results that show that our al-
gorithms perform well enough; section 4 glances at
other authors’ work and compares it with ours; fi-
nally, section 5 shows our conclusions and the work
we are planning on doing.

2 Multiparty interactions
In this section, we introduce multiparty interaction in
the context of IP. We assume that the reader is fa-
miliar with this language, so we only recall the main
concepts. If it is not the case, please consult [7].

In IP, systems are understood as collections of
co–operating sequential processes whose relation-
ships are based on multiparty interactions. An inter-
action statement is a statement of the forma[x:=e],
wherea is referred to as the name of the interaction
andx:=e is a sequence of parallel assignments usu-
ally referred to as the communication part. A process
is said to be a participant of interactiona if it has
an interaction statement involvinga in its body, and
when a process has arrived at a point where executing
such interaction is one of its possible continuations
we say that it is readying it. When an interaction is
readied by all of its participants, we say that it is en-
abled, and when several interactions are enabled at
the same time we say that a conflict has occurred.

IP also provides guarded non–deterministic
choice statements of the form[[]ni=1Gi ! Si], guard-
ed non–deterministic loops�[[]ni=1Gi ! Si] and a

dummy statement denoted by the key wordskip.
Guards are of the formB&a[x:=e], whereB is a
boolean expression and the rest is an usual interaction
statement. A guard is said to be passable, i.e., their
corresponding statements can be executed, as long as
B holds anda is enabled.

2.1 Synchronisation
We illustrate synchronisation by means of the din-
ing philosophers problem, which is a classic multi-
process synchronisation problem that consists of five
philosophers sitting at a table who do nothing but
think and eat. There is a single fork between each
philosopher, and they need to pick both forks up in
order to eat. This problem is the core of a large class
of problems where a process (the philosopher) needs
to acquire a set of resources (the forks) in mutual ex-
clusion.

The obvious solution to this problem, using two–
party interactions, consists of picking up forks in se-
quence. Nevertheless, a problem arises if each philo-
sopher grabs the fork on his/her right, and then waits
for the fork on his/her left to be released. In this
case, a deadlock has occurred, and all philosophers
will starve. If we used multiparty interactions, each
philosopher would pick up his/her two forks at the
same time so that no deadlock may arise. Figure 1
shows a solution to this problem in IP. The philosoph-
ers are represented by processesPhilosopheri, and
the forks byForki (i = 1; 2; : : : ; n). Philosopheri
eternally tries to get his/hers associated forks by in-
teracting in the three–party interactionget forksi to-
gether withForki andForki�1 (we assume that in-
dex arithmetic is cyclic, i.e.,1�1 = n andn+1 = 1).
Thus, acquiring a resource is specified as synchron-
ising with the corresponding processes in an interac-

DIN PHIL :: [ kni=1 Philosopheri k kni=1 Forki], where
Philosopheri ::
*[ get forki[] �! eat; releaseforki[]; think ]

Forki ::
*[
get forki[] �! releaseforki[]

[]
get forki+1[] �! releaseforki+1[]

].

Figure 1: A solution to the dining philosophers problem in IP.



LEADER :: [ kni=1 Pi ], where
Pi ::
fwi: natural; leaderi: booleang
wi := a weight;
Elect[leaderi := (wi = max

1 � j � n
fwjg)];

[ leaderi ! execute algorithm].

Figure 2: A solution to the leader election problem.

EXAMPLE :: [ P k Q ], where
Pi ::
f x: naturalg
*[ A[x := y] ! skip [] B[x := y] ! skip]

Q ::
f y: naturalg
*[ A[y := x] ! skip [] B[y := x] ! skip]

Figure 3: A global picture of our solution.

tion. After Philosopheri has picked his/her forks
up, he or she eats, releases the forks, spends some
more time thinking, and the whole process is repeated
again.

2.2 Communication
We illustrate the notion of multiparty communication
by means of the leader election problem, which is
a classic multi-process communication problem that
consists of a number of processes that are able to ex-
ecute an algorithm, but there is no a priori candidate
to run it. Therefore, an election under the processes
needs to be held. The criterion processes use to se-
lect a leader is quite simple: each of them is sup-
posed to have a different natural weightwi in the sys-
tem, and the leader is the processPi satisfying that

wi = max
1�j�n

fwjg.

The usual solution to this problem, using two–
party interactions, consists of arranging the processes
in a unidirectional ring where only pairs of neighbor-
ing processes can exchange their weights and calcu-
late a local maximum. These maximums are propag-
ated in the ring so that aftern � 1 rounds the global
maximum has been calculated. The problem here is
that synchronizing the whole set of processes so that
each one passes its local maximum at the right mo-
ment is quite tricky. If we used multiparty commu-
nication, all of the processes would synchronise and
have access to the weights other processes have sim-
ultaneously. An immediate solution to this problem
is shown in figure 2. Here, the multiparty interac-
tion Elect synchronises all of the processes, allow-



ing them to exchange information and decide which
one has to be assigned to the role of leader. When
several processes synchronise and interact, a tempor-
ary global combined state is formed by combining the
local states of the processes participating in that inter-
action so that they can read information in the state of
other participants. This way, each process synchron-
ising onElect can read the weights the other pro-
cesses have, compute the maximum in parallel, com-
pare it to its own weight and store the result of this
comparison in its local variableleaderi. After inter-
action, the one that finds itself having the maximum
weight executes the appropriate algorithm.

3 Implementing interactions
The bulk of implementing multiparty interactions
consists of the so-called pre–synchronisation, com-
munication and post–synchronisation problems. The
former, consists of detecting which interactions are
enabled and of resolving conflicts. The communica-
tion problem consists of transmitting the piece of in-
formation each process needs so that network load is
minimum. Finally, the post–synchronisation problem
consists of stopping all of the processes participating
in an interaction until the others have completed their
communication parts.

This section shows the solution to these problems
we have implemented1, and also reports some experi-
mental results that show that our implementation per-
forms quite well in low cost computers.

3.1 Our solution
We have implemented a distributed solution to mul-
tiparty interactions where each IP process runs on
a different virtual machine, and there is a set of
compiler–generated processes that deal with the
problems we have just mentioned. Our solution asso-
ciates a process called manager with each interaction,
and there is also a central scheduler. Each manager
is responsible for detecting enablement or disable-
ment of its corresponding interaction, and the central
scheduler deals with fair selection of interactions.

Each IP process is logically connected to the
managers of the interactions it participates in, and
they send them messages in order to inform them
whether they are readying their associated interac-

tions or not. When a manager detects enablement
or disablement, it sends its result to the central inter-
action scheduler, which, in turn, selects one enabled
interaction fairly. In order to detail how our solution
works we use the program and the trace we show in
figure 3. It consists of two processesP andQ that
can exchange the values of their local variablesx and
y either by participating in interactionA orB, which
are permanently in conflict.

Processes do local computations and, when they
arrive at a point where they are readying an inter-
action, they send messages to the interaction man-
agers in order to inform them whether they are ready-
ing the interaction they manage or not. These mes-
sages are of the formReadies(b), beingb a boolean
value. Upon reception of these messages, the interac-
tion managers can detect enablement or disablement
very easily because they only need to see if all of the
processes that are connected to it are readying the in-
teraction they manage or not. Once they have this in-
formation, they send it to the interaction scheduler by
means of messages of the formEnabled(b), beingb
a boolean value. It then selects one of the enabled
interactions fairly and sends messages of the form
Selected(b) to the interaction managers to let them
know whether their associated interaction has been
selected or not. In any case, the interaction managers
pass these messages to the processes that are con-
nected to it, thus completing the pre–synchonisation
stage.

After synchronisation, communication takes
place. Those processes that have got a message of
the from Selected(true) from an interaction man-
ager know that they can execute the corresponding
interaction, so they start communication by send-
ing it the data they are responsible for by means of
messages of the formWrite(v). After all the data
has been collected, the interaction manager sends
each participating process the piece of information it
needs by means of messages of the formRead(v).
In our first prototype, communication was more ex-
pensive because we used two messages to read data
from the interaction manager: a message of the form
Request(x) to to inform it we were interested in vari-
ablex, and a subsequent message to send its value
from the manager to the corresponding process. In
our latest version, the manager knows what piece of

1Due to space limitations, we only present a detailed description but not a formalisation. The reader who is interested can contact
the authors in order to get a copy of our algorithm and its formalisation.



information each process needs and sends it without
any need for aRequest message.

According to IP semantics, no participant in an
interaction can continue until they all have completed
their communication parts. We have implemented the
simplest solution to enforce this: we use a commit
protocol in which every participant sends a message
indicating it is finished to the corresponding manager,
which waits until the last participant is done and in-
forms then the central scheduler. It then sends mes-
sages to let the processes know the interaction is fin-
ished and they can continue.

3.2 Fairness
Fairness is an important concept that ensures that
every element of a non–deterministic program that is
enabled sufficiently often, will eventually progress,
i.e., none of them is neglected forever. In the con-
text of IP, fair selection of enabled interactions is the
only way to ensure liveliness, termination or even-
tual response to an event. Notice, for example, that
in the program in figure 1, interactionsget forki
andget forki+1 are always in conflict when they are
both enabled, but only one can be executed. The only
way to guarantee that each interaction that is enabled
“sufficiently often” will eventually be selected for ex-
ecution consists of assuming that the underlying con-
flict resolution mechanism is fair. According to the
meaning of “sufficiently often” we have the follow-
ing levels of fairness: weak, if every element continu-
ously enabled is selected infinitely often, and strong,
if every element that is infinitely often enabled is in-
finitely often selected.

We have implemented strong fairness by associ-
ating a priority variablepa with each interactiona,
as suggested in [6]. These variables are initially as-
signed random values, and the central scheduler se-
lects among the set of conflicting interactions that
whose counter has the minimum value (maximum
priority). If more than one variable is minimum over
the set of priority variables, one of them is uniformly
selected. Upon termination of the selected interac-
tion, its associated priority variable is reset to an ar-
bitrary random value while the counters associated
with those interactions which were neglected are de-
creased by 1. This algorithm has been proved correct
in [6], but, unfortunately, we have proved that it loses
completeness if counters are finite, i.e., there are fair
executions that cannot be generated by this algorithm.

Please, do contact the authors if you are interested in
this theoretical result.

3.3 Experimental results
We have implemented an IP compiler, and the tar-
get language we selected was SR (Synchronising Re-
sources) [2], a well–known, widely–available lan-
guage for writing concurrent programs. Our proto-
type runs on a network computer composed of sev-
eral computers running Solaris, AIX and Linux, the
platforms we have in our laboratories.

In this section, we report the results of some em-
pirical tests we have carried out in order to find out
how our implementation performs. The tests were
run on a set of 10 low cost IBM 320H computers run-
ning at 25 MHz. They are equipped with 16 Mb of
memory, AIX 3.2.5, SR 2.3.1, GNU C 2.4.7, and they
are interconnected by means of a 10 Mbps Ethernet
LAN. Our test consisted of executing the following
program:

TEST :: [kni=1 Pi], where
Pi ::
f count: natural := 0g
*[ count < 500! Int[]; count++;work 1 sec.]

It consist ofn processes that just synchronise on
Int 500 times, and do some work that takes them 1
second. We executed it 15 times in a single machine
giving n values from 2 up to 10, i.e., we increased the
number of participants inInt from 2 up to 10. We
then executed this test assigning a process to each of
our machines, thus composing a network computer.

We have also carried out a regression analysis
at a 95% confidence level whose results are repor-
ted in the table below. It shows that the time our al-
gorithms take increases about 726 seconds each time
a new participant is added in the case of a single com-
puter (TSC ), whereas the rise is only 423 seconds
in a network computer (TNC). The number of in-
teractions per minute also decreases as the number
of participants increases, but our network computer
executes 9.42 more interactions per minute than our
single computer. This approximation is quite accur-
ate as the coefficient of determinationR2 shows. This
coefficient ranges in value from 0 to 1, and the higher
its value is, the more accurate the approximation is.

In general, these results show that our distrib-
uted implementation performs quite well in low cost
workstations.



Magnitude Prediction R
2

Time TSC = 725:93n + 718:78 0.99
TNC = 423:24n + 140:88 0.83

Int./Min. ISC = 20:30e�0:19n 0.95
ICN = 43:69e�0:20n 0.85

4 Related work
The first algorithms for distributed co-ordination
were produced in the context of CSP, and were re-
stricted to two–party interactions. Nevertheless, more
recently, the problem of multiparty interactions has
become of great interest. Chandy and Misra [5]
developed two algorithms that became the basis of
Bagrodia’s algorithm [4]. In this algorithm, each in-
teraction has an associated manager, which is similar
to our distributed solution because it is sent messages
when processes are ready to interact and detects en-
ablements. When one of them detects an enabled
interaction, a mutual exclusion algorithm is run in
order to prevent two different interactions from be-
ing executed at the same time. The problem here is
that Bagrodia’s algorithm assumes that the underly-
ing communication network has only those links con-
necting the processes that participate in an interac-
tion. This is problematical because it is not always
possible to place processes at adequate nodes in a real
network.

Several more algorithms have been developed by
Garg [8] or Joung and Smolka [9] for different net-
work architectures. In general, these papers also fo-
cus on architectural aspects we are not interested in.
Instead of making our solution dependent on the un-
derlying network, we have decided to rely on SR
for efficient distribution. This makes our algorithms
portable, and incorporating strong fairness into them
has been very easy, whereas incorporating this notion
in other well–known algorithms is rather difficult.
At present, the research is centred on implementing
stronger fairness assumptions than those provided by
the underlying network [3].

As far as we know, IP has been implemented in
the laboratory [1], and runs on a transputer–based
computer. Unfortunately, the implementation is only
intended for terminating IP programs. Ours can
be run in virtually any network computer composed
of inexpensive workstations and personal computers.
Furthermore, it can deal with both terminating and
non–terminating programs.

5 Conclusions and future work
In this paper, we have presented a solution to the
problem of distributed multiparty interactions. We
have also reported some experimental results that
show it is effective enough to be used in practical ap-
plications. We also think that the solution we have
presented is attractive because it is not bound up
with the underlying network, and incorporating an
algorithm for fair selection of interactions has been
straightforward.

At present, we are working on introducing multi-
party interaction in the context of CORBA. We agree
with the authors of IP in that it will not replace current
programming languages, but we think that the no-
tion of multiparty interaction is quite important and it
would be desirable for languages such as C++ or Java
to support it. This way, we are implementing multi-
party interactions using CORBA, which is a middle-
ware that is very successful in the industrial world.

References
[1] A. Adir. Compiling Programs with Multiparty Interactions

and Teams. PhD thesis, Technion, 1994.

[2] G.E. Andrews and R.A. Olson.The SR Programming Lan-
guage. The Benjamin–Cummings Publishing Company,
1993.

[3] P.C. Attie, I.R. Forman, and E. Levy. On fairness as an ab-
straction for the design of distributed systems. InProceeding
of the 10th International Conference on Distributed Com-
puting Systems, Paris, France, June 1990. IEEE.

[4] R. Bagrodia. Process synchronization: Design and perform-
ance evaluation of distributed algorithms.IEEE Transac-
tions on Software Engineering, 15(9):1053–1065, Septem-
ber 1989.

[5] K.M. Chandy and J. Misra.Parallel Program Design: A
Foundation. Addison–Wesley, 1988.

[6] N. Francez.Fairness. Springer–Verlag, 1986.

[7] N. Francez and I. Forman.Interacting processes: A mul-
tiparty approach to coordinated distributed programming.
Addison–Wesley, 1996.

[8] V.K. Garg and S. Ajmani. An efficient algorithm for multi–
process shared events. InProceedings of the 2nd Symposium
on Parallel and Distributed Computing, 1990.

[9] Y.J. Joung and S.A. Smolka. A completely distributed
and message-efficient implementation of synchronous mul-
tiprocess communication. In Pen-Chung Yew, editor,Pro-
ceedings of the 19th International Conference on Paral-
lel Processing. Volume 3: Algorithms and Architectures,
pages 311–318, Urbana-Champaign, Illinois, August 1990.
Pennsylvania State University Press.


