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Abstract
A widespread need to explain the behavior and outcomes of AI-based systems has 
emerged, due to their ubiquitous presence. Thus, providing renewed momentum to 
the relatively new research area of eXplainable AI (XAI). Nowadays, the importance 
of XAI lies in the fact that the increasing control transference to this kind of system 
for decision making -or, at least, its use for assisting executive stakeholders- already 
affects many sensitive realms (as in Politics, Social Sciences, or Law). The decision-
making power handover to opaque AI systems makes mandatory explaining those, 
primarily in application scenarios where the stakeholders are unaware of both the 
high technology applied and the basic principles governing the technological solu-
tions. The issue should not be reduced to a merely technical problem; the explainer 
would be compelled to transmit richer knowledge about the system (including its 
role within the informational ecosystem where he/she works). To achieve such an 
aim, the explainer could exploit, if necessary, practices from other scientific and 
humanistic areas. The first aim of the paper is to emphasize and justify the need 
for a multidisciplinary approach that is beneficiated from part of the scientific and 
philosophical corpus on Explaining, underscoring the particular nuances of the issue 
within the field of Data Science. The second objective is to develop some arguments 
justifying the authors’ bet by a more relevant role of ideas inspired by, on the one 
hand, formal techniques from Knowledge Representation and Reasoning, and on 
the other hand, the modeling of human reasoning when facing the explanation. This 
way, explaining modeling practices would seek a sound balance between the pure 
technical justification and the explainer-explainee agreement.
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Some problems are so complex that you have to be highly intelligent and well 
informed just to be undecided about them.

Laurence J. Peter.

1 Introduction

«1» Generally speaking, Artificial Intelligence (AI) plays two roles in Decision-
Making. The first one is as an assistant to the process itself, by providing information 
through inference (e.g., a profile about a subject or situation) to the (human) agent 
responsible for the decision. The second one is as agents with actual autonomy, both in 
decision-making and the execution itself (e.g. deleting videos with unauthorized use of 
copyrighted music). In any case, AI technology is not exploited as an isolated artifact, 
it is imbricated in a broader treatment of information, often socio-technical systems 
that include humans (AI engineers, data scientists, scientific experts, stakeholders, 
etc.). Therefore, monitoring of the overall system where such modules are embedded 
becomes a critical concern. It will need some specifications of the system behavior, 
notoriously in several Data Science (DS) environments such as Big Data (BD), the 
Internet of Things, and Cloud Computing. Sometimes it is sufficient to get an explana-
tion of the particular outcome or decision, what would be called a local explaining.

«2» The need is not global, although it is mandatory in scenarios where people’s 
rights are affected. Stakeholders should ask for some form of certification, traceabil-
ity and evaluation of applicability and performance (van de Poel, 2020). Likewise, 
AI-based systems are used for executive decision-making advice on particular issues 
in Complex Systems (CS) that seem harmless and may not be so. Cases as varied 
as social networks, social dynamics, prediction of urban dynamics, etc. may not be 
critical, and still, they could impact user’s rights.

«3» AI systems are paradigmatic technical artifacts, objects with a technical func-
tion and a physical structure consciously designed, produced, and used by humans 
to realize such a function (Kroes et al., 2006). But nor every artifact that makes an 
automated decision is an AI system, nor every AI is Machine Learning (ML), and 
nor everything announced as AI is, in fact, AI-based. There is an evident hype on 
the subject; the term is often used within marketing strategies to justify business 
decisions. However, the use of AI-based modules for empowering another kind of 
system makes, indeed, that the latter inherit the potential explainability needs from 
the former. Such inheritance could happen regardless of the three main complex-
ity levels of research in Explainable AI (XAI) (Doran et al., 2017): comprehensible 
systems that emit symbols enabling user-driven explanations of how a conclusions 
are reached, interpretable systems where users can mathematically analyze its algo-
rithmic mechanisms, and opaque systems that offer no insight into its algorithmic 
mechanisms. The latter is the most troublemaking one. It could be stated that, in the 
context of XAI, such systems should be understood as High Technology, according 
to D. Ihde’s definition (Ihde, 2010, p. 58):

Complex and intertwined systems that while are understood through scientifi-
cally derived theories, their components are esoteric (nor do we understand 
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their function) although we know that they are the result of complex and scien-
tifically determined processes and finally we concentrate some information on 
tolerance and internal organization.

As it is frequent in Complex Artificial Intelligent Systems (CAIS), the (formalized 
principles from) scientific models are hidden inside the software. Thus the high level 
of understanding required becomes difficult to acquire (as Ihde’s notion points out).

«4» Rather than limiting itself to the details of the technology, in some cases, the 
explanation should also show the outcomes that the AI-based solution can bring. 
Also, how would its impact on the business be as a whole? Such requirements turn 
the explanation into a product of an interactive scenario, a socio-technical system 
framed by the interaction between the data scientist -assisted by a CAIS- and the 
stakeholders. This is a product of the current socio-technological ecosystem where 
AI systems are increasingly used to support decision-making of institutions and gov-
ernments. It is not a completely new setting in AI (e.g. the well-established Knowl-
edge Engineering), only is becoming much more relevant due to the new systems 
and players involved. For example, it sought solutions that must satisfy the need for 
transparency in decision making that affects the citizenry (de Fine Licht & de Fine 
Licht, 2020). In fact, it is a challenge how to achieve the general public perceiv-
ing AI-based decision-making as a producer of legitimate and acceptable solutions. 
The process transparency could augment such a perception, damaged by the tech-
nology evolution. The ubiquitous deployment of increasingly complex AI systems 
challenges humans’ confidence in their performance, experimental correctness, and 
validity. In addition, there is the fact that Trust in High Technology comes in a dif-
ferent belief to the AI engineer than to a politician (as an extreme example). Broach-
ing this issue by using tools transferred and adapted from Knowledge Engineering 
may be insufficient.

«5» As argued by Miller (2019), the creation of explainable intelligent systems 
requires addressing some issues. Firstly, those that come from the consideration of 
Explaining as the product of the interactivity between humans and the (automated 
or semi-automated) AI system. Secondly, the design of representations supporting 
the articulation of the explanations is required. To these requirements others should 
be added -somewhat distant from IA- that would affect other dimensions, such as 
the social (inter-agent). Weld and Bansal (2018) required for a good explanation to 
be simple, easy to understand, faithful (accurate), and conveying the true cause of 
the event. They shape the balancing problem between two demands: is explanation’s 
primary purpose to convince the explainee to accept the computer’s outcomes (per-
haps by presenting a simple, plausible, but an unlikely explanation) or it aims to 
achieve the explainee’s literacy about the soundness of the technological solution?

«6» The impact of XAI-related issues (and their collateral effects) are not only 
computational and commercial in nature (Weld & Bansal, 2019). Systems usa-
bility (namely the democratization of their use) on the one hand, and the legal, 
ethical and social consequences (on the rise in public opinion) on the other hand, 
play a relevant role in XAI. The unstoppable advance of AI is causing a social 
and cultural crisis regarding the safety of the outcomes of the systems. Above 
all, in those touchy realms for society, with relevant media impact (and which are 
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responsible for a significant part of XAI visibility). For instance, it seems socially 
unacceptable that an autonomous car does not reach a very high success rate (to 
safety), close to 100%. Nevertheless, they are far from approaching levels of this 
magnitude (Biewald, 2016). Not only it is necessary the disengagement decisions 
-when the human had to take control of a vehicle- are explainable by the techni-
cal agents. It also needs to be understandable by stakeholders. Also, it demands 
that these events do not cause serious accidents. This way, current systems can-
not completely ensure that; they are still far from human performance. This bar-
rier suggests the existence of a glass ceiling for autonomous car performance. 
It is not the only one; it could add another relevant social fact. The best known 
explanations for public opinion are those related to serious accidents of these 
autonomous systems. They usually come from diagnostic processes that, due to 
their importance, seek confidence in the explanation in which all the agents are 
involved. Thus, it is composed of technical reports, tracing data and normative 
documentation. The explaining demands are thus actual challenges for the socio-
technical system in which autonomous cars are embodied, that require a system-
level analysis (that comprises agents such as manufacturers, vendors, institutions) 
(Borenstein et al., 2019). There exist even more sensitive instances, as the devel-
opment of lethal autonomous weapons systems. Whether they can determine if 
a target has military significance (military necessity)? Whether the target is a 
combatant (distinction)? Whether the military action is overkill to accomplish the 
task (proportionality)? To date, the U.S. military is worried about whether or not 
this determination can be carried out by autonomous systems without a human in 
the “loop” making this kind of decision (Price et al., 2018).

«7» Scenarios of this kind do and will persistently occur. They share an essen-
tial feature: the need to tailor the explanation (of CAIS behavior or outcomes) to 
be acceptable by a layman. Software/hardware is accompanied by human behavior 
and social institutions in what represents a socio-technical system (Kroes & Ver-
beek, 2014). This kind of scenario in mind, where convincing the explainee (encom-
passing its psychological dimension) may be more relevant than providing a correct 
explanation. Throughout the paper, it is called an Explanation-to-Layman-Explainee 
Scenario (ELES). ELES can be considered as a complex socio-technical system, 
compounded by increasing abstraction layers (Fig. 1), some of them hidden by the 
explainee, although play a relevant role when it comes to the explainer getting the 
explanation acceptable to the stakeholder. In such circumstances, likely, most of the 
understanding (e.g. of the software libraries) and the knowledge (of programming 
and parameter tuning practices) that the explainer deploys to find the solution is not 
finally represented in the explanation. This is where XAI urgently needs to broach 
the philosophical, social, and psychological dimensions of the challenge, beyond the 
pure human-computer interaction, usability issues, and user experience [being aware 
of the difficulties that exist in trying to reconcile the two fields (Páez, 2009)].

In order to tackle the above challenge, we claim that two ingredients have to play 
a more relevant role in XAI, which are briefly outlined (and contextualized) below: 
The Knowledge Level envisioning of AI and the Bounded Rationality paradigm. 
The following is a brief description of both, but we anticipate the reader that the 
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paper is not committed to their direct application. Instead, the aim is to take advan-
tage of the ideas and practices of the two fields to outline and assist the XAI process.

1.1  The Knowledge Level

«8» One of the ingredients of the authors’s proposal is a proper reading of the 
Knowledge Level (KL) in Explaining, presented as a way to tackle the problem of 
building explanations in the three elements: explanans, explanandum and inference 
link.

«9» Newell’s KL begins with the premise that representation and reasoning are 
intrinsically separated, in the way that inference (e.g. automated reasoning) works 
with symbolic expressions without intended interpretation (Newell, 1982). The 
design of the reasoning module concerns only the formal soundness and validity 
of the reasoning as a mathematical apparatus. Thus one only needs to specify what 
the agent knows and what its goals are, a logical abstraction separate from imple-
mentation details. The behavior comes from the execution of the reasoning mod-
ule on the representation of the agent’s knowledge. From the point of view of this 
paper, we consider KL-models as surrogate models for rational agents or CAIS (for 
example, rule-based systems). They appeal in the last instance to the (computational 
logic) soundness of the modeling. Symbolic models are surrogate insofar as, once 
checked its soundness, the model satisfies the general requirements of the surrogate 
ones. Many Data Science solutions starting from mathematical mechanisms (which 
are assumed to be well implemented in the software libraries) provide support for 
an inference. From this point of view one could say that even the Decision Layer 
of Fig. 1 would be susceptible to be modeled for explaining it under KL-inspired 
principles.

1.1.1  Unlimited Versus Bounded Reasoning in AI

«10» Davis et al. (1993) point out that one of the roles of Knowledge Representation 
and Reasoning (KRR) is that of being surrogate, substituting the original to reason 

Table 1  The roles of knowledge representation Davis et al. (1993)

Role Description

Surrogate A substitute for the thing itself. For reasoning about 
the world rather than taking action in it

Set of ontological commitments In which terms should the world be thought about?
A fragmentary theory of intelligent reasoning Expressed in terms of:

1. The conception of reasoning
2. The set of inferences sanctioned
3. The set of inferences recommended

A medium for effective computing 1. An environment in which thinking is accomplished
2. Guidance for organising information

A medium for human expression A language which says things about the world
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about the world and infer the decision to be made (Fig. 1). It is not its only role; it 
is also useful to represent ontological commitments (assimilated to laws of nature) 
as well as theories for reasoning. KRR represents an environment where both it can 
organize the information, and the system can think. Other approaches as Addis’ 
(2014) (pp. 46) further break down these roles.

«11» Roughly, Rationality comprises five activities: Recognizing and defining a 
problem or opportunity, search for alternatives to follow, collection and analysis of 
data on each of the alternatives, evaluation of them in the light of the analysis, and 
finally, as the result of the latter, the selection and application of the preferred one.

«12» The starting point in KRR would be a scientific background devoted to 
the study of rational agents. It began with the search for computational models for 
Unlimited Reasoning (UR), where it was urgent to concentrate on epistemological 
adequacy rather than heuristic adequacy. The design of systems under (calculative) 
rationality arose. Possibly, this leads to inefficient systems, albeit with the hope to 
get as close as possible to UR using better programming and various approximation 
and acceleration techniques.

«13» Ideally, the adoption of an UR paradigm -ultimately based on logic infer-
ence- would reduce the problem to the choice of sound logic according to the 
Knowledge Level approach (see below). Heuristic adaptation would still be outside 
the direct scope of application. We only need insight to choose formalism, expecting 
that the increasing computational capacity alleviates the problems of the efficiency 
or the real computability1. How to adapt it to a framework with limited resources? 
There are fundamental differences between pure rational choice and bounded 
rational choice that should be accounted for (Table 2 summarizes the main differ-
ences between both forms of reasoning). These dissimilitudes play a role in sce-
narios where other rational attitudes come to play as in ELES.

Table 2  Rational choice versus Bounded Rationality (extracted from ) (Hernandez & Ortega, 2019)

Bounded rationality Rational choice

Necessity of assistance of the bounded mental capac-
ity of the subject that decides

Unbounded cognitive ability of the subject who 
decides

Knowledge of an acceptable set of actions Knowledge of all available actions
Approximate and heterogeneous knowledge of the 

consequences
Numerical knowledge of all the consequences 

of actions
Evolutionary and unsettled preferences Stable and ordered preferences
Temporary and cost limitation that affects the quality 

of the decision
Unbounded or non-influential resources in the 

decision-making process
Search for a satisfactory result Search for the best possible result
Help the one who decides to understand what will 

happen if he does something
Inform the one who decides about what to do

1 See Dick’s paper Dick (2015) for more information on the history and discussions about the origins 
and difficulties of implementing BR for the first rational agents, and the consideration of heuristics).
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1.2  Bounded Rationality as a model for human reasoning

«14» The considerations of human factors as relevant in XAI, beside the need for 
specification, lead to explore the suitability of approaches based on Bounded Ration-
ality (BR). Simon (1957a) [(see also Simon (1957b)] proposed BR as an alterna-
tive basis for the mathematical modelling of decision-making as used in Economics, 
Political Science and related disciplines. As such, it has to be studied as an indispen-
sable discipline in both, the Social Sciences and AI (and their confluence), a status 
that it preserves even more importantly today (Gigerenzer & Selten, 2002; Moreira 
2019). The basis of Simon’s BR lies in the fact that Simon (1957b):

the capacity of the human mind for formulating and solving complex prob-
lems is very small compared with the size of the problems whose solution is 
required for objectively rational behavior in the real world-or even for a rea-
sonable approximation to such objective rationality.

Some of the actions we perform which are not the result of a purely rational process 
are common, due to our intrinsic limitations in the formulation, the processing of 
information (reception, storage, retrieval, transmission) as well as in the synthesis of 
solutions itself.

«15» Our ability to work under limitations allow us to face and live within CS 
that we simply endure or solve using incomplete, not purely logical, knowledge 
(beliefs) reasoning, and yet we are effective at solving or coping with such problems 
(Duris, 2018). In BR, the decision process is seen -even for relatively simple prob-
lems- as a process that does not necessarily choose the optimal action (Hernandez & 
Ortega, 2019). People’s behavior is influenced by both available opportunities and 
desires, influenced in turn by other factors as their own beliefs. The use of beliefs 
(which are intentional in nature, and not necessarily true) means that they cannot 
even distinguish whether some options are viable or not, or whether they are favora-
ble to their interests. That is, the choice could be not necessarily optimal, nor even 
heuristics-driven (in any case, not necessarily formalized or conscious).

1.3  From Unlimited Rationality to Bounded Resource Reasoning

«16» Let us focus for a moment on resource constraints, one of the pillars of BR, 
and how this is addressed in KL inspired paradigms such as Agent Theory (AT). 
Since engineers aim to build feasible engines, even starting from UR in AT, it is 
necessary to account for some limitations. Among these needs, the cost of process-
ing should always be considered. The (modern textbook) concept of rational agent 
in Russell and Norvig (2003) takes into account the following idea: rational agents 
try to maximize the utility function according to the resources they have. However, 
such a definition does not limit the way of obtaining such maximization by logical 
deliberation.

«17» There exist some approaches, from the classical agent-based AI, to deal 
with the problem of resource constraints. According to Russell and Subramanian 
(1995), a bounded optimal agent is running the program (from its possible program 
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space) with limited rational analysis. The authors state that it is necessary to distin-
guish between two types of costs: the cost of finding the optimal behavior, and that 
of running the associated program. It is also necessary to point out the distinction 
between optimizing the program and optimizing the solution that is being obtained. 
Russell and Subramanian further clarify the principles that should guide the design 
of agents under constraints. Namely, bounded optimality is desirable in reality, and 
it is possible to construct provably bounded optimal programs. Lastly, AI can be 
usefully characterized as the study of bounded optimality, particularly in the context 
of complex task environments and reasonably powerful computing devices. Think-
ing in XAI, the explainer (human or artificial) agents could be driven by these prin-
ciples. Within the design of systems for XAI, according to the principles of KL, 
the particular data (perceptions from an event) to be explained should not play any 
role in the explanation producer (the explaining system). This general principle is 
observed by the state-of-the-art explaining systems LIME (Ribeiro et al., 2016) and 
SHAP (Lundberg & Lee, 2017).

1.4  Aims and Structure of the Paper

«18» The paper mainly concerns foundational issues. The aim is to discuss aspects 
related to the explanation versus the information available (or selected) versus gen-
eral principles inspired in KRR. We investigate the fundamental issues of the role 
of KRR in explaining CS behavior. Likewise, the issue of applying BR solutions 
to achieve acceptable explanations for stakeholders, will be addressed; particu-
larly in the case of ELES within Data Science (e.g. ML technologies and tools for 
inherently complex problems). Also, throughout the paper, the authors aim to con-
vince the reader that XAI in Data Science owns particular features which should be 
investigated.

«19» First, we account for the psychological (Sect. 2) and sociological (Sect. 3) 
dimensions that frame XAI. We point out some considerations on the nature of the 
explanation as a product from agent interaction, a social construct. Some insights on 
its impact on the explanation building are discussed.

«20» Second, the question will be framed within another aim that the AI commu-
nity should accept as indispensable for the promising development of XAI. Namely, 
the need to incorporate into XAI part of the body of work on Explaining (from Phi-
losophy of Science) and particularly the use of the notion of mechanism (Sect. 4). 
Currently, most of engineering XAI approaches neglect many of these resources 
that can be useful. A paradoxical oversight, considering that the challenge links to a 
solid scientific and philosophical tradition -as it will be show in the paper. We do not 
intend, of course, to make a global review of the extensive literature on the topic, but 
only to point out some general considerations on the elements of explanation that 
should be taken advantage of, always within our vision as AI researchers.

«21» The paper is focused on whether one can consider BR for XAI, specifi-
cally, within the general question of XAI versus BR (versus logics) The aim is 
to present it as potential machinery to tackle the argumentative dialog driven to 
achieve the explanation. Starting from (Computational) Logic ideas (Sect. 5), the 
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role of KL-based surrogate models is explored (Sect. 6). The option to formalize 
the different elements in Explaining will be further explored and detailed in the 
case of Data Science practices (Sect. 7)

«22» As an ultimate goal, the incorporation of BR in the argument modeling 
for XAI (Sect. 8), mainly for local XAI [(argument modeling is a known resource 
in XAI (Rago et  al., 2021)]. We claim it could be influential for XAI in socio-
technical systems for massive data processing. ELES is particularly interesting 
because circumscribes XAI into expert versus non-expert (e.g., stakeholder) 
scenarios presenting a considerable knowledge gap. A last section (Sect.  9) is 
devoted to point out some conclusions as well as future work.

1.4.1  Topics

«23» Throughout the paper, the relationship between some topics and XAI is 
mentioned. It could be classified according three dimensions of the problem: 
model/system used, the format of the explanation, and the context in which the 
work is carried out. The first concerns the system to be explained and the model 
on which the explanation would be based. (Table 3). The second one is about the 
three-element sequence ⟨explanans, inference-link, and explanandun⟩ as a format 
for the explanation (Table 4). And lastly, the use, context, and impact as factors of 
the socio-technical systems involved in Explaining (Table 5).

Throughout the paper, it will analyze some elements from KL to be applied in 
XAI (besides BR or isolated in specific sections). Table 6 describes the general 
approach to XAI from KL, according to the three standard classifications for XAI 
solutions. In addition, Table 7 lists the commonly used abbreviations used in the 
paper.

Table 3  Features of the system 
to explain and the model for 
explaining

On the system Paragraphs On the model for Paragraphs
to explain explaining

High Technology 3 Interactive/contrasting 64
CAIS 7 Bounded rationality Sect. 7
Systems for CS 51 Deductive-nomological 45, 46

Format 48
Surrogate 52, 63
KL 55
Veracity Sect. 6.6.2
Logic limitation rule 99
BR models 100
Perspectivism 7.3, 61
Surrogate KL 53, 51
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2  On the Role of Psychological Features in Explaining

«24» The relevance of the explainee’s literacy is highlighted by considering fac-
tors beyond the technological dimension and close to the psychological. Users are 
more willing to accept automated decisions if the explanation is tailored to their 
level. Such acceptability refers both to the main features of the domain of discourse 
where is circumscribed the event/decision, and the use of technological tools, nota-
bly to its trust in them (Miller, 2019; Araujo et al., ming). The latter is related in 
turn to other factors; mainly, to the user recognition or internalization of particular 
beliefs on the capabilities of such instruments. The internalization could make the 
explainee accepting the explanation in the same terms as the explainer. This would 
be the secondary product of the interactive interplay between the two agents that 
aims to reach a consensus on an explanation. The benefits of internalization are sev-
eral. When people generate explanations or imagine hypotheses about an event/sys-
tem’s behavior (and thus internalize these), they increase their confidence in those 
possibilities they have synthesized. Three phenomena would support this (Koehler, 
1991): (1) When we use a hypothesis, this benefits from an increase in confidence 
concerning the rest of the available options for reasoning or argument; (2) When a 

Table 4  Features for elements in Explanations

Explanans Paragraphs

Mechanisms 38
Boundary Elements 42, 43
Incomplete in CS 95
BR-activity Sect. 7.2
Variety in BR Sect. 7.2.1

Inference link Paragraphs

Narrative/story telling 31
Causal
vs non-causal

Sect. 4

Causal closure principle 44
non-causal 42
Non-observability 39
BR Sect. 7
BR logics 7
Limitations of BR 15, 17
Rational 16
Causal BR 113, 36, 114

Explanandun

Event
Behavior
Decisions
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Table 5  Context, use and impact of explaining

Context Paragraphs

Expert vs non-experts 4
Trust 27
Data Science Sect. 6
Big Data Sect. 6.4, Sect. 6.7
Absence of Models (BD) Sect. 6.6

Use Paragraphs

Tailoring 24
Predicting Sect. 6.5
Taming 62, 95, 108
Curation 59, 60, 112
Semantic Technologies 68,69

Impact Paragraphs

General 6
Acceptability 26, 28
Usefulness vs soundness Sect. 3.1

Table 7  Commonly used abbreviations

AI Artificial Intelligence BD Big Data
BR Bounded rationality CAIS Complex Artificial Intelligent Systems
CS Complex systems DN Deductive-Nomological Hempel’s explanation
DS Data science ELES Explanation-to-Layman-Explainee Scenario
ER Ecological rationality KL Knowledge level
KRR Knowledge representation and reasoning ML Machine learning
SAT Propositional satisfiability problem UR Unlimited reasoning
XAI Explainable Artificial Intelligence

Table 6  KL reading of different XAI approaches

Explanation type

ante-hoc post-hoc
KL-model (e.g. Expert system) argument-based

Scope on a model

Global Local
KL based surrogate model argument-based

General scope

Model specific Model agnostic
KL based surrogate model KL model for explaining
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person is asked to provide an argument (which could be an explanation) to support a 
certain hypothesis, a collateral effect from that choice (or synthesis process) is that 
he/she tends to find that argument more plausible than others, and lastly (3) if for 
some reason, they believe a theory is correct, then they tend to express greater con-
fidence both in its veracity and in the events that will occur from it. There are other 
factors on the goal itself (explanation acceptance) that could improve the process. 
Psychologists have determined that some criteria would be a priority to include in 
an explanation: necessary causes (vs. sufficient), intentional actions (vs. those taken 
without deliberation), proximal causes (vs. distant), details that allow distinguishing 
between fact and foil, and abnormal features among others (Weld & Bansal, 2018). 
The exploitation of such psychological features would facilitate the explainer to con-
vince the explainee in ELES.

«25» Another important issue is the simplicity or minimalism of the explanation, 
mainly on the representation. According to Lombrozo (2007), humans prefer expla-
nations that are simpler (i.e., contain fewer clauses), more general, and coherent 
(i.e., consistent with the human’s prior beliefs). She also highlights that our desire 
for simplicity goes so far that we even prefer simple (one clause) explanations to 
conjunctive explanations—even when the latter is likely to be more accurate than 
the single clause. This feature supports our idea of working with simple explanation 
models [(transforming if necessary, relatively more complex logical explanations 
(Booth et al., 2019)] and try to find its minimalism. One can also take advantage of 
the study of the so-called conjunctive explanations, which are different explanations 
that, nevertheless, are more explanatory together than separately (Schupbach, 2019).

«26» These disclosures actually link two aims within XAI: understanding the 
event, and susceptibility to accept the explanation. According to Dudai and Evers 
(2014), understanding refers to the ability to generate a specific mental model (or a 
more comprehensive theory) that allows predictions based on the scientific reason-
ing about the system’s behavior. Subrahmanian and Kumar (2017) point out that the 
term understanding is often used in two different ways that do not imply each other. 
The first refers to the subjective feeling of having a given meaning to something 
(we have interpreted it). The second one refers to having perceived empirical regu-
larities enabling us (subjectively) to predict. In some problems, it is dangerous to 
confuse them. The former is associated with knowledge whilst the latter could only 
be the source for solving a ML problem. The second notion could be considered as 

Fig. 1  Stratified architecture on which ELES appears
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the descriptive understanding, according to Findl and Suárez (2021). In that paper, 
the authors study the case of using purely (descriptive) statistical epidemiologi-
cal models as a tool for decision-making. This kind of model is quite distant from 
the explanatory understanding, the basis for scientific knowledge. It can be argued 
that the descriptive understanding could not be a solid basis for explaining inso-
far as they do not offer the necessary epistemological link to the Scientific Theory 
that supports our knowledge about the phenomena. However, what is undoubted is 
that this type of model (and similar) which have demonstrated their usefulness and, 
therefore, it is necessary to study their scope and characteristics (Findl & Suárez, 
2021). For instance, investigating whether this kind of model enjoys of what Regt 
names Criterion for Understanding Phenomena and Criterion for the Intelligibility 
of Theories (de Regt, 2017, Chap. 4), and how it can support its potential prediction-
generating character.

All this thought is within a framework where notions as inference should not be 
understood as in Computer Science (Computational Logic). Rather, as a human pro-
cess that does not need to be equivalent to a purely (formal) logical process. A num-
ber of non-purely (logical) rational types of information management/processing 
can be explained by techniques studied in BR, which cover all those reasoning tech-
niques that we use in the face of our processing limitations. Circumscribed to ELES, 
it would even be necessary to study the effect of the explanation on the explainee’s 
beliefs. It would be necessary to reflect to what extent cognitive biases may affect 
human understanding of interpretable machine learning models, for example, rule 
systems. For instance, in Kliegr et al. (2021) the authors summarize them in the par-
ticular case of rule-based machine learning models (hence KL-based), pointing out 
the need for investigating human interpretability from the standpoint of Cognitive 
Science.

3  On the Sociological Factor

«27» As an inter-agent system, ELES owns a social dimension. One of the factors 
it has already been pointed out is the explainee’s trust in the explanation process 
itself. Two facets of trust can be studied. One is whether the explainee believes the 
explanation meets its beliefs about what it is sound explaining. The other one is the 
inter-agent level: the explainer aims to convince the explainee with the explanation. 
The latter is linked, as it has been argued, to the psychological dimension (and to our 
processing limitations). According to Cugueró-Escofet and Rosanas-Martí (2019), 
trust only makes sense in a BR context, where agents are not fully aware of their 
preferences and values. Trust allows both, the explainer and the explainee, to admit 
decisions that are not consistent with their beliefs, internal values, or preference sys-
tems (something that also could occur due to commercial or political interests, for 
instance). Trust influences the teleological understanding of Explaining activities, 
namely the explainee’s assumption of the explainer’s willingness to act according to 
the highest values. This is a possible reason to trust that its explanations are of best 
interest for both agents, even though it may not be the most attractive in terms of the 
immediate variables of both effort and results (Cugueró-Escofet & Rosanas-Martí, 
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2019). At the inter-agent level, the trust induces the explainee’s belief that the 
explainer will make decisions according to his current values (intentions, obliga-
tions, objectives, etc.) even when some variables push him in the opposite direction.

«28» Another social factor affecting the success of the explanation in ELES is 
its dependence on the audience’s degree of acceptance of the narrative presented. 
Combined use of several modules in the Data Science Project is time-dependent 
and susceptible to be explained by describing the trace of the experiments. Thus, 
there are narrative elements in the part dedicated to the description of the ML model 
and in the part devoted to justify and argue the decisions made by the CAIS [as for 
instance within dashboards (Jarke & Macgilchrist, 2021)]. Their existence leads us 
to explore questions related to the context in which the agents work and the required 
explanation precision, which is related in turn to the human, social or legal accept-
ability. The explainer agent should transfer information about model accuracy, using 
if necessary metaphors to simplify the explanation. For example, employing exem-
plary models that share the most important variables and values involved in decision 
making (or the outcome) offered. Also, some strategies based on the adoption of 
human interpretations allow an excellent balance of performance and intelligibility 
(Weld & Bansal, 2019) [(see also Janssen et al. (2021)].

«29» Since the paper mainly focuses on Local Explaining (i.e., the XAI case 
in which the explainer agent aims to explain the result offered by the system), the 
socio-technical system stratifies in tree levels (Fig.  2). The system level concerns 
the system itself and the outcome to be explained, which depends on the use case: 
information about the CS, the system’s behavior, or the decision suggested by this, 
among others. The agent level comprises the agents involved in the process, with 
their associated characteristics. Lastly, the interaction level would be concerned with 
the documentation of the interaction, its trace, information about the acts of commu-
nication, and the final explanation.

Fig. 2  Socio-technical system where explaining issue is framed. Agents interacts to achieve consensual 
explanation
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3.1  On the balance between usefulness and soundness

«30» The above aspects underpin Lipton’s warning in Lipton (2018) on the need 
to achieve a balance between the effectiveness of models such as Deep Learning 
and the acceptance by humans of the results they offer. Several factors condition 
the agreement between agents (the explainee’s acceptance of an explanation of 
the AI-based system behavior) as a social construct. It is supposed that when the 
explainer interprets the results of the system for the explainee, he/she would be 
working under the basic principles of interpretive reasoning. The first and fore-
most is the so-called Restrictive Principle (Stern, 2005), that is, only reasonable 
explainees, who are familiar with the circumstances, understand what is at issue 
the way the explainer does. The principle shapes the explanation’s success but 
also its usefulness (as reusability).

«31» Also, the restrictive principle seems to claim that the explanation accept-
ance (and its internalization) also depends on the explainee’s ability to develop 
a (based on belief) mental model of how the tools work and what they actually 
do, as we have pointed out in Paragraph 24. Hinsen argued that such models are 
limited by the tool features that we need to know (with the advantages and limita-
tions of that) (Hinsen, 2014). Thus, some of their mechanisms can be hidden or 
obviated, hence it may exist, to some extent, an undisclosable view of the mecha-
nism/tool (Goebel et al., 2018). An extreme case appears when the system users 
are unable to make an informed decision between different models to choose the 
most convenient or efficient program, regardless of which model it implements.

«32» Other extreme scenario occurs when the explainer focuses on the goal of 
explainee’s acceptance, since the system is provably correct but the stakeholders 
demand an explanation before accepting the decision the system suggests. Among 
other options, fictionalization of the explanation (or the model) can contribute to 
the success. For example, Storytelling strategies that exploit metaphors associat-
ing explanations with explanatory traditions from other sciences are shown to be 
useful. The advantage of this kind of strategies is that they are focused on con-
vincing the explainee, and therefore there is a certain relaxation of the complete-
ness of the narrative/explanation. This approach is actually producing a narra-
tive, not a truly explanation itself (compelling versus scientific soundness). Thus, 
the incompleteness of properties among fictional entities (those used to mount 
the metaphor) is not a simple anomaly (Margolis, 1983), actually is part of the 
strategy itself. A consequence could be that the explanation becomes doubtful 
for different explainees. Thus, the reason for the non-preservability of the valid-
ity would be its ontological status of the so-called embedded narrative, which 
are mental representations, produced by a history, that are virtual. They are not 
verified in the factual domain, being thus epistemologically weak insofar because 
they belong to the mental/subjective realm; they are susceptible to reinterpreta-
tion or transformation by another explainee. Explanation malleability represents 
a new source of risk. Finally, the uncontrolled modification of the explanation 
(and its practical consequences) across the organization can exacerbate the bad 
practices that XAI aims to prevent, as it already occurs in the Privacy field in DS.
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4  Causal Versus Non‑causal Explanations

«33» The complex relationship between logic -entailment- and causality has 
been largely studied in Philosophy of Science. Therefore, it is not surprising 
that dilemmas as causal versus non-causal explanations remain in force within 
XAI, even if it is blurred by the requirements of explainee’s acceptability of the 
explanation.

«34» Hobbes claimed that a phenomenon is explained when one assigns a 
cause to it. Knowing the causes of an event (in some of the various and disputed 
meanings of causation) is considered one of the most solid forms of explanation. 
Sometimes even more important than proper understanding of the event itself. 
The status of causality in XAI is possibly due, to the preponderant role that Phys-
ics has played and plays in Science in general, and therefore in Engineering. So 
much that mechanisms and causality are very useful resources in the enterprise of 
explaining and justifying events, theories and results. Also, the interplay between 
Philosophy and Science matters.

«35» This section does not intend to be a general review of the features and the 
causal versus non-causal dilemma in Explaining which are inherited in turn from 
Science [Miller’s (2019) contains a general discussion of the topic]. However, 
some notes on the role of causality in CAIS are necessary to frame up the follow-
ing sections (several hard open problems in AI are intrinsically related to causality). 
Mainly, its relationship with the notion of mechanism (from Philosophy of Science 
and Physics), to the extent that many CAIS can be broken down into what can be 
considered their basic mechanisms. This idea is to support some arguments devel-
oped throughout the paper, such as our claim that logical mechanism (not under-
stood here in a narrow sense) has sense in XAI because it shares some of the fea-
tures with the classical notion of mechanism in Explaining. Although it could be 
far from a logical-computational paradigm, it is interesting to consider certain logi-
cal and mathematical steps as mechanisms, or at least to consider that they admit 
such a reading. Of course, this consideration is not free of controversy, since not all 
current trends in Explaining Research admit an identification of explanation with 
argument, and logic usually produces the latter (Huneman, 2018). Moreover, the 
mechanistic conception of Explaining usually breaks with the idea of explanation 
as entailment, which allows us to avoid some classic critics on this idea (Huneman, 
2018). Although it is not our aim to rely on the mechanistic view for the discus-
sion of logical mechanisms, we do believe it is necessary to devote some space to 
it. Mainly, due to three reasons that arise when we focus on ELES. The first is that 
ideas of Mechanicism are implicit in certain practices of ML researchers for explain-
ing. We refer, for example, to those who analyze the numerical interaction of nodes 
or subnetworks within the whole network as mechanisms that, combined, explain 
the system. However, such explanation is not useful for the explainee (since it could 
be uninterpretable in practice), despite it could be a valid one from a mathematical 
point of view. Secondly, the observation mechanism does not imply achieving the 
understanding of the explainee. And lastly, these warnings may be valid even for the 
logical mechanisms, which makes their study necessary.



1 3

Explainable Artificial Intelligence in Data Science  

«36» Thinking about the problem in ELES, one has to recall how humans usu-
ally can recognize causation. One form consists of comparing (could be men-
tal) the outcome when an action is taken with the corresponding when the action 
under study is retained. If the two results differ, we say that the action has a 
causal or preventive effect on the result. Otherwise, we say that the action does 
not have a causal effect on the outcome. The idea also fits with Craver’s notion 
of the variable causally relevant (Craver, 2007): a variable X is causally relevant 
to the variable Y in the conditions W if any intervention on X in the conditions W 
changes the value of Y (or the probability distribution over the possible values of 
Y) (Craver, 2007; Barberis, 2012). In ELES, the causation problem could exac-
erbate because the explainee should understand that the difference between the 
outcomes makes causal the action or element. Also, in its understanding of the 
role of the features involved. The resource of considering mechanisms (actual or 
as metaphors for systems subprocesses or modules) could alleviate the knowledge 
gap.

4.1  On the Role of Mechanisms

«37» It is often to consider causality as a mechanistic tool for explanation in Sci-
ence, within the broad consensus in Philosophy of Science about the soundness 
of mechanistic conception of the explanation (with reasonable discrepancies and 
evident weaknesses). According to such conception, to explain a phenomenon 
consists of displaying the relevant parts, activities, and organizational features of 
the mechanisms in which that phenomenon has taken place. Hereby, the searching 
for an explanation would focus on the searching for mechanisms that, combined 
in a certain way, will produce a final effect of the observed event. Notwithstand-
ing, the notion of the mechanism itself may be subject to discussion. Chiefly, the 
level description of them can lie anywhere on a continuum from a mechanism 
sketch to an ideally complete description (Craver, 2006). An important observa-
tion to be taken into account is that mechanicism does not focus exclusively on 
the etiological explanations of the event, but rather on constitutive or component 
explanations and its representation itself. It would be a purely epistemic approach 
in that sense, opposed to the ontic conception of the explanation as an object 
independent of its representation (Salmon & Press, 1984).

«38» But what does mechanism means here? Since different proposals exist, 
instead of embracing a particular definition, it is interesting for the paper to adopt 
Hedström and Ylikoski’s vision (Hedström & Ylikoski, 2010). They argue that 
a mechanism can be usually identified with the kind of effect or phenomenon it 
produces; a mechanism is always a mechanism for something (Darden, 2006). In 
the authors’ sense, a mechanism is an irreducibly causal notion. It refers to the 
entities of a causal process that produces the effect of interest. It is also neces-
sary to take into account whether this mechanism is observable by the two agents 
involved (explainer and explainee) or rather, what degree of disclosure does it 
show to them- since such a point would affect XAI problem.
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4.2  On Mechanism Observability: Undisclosable or Explainable Ingredients

«39» The non-observability of the mechanism by some of the agents can be quite 
controversial. Options such as emergence-based explanations in Agent-Based 
Modeling of CS may suffer non-observability to some extent, producing what we 
could call epistemic gaps. We do not only refer here to statistical-computational 
mechanisms but to certain intrinsic inaccessibility of the mechanism, such as 
those (inaccessible links) that connect micro and macro levels in emergence phe-
nomena in CS and particularly in complex neural networks.

«40» Observability is linked to another characteristic feature of a mechanism, 
according to Hedström and Ylikoski: it has a structure. It should be possible to 
disclose it, making visible how the participating entities and their properties, 
activities, and relations, produce the effect of interest. For example, the focus 
on some subnetwork of a complex neural network would allow the designer to 
understand its role/function within the overall system. However, embracing a 
KRR standpoint, a black box ML system might be undisclosed. Even opening it, 
its actual logic-mathematical structure difficult to understand by the layman its 
behavior (according to the Ihde’s High Technology notion). It can be concluded 
that, if it is required that any mechanism involved in the explanation can exhibit 
its structure, then some complex logic mechanisms (as some modules within 
state-of-the-art SAT solvers) would not be considered as such (if one adopts the 
vision of the authors). Finally, another feature is that the mechanism does not 
have to use only explainable ingredients. In fact, to build an explanation one can 
use non-explainable ingredients such as fundamental principles, elements that 
would be boundaries or limit. They would be considered explainable per se, or 
nomologic.

4.3  Boundary Elements Versus Causality

«41» In Scientific Fields such as Physics, there is a growing tendency to pro-
pose non-causal models. This type of model poses serious foundational prob-
lems, because there would be a certain need to outline sound conditions to decide 
whether an explanation is acceptable or not. By neglecting causality there is a 
risk of presenting models that provide only non-causal explanations. The risk is 
present even in state-of-the-art explaining systems as LIME (Ribeiro et al., 2016) 
or SHAP (Lundberg & Lee, 2017), in which the role of some system features are 
drawn employing statistical or game-theoretical tools, being causal factors hidden 
for the user. This type of system helps the engineer to capture the generalizable 
patterns underlying the outputs of a system. Such patterns allow to make infer-
ences about the (potentially causal) connections between the inputs and outputs 
of the system. It would be necessary to discuss how to enrich these approaches to 
provide more convincing information from the explainee’s viewpoint (including 
some representation of causality, if necessary) (Pearl, 2009; van der Waa et al., 
2021), or techniques for emergent semantics [(e.g. (Borrego-Díaz & Páez, 2022)].
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«42» To analyze the issue in XAI -independently of the explaining model-, it 
is necessary to return to the Philosophy of Science. King (2020) proposes two 
conditions upon which to base the analysis of the model for XAI. The first is the 
Local Counterfactual Condition (LCC):

An explanatory model M provides counterfactual information that shows 
how the explanandum E depends on M and initial, boundary, and auxiliary 
conditions C.

The second King’s condition is called the Global Confirmation Addition (GCA):

An explanatory model M is a part of or may be in accordance with, a highly 
confirmed scientific theory T.

There exists the risk of considering GCA as inaccurate, although GCA could actu-
ally point to the nomologic part of the explanation. It needs an accurate analysis 
of what the three notions in GCA actually mean within the technological realm of 
XAI:  to be a part of, to be in accordance with and a highly confirmed theory (King, 
2020). Continuing the parallel with Physics, some new models have such a degree 
of abstraction and epistemological richness that there may be conflicts in the model 
description itself. This circumstance casts doubts on their usefulness. Overcoming 
the obvious distance, some CAIS may provoke similar doubts. CAIS not only are 
nonsymbolic systems as complex neural networks, other systems as state-of-the-
art SAT solvers also fall in this category (Giráldez-Cru & Levy, 2016). Nomologic 
aspects of explanations in the latter should be logical in nature, but not only that. 
Others can represent data specifications, well-established algorithm schemes, etc.

«43» The assumption of the existence of limit/boundary ingredients in 
explanatory mechanisms (or in the explanations in general) could serve to out-
line a frontier between causality and non-causality (Sullivan, 2019). Reutlinger 
(2014) defines a non-causal explanation (NC) as one that contains at least one 
non-causal element e, and in addition, e ensures the success of the explanation. 
The notion thus expressed would be problematic in XAI. If ensures means that it 
is a condition for an explanation, then NC is too exclusive, since any explanation 
that includes at least one non-causal element would be NC. We should accept 
the existence and use of certain boundary conditions (boundary elements) even 
if they are not causal in nature. Boundary conditions are necessary to construct 
the explanation, although no information is available about their causes (in fact, 
one would admit it is not actually necessary). In any case, by continually reduc-
ing ourselves to causes we would come across some base or limit ingredient that 
will be inherently non-causal. In CAIS, such elements would be elements of con-
firmed or well-established AI theories, or simple transformations of inputs (from 
sensors, for example). The most evident example will be the raw data provided by 
the perception or I/O modules. Non-causal ingredients elaborated from this kind 
of data could be a standpoint of the world representation (expressing restrictions 
on the features on which the explanation is based).

«44» The argument developed so far in the section seems to lead to a physi-
calist point of view of the explanation. For example, a backtracking analysis of 
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causes leads to consider principles as the so-called Causal Closure Principle 
(CCP): If a physical effect has a cause, then it has a sufficient physical cause 
(Dimitrijević, 2019; Papineau, 2001; Kim, 2005). This may seem an extreme 
position, but would be necessary in safety critical software, for example. Accept-
ance of CCP as a requirement would require a rigorous treatment of all the ele-
ments involved from a mathematical, logical-computational standpoint (which 
could be counterproductive to the explainee’s acceptance of the explanation). In 
any case, one would have to ask oneself which are the boundary elements and 
whether they would represent the laws of nature of the specific Computer Science 
or XAI ground theory, or even consensual beliefs in ELES. Notwithstanding, 
these kinds of principles can sometimes be hidden by the causal roles. This seems 
to be one of the more controversial principles on Explaining practices in the new 
mechanicism (Huneman, 2018). If we want to take as much advantage as possible 
of the analogy between mechanism and logical mechanism, then it is necessary to 
determine such laws. Additionally, the boundary elements, concerning causality 
in the system to explain, should be addressed. Both aims could greatly help the 
design of models for explaining beyond the statistical ones.

4.4  Laws of Nature and the Structure of Logic‑Based Explanations

«45» The consideration of the Laws of Nature as ground ingredients for explana-
tions is ubiquitous in Philosophy of Science. For instance, examine us the so-
called Deductive-Nomological (DN) Hempel’s concept explanation (Hempel, 
1970). The first condition is that an explanation is an argument or inference 
equipped with propositions for premises and conclusions and the relationship 
between both (which is the expectation of obtaining the conclusion based on legal 
connections). Hempel’s second condition states that explanans must contain at 
least one law of nature (the nomological component) so that the derivation of the 
explaining would not be valid if it removes the premise. One might wonder how 
these laws would be when one wishes to transfer the requirements to XAI.

«46» The KL laws of nature can emerge if the explainer imposes some kind of 
minimalism on the elements of the explanation and grounding on the background 
knowledge, where such laws may already belong to. These laws of the domain 
where the CAIS applies, would be represented within the background knowledge. 
This way, Hempel’s condition is satisfied.

«47» Even so, following the DN model leads to inherit its associated issues, 
such as relevance and asymmetry (Woodward, 2019). Other authors also con-
cern with pragmatics, as van Frassen Bas (1980), who defends the pragmatic and 
intentional view of explanation. Among other proposals, he relies on the purely 
logical idea of explanation, although this relation is understood here as from 
question to why-question, and the answer would be an essentially contrastive 
explanation. There exist also other proposals to solve the difficulties. For exam-
ple, by extending the explanandum domain specification to represent richer repre-
sentation frames. [cf. Díez (2014)].
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5  Grounding on (Computational) Logic Principles

«48» At a logical level, the explainer can exploit the implication as causality relation 
(although sometimes actually represents correlation). It is a well known and popular 
option with a longstanding history in AI (e.g. in Expert Systems). and represents a 
successful approach to the problem.

«49» The adoption of a paradigm from Computational Logic does not exempt 
us from encountering difficulties. The first is whether the right approach has been 
chosen. One of the risks that should be avoided when building explanatory models 
is the so-called Heuristic Fallacy (HF) (Gabbay & Woods, 2003): 

Let H be a body of heuristics with respect to the construction of some theory 
T. If P is a belief from H which is indispensable to the construction of T,  then 
the unqualified inference that T is incomplete, unless it sanctions the deriva-
tion of P, is a fallacy.

A Computer Science vision would be to claim that HF deals -in XAI- with the prob-
lematic relationship between the approximation to a theory and its applicability. 
Accepting the belief P is indispensable is very useful to ensure the explanation (con-
sidered at one time as a specific theory) is acceptable. As Gabbay and Woods aim 
higher (Gabbay & Woods, 2003); they argue that if the theorist avoids the fallacy, 
then it is likely that the procedures derived from the designed theory could be inap-
plicable (for example, due to computational complexity). Therefore, one could claim 
that theorists must avoid HF but, at the same time, adjust the theoretical models in a 
rough way that they have realistic executions.

In ELES, another complexity ingredient comes from the difficulty of translating 
some logical features of the explanations into a language acceptable and intelligible 
by a non-expert. Two elements need to be translated frequently. The first, of course, 
the explanandum but also the second: the part of the Knowledge Base (KB) used to 
entail it (boundary elements, nomological components or laws of nature). That is, 
the initial hypothesis besides the inference links. Regarding the explanation link, it 
should also be translated or adapted when it is not comprehensible to the explainee 
(Booth et al., 2019).

5.1  Explaining by Using Knowledge Level‑Based Surrogate Models

«50» The undertaking of building models to support explanation -especially for 
intelligent systems based on ML- covers various techniques, ranging from those spe-
cialized in Deep Learning (cf. Townsend et al., 2019) to logical causal models (in 
the tradition of classical Expert Systems). To approach the issue from KL, the need 
to reconcile two levels of reasoning (the explainer’s and explainee’s) through some 
accepted (consensual) model, becomes more pressing. What Newell’s Knowledge 
Level (KL) (Newell, 1982) paradigm can offer to meet the Explaining challenge 
is mainly explanation, interpretation, and justification. These are research prac-
tices deeply rooted in AI, as they provide reliability in autonomous systems for the 
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decision-making process. However, what would be the status of a KL-based model 
within XAI? Can one consider this as a surrogate?

«51» The standpoint is the simplest and currently most common use of surrogate 
models, namely, to obtain results at less (computational) cost than those obtained 
through expensive (actual) experiments. The basic idea is that the surrogate model 
acts as a curve fit system to the available data so that it can predict results without 
resorting to the original. At a higher level of abstraction -and thinking on CS- the 
idea of building a surrogate model is very appealing.

«52» Surrogate models (cf. Forrester et al., 2008) represent a common approach 
in Engineering. It is a natural approach when attempting to understand the system 
behavior or to explain a complex event. For instance, the model can approximate the 
system/event behavior under certain guidelines of rationality, allowing the engineer 
to work with the model to achieve plausible explanations of the original. An exam-
ple of a surrogate model to the explanation itself is LIME (Ribeiro et  al., 2016). 
Focusing on general XAI, one should consider some nuances since the problem also 
aims to preserve correctness. Explaining a CAIS -its outcome or behavior- by work-
ing with approximate models blurs the border between the errors present in the orig-
inal system and those produced by the approximative nature of the surrogate model 
itself. In other words, the source of explanations can be at the same time the source 
of new errors or misunderstandings due to the granular view of the system’s behav-
ior which the surrogate model represents. Of course, that issue is not specific to XAI 
(it also occurs in Agent-Based Modeling of CS), although it is true that representa-
tional fidelity is decisive here.

«53» In contrast to the usual surrogate models in Engineering, within the KL the 
agents or systems mainly work with variants of symbolic (logic) reasoning. They 
seek representing information from the environment to obtain conclusions by means 
of mechanized symbolic manipulations, without any intended meaning. In this way, 
it is only necessary to specify agent knowledge, beliefs, and goals. When consider-
ing KL-based surrogate models, it is necessary to assume the separation between the 
logical abstraction and the algorithms and implementation details of the inference/
decision process itself. The separation of representation and reasoning modules aims 
to study without ambiguity the KRR’s own problems in a separated way: representa-
tion and reasoning.

«54» Although KL-based models, as the rule-based ones, represent a sound solu-
tion for XAI, in general, providing a KL model for explaining does not necessar-
ily solve the problem itself. This could present a complex behavior that is hard to 
both specify and prove its correctness. The logic exploited in the model is not nec-
essarily helpful to explain the output. KRR technologies, those used in the internal 
level (on data) and the external one (on the system), can be ontologically separated, 
that is they might be based on principles that are distinct or uninterpretable between 
them (e.g. Evans et al. (2021)). This issue is frequent while working with the already 
mentioned emergence-based explanations, where the inference link can end up hid-
den within the ontological gap between description levels.

«55» Within the KL perspective, the models providing outcomes closer to the 
explainees’ reasoning practices would be more likely to be accepted. Thus, the 
explainer will aim to synthesize an explanation similar to that a human would 
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provide. If one wants to build KL models for surrogating, it will be necessary a 
proper reading of the factors that make surrogate models in Engineering (quanti-
tative in nature) useful. Roughly, these come from explainable model training on 
the original inputs and predictions of the complex model. Here we refer to explain-
able models for stakeholder, such as linear regression or decision trees, which are 
accepted as explainable in the Engineering Community. As the classic surrogate 
models are useful for explaining non-linear, non-monotonous models, the ideal KL-
based surrogate model would rely on basic inference mechanisms to explain the 
event, the explanandum. It is in this aspect where authors think that BR solutions 
could aid building KL models. Another aspect that reinforces this position is that the 
KL-based models can provide natural solutions to the interactive phase preceding 
the explanation acceptation, by providing arguments from system behavior, as for 
example, what DARPA proposes (DARPA, 2016).

6  Explaining in Data Science. Curation and Perspectivism

«56» The assistance of data scientists to stakeholders studying/taming the behav-
ior of a CS (for example, explaining or assisting in particular decision-making on 
a social network) raises the question about what would be a plausible explanation 
acceptable to the latter. For example, General CS -such as Urban Mobility Systems 
or Smartgrids- have multiple levels, which are open, that is, they are influenced by 
the outside and interact with it. Thus, an explanation focusing on a restrictive view 
does not necessarily provide the best answer (or even a correct answer). Therefore, 
it is reasonable to expect that this would not offer general solutions to the explain-
ing problem. The alternative path to mitigate the deficiency would be to address 
its adequacy from the perspective data scientists are led to by the selective access 
to massive data, as well as regarding the inevitable biased selection of dimensions, 
features, and the datasets themselves. That is the perspective that emerges from the 
data, from its curation and exploration, compromising the desired independence of 
the observer’s view. Such a standpoint -underpinning the human factor that config-
ures the perspective- is a particular instance of more general concern. In research 
areas such as human cognition and quantum physics, traditional science is being 
questioned as an independent observer approach, inspiring a Second-Order Science 
(SOS) (Müller & Riegler, 2014) that analyzes the challenge from a meta-science 
level.

«57» Perspectivism emerges from the premise that all perception and ideation 
take place from a particular perspective (i.e., from a particular cognitive point of 
view). It is assumed the existence of different conceptual schemes -from perspec-
tives- which influence how the phenomenon will be understood, as well as the judg-
ment of its veracity. Although it is assumed that there is no single true perspective to 
explain the world, it is not supposed that all perspectives are equally valid. In a per-
spectivist view, Science would be primarily observer-dependent. We are witnessing 
a growing recognition in scientific studies that most of scientific knowledge is per-
spectival (Alrøe & Noe, 2014). The context established from a scientific discipline is 
decisive for the kind of observations, and hence the results. If it transfers the idea to 
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a more modest environment, the same ground phenomenon occurs intra theory, that 
is, different contextual observations that ground on the same theory.

«58» What is claimed here is that the explanations are inherently perspectivist 
artifacts when working with CS in ELES. From an inter-theory standpoint, Perspec-
tivism claims the existence of different scientific perspectives to analyze a complex 
problem, all of which can bring value to the study, knowing that in the case of gen-
eral CS, a single scientific discipline can not provide sound solutions to their com-
plex behavior. This limitation reinforces the role of scientific models in the absence 
of models controversy in Data Science (Sect. 6.6 below).

6.1  Towards Perspectivism in Data Science. Curation

«59» The challenge of the fast development of our digital ecosystem confronts us 
with data and information on extremely complex problems. Internet provides an 
astonishing amount of information about any kind of phenomena and events (social, 
humanitarian, economic crises, etc.). Within the DS universe, an interesting and 
valuable kind of information comes from the effects themselves of important socio-
technological problems. Paradoxically, although this could help to understand and 
manage them, the wealth of data on the event could prevent its use. It is unavoid-
able to select, curate, data. Consequently, the solution proposed for the problem will 
depend on how data scientist has approached it (profiling the starting conditions 
and the concept of solution) and vice versa. The ad hoc parameters -with which 
will evaluate the soundness of the solution- are also specified. Once the aim has 
been profiled, data scientists resume the data curation practices [This stage would 
represent the foraging loop in the sensemaking process (Pirolli & Card, 2005)]. 
Therefore, the definition of the problem ultimately will depend on the sketch of the 
solution (and thus on the explanation as well). This loop could make challenging 
obtaining a proper formal specification of the problem in BD , which leads to opt 
for descriptions of some similar well-behaved problem that scientists could solve, 
and to claim that this is the problem to solve (Rittel & Webber, 1973). The problem 
has been extensively studied and contextualized in other domain fields [e.g. Leonelli 
(2016)].

«60» One could reasonably conclude that this kind of practice conforms to an 
actual perspectivist approach to data processing in BD. That is, a perspectival Data 
Science that can be interpreted as the translation to DS of the sensemaking in Intelli-
gent Systems (Klein et al., 2006). In DARPA (2016), the DARPA agency motivates 
the Explainability Challenge approach in Data Science with -among other argu-
ments- that decisions assisted by DB analytics need a selection of which resources 
will be the target of study to support evidence in the analysis. Curation itself may 
induce failures or errors that need to be analyzed, to refine both the procedure and 
the content curation. The provision of effective explanations obtained from robustly 
curated data would greatly aid XAI DARPA (2016). From a Philosophical stand-
point, one can dare to suggest that what is proposed by DARPA goes beyond solving 
the challenges of data curation. The agency seem to point out the need for the design 
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and practice of data hermeneutics (Romele et  al., 2020; Gerbaudo, 2020), which 
would cover the overall process, the result and the extraction and curation policies.

«61» In spite of the problems, data scientists perform data curation even for 
finding explanations. Moreover, they actually curate based on BR practices. While 
exploring data, the explainer uses intuition or heuristics, like in other processes of 
Knowledge Management [for which several features have been identified (Hvoreckỳ 
et  al., 2013)]. Since several of such skills affect the results, the overall outcomes 
should be considered as the product of a certain perspective, built to explain the 
system’s behavior in the philosophical sense (see Sect. 7.3 below). The existence of 
several explanations (supported by different theories, experiments, tools, concepts, 
or categories) supporting a CAIS-based decision leads us to move the question of 
what would be a correct explanation. The question reminds us of the persistent chal-
lenge on how to work with a non-unifiable plurality of partial knowledge (Longino, 
2006) [see also (Alrøe & Noe, 2014)].

«62» Turning back to ELES, another circumstance that strengthens the idea of 
explaining as an outcome of perspectival DS practices is that many BD problems 
come from well-known classical social or technological phenomena. Data are use-
ful, for example, when scientists aim to engineer a socio-technical system producing 
similar data from its observed performance (Jones et al., 2013). But this information 
also becomes a new ingredient to be used while tackling a kind of old and known 
challenges [e.g. the wicked problems (Rittel & Webber, 1973)]. The nature of this 
kind of information suggests some interesting questions beyond XAI: Can AI aid 
experts to tame these problems on which they have a large amount of data? Is it 
possible to address the problem by reasoning with knowledge extracted from that 
source? They are two relevant questions because technological solutions supporting 
affirmative answers have to be explained. For ELES, the AI tools can provide (sta-
tistical, logical, or other) support to decisions or information received, although with 
particular nuances. Here the explanation of the decision does not aim to convince of 
its correctness, only of its satisfiability.

6.2  What Does the Explainee’s Understanding Role Play in Data Science?

«63» It has been argued that cognitive factors play a relevant role in the explainee’s 
acceptability of the model. In ELES, it is necessary to keep in mind that a relaxa-
tion of the -logical, mathematical, or statistical- requirements should not lead to the 
emergence of misconceptions, as statistical fallacies concealed within High Tech-
nology. It is a risk the case of considering as significant a particular phenomenon 
when a large amount of data is available. For example, Gambler’s fallacy: if some-
thing has happened more frequently than usual, then it is now less likely to happen 
in the future. Techniques based on Bonferroni Principle can help to identify such 
(random) occurrences and avoid treating them as an actual phenomena. In addition, 
during the data exploration phase, the data scientist can decide to focus on particular 
feature sets and study the relationships among them. There are many more risks, 
different illusions of validity associated with the processing and exploration of data 
(cf. Aronson, 2011), chapter 2). This leads to the necessity of reconsidering both the 
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features and data dependencies (Gajdoš & Snášel, 2014). These risks are shared by 
the explainer and the explainee agents.

«64» Even using intelligible models for the stakeholder, it is likely that the pro-
cess of explaining remains being an interactive and contrasting task, something 
deeply analyzed in XAI (Stepin et  al., 2021). It involves questions such as What 
happens if a condition is altered or eliminated? or What happens if the condition 
used in the explanation does not occur?. The explainee could also ask for different 
model instances (even different models). Lieto, Lebiere and Oltramari (Lieto et al., 
2018) refer to another two problems, common to most cognitive architectures (CA), 
affecting their representation level: the limited size and homogeneous typology of 
coded and processed knowledge. Such issues would be inherited in perspectival DS. 
It is worth noting that they are not purely technological problems, but also epis-
temological in nature. For example, they could limit the plausibility of comparing 
mechanisms of representation and processing of knowledge with those executed by 
humans in their daily activities.

6.3  The Data Scientist Within the Loop

«65» An extreme case of perspectival DS is that of the promising citizen data sci-
ence projects, in which citizens will handle auto-ML systems (e.g. implemented 
in their smartphones). The user/observer would be embedded in the context itself, 
hence the observation and data sources would be curated by she/him. Such circular-
ity should be taken into consideration since it can even affect the desired causality 
(Füllsack, 2014). Something similar occurs in XAI for Neuroscience, in particular, 
when assisting in the closed-loop approach to treatments Fellous et  al. (2019) or 
in neurostimulation, (Fellous et  al., 2019). Another similar case of an embodied 
explainer would be the challenge of self-explanatory machines, for instance, those 
with self-diagnosys capabilities. In the event of an incident, an autonomous car with 
diagnostic capacity would check whether it is your responsibility (leaving aside for 
the moment the supposition that the idea of a full autonomy obviating the need for 
human-machine collaboration is very arguable (Bradshaw et al., 2013)). For carry-
ing out the task, the agent must work within a very complex system of responsibili-
ties relationships, and role-taking modules (Kridalukmana et al., 2020). Self-diag-
nosis becomes a true challenge since the agent is located in the environment where 
data are recollected, hence it can influence this. Recently, the National Transpor-
tation Safety Board Office of Public Affairs (NTSB) provided factual information 
via a public docket for two Tesla accident investigations.2 Part of the information 
is retrieved from the vehicle, which represents the ground documentation to syn-
thesize the explanation (the diagnosis of the accident). In this case, there exists the 
requirement that the diagnosis must be not only rigorous; it must also be intelligible 
to political and business leaders (as stakeholders they are in an ELES), beyond the 

2 https:// www. ntsb. gov/ news/ press- relea ses/ Pages/ NR202 00211. aspx.

https://www.ntsb.gov/news/press-releases/Pages/NR20200211.aspx
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simplified explanation to be provided to public media.3 Another factor that is not 
discussed in the paper -and that plays its role- in the case of unmanned vehicles, is 
the compulsory requirement to offer morally acceptable explanations from machines 
(with morality learned from ourselves (Awad et al., 2020)). Such a requirement is 
only a particular case of the general challenge of deciding whether the system has 
embedded some values, such as fairness, transparency, explainability, and account-
ability (van de Poel, 2020). Their compliance can, in turn, be a source of the new 
explanation needs.

«66» Some sort of similar circularity occurs in monitoring, personalization, or 
recommender systems. Their daily use involves explainees (clients or users) who 
observe and confront his observations with the explanation offered by the explainer. 
The observations -and their evaluation in the light of the explanation- may be 
affected by biases (in fact, the manipulation of the model leads to accepting biased 
models, one of the vulnerabilities of XAI solutions (Slack et al., 2021)). Also, other 
limitations such as slowness, imprecision, subjectivity, and the need for granular-
ity -which are typical of human perception and cognition (Anderson & Perona, 
2014)- arise.

«67» Working within a massive data framework exacerbates some of the above 
issues. In BD, data scientist are dealing with software that needs to manage thou-
sands of features [among other issues (Li & Liu, 2017)]. Moreover, performance 
requirements are likely to force the adoption of methods that are notoriously difficult 
(or impossible) to explain; unconscious human skills play a relevant role. This is 
the case with complex deep neural networks or enhanced decision forests (Weld & 
Bansal, 2019). It is often the case of post-hoc explanations may be the only way to 
facilitate human understanding.

6.4  On the Role of Semantics

«68» Focusing on the potential use of the KL ideas in DS (which could be consid-
ered a limited case of technical explainability), problems of similar magnitude arise. 
Even focusing on the Semantic Web envision or the application of semantic technol-
ogies, one faces the classic KL challenges but with a greater dimension. The treat-
ment of inconsistent/incompatible features is only one example among many dif-
ficulties (Alonso-Jiménez et al., 2006). There are other similarly complex problems, 
for example, issues related to incompleteness, or those associated with the complex-
ity of the involved ontologies that became in actual standards as Genetic Ontology 
GO in Biotechnology. Another issue would be the lack of relevant metadata, which 
is unknown and unknowable due to the impossibility of inferencing them employing 
some intelligent method (a typical case when working with knowledge graphs).

«69» The incorporation of Semantic Technologies into massive data analysis 
-such as those applied to knowledge graphs (Nickel et  al., 2016) is promoting AI 
systems that deal with elements closer to the user’s mental models than the purely 

3 See the link: Data shows Tesla owner experienced repeated glitch days before deadly 2018 crash
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numerical ones. Even it could offer complementary information about the result that 
could serve as an approach to explaining. In this case, powerful tools to represent 
the reasoning followed by the algorithm -closer to the explainee literacy- would be 
available (Wang et  al., 2019) (Borrego-Díaz & Chávez-González, 2006; Aranda-
Corral & Borrego-Díaz, 2010). Furthermore, rather than attempting to confirm the 
explanation through purely deductive approaches, semantic resources such as Linked 
Data can facilitate the search and analysis of counterfactuals (Janssen & Kuk, 2016), 
rather than simply collecting a representative sample of data to confirm our theory.

6.5  Explaining and Predicting

«70» So far, the section has mainly focused on factors concerning the quality of 
the explainer’s argument (i.e., the explanation). We have claimed that these can be 
variable, context-dependent, and driven by ultimate aims, but their reusability has 
not been mentioned yet. Often the aim is not only to explain other events but also 
to provide an aid to predicting. A post-hoc explanation if this does not enjoy some 
predictive usefulness, could not be enough when facing similar events. The scale of 
the problem is once again a determining factor that conditions such an expectation.

«71» The emphasis on prediction from learning is what actually endows meaning 
and utility to several AI-based solutions. It is assumed that the knowledge (belief) 
recovered must allow making meaningful predictions; it is not enough to explain 
what happened. The requirement should be similar to that which Karl Popper pro-
posed for scientific theories. By demanding meaningful predictions, we are implic-
itly admitting that experiments or scenarios can be put forward that call into ques-
tion the causes and explanations. In this way, we strengthen our model through the 
contrastive explanation of the phenomena.

«72» The enormous empirical (and theoretical) uncertainty in massive data pro-
cessing tends to overwhelming attempts at reliable prediction in many socio-techno-
logical realms. Its use to talk about the future is limited by foundational (teleologi-
cal) issues, and it should be so to adhere to best practices. In these cases, predictive 
modeling may be more useful as a heuristic tool for generating possible scenarios 
than as a producer of specific policy advice in ELES. In other fields as Compu-
tational Social Science, researchers urge to combine explanation and prediction in 
order to tackle data challenges (Hofman et al., 2021).

«73» Popper’s requirements admit a particular reading in the case of massive 
data. The vertiginous advance in algorithms and technology in DS opens a signifi-
cant gap between the safety of Science and experimental results on the one hand, 
and the use of algorithms (considered as) valid or useful on the other. For instance, 
there is a new need of analyzing the sensitivity of the inference in BD to changes in 
the initial hypotheses, to understand the degree of robustness of the results (either 
decisions or explanations) concerning certain features. Also, in BD, the problem of 
causality from data worsening due to -among others- its multidisciplinary nature 
(Wong, 2020).The contrastive dialogue among DS and Scientific Theories is not an 
easy undertaking. One of the reasons is the arguable role that part of the DS commu-
nity endorses in the domain theory, that is, the scientific counterpart of DS practices.
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6.6  The Absence of Models and Purely Empiricism‑Based Explanations

«74» Although the requirements for the explanation could be mandatory for our 
confidence in critical AI-based systems, one should not expect to elucidate, with 
these artifacts, the confusion of information about an object with knowledge about 
this. The issue has proven itself to be very dangerous for our society today. The Sci-
entific Community is very attentive and concerned about the challenges inherent to 
data processing and the impressive deployment of AI techniques. In a BD context, 
there are additional problems that come from the hype itself. One of them is the 
overestimation of the capabilities of High Technology that is grounded neither on a 
universally accepted explanation of the decisions (or the solutions provided by mas-
sive data processing systems) nor on the existence of a scientific or social model 
to support the explanation displayed by the AI engineer. The overestimation is an 
actual social belief fed by Social Media that distorts a proper confidence level in 
such systems.

«75» However, these are not the only issues. Sometimes the social belief in the 
validity and usefulness of the system is wrongly supported by the large volume 
and heterogeneity of the data it can digest. The Volume, as an isolated dimension, 
does not characterize BD itself. It is necessary that the scale jump also affects other 
dimensions such as Velocity and Variety, in such a way that a change of paradigm is 
needed because the classical solutions are not suitable. We are also facing new prob-
lems related to Veracity issues as the so-called absence of models.

«76» In 2008, Chris Anderson, editor of Wired magazine, published an article on 
the data tsunami and Science (Anderson & Perona, 2014), within a special issue on 
DS in the face of the huge amount of data that was already flooding the technologi-
cal and scientific landscape (Anderson, 2008). The main thesis the text supports is 
that the application of techniques for massive data makes one of scientists’ funda-
mental activities unnecessary, namely the construction of models that explain the 
associated reality. In Anderson’s article George Box’s famous maxim (All models 
are wrong, but some are useful) is confronted with Peter Norvig’s All models are 
wrong, and increasingly you can succeed without them.

«77» Anderson’s thesis partly justifies the data scientist’s temptation to work with 
systems without worrying about whether there exists a (domain) theory to support 
that their commercially valid products are correct. They do not care about models 
because they do not really need them. Furthermore, engineers do not need an expla-
nation of the validity of their decisions (mainly justification) because it actually does 
not add value to the product. It is not a mild concern; systems of this type will make 
(or are making) decisions that will seriously affect our rights and daily lives. The 
absence of models (to get scientific explanations) can cause serious defenselessness, 
especially if the systems are used in sensitive fields such as Predicitive Policing 
(Hung & Yen, 2020).

«78» Therefore -according to Anderson- we are faced with the surprising conclu-
sion that even correlation is enough, we can forget about causality. Consequently, 
social, psychological oriented systems are dispensed of providing causal/scientific 
explanations for justifying engineering decisions (or events). For instance, we do not 
need to know why people behave as they do if we can measure their behavior with 
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accuracy and draw valid consequences from those measurements by applying math-
ematics (the numbers speak for themselves).

«79» In conclusion, in the PetaByte Age, DS teams seem condemned to refrain 
from building models and validating them because massive data mining would suf-
fice for their purposes. They use ML to offer solutions such as oracles, implicitly 
solving a foundational dilemma: Would we like to know why it happens reliably or 
understand why it happens at the expense of losing experimental reliability? The 
first option allows us to act, while the second allows us to design strategies to adapt. 
It is clear that this dilemma has a strong impact in XAI efforts. We advance here a 
serious drawback to Anderson’s thesis, which impacts on the Data Science practice. 
As Regt points out (de Regt, 2017), even in the hypothetical case of having a perfect 
oracle that guarantees empirical correctness, our system could be epistemologically 
weak. The oracle availability would not dispense the data scientist from the need to 
open that black box. The scientist needs to understand (apprehend a general scheme 
of the theory governing that oracle) to be able to qualitatively recognize characteris-
tic consequences of T without performing exact calculations (de Regt, 2017).

6.6.1  Supporting Anderson’s Thesis

«80» Alternative reasons can be provided to support the basis on which Anderson 
builds the argument. It has already been commented that in BD it is not uncom-
mon that one of the first problems is that data scientists themselves are incapable 
to claim the specific hypotheses to be tested until they perform a first exploration 
stage (that indeed is based on data curation). This peculiarity leads us to conclude 
that the classical approach to explaining (validating the hypotheses obtained from 
models) could be inadequate. Another way to justify this would be arguing that a 
model is not defined because the dataset is the digital mirror of a CS. As the data 
scientist does not know how to reconstruct an image (a model) of the complete CS, 
he/she is merely applies ML to find interesting features of the dataset. This way is 
how the data scientist explains why a particular event occurs. Even if an explanatory 
ML technique is selected, it does not guarantee the soundness of the explanation due 
to previous decisions as in the curation phase (as discussed in Sect. 6.1), which out-
lines the starting conditions in turn.

«81» Even if the reader acknowledges the great misgivings, one should accept 
that Anderson’s thesis is partly right in the DS practice. His statement We don’t 
define the conditions of the experiments, so we don’t know what we’re capturing is 
true insofar as the exploration and the analysis in BD do not always have a starting 
specific goal. There’s no actual knowledge to validate, but rather the reasons why 
the data is so, and also to infer properties of reality from this analysis.

«82» At this point, and limiting ourselves to XAI, one would add an (intermedi-
ate) third proposal to elucidate the dilemma of Paragraph 79. The idea is to achieve 
acceptability by finding the justification of the decision taken by the AI-based sys-
tem in each case, the local solution to XAI (where the explanation is synonymous 
with outcome justification). Moreover it would be necessary to opt for an interpreta-
tion of the concept of justification as something that makes belief objectively more 
likely to be valid, as opposed to another interpretation of explanation as something 
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that adequately points to belief in the truth. Belief is justified by the fact that it is 
properly held or based on an adequate method, to the extent that truth is the objec-
tive or the norm, a proper-aim justification (Graham, 2010).

6.6.2  Absence of Models Versus Veracity

«83» Anderson’s controversial thesis was widely contested [see e.g. Barrowman 
(2014)]. Indeed his arguments are weakened when one needs particular require-
ments. For example, when it desires data processing systems allow the data scientist 
to extract some solid methodology. This is something that scientific theories should 
do quite well, according to Popper’s insights: may serve to predict like a predictor 
or also as a key, to tell us what would happen if some important factor is changed in 
our model.

«84» The absence of models in DS affects four essential scientific dimensions: 
the causality mentioned above, confidence in the results, the applicability of the 
model to data other than those used in the training phase, and finally, its ability to 
explain what is happening. Following our idea sketched in Paragraph 82, the expla-
nation becomes a simple -but limited- explanation of the particular event (local 
XAI), even accepting the risk that it may be defective. However, the challenge that 
comes from data curation persists: how do we estimate the suitability of the dataset 
used (once the Extraction-Transformation-Loading process is applied) to synthesize 
the solution? The question to address is, in fact, the veracity of the dataset.

«85» The working under the absence of models, the data curation dependence, 
and the scale versus the semantics challenge suggest that the Veracity becomes a 
fundamental dimension to consider in BD besides Volume, Variety and Velocity. 
In some sense, Veracity is the notion built to tackle the problem of the gap between 
Science and Technology in massive data processing.

«86» When an engineer is working with traditional databases, he/she assumes 
that the domain is soundly represented by data, being the data a model. In contrast, 
in BD it is usual to work with untrue datasets: hetereogeneity and unstructured data, 
missing data, data distortion, incompleteness, noise, etc. These are an actual short-
comings that cause the loss of the security in the inferred results, offered by tradi-
tional databases, damaging the link between data and actual entities to that model.

«87» We adopt the meaning of Veracity as referring to how precise or valid a 
dataset would be, that is to say, to the fidelity of the data concerning the reality 
that they represent. However, in the context of BD, the term has another additional 
meaning. Veracity would also encompass the question of the reliability of the data 
source, and the confidence in the data processing. These are issues to be studied as 
they play a more relevant role in several questions: biases, anomalies, inconsisten-
cies, and others associated with the processing itself. It becomes a critical issue to 
study in the new systems AA (2015), and mandatory if the agents aim to abandon 
the idea that ML is data alchemy that exempts the explainer to be accountable.

«88» It is particularly relevant the distinction between a rough veracity mean-
ing, associated with the confidence in the digital picture that data represent in DS 
practices (quality, safety, accuracy, completeness of the information, etc.), and more 
formalized concepts related to the correctness and validity of the results. Related to 
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the latter, databases could be understood as formal models of the set of definition 
schemes that govern them [a foundational principle accepted in Deductive Data-
bases Theory, and also in Philosophy of Science (Leonelli, 2016)]. The latter is, in 
turn, a formal theory that represents knowledge about the universe from where the 
data were extracted. If the data scientist identifies both notions, Veracity is closely 
related to the well-known problems of Knowledge Engineering (or even if a certain 
standard in database definition schemes is required, to the Semantic Web (Alonso-
Jiménez et  al., 2006). Since the explanation synthesized is based on the data, it 
depends on truthfulness in both directions.

6.7  Foundational Issues

«89» Bearing in mind the warnings about the veracity and absence (of use) of sci-
entific models in DS discussed above, the reader may agree that solving the explain-
ing problem may hide the problem already mentioned of confusing data with real-
ity. There exists a common foundational issue suffered by the solutions assisted by 
CAIS. Data scientists do not work with the problem they intend to solve (which may 
be sociological in nature, for example), but with the data that the problem leaves 
as a digital footprint instead. From this source they resort to the effectory capac-
ity of DS, and thus solutions rest framed by that. Accordingly, it is reasonable to 
conclude that the solution offered -the explanation shown about the phenomenon 
of CAIS behavior- will be intrinsically limited by that datified image, which we call 
the digital shadow. Even if agents attempt to build a scientific model using data and 
AI solutions, they could doubt if the source, the digital shadow, has not distorted the 
informational structure of the reality.

«90» A canonical example is the identification of an individual with the col-
lection of information about him available in BD repositories. The question is not 
whether the identification is valid (an issue for Privacy researchers), but how identi-
ties and experience (dis)appear from BD (Ricker, 2017). The overall digital shadow 
of a CS is only the source from which to provide plans and actions to be applied on 
the CS. In the era of hyper-connectivity and ubiquity, data scientists are still chained 
at the bottom of the cave envisioned by Plato from which we only perceive the (digi-
tal) shadow of events or objects, ideas and concepts that move through technological 
reality. The shadow is made up of an unmanageable amount of data that reflect the 
dynamics or the form of these entities. It is also reflected the (social) customs and 
attitudes of our fellow human beings and serves to nurture AI-based systems. And 
as in the cave myth, it is with the shadow that we try to extract properties and under-
stand the original object/event. Please note that the issue is not a sort of perspectiv-
ism. It is rather a kind of technological solipsism; the source where perspectival DS 
practices are nurture.

«91» Unfortunately, the risk of confusing properties from the shadow with 
properties of the study object will be thus persistent; it could even be considered 
Anderson’s thesis transcript. Following the metaphor, massive data also suffer dis-
tortions as the shadows. The detailed information available, provided by massive 
data availability can present the data scientist with the illusion that it owns a faithful 
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representation of the object/event, although it is only information about it, and as 
such, subject to diverse constraints. On the one hand, to interpretation (particularly, 
to its intentionality itself). On the other hand, and related to the former, to the con-
text from which it was extracted and to the perspectival data scientist labor. Moreo-
ver, it is constrained by the engineer’s ability to properly work with the available 
data. Such factors would limit the capacity of the AI system to extract knowledge 
from that information, particularly when KL-inspired explanations are sought.

«92» M. Janssen and G. Kuka claim that the greatest risk is that data become 
reality (Janssen & Kuk, 2016). One could assert that a defective or incomplete treat-
ment goes unnoticed if reality is not observed. Hence, it becomes essential to com-
pare the results with data from reality whenever possible. Results from each step of 
the Data Science project should contrast with that. It is this confrontation that could 
require a deeper knowledge of the situation. And, at the same time, where another 
opportunity for scientific theories re-appears (including for Explaining).

«93» A conjecture in this regard is based on the impression -shaped by the prac-
tice- of that the closer the data are to represent the intentionality of the system/prob-
lem under study (e.g. the study of meme diffusion within a social network can be 
addressed as the study of a social network devoted to spread memes), the more suc-
cessful the actions are. We also claim that, possibly, it is due to the human percep-
tion of epistemological similarity between the digital shadow and the ingredients the 
phenomenon it observes. An example would be the provisioning of AI-based power-
ful tools for monitoring social media opinion/sentiments that are constantly improv-
ing, and new challenges addressed (Cambria et al., 2013). Nevertheless, when the 
application scope is more anchored in the CS’s physical reality, the shortcomings 
of AI-based systems are more clearly observed. They are concerns -wicked prob-
lems- as humanitarian crisis (Meier, 2015), political/sectarian violence or physical 
sociological phenomena (Subrahmanian & Kumar, 2017), terrorism (Johnson et al., 
2015), food crises, climate change or sustainable development. It is no wonder they 
belong to a class of problems that need a major interdisciplinary collaboration to 
address many relevant aspects as disagreements about what the problem actually 
is, or even the existence of contradictory solutions (Rittel & Webber, 1973). This 
kind of complex problem requires more than the massive data processing, even chal-
lenging the interdisciplinarity itself. Due to the hype phenomenon around AI, the 
idea that AI-based processing suffices to solve such challenges is so widespread that 
stakeholders rely on (and finance) this type of application of dubious effectiveness. 
This is a way of falling in the absence of models issue.

«94» Yet to be discussed is whether some of these foundational issues can be 
tackled using weapons of similar abstract level in selected case studies. A poten-
tial option in this line would be the design of (phenomenological in nature) scien-
tific models having inputs/outputs similar to the event/system, to both explain and 
provide the causal dependencies between input/output. These are truly XAI-driven 
surrogate models as those for modeling explaining in complex neural networks. 
The preventive objection would be that even being mathematical sound, a phenom-
enological model like this is not necessarily a purely explanatory artifact. Genuine 
explanatory models attempt to describe something more, namely the mechanism 
responsible for the various regularities in the phenomenon. The difference is well 
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known. For example, the explanation -utilizing equations- of certain relationships 
between different variables may be phenomenological in the first instance but not 
necessarily explanatory. Equations establish the appropriate bridge between input/
output data but, in principle, do not describe the parts of any mechanism, equations 
do no disclose. Since, in phenomenological-based models, the parts the designers 
postulate have no ontic counterpart in the mechanism, one should prevent speak-
ing about them as a successful representational relationship. Therefore, there is 
no reason to avoid speaking of mere useful fictions (Barberis, 2012). Recall that it 
had already raised in Paragraph 28 where the need for metaphors and simplifica-
tions when trying to move the explainee accessible versions of the explanation [see 
e.g. the visual metaphor for analysis of argument with ontologies (Borrego-Díaz & 
Chávez-González, 2006; Aranda-Corral & Borrego-Díaz, 2010)]. Paradoxically, this 
kind of model for explanation is not purely explanatory in XAI. They are more like 
extensively appropriate models to support another explanatory theory [an exam-
ple would be (Evans et  al., 2021)], a more useful theory providing more descrip-
tive answers for a wider range of counterfactual questions (what would happen if 
things were different) (Barberis, 2012). Moreover, other models approaching the 
system behavior could be built using the program itself (for example employing data 
mining with Inductive Logic Programming). Other facts confirm the fickleness of 
these models for Explaining, particularly from the sociological point of view. For 
example, the adequacy of the explanation from the model may depend on whether 
it matches its outcomes with the explainee’s expectations (Sect. 2). When it is con-
firmatory -there is a match- factual explanations (which might be closer to an input/
output explanation) are accepted, whereas it seems that when there is a mismatch, 
the counterfactuals can aid, although they are necessary but not sufficient (Riveiro 
& Thill, 2021).

7  Bounded Rationality, Explaining and Logics

«95» It is common to be satisfied with limited explanations of events without a rig-
orous, plausible, inference. We accept a possibly not the best one but, for example, 
socially admitted or aligned with certain cognitive preferences. Among the decisions 
humans make, non-optimal ones abound, even others not rational. Consequently, 
our explanations may suffer from similar limitations, even our perception itself. For 
example, human performance on perceptual classification seems to approach that 
of an ideal observer, but economic decisions (time spent, details of perception, or 
inconsistent and intransitive preferences) cause its deterioration (Summerfield & 
Tsetsos, 2015).

«96» Extensional appropriate models, as proposed in Paragraph 94, allow 
deploying (logically) sound tools for reasoning. Particularly, those based on 
solid mathematical theories [such as Logic Programming (Evans et al., 2021)]. 
Despite the essential differences separating the two approaches, retrieving ideas 
from KRR for BR (and its application in XAI) is a very appealing approach. 
In particular, bridge construction between both of them becomes a promising 
research line. There are modeling proposals for some BR techniques as (Lipman, 
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1999) which are axiomatic in nature. Another example could be Glazer and 
Rubinstein’s proposal (Glazer & Rubinstein, 2012) of a logical-oriented for-
mulation of a persuasion model. The latter can be adapted, identifying the lis-
tener with the explainee and imposing a series of conditions that the speaker 
(explainer) must satisfy to be persuaded (accept the explanation).

7.1  Logics for the Inference Link in BR‑Inspired Explaining

«97» So far, it has been sketched the epistemological distance separating three 
fundamental elements: the scientific theory supporting the explaining, the 
explainee’s literacy and preferences, and the phenomena to be explained itself. 
In this section, we discuss how to bridge them through the inference link of the 
explanation, thinking in the representation of inferences closer to the explain-
ee’s. That is, reasoning mechanisms providing successful real-world perfor-
mance, that do not need to satisfy the requirements of rational inference (Pachur 
& Biele, 2007; Gigerenzer & Goldstein, 1996) and that are useful for Explaining.

«98» Human inference -in a general sense- is our essential tool for designing 
plans and actions to cushion the effects of a CS. If explainers are also human, the 
question arises as to whether these dealing skills can be exploited to synthesize 
successful explanations; moreover, whether it is possible simulate explanations 
similar to those accepted by humans. The problem of simulating human expla-
nations would cover both the search of the explanation and its acceptability. 
Regarding the search, mechanisms as the discovering of similarities, relations or 
associations, generalization, abstraction, intuition, or context-sensitivity (Duris, 
2018) are involved. Likewise, the weakening of the requirements for accepting 
something as an explanation represents one of the human flexibility skills. The 
approach to its formalization from KL would thus be the first step.

«99» To guide the right choice of logic for BR, we can adhere to Gabbay and 
Woods’ Logic Limitation Rule (LLR) to prevent unlimited reasoning (Gabbay & 
Woods, 2003):

A logic is inappropriate for actual agents of type � to the extent to which 
factors which make for agency of type � are indiscernible in the behavior 
of the logic’s ideal agents.

According to LLR, a logical formalism for working with realistic (bounded) 
agents will be inadequate if it does not induce properties that essentially distin-
guish the agents designed under the new paradigm from UR-based agents. For 
example, to accomplish LLR, it is usual to mirror cognitive limitations through 
syntactic restrictions on the logic that outcomes effective limitation of both 
expressivity and reasoning. The strategy would suffice if it actually affects the 
behavior of the agent by limiting the inferential process, as is the case of BR-
based agents. Regardless of the logic supporting the particular BR technique, it 
should discuss how to read Explaining as a BR activity.
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7.2  Explaining as BR Activity

«100» ELES is related to the sociotechnical realm where the CAIS is applied. 
This fact would be reflected within the explanandum through nomological com-
ponents. For instance, through knowledge that has been considered as laws of 
nature of the problem. In BR, the link should be even stronger, affecting the 
inference link as well. Simon claimed that the first consequence of BR is that 
the agent’s intended rationality requires constructing a simplified model of the 
real situation to deal with it. He/she behaves rationally concerning such a model, 
thus being such a behavior not even approximately optimal for the real world. 
Focusing on XAI, the question transcripts to whether the explanation is accept-
able according the simplified model, or even or is it just an explanation.

«101» Original Simon’s BR approach can be applied to the task of obtaining 
acceptable explanations. The problem to be solved would be to explain -or even 
convince as required in ELES- the decision/observation, working with notions 
as satisfactory, sufficient or convincing explanation. That is the idea of conform-
ity, meaning that the explanation given is sufficient according to some criteria. 
The explanation would preserve the basic structure from the KRR point of view 
(explanans, inference link, explanandum) and should base on consensual knowl-
edge by both agents (that comes from observation beside the knowledge shared 
by both, eg. laws of nature in the KRR sense discussed above). From the BR 
approach, one has to prevent the use of abstract models or AI optimization tech-
niques where the solution is reliable if it has the whole universe. For instance, a 
BR-inspired explanation should (implicitly or explicitly) contain data description 
and the inference processes used by the explainer, since this circumscribes the 
context where agents worked.

«102» The explanation synthesis under BR will own specific characteristics. 
To study the feasibility of an ideal provably optimal explainer agent, it must carry 
out the following tasks, that come from a refinement of the theoretical framework 
designed by Lewis et  al. (2014). Firstly, specify the environmental properties in 
which the explanation will be built. Secondly, design the utility function on the 
behaviours (which should consider factors that influence the acceptability and confi-
dence of the explainee in the explanation itself). Thirdly, it needs to specify the type 
of representation and processing models that will be used. And lastly, the model 
must be constructible (according to bounded agent guidelines).

«103» Instantiating the ideas of Lewis et  al. (2014), three types of theoretical 
scenarios can be distinguished, where the explainer may work, according to dif-
ferent BR constraints. Optimality explanations would represent those produced by 
the explainer with no (machine) limitations. In Ecological-optimality explanations, 
the environment where actions are decided is governed by a given distribution, but 
without limitations to information processing. That is, some distribution inherent 
to the input data is consensual between explainer and explainee, but no bounds are 
imposed to processing. In Bounded-optimality explanations there is some limita-
tion to information processing, which reduces the repertoire of accessible solutions 
and the associated explanation, the policies. Lastly in the Ecological-bounded-opti-
mality explanations both policy space and information processing are constrained. 
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Acceptability would depend on whether the expected behaviour resulting from the 
analysis corresponds to the observed behaviour.

«104» A phenomenological factor tied to environmental information accessibility 
should also be considered, mainly the limitation of observation and/or classifica-
tion of the event itself. It has already been commented on the role of the inherent 
limitations of perception (Paragraph 14). If the explainer observes abundant infor-
mation then shortcomings would be naturally imposed (giving rise to curation and 
perspectivism practices). These will also affect the efficient codification of informa-
tion relevant to decision-making, which in turn affects the choice of the best action 
or strategy (Summerfield & Tsetsos, 2015). This would complement Lewis et al’s 
framework, by including inherent limitations of the perception itself for Explaining.

7.2.1  Variety, BR and Ecological Rationality

«105» The psychological factors sketched in Sect. 2 already justify the need to con-
sider human (even Human-Computer-Interaction, HCI) factors. They are not nec-
essarily linked to the usefulness/goodness of the explanation; rather, they would 
be related to evaluating the utility or acceptability of BR-based explanations. One 
of them lies in the fact that an example set could be accepted as justification by 
the explainee if it offers variety. For instance, an example collection covering very 
different situations (Landes, 2020), with some completeness appearance, would 
enhance the explanation. Our preference for diversity -associated with the perceived 
completeness of the case set- can play in favor of the explanation acceptance.

«106» Nevertheless, the variety requirement would hide a balance problem. 
More diversity in exemplary cases requires more computational resources or more 
knowledge about the environment than the explainer has or can recover. This need 
is, in practice, opposed to an intriguing phenomenon in Ecological Rationality (ER) 
(Goldstein & Gigerenzer, 2002): How could more knowledge be no better -or worse- 
than significantly less knowledge? ER is a particular case of BR practices that con-
trasts with the classical notion in the social and behavioral sciences such as eco-
nomics and psychology. The theory of rational choice holds that practical rationality 
consists of making decisions according to some fixed rules, regardless of the con-
text. In contrast, ER asserts that rationality is essentially context-based. Studies on 
ER show how humans use what we know in an environment under limited resources. 
Also, it focuses on the match between an heuristic and the structure of the informa-
tion in a particular environment. Whilst one of the priorities in Rational Choice The-
ory is the internal logical consistency, ER focuses on the (external) performance in 
the world. This aspect moves this conception further away from any notion of logi-
cal validity (in the KL sense). We could view ER as the counterpart of the theory of 
situated agents (Suchman, 1987) for BR, where the explaining under variety con-
straints would be an ER-based practice. The understanding of an expert behaviour in 
presence of data -an ER topic- aids to support BR-inspired explanations.

«107» The epistemological variety represents a psychological factor (and 
prospective object to study in BR) that strengthens confidence in the explained 
hypothesis (Landes, 2020). The variety of tests that can be considered in a BR 
model for Explaining can be grouped in two levels: as a variety of explanations 
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in a given context, and as a variety of contexts that validate the explanation. Such 
a variety would also be affected by the BR-based selection techniques. We do 
not discuss this topic here. According to Landes (2020) the solution may not be 
sound in general and it must be handled with care.

«108» Analogous features have to be considered for the inference link. Psy-
chology research on heuristics in human inference processing reveals a compen-
dium of skills for which the classic (computational) logic paradigm is not useful 
to explain the success of several of these, as the Recognition Heuristic (Goldstein 
& Gigerenzer, 2002; Todd, 2007). Hopefully, the skills could be both usable and 
acceptable in the explanation process. For example, the idea of applying BR tech-
niques to tame the CS, has already been considered. This is done by analyzing 
the expert’s behaviour and reflecting on the process itself. From there, the selec-
tion of attributes/characteristics in the decision making process is justified. For 
example, in the management system of electrical networks (e.g. in smartgrids), 
it is being considered to imitate the behavior of engineers in current manage-
ment National Academies  of Sciences, E. and Medicine  (2016) (an ER activ-
ity). One of the techniques is the so-called Principle of effective simplicity (from 
BR): experts can select a relatively small number of variables and observations to 
diagnose, explain, predict and make decisions. An adequate modeling of the prin-
ciple could speed up these activities, find useful explanations in the future, and 
even automate them. However, the main limitation of the explanation lies in that 
the explanation support is strongly human-dependent; some sort argument from 
authority due to the incorporation of expert pragmatics in explanans (Vassiliades 
et al., 2021).

7.2.2  Fast-and-Frugal Techniques for Explaining

«109» One of the BR challenges is the modeling of the human expertise to select 
one or two causes from a, sometimes infinite, number of them, to build the expla-
nation (Miller, 2019). Similarly, explanations are selected (in a biased manner) 
based on the idea that people do not usually expect a complete and faithful causal 
explanation.

«110» The Fast and Frugal (FaF) methods (Gigerenzer & Goldstein, 1996) 
specify how the information is searched (search rule), when the information 
search ends (stop rule) and how the processed information is integrated into a 
decision (decision rule). These approaches soundly work due to their simplicity. 
Also, it provides regularity in the face of the heterogeneity of the available data. 
The FaF techniques produce explanations that can benefit from tools to model 
and evaluate the strategy followed (Phillips et al., 2017), selected from the adap-
tive toolbox, in order to design transparent assistance systems for decision-mak-
ing (Raab & Gigerenzer, 2015). In Table 8 some FaF techniques are adapted to 
be used in Explaining. On the negative side, explanation strategies based on FaF 
heuristics have the risk of falling into Cherry Picking, False Causality or Sam-
pling Bias fallacies, all of them related to the initial constraints imposed in FaF.
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7.2.3  Generalization by Abstraction

«111» The generalization of explanations (for their reusability) depends on the 
availability of more data from multiple sources, which also allows the development 
of richer models and greater understanding. However, when more data are avail-
able and curation is absent or defficient, models can become more complex and too 
detailed to be understandable by the explainee.

«112» Another risk for explaining models’ reusability that comes from (BR-
based) data curation is that data bias may lead to the inability to replicate studies 
for similar problems. This inability undertakes the explanation acceptability itself 
(Janssen & Kuk, 2016). A solution could be the generalization, although the level 
of abstraction of the explanation can condition it. Premises or conclusions, that are 
too abstract or general, could compromise both the actual explainee’s understanding 
and its practical value. Abstractions may simplify explanations, but the discovery of 
sound abstractions is very challenging (as well as sharing its understanding) (Gun-
ning et  al., 2019). Such difficulties could lead to a greater gap between scientific 
rigor and practical relevance. We could claim that BR and generalizations can play 
opposite roles in the explanation of CAIS behavior.

7.3  Perspectivism and Curation as the Basis for BR‑Based Explaining Strategies

«113» It has been emphasized that the agent’s understanding of the environment is 
a key factor in BR approaches as ER. The selection of features and the available 
background knowledge on the environment leads to work within a particular context 
to build the explanation. What is more, the application in Explaining of BR tech-
niques such as contextual selection or effective simplicity leads us to consider that 
the explanations coming from them are also perspectival in such sense. By fram-
ing a context/perspective (induced by the understanding of the phenomena), it can 
be assumed that the mental space where the agent’s reasoning occurs would be cir-
cumscribed to that. Among other consequences, the explainers will select from the 
available data those that their scientific training indicates them that they are causal, 

Table 8  FaF techniques that can be applied within XAI

FaF technique Adaptation to explaining

One-Reason Decision Making Explanations based on a single reason (although other can be based 
on another one

Gigerenzer et al. (2008)
Recognition Heuristic Helps to choose between two explanations when only one of them is 

recognized, according to plausibility criteria (possibly a metric)
Goldstein and Gigerenzer (2002)
The effect less is more To choose the explanation that, using less information produces better 

results according to some measure of utility
Goldstein and Gigerenzer (2002)
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employing BR skills (possibly unconsciously) conditioned by the perspective. The 
advantage of achieving a consensual perspective lies in its status of ontological com-
mitment about the information ecosystem, having the explanation and the results 
strengthened and accepted (because facilitates the internalization, Paragraph 24). 
However, it has already been mentioned that there exists the temptation to explain 
employing only statistical-computational relationships and principles (some sort 
of extreme empiricism) to shape the perspective (by means of estimations, bounds, 
thresholds, etc.). The adoption of BR practices increases the risk of the emergence 
of perspectives according to non explicit principles.

«114» An example of sound (techno-)perspectivism we refer to is the explana-
tion of the so-called Arab Spring (years 2010–2013) by the western media as a 
social movement claiming social and political rights [admitting other political fac-
tors (Korotayev, 2014)]. Wikipedia presents a concrete incident in Tunisia as the 
spigot for the mobilizations (see https:// en. wikip edia. org/ wiki/ Arab_ Spring). One 
could ask whether this interpretation is not a very tight corset. The thesis is product 
of a perspective taken by the analysts (perhaps on political wishful thinking). There 
should exist a spigot if the system is in an unstable state, but it might not be the 
cause even if we admit it as a causal explanation. Lagi et al. (2011), through analy-
sis of available data, founded propose another (contributing?) cause. Their analysis 
shows that the timing of the violent protests in North Africa and the Middle East in 
2011 (as well as the earlier riots in 2008) coincides with large increases in global 
prices of basic foodstuffs of the most vulnerable populations. They even provide an 
estimate of the price threshold above which riots break out. The example clearly 
shows that data curation by experts is necessary, rather than massive data analysis 
to provide acceptable explanations, and also how these can be confronted or need to 
reconcile with others supported by Social Science. Also, it is an example of the per-
spectival application of Data Science to outcomes alternative explanations.

8  Conclusions and Future Work

«115» This work reflects the authors’ conceptual journey from AI to a framework 
where XAI is observed as multidisciplinary in nature. We have discussed the need to 
adopt particular viewpoints within XAI on two problems: The XAI practices within 
the Data Science (and BD) universe, and the peremptory need to transmit the expla-
nation (even the trust) on the CAIS to the stakeholder.

«116» Regarding the first of the problems, it has been pointed out the risk of a 
historical research and development of the XAI. The issue is worrying when DS 
teams cling to extreme empiricism and fall into the temptation of working with-
out (scientific) models on the reality they study; particularly problematic when the 
issues they deal with are sensitive for citizenship.

«117» The second is intimately linked to the proper use of CAIS as decision-
making assistant, but also as a tool for monitoring or managing CS issues. Our the-
sis (formed from our standpoint as researchers in KRR-based AI) claims that it is 
necessary to incorporate the astonishing corpus on Explaining from Philosophy of 
Science and Technology. The claim does not limit itself to the general principles; 

https://en.wikipedia.org/wiki/Arab_Spring
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it also covers its use to drive the implementation of new technology for XAI. Con-
cerning this issue, some guidelines have been outlined for the case of exploiting BR 
techniques in XAI. It is interesting for ELES, which represents a socio-technical sys-
tem when the explaining challenge can become a problem rooted in several issues 
(for instance, the stakeholder’s literacy).

«118» The development of XAI is spoiled by the incipient and ongoing problems 
that the widespread use of CAIS is causing in society. The urgent need for explana-
tion (which frequently hides others as that of verification, validation, or certification) 
means that engineers do not have time to devote the effort needed to achieve actual 
interdisciplinarity in XAI. The authors hope the paper can convince the AI col-
leagues that purely technological development can be fast but suffer real shortcom-
ings (that affect their usefulness, safety) that are also rooted in foundational issues 
and not only in purely pragmatic issues.

«119» The suitability of some formal and philosophical conditions under which 
BR ideas can be applied in XAI have been investigated. This issue has been treated 
in a general way, emphasizing its philosophical, computational, and particularly 
AI dimensions in the field of DS and CS. We have focused on DS socio-technical 
systems, in contrast to other studies more focused on computational aspects of the 
decision itself (cf. Främling (2020)). Due to its socio-technical complexity, ELES 
is a paradigmatic case. The systems and the engineers could not offer an adequate 
explanation for stakeholders, even it may be doubtful that the technical explanations 
actually correspond to what happened due to perspectival principles. Moreover, it 
has also been analyzed the convenience of considering BR techniques to synthesize 
explanations that may be acceptable to the explainer, although they may suffer from 
deficiencies derived from BR itelf.

«120» Thus, the relationship between explainability and replicability has not 
been discussed in depth, even recognizing that the latter represents a good option to 
achieve the explanation acceptance Guttinger (2020). We could claim that the expla-
nation of CAIS outcomes to manage CS and could mirror some of the features of the 
reproducibility crisis, which are becoming more common in modern Physics. How-
ever, the identification of the fields to which the replicability standard applies or not 
is a challenge.  Guttinger (2020) argues that (at least) three different aspects of sci-
entific practice could be used to properly answer this question: the type of questions 
addressed, the setup used, and the nature of the objects analyzed. From the analysis 
of CS and the nature of the concept of acceptable explanation for the stakeholder, 
we can conclude that XAI for working with CS seems to be framed to that grey zone 
of research practices where there might not be a clear answer to the replicability 
issue. A case-by-case analysis might be the only sensible way forward, in the same 
vein as Guttinger (2020). Also due to space limitations, an analysis of the status of 
emergence-based explanation for CS has been avoided. The techniques from Agent-
Based Modeling can be combined with the macro-vision provided by proposals that 
exploit the epistemological nature [see e.g. our papers Aranda-Corral et al. (2013a, 
2013b, 2018)]. This is a promising topic for a further research.

«121» Finally, another long-term goal to be tackled is the design of an ontology 
on the analytical elements that precisely define notions associated with the limita-
tion of the agents involved in XAI. It should include concepts such as the goals, 
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behaviors, and different ecological and evaluation environments (Lewis et al., 2014). 
Understanding the explaining as a BR task, any XAI practice of this kind would 
be representable by specifying the elements playing a relevant role in the case of 
(bounded) optimal explainer agents. In this way, external agents can contextualize 
explanations produced in a particular socio-technical system.

«122» In addition, we think that a proper reading of critical works on Data Man-
agement practices in particular fields [e.g. Leonelli (2016)] can provide very useful 
ideas for understanding the data curation process. Lastly, there exists also the pos-
sibility of implementing some of these ideas into the software for XAI in Data Sci-
ence. By asking what can be learnt from these practices in data science, one could 
extract those which overcome the epistemic losses that data curation can cause.
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