Journal of Universal Computer Science, vol. 10, no. 5 (2004), 620-629
submitted: 1/4/04, accepted: 10/4/04, appeared: 28/5/04 © J.UCS

A Java Simulator for Membrane Computing

Isabel A. Nepomuceno-Chamorro
(University of Sevilla, Spain
Isabel.Nepomuceno@cs.us.es)

Abstract: Membrane Computing is a recent area of Natural Computing, a topic where
much work has been done but still much remains to be done. There are some applica-
tions which have been developed in imperative languages, like C++, or in declaratives
languages, as Prolog, working in the framework of P systems. In this paper, a software
tool (called SimCM, from Spanish Simulador de Computacién con Membranas) for
handling P systems is presented. The program can simulate basic transition P Systems
where dissolution of membranes and priority rules are allowed. The software applica-
tion is carried out in an imperative and object-oriented language — Java. We choose
Java because it is a scalable and distributed language. Working with Java is the first
step to cross the border between simulations and a distributed implementation able
to capture the parallelism existing in the membrane computing area. This tool is a
friendly application which allows us to follow the evolution of a P system easily and
in a visual way. The program can be used to move the P system theory closer to the
biologist and all the people who wants to learn and understand how this model works.

Key Words: P system, Parallelism, Simulation, Java

Category: F.1.1, D.0

1 Introduction

Natural Computing contains three well established areas: Neural Networks, Ge-
netic Algorithms, and Molecular Computing. Membrane Computing is a recent
area introduced by Gh. Paun where computations are considered at the cellular
level.

This new computability model is based on the notion of membrane struc-
ture, which consists of several cell-like membranes, recurrently placed inside an
external skin membrane. A membrane structure can be representated by a tree
or by a Venn diagram without intersected sets. In the compartments defined
by membranes there are objects, that can evolve, can be transformed in other
objects and can pass through membranes. In each compartment every object
can appear a specified number of times, that is to say, the objects form multi-
sets. In the regions delimited by the membranes there are also placed evolution
rules that allow to modify the objects and establish communication between
membranes. The evolution rules can also dissolve the membranes where they
are applied. When a membrane is dissolved, its objects will be left free in the
immediately upper membrane (the skin cannot dissolve). In addition, a priority
relation between evolution rules can be considered, that is to say, if two rules can

Nopomuceno-Chamorro I.A.: A Java Smulator for Membrane Computing 621

Subsystem I Pipeline Subsystem IT
pull(}
push()

Obeserver-Ohservahble

e st Sufisgal] T

Figure 1: Subsystems of the software.

be applied simultaneously and there is a priority relation between them, then
only the higher priority rule can be applied. The evolution rules are applied in
a maximal mode, hence in each step of a computation all objects that can be
transformed by the rules must be transformed.

The computing device informally described here is called basic transition P
system (more details can be found in [Paun 2002] and a formal presentation
can be found in [Pérez-Jiménez and Sancho-Caparrini 2002]). The state of a P
system in a given step is called a configuration; when we apply the evolution
rules to a configuration we obtain a transition; a computation of a P system is a
sequence (finite or or not) of transitions between configurations; a computation is
halting if there is no evolution rule that can be applied in the final configuration.

These devices possess two levels of parallelism: into each membrane, because
all the applicable rules should be used simultaneously, and globally, because all
the membranes evolve at the same time.

2 A Look Inside the Application

This application we have developed for simulating a P system is a variation of
the Model-View-Controller (MVC), an architecture model of software develop-
ment used in interactive systems where the user interfaces are changeable. It
is composed of several different components: in the first one, Model, functional
qualities and type abstract data are found; the second component, View, is re-
sponsible for showing the results to the user through a graphical interface; the
third component, Controller, is in charge of the requests made by the user. In the
creation of the SimCM program, the View and Controller components are joined
into a single component. Figure 1 picture represents the architecture model of
software. Figures 2 and 3 represent the hierarchical structure and the relations
between the different Java classes designed and used for the application.

622 Nopomuceno-Chamorro I.A.: A Java Smulator for Membrane Computing

ParseElements

Oheserver
Ohservable to
Subsystem [

Configuration

muTree
configTree
mark
- |
To Pipeline

P

‘ BienlazableLizst ‘ ChijectsBag ‘ ‘ ApplicabilityBag ‘

Figure 2: Subsystem I.

These classes are distributed in two subsystems:

— Subsystem I includes the simulator engine, that is, all the functional qualities
of the basic transition P systems, and type abstract data. This subsystem
is formed by the following Java packages: NAryTree (implementing the tree
types to represent the membrane structure and the computation tree), List,
Membrane, Multiset, Rules, and Simulator.

— Subsystem II includes all the classes related to the Guide User Interface
(GUI) that interacts with the user and is formed by the Java packages:
Interface, implementing the GUI; DataUSer, containing the classes that are
in charge of the user’s requests for building an initial P system; ParseRule
contains the classes that are in charge of the lexical analysis of the initial P
system introduced by the user; Serialization, whose classes allow us to take a
step back in the building of an initial P system; and HelpHtml that includes
the html document.

The two subsystems interact with each other and produce a computation that
has been implemented with instance objects of the Observer and Observable Java
classes. The instance objects of the Observer Java class should be notified when
the state of an observable object is modified. The Observable objects are any
objects whose state can be of interest for any other object (observer). However,
the communication between the execution threads of the program can be more
difficult than that between the observer and observable. Threads used for com-

Nopomuceno-Chamorro I.A.: A Java Smulator for Membrane Computing

623

DrawPanelConfig DrawPanelPSystem
treeConfig treePSystem
Cheserver
Chservable to
Bubsystem [
s
32
FactoryPsystem Interface P,
membranes input
rules input 1
object input
DrawPanel
4 rules
transitions
e Eules
ParseElementes
«— Membrane
-— ObiectsBag

Figure 3: Subsystem II.

mon objects, so that a thread can give an object to another, can be designed in
such a way that the objects can be manipulated independently by both sides at
the same time. This is the classic example of the thread communication in the
producer/consumer problem: one thread, called producer, produces a result that
another thread, the consumer, uses or consumes, no matter what the result is.
For example, in the program the user can select the Guided mode of execution.
In this mode, the user selects with the mouse by clicking on the configuration
node in the GUI; this node is a product the GUI offers to the simulator in or-
der that the simulator continues running from this node; the simulator engine
consumes this object. In order to control this communication, the Java class
Pipeline has been created, including push() and pull() functions (synchronized
access methods), in order to maintain the integrity of the shared objects.

In the following subsections we describe some programming details of these
two subsystems.

2.1 Engine of Simulator

The engine is built upon two fundamental pillars: the first one is the simulator
that includes the algorithms to simulate the processes and computations pro-

624 Nopomuceno-Chamorro I.A.: A Java Smulator for Membrane Computing

duced inside a membrane system; it also contains the functional qualities of the
system, with the task of starting the initial configuration of the P system and
constructing the initial configuration of the associated computation tree; the
second one includes all the type abstract data in order to support the membrane
structure and its content (multisets of objects and rules), and contains the type
data necessary for the creation and storage of the applicability multisets.

The two relevant classes of the engine are Simulator.java and CreateBagApli-
cability.java.

The class CreateBagAplicability.java has the task to create the applicabil-
ity multiset of rules, MAp(Ci), that must be computed for each configuration.
Briefly, the algorithm to obtain MAp(Ci) works as follows: for each membrane,
the rules are iterated in such a way that in each iteration a distinct rule is piv-
otal and for each rule its maximum applicability number is calculated according
to the multiset associated with the membrane and the other rules are analyzed
according to those that can be maximally applied or not (in this way the par-
allelism of the application rules is simulated, and the distinct possibilities of
applying rules for each membrane is obtained); finally, this process continues
over each of these possibilities and one obtains the applicable multiset of rules
(see [Nepomuceno-Chamorro 2003] for further details).

The main class is Simulator.java which extends the Thread Java class. In
this way an instance of this class can create a context of the system task and
execute it through a call to start method, stop the execution of the associated
thread of the task without destroying it, and execute the run method that starts
the simulation algorithm. This class constructs the computation tree associated
with the loaded P system: it starts with the initial configuration, computes its
applicable multisets of rules and obtains its next configurations; this process is
repeated for each configuration until it reaches the final state or a depth level
previously established by the user. It must be understood that the efficiency
of Simulator class is based on a sound implementation of the data structures,
and on the iteration algorithm of these structures. In the construction of the
computation tree, the membrane structure associated with each configuration is
stored on the hard disk in order to not burden the RAM and not to overload
the computer. Finally, Simulator.java is controlled by the user in such a way
that he/she can re-do the process of the computation tree construction in one
step or step by step. This step by step possibility implies a more exhaustive
communication with the guide user interface than simply generating the events.
In such case we use the Pipeline.java class that we have mentioned in the previous
section. (See [Nepomuceno-Chamorro 03c] for further details about Simulator
engine.)

Nopomuceno-Chamorro I.A.: A Java Smulator for Membrane Computing 625

2.2 Guide User Interface

The GUI is the part of the program allowing the user to interact with the
application. The GUI is included in the Subsystem II with the management-
reception of events generated between the user and the Simulator engine. The
Swing Java package is used in the construction of this GUI (an independent
platform library of classes used to develop GUI’s). This package includes the
AWT? package (Abstract Windows Toolkit) and extends its capabilities. The
AWT package was the first library class offered in Java.

Briefly, among the classes that form the GUI, the most important are:

— The classes that are in charge of drawing trees: GraficaArbolConfig.java and
GraficaArbolMu.java, with the task to allow a visual representation of the
computation tree and the membrane structure (both of them extend the
JPanel Java class). In the first case, when the Simulator engine is finished
or need to show an intermediate result (in the guided user mode where
one can see how the computation tree is builded), this class notifies it to
GraficaArbolConfig.java and draws it. In the second case, when the user
loads or builds a P system or selects a configuration of the computation
tree the class GraficaArbolMu.java draws the membrane structure in the
appropriate panel.

Frame.java; this class extends the Java class JFrame and the former is the
container of the menu bar, toolbar and the panel where the drawing of the
computation tree and the membrane structure is produced.

Building.java and Parser.java. The first class is in charge of building an ini-
tial P system with the data inserted by the user. It parses the input to avoid
mistakes (for example, when the user introduces new membranes, he/she
must indicate the father tag and if this tag does not exist, then the program
will advise the user that the action is not allowed). The class Parser.java
parses the lexical alphabet and the multiplicity of objects of multisets. Fi-
nally, when the user introduces new rules, if the rules are associated with
non-existing membrane tags or if there are lexical errors in the multisets or
non-existing greater priority rule tags, this class warns the user about this.

Memento.class captures and externalizes an object’s internal state so that
the object can be restored to this state later. In SimCM software the object
is the membrane structure.

! The AWT is part of the Java Foundation Classes (JFC), the standard API for pro-

viding graphical user interfaces (GUISs) for Java programs.

626 Nopomuceno-Chamorro I.A.: A Java Smulator for Membrane Computing

5| b | = | masveoniever s
Computationtree — | Applicable rules —
Mode de ejecucion: Final
Transitions 1=
Ruled (1)
Transhlons 2:
Rule 2 (1)
{ MEMERANE] |
® Rulet: (13 == (G(1) in4)
Rulel: {1y -= (B(1) ind)
Ruled: A1) -=B(1) (A1) in,2) Rulel Rule? -]
To] | [+l 3

Figure 4: The main screen of the program.

3 Overview of the Application

Essentially, this software tool allows us to handle transition P systems by means
of three basic operations:

— Create an initial membrane system; the simulator includes a debug mode in
order to avoid some user errors.

— Load and Save previously defined membrane systems.

— Carry out a simulation of the P system evolution. This simulation can be
performed in three different ways: until a given maximal level, level by level,
and guided.

The guide user interface (GUI) of the application (Figure 4) uses classes of
the Java Swing? package and the Integrated Development Environment (IDE)
used is Forte3.

The main screen is divided into four basic panels:

2 Swing is part of the Java Foundation Classes (JFC). This is a set of Java class
libraries provided as part of Java 2 Platform, Standard Edition (J2SE), to support
building graphics user interface (GUI).

3 Forte for Java v.3.0 Copyright Sun Microsystems

Nopomuceno-Chamorro I.A.: A Java Smulator for Membrane Computing 627

— Computation tree: this panel shows the tree of configurations after the sim-
ulation is finished or during its development.

— Current cell: initially, this panel contains a sketch in the form of a tree rep-
resenting the membrane structure of the system to be studied (the program
represents the membrane structures as tree structures). Once the simulation
is finished or when it is in development, this panel will represent the state
of the membrane system according to the configuration chosen by the user
in the computation tree panel. In order to select the configuration, a simple
click on the chosen node in the tree of the computation panel is needed.

— Rules: in this panel the rules associated with each membrane are shown.

— Applicable rules: this panel shows the applicability multiset associated with
the configuration selected by the user in the computation tree.

In the menu bar several actions are found; among them, we mention:

1. Create P systems. To do this, an initial membrane system must be created
by selecting the insertion of new structures. In this case one must click Create
and next New in the menu and the skin appear in the current cell panel. New
elements such as other membranes, rules and objects can be added. There
is a form that has been created to help the user in the insertion (Figure 5).
The program parses the input as described in Section 2.2.

2. Start the evolution of the P System. There are three modes of simulation: the
first one is Until Mazx Depth Level, in which the simulation engine runs and
does not show the final result until it either reaches the stop configuration or
it hits the max level given by the user. The second mode is Level by Level, in
which the simulation engine runs and shows the results as they are computed
step by step in the computation tree. The third mode is Guided, in which
with each new level the user has to select the corresponding node according
to the configuration the user wants to continue computing, and then click
Next step in the menu or toolbar.

3. Erase computation tree — in order to clean panels and memory, to work with
a new P system.

In the toolbar several actions are found. The most important is the fact that
the user can use the text box to set the boundary mark, in order to set the desired
depth of the tree of configurations. By default, the mark is set at four levels. In
this way, in the case that the stop configuration does not exist, the program will
finalize the simulation of the P system when the tree of configurations reaches
the mark indicated in the text box.

628 Nopomuceno-Chamorro I.A.: A Java Smulator for Membrane Computing

B 1 =]
[Addmembrane | Add multiset | Addrule |

Input membrane's container:

Rule

Multiset => Multiset pairs

ez | = b | [b,in 43tz ot

Greater priority:

[vi Is disolve

Help |

Ok l Clean |

Figure 5: Insertion form.

4 Future Work

We plan to continue our work by developing the tools for handling other types of
P systems. The next step could be to implement a distributed P system in Java
RMI or using the standard CORBA®. In this way we could use the simulator of
distributed computing tools to capture the idea of maximal parallelism present
in this model, so the future software would be more similar to the way the P
systems compute.

Acknowledgements

Thanks are due to Fernando Sancho-Caparrini for the help in completing this
work.

The software SimCm, can be downloaded from the page of the Research
Group on Natural Computing from Sevilla University (http://www.gcn.us.es/).

4 Common Object Request Broker Architecture

Nopomuceno-Chamorro I.A.: A Java Smulator for Membrane Computing 629

References

[Ciobanu and Paraschiv 2002] Ciobanu G., Paraschiv D.: “Membrane Software. A P
System Simulator”; Pre-Proceedings of Workshop on Membrane Computing, Curtea
de Arges, Romania, August 2001, Technical Report 17/01 of Research Group on
Mathematical Linguistics, Rovira i Virgili University, Tarragona, Spain, 2001, 45—
50, and Fundamenta Informaticae, 49, 1-3 (2002), 61-66

[Cordén-Franco et al. 2003] Cordén-Franco A., Gutiérrez-Naranjo M.A., Pérez-
Jiménez M.J., Sancho-Caparrini F.:“A Prolog Simulator for Deterministic P Sys-
tems with Active Membranes”; Rovira i Virgili Univ., Tech. Rep. No. 26/2003, M.
Cavaliere, C. Martin-Vide, Gh. Paun (Eds.), “Brainstorming Week on Membrane
Computing”, Tarragona, February 5-11 (2003), 141-154

[Gamma et al. 1995] Gamma E., Helm R., Johnson R., Vlissides J.: “Design Patterns.
Elements of Reusable Object-Oriented Software”; Addison-Wesley (1995)

[Grand 1998] Grand M.: “Patterns in JAVA. Vol.1 A Catalog of Reusable Design Pat-
terns [lustrated with UML”; Wiley (1998)

[Herndndez at al. 2000] Herndndez R., Lézaro J.C., Dormido R., Ros S.:“Estructura
de datos y algoritmos“; Prentice Hall (2000)

[Nepomuceno-Chamorro 2003] Nepomuceno-Chamorro I.A.: “Simulaciones de P Sys-
temas en Java, aplicacién SimCM”; CCIA Universidad de Sevilla Seccién III, N 3,
2003, 1-115

[P&dun 2002] Paun Gh.: “Membrane Computing. An Introduction”; Springer, Berlin
(2002)

[Pérez-Jiménez and Sancho-Caparrini 2002] Pérez-Jiménez M., Sancho-Caparrini F.:
“Computacién celular con membranas: Un modelo no convencional”; Kronos, Sevilla
(2002)

