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Abstract Protein structure prediction is currently one of

the main open challenges in Bioinformatics. The protein

contact map is an useful, and commonly used, represen-

tation for protein 3D structure and represents binary

proximities (contact or non-contact) between each pair of

amino acids of a protein. In this work, we propose a multi-

objective evolutionary approach for contact map prediction

based on physico-chemical properties of amino acids. The

evolutionary algorithm produces a set of decision rules that

identifies contacts between amino acids. The rules obtained

by the algorithm impose a set of conditions based on amino

acid properties to predict contacts. We present results

obtained by our approach on four different protein data

sets. A statistical study was also performed to extract valid

conclusions from the set of prediction rules generated by

our algorithm. Results obtained confirm the validity of our

proposal.

Keywords Protein structure prediction � Contact map �
Multi-objective evolutionary computation � Residue–

residue contact

1 Introduction

The Protein Structure Prediction (PSP) problem consists in

determining the three-dimensional model of a protein, using

only information contained in its amino acid sequence. The

PSP problem is one of the most important open problems in

computational biology [66]. This is because the 3D

structures determine the protein function. It follows that

knowing the 3D structure of a protein would be of enormous

help for designing new drugs for diseases such as cancer or

Alzheimer’s. Although there exist experimental methods

for determining protein structures, e.g., X-ray crystallog-

raphy and nuclear magnetic resonance, such techniques are

very expensive and present limitations with the structures of

certain proteins [27, 38, 51]. In addition to this, the great

number of protein sequences whose three-dimensional

structures must be determined make computational methods

for protein structure prediction an essential tool. However,

the accuracy achieved by the most recent and relevant

proposals in the literature is up to approximately 35 % [44]

and clearly must be improved.

The first thing one has to decide when using a compu-

tational method is how to represent the data. In the PSP

literature, there are three main data structures to represent a

protein 3D structure: torsion angles, distance maps and

contact maps. Torsion angles represent the values of the

flexible angles of a protein molecule. Torsion angles are

based on the assumption of constant bond lengths and some

constant bond angles between atoms. This representation is

based on three torsion angles in the protein backbone plus

the angles in protein sidechains. This is a simplification of

the real situation where the supposed constant bond lengths

and angles depend on the environment of atoms. Examples

of recent proposals that predict protein torsion angles are

Faraggi et al. [17] and Furuta et al. [21].

On the other hand, distance maps represent the distances

between reference atoms of each pair of protein residues.

Examples of methods that predict protein distance maps are

[4, 36].

Contact maps are the most commonly used structure in

the PSP literature. In a nutshell, a contact map represents

binary proximities between each pair of protein residues,
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the state-of-the-art of contact map prediction. In Sect. 3, we

define the elements, procedures and evaluation measures

used by our prediction method. In Sect. 4, we detail the

predictions performed and the protein datasets that we

used, we discuss the achieved results and we analyze the

predicted rules. Finally, in Sect. 5, we describe the main

conclusions of the work and we outline approaches for

future studies.

2 Contact map prediction

The contact map of a protein sequence is a square matrix

of order L, where L is the number of amino acids in the

sequence. The contact map is divided into two parts: the

observed part (upper triangular) and the predicted part

(lower triangular). An element (i, j) of the contact map is

1 if amino acids i and j are in contact, or 0 otherwise. In

this context, we consider two amino acids to be in contact

if the distance between them is less than or equal to a

given threshold. To this aim, a commonly used threshold

is 8 angstroms (Å) [44], a threshold that is also adopted in

this paper. In order to measure the distance between two

amino acids, it is necessary to use a reference atom of

each amino acid, the most commonly used being the

alpha carbon and the beta carbon of amino acids [15]. In

our method, we use the beta carbon (with the exception of

glycine, which has no beta carbon, and for which its alpha

carbon is used).

Usually contacts between amino acids are divided and

predicted by groups according to their sequence separation.

Sequence separation between amino acids ai and aj, where

i and j represent the positions of the residues in the

sequence, is |i - j|. Based on the separations, contacts are

classified into three classes: short, medium and long range.

In short range, a minimum separation of six residues is

used to consider a contact, whereas in medium and long

range, the minimum separations are 12 and 24,

respectively.

Contact maps present several advantages with respect to

other representations. For instance, unlike 3D models of

proteins, contact maps, as well as distance maps, have the

desirable property of being insensitive to rotation or

translation of the protein molecule. On the other hand,

given a contact map of a protein, it is possible to recon-

struct a 3D model of the protein backbone, solving the

Molecular Distance Geometry Problem (MDGP) [39]. This

can be done in different ways, e.g., using quadratic

potential GO model [3] or using tools like FT-COMAR

[56, 57]. It is also possible to obtain the coordinates of all

protein atoms from the protein backbone using tools like

SCWRL, IRECS, SCAP, SCATD or SCCOMP [19] or the

recent tool SIDEpro [46]. Contact maps, as protein

which are predicted by residue–residue contact predictors. 
The prediction of contact maps is a very important prob-

lem. For instance, there is a competition dedicated to 
contact map predictors in CASP [44], but there is no 
competitions in CASP for distance map or torsion angle 
predictors. More details about contact maps are given in 
Sect. 2.

In addition to this, some proposals discretize the dis-

tances between atoms, providing an intermediate repre-

sentation between contact and distance maps. For instance, 
Walsh et al. [58] which uses 4-class distance maps.

As already mentioned, in PSP, the prediction of the 3D 
structure of a protein must be based on characteristics of 
the amino acids forming its sequence. Some commonly 
used features are the physico-chemical properties of resi-

dues. Usually the properties that are used are hydropho-

bicity, polarity, charge and residue size, as well as the 
properties of the AAindex repository [32], which contains 
currently 544 amino acid properties. On the other hand, 
predictors often use secondary structures (commonly from 
DSSP [31] or PSIPRED [28]), solvent accessibility [41], 
evolutionary information (commonly the Position Specific 
Scoring Matrix (PSSM) from PSIBLAST [2]) and contact 
orders (usually CO [47], RCO [33], CN [34] or the most 
recent RWCO [52]). Some authors also used topological 
measures of the protein molecule like the recursive convex 
hull [53].

Several types of approaches have been proposed in the 
literature with the aim of computationally solving the PSP 
problem and they will be detailed in Sect. 2. Within such 
proposals, evolutionary algorithms (EAs) have proven to 
achieve excellent results, see, for instance [8]. EAs have 
become popular as robust and effective methods for solv-

ing optimization problems. In particular, EAs have shown 
the capacity of finding suboptimal solutions in search 
spaces when the search space is characterized by high 
dimensionality. This is the case of the protein folding 
problem, where the set of possible folding rules of a protein 
determine the search space.

In this paper, we propose a method based on an EA to 
predict contact maps. In particular, the EA adopted is a 
multi-objective EA (MOEA), which bases its prediction on 
three physico-chemical properties (hydrophobicity, polar-

ity and charge), on solvent accessibility and on secondary 
structure. We used an evolutionary approach based on the 
Strength Pareto Evolutionary Algorithm (SPEA) [67]. Our 
algorithm generates a set of decision rules that predicts 
contacts between amino acids. In particular, each rule 
imposes a set of conditions on some specific amino acids 
properties that, if satisfied, predict a contact.

The rest of the paper is organized as follows: in Sect. 2 
we provide a general description of the main concepts 
regarding contact maps and their prediction, and we review



structure representation, are also useful to compare protein

structures, using the maximum contact map overlap [13].

Many different approaches for contact map prediction

have been proposed in the literature, the three mostly used

approaches being those based on artificial neural networks

(ANNs) [41, 54, 63], evolutionary algorithms (EAs) [8, 9,

30] and support vector machines (SVMs) [42, 62].

Regarding the ANNs approaches, Xue et al. proposed

SPINE-2D [63] that consists of two neural networks using

one and two layers, respectively. These networks use 34

features as input, including PSSM from PSIBLAST [2],

seven physico-chemical properties of amino acids,

including hydrophobicity, volume and polarizability and

secondary structure from the DSSP secondary-structure

assignment program [31]. Tegge et al. [54] proposed

NNcon which uses 2D-Recursive Neural Network (2D-

RNN) models to predict both general residue–residue

contacts and specific beta contacts (i.e., pairs of residues in

beta sheets). They combine general and specific contact

maps to produce predictions. Lippi et al. [41] proposed a

novel hybrid architecture based on neural and Markov

logic networks with grounding-specific weights, to predict

contacts between b-strand residues. Multiple alignment

profiles, secondary structure and solvent accessibility in

two states were used as input.

As far as EAs are concerned, Chen and Li [9] proposed

an ensemble of genetic algorithm (GA) classifiers to pre-

dict long-range contacts. The individuals of the GA include

three amino acid windows and 20 properties obtained from

HSSP database [14] for each residue in such windows. The

method uses the sequence profile centers, that is, the

average sequence profiles of residue pairs belonging to the

same contact class or non-contact class. Judy et al. [30]

propose a MOEA, representing protein structures by tor-

sion angles. They modified the classical algorithm Pareto

Archived Evolutionary Strategy (PAES) [11, 12], intro-

ducing two immune inspired operators: vaccination and

immune selection. Their algorithm, named MI-PAES, uses

adaptive probabilities of crossover, mutation and immune

operation and a geometric annealing schedule in the

immune operator. Calvo et al. [8] also proposed a MOEA,

called Pitagoras-PSP. This algorithm uses an evolutionary

ab initio approach based on PAES. The algorithm predicts

protein backbone and side-chain torsion angles and it uses

an energy function as fitness function. Mutation operators

maintain values of torsion angles in feasible ranges

according to secondary structure of residues and rotamer

libraries.

With respect to SVM approaches, Wu et al. [62]

developed a composite set of nine SVM-based contact

predictors that are used in I-TASSER [50] simulation in

combination with sparse template contact restraints. They

used the original energy function of I-TASSER and contact

predictions generated by extended versions of SVMSEQ

[61]. Lo et al. [42] proposed a hierarchical scheme for

contact prediction, with an application in membrane pro-

teins. This approach consists of two levels: in the first level,

contact residues are predicted from sequences, while in the

second one their pairing relationships are further predicted.

The statistical analyses on contact propensities are com-

bined with evolutionary profile, relative solvent accessi-

bility and helical features.

Apart from these three main approaches, there are other

important approaches that try to address the residue–resi-

due contact prediction problem. Li et al. [40] developed

ProC_S3, based on a set of Random Forest algorithm based

models using 1287 sequence-based features. Marks et al.

[43] use a global model of maximum entropy constrained

by correlated mutations from multiple sequence align-

ments. Finally, they reconstruct protein 3D models using

distance geometry and simulated annealing. On the other

hand, ensemble approaches, which combine several pre-

dictors, are also recently applied for contact map prediction

[16, 22, 64], as well as nearest neighbor-based algorithms

[1], Hidden Markov Models [7], integer linear optimization

[48, 49, 60], sparse inverse covariance [29] and template-

based approaches [5, 59].

3 Methods

Before describing our algorithm, this section presents a

brief introduction to multi-objective optimization problems

and related concepts.

A Multi-objective optimization problem requires the

optimization of a set of objectives, usually in conflict with

each other. The existence of multiple objectives poses a

fundamental difference with the single objective problems:

typically, there will not be a single solution, but a set of

solutions that can present different clashes between

the values of the objectives to optimize. We can define a

multi-objective optimization problem in this way: let

ðf1ðxÞ; f2ðxÞ; . . .; fnðxÞÞ be a set of functions to be opti-

mized, where x ¼ ðx1; . . .; xpÞ is a vector of decision vari-

ables belonging to a universe X and fi(x) is an arbitrary

linear or non-linear function, 1 B i B n. Therefore, the

problem consists of finding the x that provides the best

compromise value for all fi(x).

To solve the above problem, we should defined some

criteria to determine which solutions are considered of

good quality and which are not. To this aim, the concept of

dominance is generally used. A solution x is said to be not

dominated iff there is not another solution y such that:

fi(y) B fi(x) for all i = 1, …, n and fi(y) \ fi(x) for some i.

From this, it follows that the best solutions are those that

are not dominated. This set is called Pareto front.



We have applied these concepts to the PSP problem. In

this article, we consider two objectives to be optimized

separately, which are defined in Sect. 5. In order to do so,

we have implemented a MOEA, called MECoMaP (Multi-

objective Evolutionary Contact Map Predictor), based on a

SPEA. This algorithm uses an external population with

non-dominated solutions, which is obtained at the end of

every generation. The algorithm is based on the strength

concept. The strength of an individual x is given by the

number of individuals that x dominates. The fitness of an

individual is proportional to its strength, as will be detailed

in the following of this section.

Each individual of the population represents a decision

rule. In particular, rules are based on some specific amino

acid properties. Basically they specify a set of conditions

on each property that, if satisfied, predict a contact

between two amino acids. It is known that amino acid

properties play an important role in the PSP problem [24].

Several PSP methods were proposed that relied on amino

acids properties, e.g., hydrophobicity and polarity were

employed in HP models [55]. In our approach, the deci-

sion rules evolved by our algorithm, base the prediction

on three physico-chemical properties: hydrophobicity,

polarity and charge of the residues. It has been shown that

such properties have certain relevance in PSP. In addition

to these properties, we also make use of two structural

features of proteins: secondary structure prediction (SS)

and solvent accessibility (SA). We selected the Kyte-

Doolittle hydropathy profile [37] for hydrophobicity, the

Grantham’s profile [23] for polarity and Klein’s scale for

net charge [35]. In Table 1, we can appreciate the prop-

erty values for each amino acid according to the cited

scales, normalized between -1 and 1 for hydrophobicity

and polarity.

Secondary structure prediction consists of predicting the

location of alpha-helices, beta-sheets and turns from a

sequence of amino acids. The location of these motifs

could be used by approximation algorithms to obtain the

tertiary structure of the protein. A 3-state representation of

SS (helix, sheet or coil) is employed in our approach. The

prediction is performed using PSIPRED [28].

SA refers to the degree to which a residue interacts with

the solvent molecules. The SA of amino acid residues

provides us with useful information for the prediction of

the structure and function of a protein. Relative solvent

accessibility (RSA) is required for the prediction. To cal-

culate the RSA of a residue, we use the DSSP program to

obtain the actual SA of each residue as described in [6]. In

order to predict the RSA, SA is divided by the maximum

accessible surface in the extended conformation of its AA

type. We finally obtain a 5-state representation (ranging

from 0 to 4) for RSA, where lower values mean a buried

state and higher values represent exposed states.

In the following, we address the various solutions

adopted for what regards the representation, the genetic

operators and the fitness function used by the EA.

3.1 Encoding

We represent a protein sequence by s1; . . .; sL; where L is

the sequence length and si (1 B i B L) is an amino acid.

Each individual in our algorithm represents a decision rule

which determines whether amino acids si and sj are in

contact, with 1 B i \ j B L. For this purpose, we include

in each individual properties of two windows of ± 3 res-

idues centered around the two target amino acids si and sj.

Therefore, one window is relative to amino acids

si-3, si-2, si-1, si, si?1, si?2, si?3 and the other one is rel-

ative to amino acids sj-3, sj-2, sj-1, sj, sj?1, sj?2, sj?3. For

each amino acid k belonging to the two windows, we define

the descriptor Qk (where k 2 fi� 3; i� 2; i� 1; i; iþ
1; iþ 2; iþ 3; j� 3; j� 2; j� 1; j; jþ 1; jþ 2; jþ 3g)
which represents a set of conditions for the amino acid k, as

shown in Eq. 1.

Table 1 Values of different properties according to the cited scales for each amino acid. H represents the hydrophobicity, P the polarity and C

the charge

Prop. A C D E F G H I K L

H 0.40 0.56 -0.78 -0.78 0.62 -0.09 -0.71 1.00 -0.87 0.84

P -0.21 -0.85 1.00 0.83 -0.93 0.01 0.36 -0.93 0.58 -1.00

C 0 0 -1 -1 0 0 0 0 1 0

Prop. M N P Q R S T V W Y

H 0.42 -0.78 -0.36 -0.78 -1.00 -0.18 -0.16 0.93 -0.20 -0.30

P -0.80 0.65 -0.23 0.38 0.38 0.06 -0.09 -0.75 -0.88 -0.68

C 0 0 0 0 1 0 0 0 0 0



Qk ¼ Hmin;Hmax;Pmin;Pmax;C; SS; SA ð1Þ

where

�1�Hmin\Hmax� 1

�1�Pmin\Pmax� 1

C 2 f�1; 0; 1g
SS 2 f�1; 0; 1; 2g
SA 2 f�1; 0; 1; 2; 3; 4g

We define the decision rule Ri,j for amino acids i and j,

encoded in each individual of our algorithm, as shown in

Eq. 2, for each k 2 fi� 3; i� 2; i� 1; i; iþ 1; iþ 2; iþ 3;

j� 3; j� 2; j� 1; j; jþ 1; jþ 2; jþ 3g:
Ri;j ¼ fQkg ð2Þ

Given a test sequence t1; . . .; tL0 ; where L0 is the test

sequence length, and a pair of amino acids ta and tb
(1 B a \ b B L0), the algorithm predicts a contact between

these amino acids if there exist any rule Ri,j

(1 B i \ j B L) that covers the pair (ta, tb).

A rule Ri,j covers the pair (ta, tb) if that pair satisfies Qk

for all k 2 fa� 3; a� 2; a� 1; a; aþ 1; aþ 2; aþ 3;

b� 3; b� 2; b� 1; b; bþ 1; bþ 2; bþ 3g: The pair (ta, tb)

satisfies Qk if it fulfills the following equations for all k 2
fa� 3; a� 2; a� 1; a; aþ 1; aþ 2; aþ 3; b� 3; b� 2;

b� 1; b; bþ 1; bþ 2; bþ 3g:
Hmin�HðtkÞ�Hmax ð3Þ
Pmin�PðtkÞ�Pmax ð4Þ
CðtkÞ ¼ C ð5Þ
SSðtkÞ ¼ SS ð6Þ
SAðtkÞ ¼ SA ð7Þ

where H(tk) is the hydrophobicity of the amino acid

tk, P(tk) its polarity, C(tk) its charge, SS(tk) its secondary

structure and SA(tk) its solvent accessibility.

3.2 Genetic operators and fitness functions

The algorithm starts with a randomly initialized population

and is run for a maximum number of generations. If the

fitness of the best individual does not increase over 20

generations, the algorithm is stopped and a solution is

provided. In order to obtain the next generation, individuals

are selected with a tournament selection mechanism of size

two. Crossover and mutation are then applied in order to

generate offsprings.

Various crossover operators have been tested. In par-

ticular, we have tested the performances of one-point, two-

points, uniform and BLX-a crossovers. These cross-over

operators act at the level of the amino acid properties. For

instance, one-point crossover randomly selects a point

inside two parents and then builds the offspring using one

part of each parent. It follows that the resulting rule has to

be tested for validity, since it could contain incorrect ran-

ges. BLX-a crossover creates a new offspring Ri,j, where

the values of the elements of Qk (for each k 2 fi� 3; i� 2;

i� 1; i; iþ 1; iþ 2; iþ 3; j� 3; j� 2; j� 1; j; jþ 1; jþ 2;

jþ 3g) are mutated within an interval delimited by the

maximum and minimum values of the two parent indi-

viduals for the same element of Qk. An a value is also

selected to calculate this interval. In our case, we set the a
value for the crossover to 0.1. This parameter must be

higher or equal than 0. This crossover operator can be seen

as a linear combination of the two parents. After having

performed several runs of the algorithm, the best results

were obtained when the two-point crossover was used,

which was then used as standard crossover in the

algorithm.

We have applied two different mutation operators. The

first operator, called Gaussian operator, mutates an element

of Qk of an individual Ri,j, where k 2 fi� 3; i� 2; i� 1;

i; iþ 1; iþ 2; iþ 3; j� 3; j� 2; j� 1; j; jþ 1; jþ 2; jþ 3g;
following a Gaussian distribution. The value of this ele-

ment is increased or decreased with a probability of 0.5. If

the values of a mutated individual are not within the

allowed ranges for each properties, the mutation is dis-

carded. A second mutation operator, called Enlarge oper-

ator, randomly selects an element of Qk of an individual

that is related to a given property and varies its range to all

the allowed values. For instance, if the property is the

hydrophobicity, this operator varies the range to [-1, 1].

This means that the rule does not take into account this

property in this case. This type of mutation is applied with

a 0.1 probability. The parameter setting of the algorithm

are shown in Table 2. This setting was determined after

several preliminary runs.

The aim of the algorithm is to find both general and

precise rules for identifying residue–residue contacts. The

fitness of an individual is equal to the number of individuals

that it dominates. We consider two objectives to be opti-

mized, rule coverage and rule accuracy. Thus, an individual

dominates another according to its values of rule coverage

and rule accuracy. Rule coverage represents the proportion

Table 2 Parameter setting used in the experiments

Population size 100

Crossover probability 0.5

Gaussian mutation probability 0.5

Enlarge mutation probability 0.1

Max number of generations 100

Tournament size 2



of contacts covered by each rule and rule accuracy evaluates

the correctly predicted contacts rate by each rule. Therefore,

Rule coverage ¼ C=Ct and Rule accuracy ¼ C=Cp; where

C is the number of correctly predicted contacts of a protein,

Ct is the total number of contacts of the protein and Cp is the

number of predicted contacts. We aim at finding the best

compromise between these two measures. The set of non-

dominated individuals are included in a external archive

and they will be selected for the next generation.

An execution of the algorithm provides as a result a set

of rules. If the algorithm is run several times, the final

prediction model will consist of all the rules obtained at

each execution. In other words, each time the algorithm is

run, a number of rules are added to the final solution.

This is done in an incremental way: first, the best indi-

vidual, according to its F-measure, is selected and added to

the solution S. Then the next best individual is added to S,

and the F-measure of S is calculated. This process is

repeated until the addition of a rule causes the F-measure

of S to decrease. The F-measure is defined as in Eq. 8:

F-measure ¼ 2 � Rule coverage � Rule accuracy

Rule coverage þ Rule accuracy
ð8Þ

Repeated or redundant rules are not included in the final

solution. Each pair of rules ðRa;b;R
0
c;dÞ is checked. If we

find that Ra,b is contained in R0c;d; then Ra,b is removed from

our final rule set. In this context, a rule Ra,b is contained in

another rule R0c;d if the values of the elements of Qk (for

each k 2 ½a� 3; aþ 3� [ ½b� 3; bþ 3�) and the values of

the elements of Q0k0 (for each k0 2 ½c� 3; cþ 3�
[½d � 3; d þ 3�) satisfy the conditions shown in

Equation 9.

Hmin�H0min ^ Hmax�H0max ð9Þ

Pmin�P0min ^ Pmax�P0max

C ¼ C0

SS ¼ SS0

SA ¼ SA0

selected individuals with the binary tournament selection

operator. The last 50 % of the individuals in P0 is created

using the 2-point crossover operator. Mutation is applied to

the whole population, except to the Pareto front individu-

als, at the end of the evolutionary process. This process is

repeated a maximum number of generations maxGen. At

the end of each iteration a set of best individuals is stored

in Results set. Hence, the Results set is formed in an

incrementally way, as we have said before, and constitutes

the output of our algorithm.

4 Experimentation

In this section we will present the results obtained by

MECoMaP on four different datasets. MECoMaP was

implemented in Java using a multithreading architecture.

Furthermore, due to the enormous volume of data, all the

experiments were run on a 64-bit workstation, with 32 GB

DDR SDRAM and four dual-core processors.

The first protein data set (DS1) consists of 173 non-

redundant proteins with sequence identity less than 25 % and

was obtained from [18]. As in [18], four subsets have been

obtained according to the sequence length (Ls):

Ls \ 100, 100 B Ls \ 170, 170 B Ls \ 300, Ls C 300.

The minimum and maximum lengths of proteins are 31 and

753 amino acids, respectively. DS1 contains 240,501 positive

examples and 5,034,050 negative examples (non-contacts).

The second data set (DS2), with 53 non-redundant and

non-homologous globulin proteins, is detailed in [10]. In

this case, proteins are classified according to their SCOP

class [45] as described in [10]. Alpha proteins contain only

alpha helical secondary structure. Beta proteins contain

The pseudocode of MECoMaP is shown in Algorithm 1. 
The evolutionary process is repeated numIt times where 
numIt is the number of iterations. The algorithm starts by 
randomly initialize the population. Then, it evaluates the 
current population P and the Pareto front is determined. 
Non-dominated solutions, which constitute the external 
population A, will be included in the population P0 of the 
next generation. As already mentioned, four genetic oper-

ators are used: a binary tournament selection operator, a 
2-point crossover operator and two mutation operators. The 
first 50 % of the individuals in P0 is formed by the non-

dominated individuals (external population A) and by the



only beta-sheet secondary structure. Alpha/beta proteins

contain alternating a-helical and b-sheet secondary struc-

ture elements. This structure is known as a TIM barrel. In

alpha/beta proteins, the alpha helical and beta sheet regions

occur in independent regions of the molecule. Small pro-

teins are referred to the size of the protein and are usually

dominated by metal ligand or disulfide bridges. Finally,

Coiled-coil proteins refers to a structural motif in which

alpha helices are coiled together. The sequence identity of

DS2 dataset is also lower than 25 %. DS2 is formed by a

total of 30,546 contacts and 356,528 non-contacts.

The third data set is presented in [65]. This data set

(DS3) includes 48 non-homologous proteins. DS3 is divi-

ded into five subsets according to Ls: Ls \ 100, 100 B Ls

\ 200, 200 B Ls \ 300, 300 B Ls \ 400, Ls C 400. DS3

contains 10,498 positive examples and 367,299 negative

examples.

The fourth data set (DS4), is detailed in [29]. A total of

150 non-homologous proteins are contained in this data set.

The sequence length of the proteins varies between 50 and

275 amino acids. DS4 is formed by 225,352 positive

examples and 3,194,288 negative examples.

All the experimentations were performed under the

same conditions that appeared in the cited articles. A

threshold of 8 angstroms (Å) was established to determine

a contact as in [18]. In order to avoid the effect of learning

local contacts, we set the same minimum sequence sepa-

ration between each pair of amino acids to establish a

contact as in the reference works.

Before presenting the results obtained by our algorithm

on the datasets, we present results of two preliminary

studies. The first study was conducted to determine the

distribution of the number of contacts according to the

sequence separation between the pairs of amino acids. In

this study, we have used the protein data set DS1. The

result of this study is represented in Fig. 1. The X-axis

represents the different possible values of sequence sepa-

rations (the number of residues between those that are in

contact) and the Y-axis represents the number of residue–

residue contacts. The study concludes that the vast majority

of contact occurrences (97 %) are established with a

sequence separation lower than 140 amino acids. There-

fore, we discard all the possible contacts with a sequence

separation higher than 140 during the training phase in all

the experimentations. Using this constraint, a considerable

waste of computational time is avoided. Similar contact

distributions were obtained for the other datasets.

Three statistical measures are used in CASP competi-

tions [44] (coverage, accuracy and Xd) to evaluate the

performance of protein structure predictors. The coverage

and accuracy, defined in this context, have a different

meaning to that expressed in Sect. 5. In particular, in

CASP, coverage indicates what percentage of contacts

have been correctly identified. Accuracy reflects the num-

ber of correctly predicted contacts. Xd represents the dis-

tribution accuracy of the predicted contacts. Xd is defined

by Eq. 10

Xd ¼
X15

i¼1

Pi � Pa

i
ð10Þ

where Pi represents the percentage of predicted pairs with a

distance between 4(i - 1) and 4i and Pa represents the

percentage of total pairs with a distance between 4(i - 1)

and 4i.

The other preliminary experiment we present is aimed at

verifying if the encoding adopted by MECoMaP provides

enough information to perform a good classification. To

this aim, we have compared the results obtained by

MECoMaP with those obtained by five well-known clas-

sifiers: Naive Bayes (NB), C4.5 classifier tree, Nearest

Neighbor approach with k = 1 (IB1), Neural Network

(NN) and Support Vector Machine (SVM). For this

experimentation we have used DS1 (Ls \ 100), DS2, DS3

and DS4. We have set the same experimental conditions in

all the cases: a sequence separation of 6 amino acids and a

threefold cross-validation was performed, as cited in [18].

From all the extracted data, we have built four files in

ARFF format, with all the training data information. The

positive class (contact) is represented with 1 and the neg-

ative class (no contact) is represented with 0. The total data

sets consists of 123, 949 instances with 6, 922 positive and

117, 027 negative cases (contacts and no contacts respec-

tively) for DS1, 171, 916 instances with 5, 530 positive

cases and 166,386 negative cases for DS2 and 55, 988

instances, 18, 486 contacts and 1, 119, 751 no contacts for

DS3 and 44, 444 positive cases and 1, 512, 823 negative

cases for DS4. We have used the WEKA [26] implemen-

tation of C4.5 (J48), Naive Bayes (NB), IB1, Multilayer

Perceptron (Neural Network) and Sequential minimal

optimization algorithm (SMO) which represents a Support
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vector machine approach. We set the parameters of the

algorithms by default, except the parameter buidingLo-

gisticModel which is set to true and -E flag of kernel which

is set to 2.0. These settings belong to SMO approach.

Table 3 shows the results of this experiment. The

obtained results are within normal values of accuracy and

coverage rates for the contact map prediction [10]. These

results confirm that our encoding provides enough infor-

mation for a good performance of a learning classifier. Fur-

thermore, we can also notice that MECoMaP achieved the

best results for this experiment in the majority of the cases.

High values of coverage are achieved by NB for DS2 and

DS4; however, the accuracy rate is significantly low in these

cases, so these results are overcome on average by our

algorithm. On the other hand, NN achieves higher values of

accuracy than MECoMaP for DS3, but its coverage is much

lower than the coverage obtained by our method. In addition,

we performed a statistical test (Friedman test) on the results

shown in Table 3 and we found that the differences of

accuracy values for DS2 and DS4 are statistically significant.

In order to further verify the correct performance of our

approach, in Fig. 2 we show the different Pareto fronts for

ten generations (from generation 10 to 100 with an interval

of 10) of an execution of the algorithm on DS1 (Ls \ 100)

data set. Each different symbol represents an individual of

the Pareto front in different generations. The X-axis rep-

resents the coverage and the Y-axis shows the accuracy

rate. These two measures are the two objectives subject of

optimization. We can notice how the quality of individuals

improve with the generations. This result confirms that the

algorithm is optimizing the two objectives.

Since the algorithm incrementally adds decision rules to

a final set of rules, and since the optimal and exact number

of rules is unknown, we have else performed various

experiments varying the numbers of runs of the EA, where

to a higher number of runs corresponds a higher number of

rules. The aim of this was to test whether a higher number

of rules would yield better results. From these, we have

concluded that the best results were obtained when the

algorithm was run for 1,000 iterations.

Table 4 shows the results for the first experimentation

using DS1 data set. We used a sequence separation of

seven residues and a threefold cross-validation as in [18].

We have compared our results with the ones shown in [18]

using the same data set. The first column of the table

reports the sequence length range of each subset of pro-

teins, while the second column represents the number of

proteins of each subset. The third column shows the

average accuracy rate obtained by MECoMaP, and finally,

the fourth column presents the average accuracy rate

obtained by the reference algorithm [18]. Standard devia-

tion for accuracy is also reported. We can notice how the

accuracy rate decreases when the size of the proteins

increases. This is due to the fact that, generally, ab initio

methods only work well with peptides lower than 150

amino acids [20]. We obtain better results than [18] for

proteins whose sequence length is lower than or equal to

100. We have obtained the same accuracy rates for the

second subset and similar accuracy rates for the third and

fourth group.

Positive values of Xd are achieved in all the cases.

Therefore, our predictor improves the performance of a

random predictor (negative values of Xd). Low values of

standard deviation show us that our data results are not
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Table 3 Average accuracy, coverage and standard deviation values obtained for different Weka classification algorithms for the DS1, DS2, DS3

and DS4 protein data sets with the same experimental settings

Methods DS1 data set DS2 data set DS3 data set DS4 data set

Acc.l ± r Cov.l ± r Acc.l ± r Cov.l ± r Acc.l ± r Cov.l ± r Acc.l ± r Cov.l ± r

IB1 0.11 ± 0.37 0.11 ± 0.27 0.05 ± 0.01 0.05 ± 0.01 0.08 ± 0.00 0.08 ± 0.00 0.07 ± 0.00 0.07 ± 0.00

J48 0.33 ± 0.31 0.03 ± 0.22 0.10 ± 0.05 0.08 ± 0.04 0.35 ± 0.03 0.41 ± 0.02 0.08 ± 0.01 0.07 ± 0.01

NB 0.14 ± 0.34 0.20 ± 0.39 0.09 ± 0.02 0.20 ± 0.02 0.19 ± 0.02 0.05 ± 0.08 0.08 ± 0.02 0.32 ± 0.03

NN 0.24 ± 0.05 0.10 ± 0.02 0.12 ± 0.07 0.04 ± 0.27 0.42 ± 0.01 0.07 ± 0.01 0.12 ± 0.00 0.03 ± 0.00

SMO 0.14 ± 0.14 0.03 ± 0.09 0.04 ± 0.02 0.06 ± 0.03 0.08 ± 0.01 0.09 ± 0.01 0.04 ± 0.01 0.09 ± 0.01

MECoMaP 0.54 ± 0.24 0.21 ± 0.18 0.38 ± 0.09 0.12 ± 0.01 0.37 ± 0.08 0.39 ± 0.02 0.36 ± 0.09 0.11 ± 0.03



significantly spread. In fact, standard deviation achieved by

our predictor is lower than that achieved by the reference

method [18] for all the protein lengths. Additionally, we

performed a statistical test (Friedman test) with these val-

ues and we found that these differences are statistically

significant.

Table 5 presents the results for the second experimen-

tation using DS2 with a minimum sequence separation of

six residues as in [10]. The first column of the table pre-

sents the SCOP classification, as was detailed at the

beginning of this section. The second column shows the

number of proteins of each subset, and the third and fourth

columns show the average accuracy rate obtained by

MECoMaP and by the algorithm presented in [10],

respectively. Standard deviation is also reported. From

Table 5, we can infer, as first conclusion, a good perfor-

mance of our method for the beta proteins prediction. This

is because most of the rules generated by our algorithms

predict beta sheets. This observation will be validated in a

further analysis presented in Sect. 4.1. We also obtain

better accuracy than the algorithm proposed in [10], for

alpha, small and coil–coil classes. In this cases, we have

performed a non-parametric statistical test (Friedman test)

on the results. After executing the test, the obtained p value

was 0.039 (p value \ 0.05), such that the null hypothesis

was rejected. Therefore, the results obtained from this test

sustain our conclusions, since the differences of the results

obtained are statistically significant. We have also obtained

positive values of Xd in all the cases, determining a good

performance of our algorithm. Low standard deviation

values show that the data results are clustered closely

around the mean.

A third experiment compares our proposal with a neural

network method (RBFNN) proposed in [65]. This method

used the protein data set DS3. The authors of this work

used an input and hidden layer with 20 nodes; the learning

rate is set to 0.01, and the goal rate is set to 0.001. All the

experimental results are based on the neural network

toolbox of MATLAB version 6.5. The authors used cov-

erage to evaluate the performance. Coverage is calculated

using two variables: Np represent predicted contacts by the

algorithm and desired numbers and Nd is the total number

of contacts. We used the same experiment settings as in

[65]. Table 6 shows the results of this experimentation.

The third column represents the coverage rate of our

algorithm and the forth column represents the coverage rate

of RBFNN. As we can see from this table, the average

coverage is largely improved by our method in all the

cases. Only the third subset is poorly predicted. This is due

to the fact that only one protein is used as training set in

this case and it seems to be insufficient to build an effective

knowledge model.

At the end of the execution, the program generates a

resulting contact map for each protein test. In Fig. 3, we

show an example for the protein 5PTI from DS1 data set.

We can appreciate that the lower triangular (predicted

contacts) is largely similar to the upper one (real contacts).

4.1 Analysis of predicting rules

In order to further evaluate the results obtained by

MECoMaP, we have statistically analyzed the set of rules

obtained on DS1 with Ls \ 100. Similar results were found

for other Ls. A set of 10,244 rules were extracted by the

algorithm after an execution of 1,000 iterations. With this

study, we want to analyze the properties of the amino acids

that are predicted to be in contact. This would allow us to

draw conclusions about the influence that these properties

have on the folding problem.

First, we have analyzed the properties of the amino acid

i in the rules set. The histograms in Figs. 4 and 5 show the

relative frequency of hydrophobicity and polarity values

for the amino acid i. The properties values have been

discretized into five groups in intervals of 0.5 from -1 to 1

for the hydrophobicity and polarity. In Figs. 4 and 5 we

added in each group of hydrophobicity and polarity,

respectively, the rules whose interval [Hmin, Hmax] is

totally or partially included. Therefore, note that the same

rule could be included in one or more groups. Although all

the study is referred to residue i, the amino acid j presents

similar behavior.

These rules indicate that a vast majority of amino acids

in contact have high values of hydrophobicity. Further-

more, a high percentage of contacts have non-polar

Table 4 Efficiency of our method predicting DS1 protein data set

Protein length #prot. Acc.l ± r Acc.l ± r [18]

L B 100 65 0.54 ± 0.24 0.26 ± 0.39

100 B L \ 170 57 0.21 ± 0.16 0.21 ± 0.32

170 B L \ 300 30 0.17 ± 0.08 0.15 ± 0.22

L C 300 21 0.10 ± 0.05 0.11 ± 0.15

All proteins 173 0.26 ± 0.13 0.18 ± 0.32

Table 5 Efficiency of our method predicting DS2 protein data set

SCOP class #prot. Acc. Acc. [10]

Alpha 11 0.30 ± 0.13 0.24 ± 0.13

Beta 10 0.42 ± 0.12 0.38 ± 0.16

a ? b 15 0.38 ± 0.09 0.45 ± 0.10

a/b 7 0.22 ± 0.05 0.37 ± 0.07

Small 4 0.50 ± 0.01 0.36 ± 0.07

Coil–coil 1 0.25 ± 0.00 0.22 ± 0.00

All proteins 48 0.38 ± 0.08 0.37 ± 0.14



avoided. However, this fact does not affect the long-range

b-sheet contacts, and therefore, they predominate in our set

of rules.

We have also analysed the relation between the prop-

erties of amino acids i and j that are predicted to be in

contact. In Figs. 8 and 9 we show the hydrophobicity and

polarity regions, respectively, for amino acids i and j cov-

ered by our predicted rules. The representation of that

regions is based on overlapping translucent rectangles

whose area covers the range of hydrophobicities or polar-

ities of amino acids i and j that are included in the rules.
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Table 6 Efficiency of our method predicting DS3 protein data set

Protein length #prot. Cov. Cov. [63]

L B 100 10 0.41 0.26

100 B L \ 200 13 0.62 0.30

200 B L \ 300 2 0.15 0.31

300 B L \ 400 13 0.29 0.26

L C 400 9 0.75 0.26

All proteins 48 0.44 0.27

Fig. 3 Contact map of protein 5PTI with a threshold of 8Å

residues. These conclusions were expected because 
hydrophobic and non-polar amino acids tend to be located 
in the core of the protein. The core of proteins contains 
much less space than other protein regions, and contacts 
among amino acids are more frequent. Therefore, these 
type of residues have more probabilities to be in contact 
[25]. We have not observed any clear conclusion regarding 
the net charge of amino acids i and j individually. Although 
amino acids with opposite charges are supposed to be in 
contact [25], this condition seems to be irrelevant in our 
rule set.

Figures 6 and 7 represent the relative frequencies of 
values of solvent accessibility and secondary structure, 
respectively. As we can see in Fig. 6, lower values of 
solvent accessibility are the most represented values in the 
rules. This is due to the fact that amino acids with low 
values of solvent accessibility are in the core of the protein 
and are often in contact. We can appreciate from Fig. 7 that 
a high number of rules (77 %) presents secondary structure 
values of type E (b-sheets). This is explained by the sep-

aration in the sequence constraint which was set to 7. In 
fact, in this way, intra turn and intra a-helix contacts are



From Fig. 8, we appreciate that the obtained rules pre-

dict contact between amino acids whose hydrophobicity is

high, especially when both amino acids are hydrophobic

(values close to 1.0). As we can observe in the Fig. 9, non-

polar amino acids (values close to -1.0) are more likely to

be in contact, according to our rules. These results are

consistent with those obtained in Figs. 4 and 5. In Fig. 10

we show the relative frequency of charge values for amino

acids i and j in the rules. We found that amino acids with

charge 0 are often in contact (in 79.3 % of cases) according

to the rules.

Figure 11 shows an example of two resulting rules. If we

inspect the first rule, we can infer that, for example, the

hydrophobicity value for the amino acid i lies between 0.52

and 0.92, the polarity value between -1.0 and -0.93, neu-

tral charge 0, solvent accessibility 0 and secondary structure

2 (b-sheet). Therefore, the amino acid i could be L (Lysine)

or F (Phenylalanine), which fulfills all these features

according to the cited scales. As can be noticed, the pro-

duced rules are easily interpretable by experts in the field.

5 Conclusions and future work

In this article, we proposed a multi-objective evolutionary

algorithm approach for protein contact map prediction. Our

algorithm generates a set of rules for residue–residue

contact prediction using a representation based on amino

acid properties. The rules forming the final solution express

a set of conditions on specific physico-chemical properties

of amino acids. As a consequence, such rules can easily be

interpreted and analyzed by experts in the field to obtain

more insight into the protein folding process.

Our approach has been tested with four different protein

data bases which appear in the literature obtaining

acceptable results. A statistical study of our set of rules has

been performed. Some conclusions about the folding pro-

tein can be inferred from the rules. These conclusions are

related to the physico-chemical properties of amino acids

(hydrophobicity and polarity) and two predicted structural

features (SA and SS) used by our approach.

As for future work, we intend to expand this study to

other significant amino acid properties, e.g., isoelectric

point and steric parameter. Furthermore, we are planning to

include evolutionary information like Position-Specific

Score Matrix (PSSM). This information must be encoded

in the representation of the algorithm. We also intend to

Fig. 8 Hydrophobicity regions for amino acids i and j covered by our

predicted rules

Fig. 7 Relative frequency of secondary structures for amino acid i in

our predicted rules

Fig. 9 Polarity regions for amino acids i and j covered by our

predicted rules



study the possibility of using self-adaptable parameters for

controlling the genetic operators used in the algorithm.

Another future development is the application of the

algorithm to larger proteins data set to test the validity of

our proposal in these cases, where the resulting rules set

could cover more of the search space.
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