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Abstract

The popularity and prevalence of Internet of Things (IoT) devices has been ever
increasing. They have found their way into our everyday lives and increasingly
transform our living environments into smart homes. However, most of these
constrained devices do not possess sufficient computational power, memory, and
battery runtime in order to implement security features that are common for gen-
eral purpose personal computers. Hence, the increasing numbers of interconnected
consumer IoT devices are followed by an increase of their attack surface and vul-
nerabilities.

The following thesis approaches this security issue by providing a novel ap-
proach for a Runtime IoT Security Score that provides the inexperienced user of a
smart home system with profound insight into the security state of the connected
IoT devices during runtime. This is achieved by combining Vulnerability Assess-
ment with Trustworthiness Assessment of the connected devices, which has never
been proposed before and represents a very valuable contribution to the state of
current research.

In addition to the Runtime Security Score, a holistic concept for a Vulnera-
bility Assessment and Management (VAM) solution is proposed as another main
contribution of this thesis. The effective and functional interoperability of all
relevant components specified in this concept is shown with a Proof of Concept
implementation.
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Chapter 1

Introduction

1.1 Motivation

In the last few years, the popularity of Internet of Things (IoT) devices has been
ever increasing. This results in more and more devices being connected to the
Internet while becoming smaller and smaller in terms of form factor, CPU perfor-
mance, memory, and energy consumption. The Internet Engineering Task Force
(IETF) refers to this device class as ”constrained devices” [10]. With the rise
of the IoT, simple appliances became smart and interconnected and found their
way into smart homes and our everyday lives. Whereas in 2017, the growth of
IoT devices had been estimated to reach 8.4 billion IoT devices by 2017 and 20.4
billion by 2020 [23], a more recent forecast from 2020 anticipates 28 billion IoT
devices by 2025 [32].

In addition to the aforementioned trend of increasing numbers of intercon-
nected consumer IoT devices, more and more embedded constrained devices sup-
port software extensibility and updateability [40]. The combination of both net-
work connectivity and software updateability has vastly extended the attack sur-
face. Prominent attacks in the IoT smart home domain have e.g. been the Mirai
botnet [68], that represents a multi-tier Distributed Denial of Service Attack as
classified and described by Djuitcheu et al. in [15], and the Zigbee worm proposed
by Ronen et al. [52].

In contrast to traditional Personal Computers (PC), IoT devices most often
lack security by design, leading to common vulnerabilities [54]. In the IoT do-
main, hardware and software are closely coupled; often, they are provided by one
manufacturer and are both proprietary. Consequently, users of an IoT device are
most often not able to install additional (security) software but have to rely on the
security measures implemented by manufacturers [54]. Additionally, the devices’
limitations in terms of computational power, memory and power consumption lead
to the fact that well-known security measures for high-performance processors such

1



2 1. Introduction

as virtual memory, memory protection or privilege levels are not easily applicable
to IoT devices [42]. Their network connectivity opposes additional limitations:
Such constrained devices need to rely on low-power network communication pro-
tocols as they cannot afford the power consumption required by Wi-Fi [72]. All
this leaves the devices prone to a range of malware and other attacks.

In order to counter these threats, a number of security architectures for net-
worked embedded devices are available today. Among the most prominent repre-
sentatives are ARM’s Trustzone [44], RISC-V [51] and Sancus [42]. All of them
have in common that they come without a Memory Management Unit (MMU).
Hence, process isolation, which is a common security feature for PCs, cannot
be implemented through virtual address spaces. Instead, a more reduced and
resource-saving memory protection is implemented using different Hardware Root
of Trust (RoT) mechanisms. Although the specific implementations differ, all ap-
proaches divide the processor into at least two areas: a secure Trusted Execution
Environment (TEE) and a non-secure world. The transition between both areas
is well-defined and the secure world enjoys a special hardware protection. This
approach does not provide the same extensive possibilities as process isolation us-
ing an MMU does, but the underlying idea is comparable and allows for a basic
separation of software.

Although it can be concluded here that IoT devices have an increasing im-
pact not only on our everyday lives, but also on critical infrastructures, they are
most often not well-secured and ”’security’ is not a word that gets associated
with this category of devices, leaving consumers potentially exposed to massive
attacks” [54]. As a result, calls for ”security by design” to be built in and to secure
the device on several system levels are getting louder all the time. Hence, making
the device’s security state measurable and therefore comparable would then put
the end user in a much more comfortable position.

In order to improve the consumer’s purchasing decision, informative labels are
known from many sectors. Nutrition facts labels are supposed to improve con-
sumers’ food choices [66]. The fuel economy and environment label provides car
buyers with information about the fuel economy, fuel cost, and environmental
impacts of the considered vehicle [65]. Information on the energy consumption
and an energy efficiency classifier are provided by the EU energy labels for many
classes of electrical devices [19]. Analogously, informative pre-purchase labels that
represent an IoT device’s security or privacy state is subject of ongoing research.
Amongst others, Shen et al. propose such an IoT Security and Privacy Label [54].

According to Shen et al., pre-purchase labels may not be limited to static de-
vice factors. Security vulnerabilities, e.g. in the IoT device’s firmware, can be
patched through firmware updates. Therefore, the security and privacy state of
the device under consideration may change over time. This idea of dynamic met-
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rics can be extended towards online security states of the IoT device in operation.

I propose such an extension towards a set of security metrics that measure the
security state of the device during operation in a smart home network. Such a
security index may support the user’s buying decision (”which of the considered
devices is the most secure?”) but can also serve as online index for the current
system security state at runtime. Vulnerability Assessment (VA) and Vulnerabil-
ity Management (VM) are wide areas of research both in industry and academia.
Whereas protective measures are well-established for PCs (firewalls, e-mail fil-
ters, anti-virus scanners, etc.), solutions dedicated to the IoT domain are scarce.
Nevertheless, the aforementioned security architectures provide functions enabled
through hardware that can be utilized to actually attest the state of software run-
ning on the device and thereby provide interesting opportunities for enhancing
this security index. To the best of our knowledge, combining the idea of a runtime
security index with fundamental hardware support that provides a hardware root
of trust is a novel approach.

1.2 Contributions

Constrained IoT devices offer a wide field of attack and suffer from a large number
of vulnerabilities. Hence, they require security measures by design on all system
levels. Those security measures are not as well-known and generic as those for PCs
are nowadays. Actually quite the contrary is true: several approaches by various
manufacturers exist. Therefore, users would benefit from a security state that is
measurable and comparable across different devices. With this thesis, I make the
following contributions to meet this need.

I propose the concept of a software system architecture for networked con-
strained IoT devices, that can provide the user with a profound insight into the
security state of the connected devices during runtime. I achieve this by combining
findings from the following areas of ongoing research. Approaches for pre-buying
security labeling exist and the general need for a solution during runtime is ac-
knowledged, but not solved. Approaches for Vulnerability Assessment exist, but do
not target IoT devices in a smart home environment. Approaches for security in-
dices for IoT devices exist, but do not utilize Hardware Root of Trust mechanisms.

Vulnerability Assessment always requires an underlying understanding of the
software fragment possessing the vulnerability. Approaches for this partitioning
of Software into Software Modules and models for its description as Software Bills
of Material (SBOM) exist and represent a decisive building block for automated
Vulnerability Assessment.
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Therefore, I propose a precise specification for a standardized SBOM that can
be used in a network with heterogeneous IoT devices.

Another important premise for Vulnerability Assessment is the mapping of
Software Modules to published vulnerabilities. The largest and most widespread
system to correlate data of publicly disclosed vulnerabilities with a standardized
description across tools, databases, and people is provided by the Common Vul-
nerabilities and Exposures (CVE) system. There needs to be an entity that takes
responsibility for assigning CVE entries to Software Modules. Most often, though
not necessarily, this is going to be the Manufacturer.

Therefore, I propose a concept for the effective interaction of the proposed Vul-
nerability Assessment and Management solution with the constrained IoT device,
its Manufacturer, and a CVE database that includes all relevant specifications and
descriptions of interfaces.

In order to provide the user with a profound insight into the security state of
the smart home system at runtime, I propose a precise specification for the calcula-
tion of a novel online IoT security score that represents a significant enhancement
of existing pre-purchase IoT security indices and brings together several branches
of research.

Based on these specifications, I propose a Device and Vulnerability Manage-
ment concept for the initial connection of a constrained IoT device within the
network to its operation. This includes the collection of all data on vulnerabilities
and trustworthiness necessary to compute the aforementioned security score dur-
ing normal operation of the constrained IoT device.

To show the general practical feasibility, I propose a proof-of-concept imple-
mentation based on the actual implementation of a Gateway application and a
mock-up of a constrained IoT device that provides the following features:

• the initial device connect with transmission of an SBOM in accordance with
the proposed SBOM file specification

• an online Vulnerability Assessment for all registered Software Modules with
periodic checks for new disclosed vulnerabilities and updated vulnerability
information

• an online Trustworthiness Assessment of all registered Software Modules in
order to assess the modules’ integrity

• an online computation of the aforementioned security score for constrained
IoT devices
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• an online Vulnerability Management for all registered Software Modules with
individual risk assessment on a per-device level and warnings and recom-
mended user actions derived therefrom

• a basic webbrowser-based Graphical User Interface (GUI) that presents an
overview of all connected devices, their security scores, a more detailed se-
curity report, and allows access to individual per-device risk assessment

The remainder of this thesis is structured as follows.

Chapter 2 provides a thorough investigation and detailed presentation of the
related work and necessary background. Since this thesis provides a concept for
the very first attempt of combining Vulnerability Assessment aspects with an as-
sessment of the device’s trustworthiness, a security score that can be interpreted
easily by an inexperienced user, and Vulnerability Management functionality, this
analysis of the current state of research lays the necessary foundation and has a
large share in this thesis.

Chapter 3 provides the specification of a novel Runtime Security Score that
serves as the basis and combines the findings from Section 2.4 with the possibili-
ties offered by Hardware Root of Trust security architectures (see Section 2.5) and
Trustworthiness Assessment through Remote Attestation (see Section 2.6). This
is a novel approach that enables the user of a smart home network to continuously
monitor the security state of operated devices.

Chapter 4 transfers the ideas of this Runtime Security Score in an actual
software system architecture for a holistic Vulnerability Management Solution for
constrained IoT devices. It provides a system model definition that incorporates
the modular components and entities of the concept. The well-defined interfaces
provide interchangeability and extensibility of the components.

In addition to this specification of the underlying architecture, Chapter 5 pro-
vides a detailed description of a Proof of Concept (PoC) implementation that
shows the feasibility and functionality of the proposed approach and the cooper-
ating components.

Chapter 6 provides a qualitative evaluation of the proposed software system
architecture and the reference implementation. The added value of this concept
with regard to the resulting overhead is discussed here.

Chapter 7 concludes this thesis and provides a detailed presentation of the pos-
sibilities of future extension of the proposed software system architecture. Since
this thesis represents the first work in this new research area, its main contribution
is the thoroughly designed architecture itself. Due to the carefully specified inter-
faces and the modular design, it is very well extendable and lays the foundation
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for future work in many directions. A comprehensive presentation of those areas
for future work is provided with this chapter as well and gives an outlook for the
upcoming years of research.



Chapter 2

Background and Related Work

Among the main contributions of this thesis is a holistic architectural concept
for a Vulnerability Assessment and Management solution for IoT devices with a
Hardware Root of Trust. Due to the scale and complexity of this approach, many
large research areas are touched upon. This requires extensive study of related
work in the different research areas, that therefore lays the foundation for further
design decisions.

The main driver of the research that led to this thesis is the idea of present-
ing security information in a comprehensible way to the user of an IoT device in
a smart home environment. Approaches for pre-purchase combined security and
privacy labels exist and are discussed in Section 2.1. However, the proposed label
designs all focus on pre-purchase information, whereas the aim of the work pre-
sented in this thesis is to assess the security state of devices in operation.

The abstract objective of representing device security during runtime then
leads to Vulnerability Assessment and Vulnerability Management, since disclosed
vulnerabilities of a device may have a decisive impact on the device’s security state.
However, assessing the vulnerability of a device requires an understanding of and
concept for representing the software components present on the device under
consideration. Approaches for appropriate file formats of such software inventory
information and for the retrieving procedure exist and are discussed in Section 2.2.

Approaches for Vulnerability Management solutions can then be divided into
scanning-based solutions and database-based solutions. Representatives for both
classes are discussed in Section 2.3.

When the results of such Vulnerability Assessment are then combined with fur-
ther risk assessment, a numerical security score can be derived from the gathered
information. A selection of appropriate IoT security scoring systems is discussed
in Section 2.4.

7



8 2. Background and Related Work

Trustworthiness Assessment is a very interesting enhancement of such security
scoring systems. However, this requires a concept of trust and the presence of
Trusted Execution Environments (TEE). In the IoT domain, security architec-
tures that provide TEEs through a Hardware Root of Trust are rare. Influential
representatives are discussed in Section 2.5.

A means for assessing the trustworthiness of software components is Remote
Attestation (RA). An attempt for generalizing RA procedures is proposed by the
IETF and discussed in Section 2.6.

With this extensive literature review, the foundation is provided for the devel-
opment of an enhanced runtime security score, presented in Chapter 3, and the
architectural design of a comprehensive Vulnerability Management Solution for
the IoT, presented in Chapter 4.

2.1 Security Labels

Informative consumer labels are widely used in many areas: there exist the nu-
trition facts label [66], the fuel economy and environment label [65], and the EU
energy labels for many classes of electrical devices [19], just to name a few. Anal-
ogously, informative pre-purchase labels that represent an IoT device’s security or
privacy state is subject of ongoing research.

Whereas other efforts in this research area mainly focus on privacy labels [29,
30], Shen et al. [54] and Emami-Naeini et al. [18] both propose a hypothetical
design for combined security and privacy labels. Since this thesis focusses on pro-
viding the user with valuable information about the security state of the operated
smart home network, this section provides an overview of the approaches for se-
curity labels proposed by Shen et al. and Emami-Naeini et al.

In [54], Shen et al. propose a prototype label design based on the authors’
expert knowledge. An exploratory study with customers or experts has, to the
best of our knowledge, not yet been conducted. Opposed to that, Emami-Naeini
et al. follow a strongly interview-driven approach. Their first prototype label has
been published in 2019 [18] and was followed by an enhanced label design based
on expert and consumer interviews in 2020 [17]. Their research efforts result in a
detailed specification of a label design that coincides with the proposed prototype
labels.
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Figure 2.1: Visual layout 1 (a) and 2 (b) for displaying the IoT facts explained in
2.1, taken from [54]

According to Shen et al., their label design provides both concise and com-
pletely ”independent quality metrics”, so called ”IoT facts” [54]. They are divided
into security metrics, privacy metrics and plain information. The security metrics
consist of system-related, and communication-related facts.
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The system-related security metrics are supposed to ”improve the consumers’
security awareness of any IoT product”. These metrics include:

• a list of certificates that have been granted to this IoT device

• a checkbox that indicates whether the product has a secure boot mechanism

• brief descriptions of the provided firmware update, authentication and re-
mote access mechanisms and of the password requirements and its update-
ability

The communication-related security metrics are supposed to ”preserve users’
privacy and devices’ security”. These metrics include checkboxes that indicate:

• whether all network communication is encrypted,

• whether Internet access is mandatory for the device to be fully functional,

• and whether the device aims for communication with other devices in the
local network

The privacy metrics consist of data-related and sensory-related facts. The
data-related privacy metrics are intended to provide the user with an overview and
control over the use of their personal data. These metrics include brief descriptions
of the types of:

• collected personal data,

• collected telemetry data,

• and storage

The sensory-related privacy metrics are intended to give the user full infor-
mation about the sensors the IoT device is equipped with. These metrics include
checkboxes for:

• audio,

• video,

• motion,

• geolocation,

• and any other sensors

Plain information is given about the device connectivity, hence, the commu-
nication protocols used by the IoT device. The protocols considered here are
Ethernet/LAN, Wi-Fi, Bluetooth, Zigbee, and Z-Wave.
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Further information on the metrics is not given in the referenced publication.
The two proposed layouts to display these metrics are presented in Figure 2.1. A
consumer study to investigate the practical relevance of the developed label design
is announced as future work that has, to the best of our knowledge, not yet been
published.

Figure 2.2: Exemplary prototype label for a hypothetical security camera with
poor privacy and security practices, taken from [18]

A strongly interview-driven approach for the design of a privacy and security
label has been conducted by Emami-Naeini et al. In [18], Emami-Naeini et al.
propose the prototype of a privacy and security label and present the results of
both an in-depth and a follow-up study. A link to the advertised ”online appendix”
is not apparent directly in the publication. Nevertheless, it can be assumed that
the ”Specification for CMU [Carnegie Mellon University] IoT Security and
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Privacy Label” by Emami-Naeini et al. [16] summarized below includes the
relevant information concerning the details of their label design.

To develop the prototype label design presented in Figure 2.2, Emami-Naeini
et al. conducted a user study with in-depth interviews with 24 participants. The
proposed label design was thereby rated as valuable and worth to be incorpo-
rated in the users’ purchase decision. In order to estimate the influence of privacy
and security information, the authors conducted an additional 200-participant
Mechanical Turk survey. The objective of both studies was to gain information
about users’ pre- and post-purchase behavior and their general concern for privacy
and security issues. The results show that most participants consider privacy and
security information important before or after the purchase and said they would
be willing to pay a premium for the availability of such information at purchase
time (see [18] for further details on the study results). An interesting finding is
that, according to their in-depth analysis, most participants would be interested
in label information about publicly reported vulnerabilities.

Figure 2.3: Visual layout for displaying the primary layer (a) and secondary layer
(b), taken from [17]

In a following publication in 2020, Emami-Naeini et al. state that ”Other pro-
posals for IoT privacy and security labels fail to specify the specific information
that consumers should be presented with on the label.” [17]. To fill this gap,
Emami-Naeini et al. conducted interviews with 22 privacy and security experts
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from academia, industry, government and NGOs. Based on this elicitation study,
they propose another layered prototype label (see Figure 2.3) that has been pre-
sented to 15 consumers in semi-structured interviews. In a layered label approach,
the primary layer is supposed to be printed on the device packaging or advertised
at the shelf in store. A link or QR-code in the primary layer then refers the cus-
tomer to a secondary layer found online. Since this secondary layer resides on a
homepage that can be updated, it may contain information that is more likely to
change over time.

Among the factors that a majority of the expert participants recommended
are a star rating to help customers to easily asses and compare the security and
privacy state of the considered device, and a security rating ”from an independent
security assessment organization”. But since no such rating formula or rating or-
ganization exist at the moment, these factors have not been included in the actual
primary layer label illustrated above.

Factors that, according to the experts, should be excluded completely from the
label were e.g. a software and hardware bill of material, because of ”the lack of
relevance to privacy and security and inability to convey risk to consumers”, and
information on whether the device manufacturer has a vulnerability disclosure and
management program. Nevertheless, Emami-Naeini et al. decided to include both
on their prototype label on the secondary layer and received supportive feedback
during the consumer survey.

In addition to the aforementioned publications, Emami-Naeini et al. propose a
Label Specification that meets the requirements of the prototype labels described
above [16]. Selected security factors are briefly summarised below. Possible values
for each factor can be one or more of the indicated options.

• Security Updates on primary and secondary layer
possible values: automatic, manual, consent-based, no security updates
optional attribute: expiration date
optional information: description of how updates are secured

• Access Control on primary and secondary layer
possible values: password, biometric, multi-factor authentication, no control
over access, multiple user accounts, single required user account, optional
user account, no user accounts
optional password attributes: factory-default (user-changeable or not change-
able by user), user-generated

• Security Oversight on secondary layer
possible values: internal audit, external audit, internal and external audits,
no audit
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optional information: findings of the audits, what the manufacturer will do
with the findings of the audits

• Ports and Protocols on secondary layer
possible values: link to list and justification of all physical interfaces, net-
work ports, listening services
optional link information: safeguards for each interface to prevent misuse,
Manufacturer Usage Description (MUD) file describing device’s normal net-
work behaviour

• Hardware Safety on secondary layer
possible values: link to list of safeguards to protect the device’s hardware

• Software Safety on secondary layer
possible values: link to list of safeguards to protect the device’s software
optional information: types of risks introduced by libraries, the code com-
plexity, code coverage, number and types of crashes

• Vulnerability Disclosure and Management on secondary layer
possible values: link to description of ”How transparent and timely the man-
ufacturer has been in disclosing the discovered vulnerabilities, managing
them, and mitigating their potential harms” [16].

• Software and Hardware Composition List on secondary layer
possible values: link to list of device’s software and hardware components

Additional to the specification of each label field, best practices are given, sup-
posedly addressed to device manufacturers. Recommended best practices for the
device’s hardware safety are an irrevocable secure boot process and a hardware-
based Root of Trust for updates. Best practices for the device’s software safety
include that executables of critical applications shall be stored in read-only mem-
ory section, that software shall not be ”overly complex” and ”not susceptible to
crashes” [16]. Additionally, ”system software should be tested to check for publicly
disclosed and undisclosed vulnerabilities” and ”should not use unsafe libraries”.
Concerning Encryption and Key Management, the use of a Trusted Execution
Environment (TEE) is recommended to be used for key storage and encryption.

Starting with the first prototype privacy and security label, Emami-Naeini con-
ducted expert and consumer interviews to come up with the privacy and security
label specification described above.
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The impact of the aforementioned label design on the consumers’ perception of
risk has also been examined by Emami-Naeini et al. in a recent Mechanical Turk
survey with 1,371 participants [37]. However, further insight into the consumers’
risk perception and willingness to pay makes up its own area of research and is
considered out of scope for this work.

Although Emami-Naeini et al. acknowledge the relevance of post-purchase se-
curity information for the consumer, an online security label that is updated and
displayed at runtime has not yet been the subject of research. Additionally, in
their label specification in [16], the use of TEEs is mentioned as best practise, but
the label design itself does not focus on hardware security architectures that pro-
vide a TEE. Based on the findings for pre-purchase label design discussed above
and on the findings for security scoring systems in the IoT domain discussed in
Section 2.4, the prototype of a security report is included in the Vulnerability
Assessment and Management solution proposed by this thesis and described in
Chapter 4.
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2.2 Software Inventory Information

Vulnerability Assessment solutions that are not based on approaches for discov-
ering vulnerabilities by analysing the system behaviour, rely on a check against
a database of disclosed vulnerabilities. This requires a definition of the software
fragment possessing the vulnerability. Then, this software transparency lays the
crucial foundation for all further software vulnerability handling. Only if all soft-
ware running on the device under consideration is well-known, its vulnerabilities
can be properly assessed and managed. Therefore, main building blocks for Vul-
nerability Assessment are a universal identifier for Software Modules and models
for its description as Software Bills of Material (SBOM). Similarly, an understand-
ing for partitioning software into Software Modules and unambiguously identifying
them is a decisive building block for any remote attestation approach described in
Chapter 2.6. In the following chapter, a detailed overview of major proposals is
given.

Apart from Vulnerability Assessment, SBOMs also play an important role con-
cerning software licensing aspects. Nevertheless, software licensing is considered
out of scope for this thesis. Additionally, discovery tools that automatically de-
tect and collect the Software Modules installed on a device without a predefined
description are not the focus of this thesis.

Beforehand, the relevant terminology has to be clarified, since lots of terms
exist in this research area. A ”Software Module” is a fragment of software con-
cluded by the Software Provider. The terms ”Software Package” and ”Software
Component” are considered synonyms.
Then, ”Software Inventory Information” describe all Software Modules deployed
on the IoT device. The term ”Software Bill of Material” is considered a synonym.

Especially in the IoT domain, heterogeneous networks with devices from vari-
ous manufacturers with different software platforms and different communication
protocols are prevalent. Therefore, it is a common use case that a heterogeneous
fleet of devices and software platforms is required to interoperate neatly in order
to provide the best user experience and in order not to miss disclosed vulnerabili-
ties [28]. SBOMs act as important interfaces between device manufacturers, soft-
ware providers, vulnerability databases and Vulnerability Assessment solutions.
Parallel standardization efforts for a common format to describe an SBOM are
ongoing work of several initiatives and since standardization is of such great im-
portance in this research area, those are in the focus of this thesis and individual
proposals are omitted. Note, though, that e.g. Emami-Naeini et al. propose a
”list of software and hardware components that are used in the device” (see [16])
without giving further details in their ”Specification for CMU IoT Security and
Privacy Label” discussed in Chapter 2.1.
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Therefore, the requirements for an appropriate software inventory information
format in the context of this thesis can be summarized as:

1. it enables a partitioning of software into Software Modules

2. it provides a universal unique identifier for each and every Software Module
in that very version

3. it provides a model and a format for its description as SBOM

The ISO standard 19770-2 proposes Software Identification (SWID) tags as
a software module identifier format [28]. Based on SWID, the IETF is actively
working on a draft for a Concise Software Identification Tag (CoSWID) [6]. The
Linux Foundation proposes the Software Package Data Exchange format [59]. All
of these approaches are described in detail in the following Section 2.2.1.

An overview of selected fields of all software inventory information formats dis-
cussed here is presented in Table 2.1. Where applicable, similar fields are grouped
in one row.

In addition to file formats for software inventory information, there exist pro-
posals for a standardization of the SBOM file retrieval process as well. The Internet
Engineering Task Force (IETF) is actively working on a draft for discovering and
retrieving an SBOM [34] based on the IETF RFC 8520 for a Manufacturer Usage
Description (MUD) [33]. Both approaches are described in detail in the following
Section 2.2.2.

ISO SWID [28] IETF CoSWID [integer index] text label [6] SPDX [59]

SoftwareIdentity.name [1] concise-swid-tag.software-name PackageName

SoftwareIdentity.tagId [0] concise-swid-tag.tag-id SPDXID

SoftwareIdentity.version [13] concise-swid-tag.software-version PackageVersion

SoftwareIdentity.corpus [8] concise-swid-tag.corpus -

for tagCreator: Entity.role [33] concise-swid-tag.entity-entry.role -

for tagCreator: Entity.regid [32] concise-swid-tag.entity-entry.reg-id -

for tagCreator: Entity.name [31] concise-swid-tag.entity-entry.entity-name Creator

Payload.File.name [17] concise-swid-tag.payload.file.filesystem-item FileName

Payload.File.size [20] concise-swid-tag.payload.file.size -

Payload.File.hash [7] concise-swid-tag.payload.file.hash FileChecksum

Table 2.1: Overview of selected fields and their identifiers of the described soft-
ware inventory information formats. Mandatory fields are written in bold letters.
Where applicable, similar fields are grouped in one row.
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2.2.1 Software Inventory Information File Formats

The International Organization for Standardization (ISO) proposes a format to
consistently identify software modules in Part 2 ”Software Identification Tag”
of their standard 19770-2 on ”Information technology - Software asset manage-
ment” [28]. Thereby, it aims at providing interoperability of software management
data and enabling automated authentication of software modules and linking to
vulnerability databases.

The proposed description is called SWID tag and is created by the SWID tag
producer. This could e.g. be a Software Provider. This SWID tag is then used by
the SWID tag consumer, e.g. an IT discovery and processing tool. An SBOM of
a device could then consist of the SWID tags of all software modules deployed on
the device.

The file format for the SWID tag file is required to be an XML data structure.
The corresponding defect-corrected XML schema definition is made available here:
http://standards.iso.org/iso/19770/-2/2015-current/schema.xsd.

Selected fields of the SWID tag file specified in this ISO standard are presented
in Table 2.1 in column 1.

• The SoftwareIdentity.name contains the name of the software module as
it would e.g. be used in the package manager on a Linux machine.

• The SoftwareIdentity.tagId is a globally unique ID and serves as unique
and unambiguous reference for this software module in this very version. It
is recommended to compose the SoftwareIdentity.tagId as follows:
”Entity.regid + productName + SoftwareIdentity.version + edition
+revision+. . . ”. There is no central registration agency for assigning unique
SoftwareIdentity.tagIds. Instead, the tag producers have to take respon-
sibility for their uniqueness.

• The SoftwareIdentity.version describes the software development version
as assigned by the Software Provider.

• The SoftwareIdentity.corpus is a boolean that signals if this SWID tag
contains information concerning pre-installation data of the Software Mod-
ule.

• For the entity creating the SWID tag, the tag has to contain at least one
Entity-block with the attribute Entity.role set to tagCreator and the at-
tribute Entity.name set to the organization’s name.

• The Entity.regid is a unique registration ID for this entity. In order to
achieve uniqueness, it is recommended to base this ID on an absolute-URI

http://standards.iso.org/iso/19770/-2/2015-current/schema.xsd
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reference in http-scheme starting with a domain name such as
”http://www.example.com”.

• The Payload-block indicates the files that are used for the installation pro-
cess itself (e.g. an installer.exe) and the files that are deployed on the device
during installation.

• Accordingly, Payload.F ile.name and Payload.F ile.size contain the name
and size of one such file. For authorization reasons, a hash of the file (e.g.
SHA256) can be included using the Payload.F ile.hash.

An example for a minimal XML file for the presented SWID tag specification
can be found in Appendix 7.

As opposed to specifications such as CoSWID or MUD (see below), the SWID
tag specification is not dedicated to IoT devices. Hence, the recommended trans-
mission of the SWID tag file is based on an API or on a well-defined location in
the file system where it is stored and from where it can be retrieved. For devices
without a file system, which applies to constrained IoT devices , the specification
is less precise. Nevertheless, the SWID tag file is supposed to be stored locally on
the device itself and either be accessible through its pre-defined location in mem-
ory or through a pre-defined URI. Both the storage location and the file format
are to be defined by the platform provider, which is the entity responsible for the
platform, hence in the context of this thesis, the device manufacturer. In this case,
the file format may deviate from XML.

Among the key benefits claimed for the proposed SWID tag specification are
the following (see[28], p.vi-vii):

• ”The ability to consistently and authoritatively identify software products
that need to be managed for any purpose, such as for licensing, security,
logistics, or for the specification of dependencies. Software identification
tags provide the meta-data necessary to support more accurate identification
than other software identification techniques. [...]

• The ability to automatically relate installed software with other information
such as patch installations, configuration issues, or other vulnerabilities.

• Facilitate interoperability of software information between different software
creators, different software platforms, different IT management tools, and
within software creator organizations, as well as between SWID tag produc-
ers and SWID tag consumers.

• Through the optional use of digital signatures by organizations creating soft-
ware identification tags, the ability to validate that information is authori-
tative and has not been maliciously tampered with.
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• The opportunity for entities other than original software creators (e.g. in-
dependent providers or in-house personnel) to create software identification
tags for legacy software, and for software from software creators who do not
provide software identification tags themselves.”

Based on the ISO SWID tag format described above, the IETF proposes a con-
cise representation of SWID tags targeting constrained IoT devices as described
by the IETF in RFC 7228 [10]: the Concise Software Identification (CoSWID)
tags [6]. This draft is declared as work in progress and hence, it may be subject
to change or removal. All information given here are based on the draft version
from March 7, 2022.

As highlighted in Table 2.1, the number of mandatory fields in SWID tags is
relatively low. Nevertheless, there can be many optional fields included in the
SBOM file that result in a file size that is too large to be handled by constrained
IoT devices. Hence, a Concise Binary Object Representation (CBOR) [11] is
proposed to reduce the size of the SBOM file. By proposing a more dense scaffold-
ing with the CoSWID representation, a reduction of file size of 50 to 85 percent
compared to SWID tags in XML format is claimed to be achievable for generic
usage scenarios without changing the actual values stored in the tag. However, for
CoSWID tags, the resulting file is not human-readable anymore due to the binary
object representation.

Selected fields of the CoSWID tag file specified in this draft are presented in
Table 2.1 in column 2. The underlying implicit information model is supposed
to be identical between SWID tags and CoSWID tags. Therefore, mappings for
all mandatory and optional fields in the ISO/IEC 19770-2:2015 standard and the
CoSWID specification in the referenced version are provided. Note, that ”future
revisions of ISO/IEC 19770-2:2015 or this specification might cause this implicit
information model to diverge, since these specifications are maintained by differ-
ent standards groups” (see [6], p. 3). The textual labels in the CoSWID tag are
closely-coupled to their SWID tag analogue. In most cases, the naming conven-
tion has only been changed from the CamelCase notation to the hyphen- separated
KebabCase notation. Therefore, it is referred to the description of all fields in the
SWID tag model given above.

The last software inventory information format presented here is the open
source Software Package Data Exchange (SPDX) format in Version 2.2 proposed
by the Linux Foundation [59] and listed as appropriate SBOM format in the IETF
Internet-Draft ”Discovering and Retrieving Software Transparency and Vulnera-
bility Information” described below. It is advertised as standard format for com-
municating software inventory information. The term ”software package” used in
the standard specification coincides to the term ”Software Module” used through-
out this thesis.
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In contrast to the CoSWID tag format described above, the SPDX format is
required to be human readable. The underlying implicit information model can
be represented in several data formats, e.g. YAML, JSON or as flat text file using
tag : value notation. Support of XML format is currently work in progress and
expected for Version 2.3.

Selected fields of the SPDX file are presented in Table 2.1 in column 3. For
better readability, the tag : value notation is used.

In addition to the specification of fields in the SPDX file, a recommendation
for the composition of a URI to access the SPDX file on the public Internet is also
given as http : //[CreatorWebsite]/[pathToSpdx]/[DocumentName] − [UUID].
Note, however, that although a scheme (e.g. http) has to be provided, this URI
does not necessarily have to be accessible as Internet resource. Its purpose can
also be to provide a unique URI for identifying the SPDX file. Hence, it is also
used as SPDXID.

• CreatorWebsite refers to the domain of the entity providing the SPDX file.

• pathToSPDX contains the path to the SPDX file.

• DocumentName contains the name of the SPDX file, which is recommended
to be constituted from the Software Module’s name and its version number.

• UUID contains a Universally Unique Identifier (UUID) that is unique for
this specific SPDX file version.

An example for a SPDX file can be found in Section 4.2.1.

Similar to the SWID tag format described above, the SPDX format is not
focussed on IoT devices. Nevertheless, in addition to the regular SPDX format, a
reduced file format called ”SPDX Lite” is specified as well. The SPDX Lite format
contains a subset of the regular SPDX fields with more basic information.

The SPDX Lite format contains all of the fields presented in Table 2.1 except
for the FileName and the FileChecksum. However, the less fine-grained field
PackageF ileName is included to refer to files that have been aggregated into a
package.



22 2. Background and Related Work

2.2.2 Retrieving Software Inventory Information

The Internet-Draft ”Discovering and Retrieving Software Transparency and Vul-
nerability Information” published by the Internet Engineering Task Force (IETF)
([34]) proposes a model to access software inventory information from an IoT de-
vice. This draft is declared as work in progress and hence, it may be subject to
change or removal. All information given here are based on the draft version from
October 13, 2020. Although the draft’s abstract does not advertise it as being
dedicated to the IoT domain, the depicted use cases target IoT devices. Hence, it
is assumed that this draft is dedicated to the IoT world.

This draft does not propose a new SBOM format, but refers to the afore-
mentioned SWID tags and the Software Package Data Exchange (SPDX) format
described above. In extension to those SBOM formats, this IETF Internet-Draft
elaborates on possible approaches for transmitting SBOM files and proposes a
data model for transmitting the SBOM URI.

According to this draft, an SBOM can be provided in three different ways:
directly by the device, at a dedicated URI on a website or through another ded-
icated communication channel with the vendor (e.g. by sending an e-mail to the
vendor). In the first case, the device provides an interface to retrieve the SBOM
file directly. HTTP, CoAP, and any proprietary protocol are named as possible
communication protocols, but there is no further more precise specification of the
necessary mechanisms and messages given in the draft.

In the second case, the device only provides an interface for retrieving the URI
for the SBOM file hosted on a Manufacturer webserver. In order to transmit this
URI, a model extension for a MUD file is proposed. This so-called ”mud-sbom
extension” is realized as YANG augmentation of the MUD YANG model and is
described below.

In the last case, the vendor is able to add conditions to the dispatching of the
SBOM (e.g. a registration or authentication) or to monitor and evaluate SBOM
accesses. Moreover, another communication channel could be established by mak-
ing the SBOM URI available in the device documentation or in a QR-code printed
on the device packaging. Of course, this process could not be fully automated then.

As described above, the Manufacturer Usage Description (MUD) published by
the IETF as RFC 8520 [33] serves as a basis for the SBOM file retrieval model
proposed in the IETF Draft ”Discovering and Retrieving Software Transparency
and Vulnerability Information”. This RFC focusses on ”Things” that, in contrast
to other general purpose machines, have only a small number of very dedicated
purposes or uses. The term ”Things” coincides to the term ”IoT device” used
throughout this thesis. The term ”Manufacturer” here refers to the entity in the
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device’s supply chain that takes responsibility for informing the network that in-
tegrates the device about its purpose. Hence, it is not necessarily the entity that
constructs the Thing, but could be a system integrator or a component provider.
The purpose of a MUD file is to inform the network about the intended network
functionality and access limitations of the device.

The device manufacturer is responsible for configuring the IoT device in such
a way that it emits the MUD URL in https-scheme after being requested by the
MUD manager via GET-method [20]. Based on the MUD URL, the MUD man-
ager requests the MUD file from the corresponding MUD file server, a simple web
server that hosts the MUD file. The MUD file itself contains a description of the
Thing in YANG-based JSON and associated suggested specific network behaviour.

.......................................

. ____________ . _____________

. | | . | |

. | MUD |-->get URL-->| MUD |

. | Manager | .(https) | File Server |

. End system network |____________|<-MUD file<-<|_____________|

. . .

. . .

. _______ _________ .

.| | (DHCP et al.) | router | .

.| Thing |---->MUD URL-->| or | .

.|_______| | switch | .

. |_________| .

.......................................

Figure 2.4: MUD Architecture taken from [33]

In [33], different means for emitting the MUD URL are proposed. A general
overview of the MUD architecture is given in Figure 2.4.

The MUD URL can be included as additional option in the Dynamic Host
Configuration Protocol (DHCP) so that the DHCP client (here: the IoT device)
informs the DHCP server (here: the MUD manager) about the MUD URL. Alter-
natively, the MUD URL can serve as a non-critical extension to the IEEE standard
802.1AR (the ”IEEE Standard for Local and metropolitan area networks - Secure
Device Identity” [27]), or it can be emitted as a Link Layer Discovery Protocol
(LLDP) frame. In case the IoT device has too limited capabilities to emit the
MUD URL, it may be possible for the manufacturer to map the device’s identity
(e.g. according to its serial number or public key) to the MUD URL or the MUD
file using an alternative resolution mechanism.
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As soon as the MUD URL has been discovered, it is forwarded to the MUD
Manager (a network management system) for further processing. Then, a HTTP-
GET-request is sent to the MUD File Server that answers with the MUD file. If
the MUD Manager is not able to retrieve the MUD file, an appropriate timeout
should be awaited before the failure is logged.

By default, the MUD file does not expire. Nevertheless, its description can be
used for communicating an expiration date through the cache-validity node [34].

According to the current RFC version of March 2019, the MUD file format is
the YANG Data Modeling Language [8], serialized using JSON [12]. An example
MUD file using the mud-sbom extension can be found in Listing 2.1. Selected
fields of the mud-sbom extension are described based on this example. The full
mud-sbom augmentation of the MUD YANG model may be found in Appendix 7.

Listing 2.1: An example MUD file using the mud-sbom extension, taken from [34]

{

"ietf -mud:mud": {

"mud -version": 1,

"mud -url": "https ://iot -device.example.com/dnsname",

"last -update": "2019 -01 -15 T10 :22:47+00:00",

"cache -validity": 48,

"is -supported": true ,

"systeminfo": "device that wants to talk to a cloud service",

"mfg -name": "Example , Inc.",

"documentation": "https :// frobinator.example.com/doc/frob2000",

"model -name": "Frobinator 2000",

"extensions" : [

"sbom" ],

"sboms" : [ {

"version -info" : "FrobOS Release 1.1",

"sbom -url" : "https :// frobinator.example.com/sboms/f20001 .1",

}

] }

}

sboms.version − info includes a string with version control information for
this software module provided by the Manufacturer.

sbom − type can be one of the following cases. sboms.sbom − url refers to a
statically located Internet URI. sboms.sbom− local can either state coap, coaps,
http or https as the protocol of choice for retrieving the SBOM file from a well-
known location on the device. sboms.contact − uri can either state a tel, http,
https or mailto URI schema in order to contact the Manufacturer for the SBOM
file.

The proposed mud-sbom extension can optionally be extended with access lists.
Since access considerations are not the focus of this thesis, details are omitted here.
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2.2.3 Conclusion

As described in the introduction to this Chapter, the 3 main requirements for
software inventory information formats are:

1. they enable a partitioning of software into Software Modules

2. they provide a universal identifier for each and every Software Module in
that very version

3. they provide a model and a format for its description as SBOM file

Three proposals for software inventory information formats have been de-
scribed above. The first requirement is met by all three proposals due to the
initial assumption that there is an entity providing the software inventory infor-
mation for the Software Module the entity is responsible for.

Both the SWID tag specification and the CoSWID specification are developed
by internationally operating and recognized standardization organizations. The
SPDX specification is proposed by the Linux Foundation, but is referenced in
the IETF Internet-Draft for ”Discovering and Retrieving Software Transparency
and Vulnerability Information” as appropriate software inventory information for-
mat. Standardization is key on the way to finding an agreement between device
manufacturers, Software Providers, vulnerability databases and Vulnerability As-
sessment solutions, which makes the discussed proposals very valuable. Of course,
none of these candidates has yet prevailed.

The ISO SWID tag specification contains a globally unique tagId for every
Software Module, hence it is fulfilling requirement (2). The SWID tag file is
an XML and can contain one SoftwareIdentity-region for every Software Module,
hence it is fulfilling requirement (3). Nevertheless, this specification is not ded-
icated to IoT devices and does not provide precise recommendations for storing
and retrieving the SWID tag file of a constrained IoT device, where the file can
not be stored on the device itself. Therefore, it is not the best suited candidate for
the IoT domain and hence, for the Vulnerability Management solution proposed
by this thesis.

This issue is aimed at with the CoSWID tags proposed by the IETF. Those
are based on the same underlying implicit information model as SWID tags, which
is why they fulfill the requirements (2) und (3) just as well. But they require less
mandatory fields and allow for a resource-efficient binary representation. However,
the resulting software inventory information file is not human readable anymore
and handling the CBOR format requires additional implementation overhead.
Since it is not a main requirement for the Vulnerability Management solution
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proposed in this thesis to store the software inventory information file directly
on the IoT device, the file size is neglectable.

On the other hand, the SPDX format is required to be human readable, allows
for several data formats (thereby fulfilling requirement (3)) and does not impose
any demands as to where the SPDX file is supposed to be stored or how it is
supposed to be retrieved. The specification also provides a recommendation for
the composition of a universally unique URI (thereby fulfilling requirement (2))
to access the SPDX file on the public Internet. Thus, the SPDX format is par-
ticularly suitable for combining it with the IETF proposal for ”Discovering and
Retrieving Software Transparency and Vulnerability Information” and is chosen
for the Vulnerability Management solution proposed in this thesis.

This IETF Internet-Draft for retrieving software inventory information is suit-
able for the IoT domain. Since the Vulnerability Management solution proposed
in this thesis is supposed to also be suitable for constrained devices, the software
inventory information file is not supposed to be stored directly on the device.
Therefore, the second proposed mechanism, where the IoT device only provides
an interface for retrieving the URL to the Manufacturer webserver, is chosen in
combination with the SPDX format for the SBOM file. The third proposed mech-
anism is neglectable as it only represents an alternative communication channel
with the Manufacturer and may not be fully automated. In a future extension,
a Manufacturer Usage Description (MUD) file could be used for transmitting the
SBOM URL in a unified, standardized way.
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2.3 Vulnerability Assessment (VA) and Vulnerability
Management (VM)

As described above, using Software Bills of Material to represent software inventory
information serves very well as basis for Vulnerability Assessment. But ”generat-
ing an SBOM is only one half of the story” [36]. After all software deployed on a
device is partitioned into Software Modules that are described with SBOM files,
the Software Modules have to be linked against a database of disclosed vulnera-
bilities in order to find threats the device may be susceptible for. A selection of
different Vulnerability Assessment approaches is presented in the following section.

Due to the heterogeneous landscape of devices, applications, vendors, indus-
tries, and cultures, there is no strict definition of a ”vulnerability”. For this work,
we adhere to the distinction proposed by the Common Vulnerabilities and Expo-
sures (CVE) Program (see [62]):

”In general, a vulnerability is defined as a weakness in the computa-
tional logic (e.g., code) found in software and hardware components
that, when exploited, results in a negative impact to confidentiality,
integrity, OR availability. [. . . ]

1. If a product owner considers an issue to be a vulnerability in
its product, then the issue MUST be considered a vulnerabil-
ity, regardless of whether other parties (e.g., other vendors whose
products share the affected code) agree.

2. If the CNA [CVE Numbering Authority] determines that an issue
violates the security policy of a product, then the issue SHOULD
be considered a vulnerability.

3. If a CNA receives a report about a new vulnerability that has a
negative impact, then the reported vulnerability MAY be consid-
ered a vulnerability.”

Vulnerability Assessment (VA) solutions are valuable tools to rate a system’s
overall security state and prevent vulnerabilities from being exploited. There-
fore, VA opens up a vast research field with well-established solutions for general
applications. In 2021, Gartner published a Market Guide for Vulnerability As-
sessment [24], giving an overview of requirements and the most popular industry
solutions. According to Gartner and Cybersecurity Insiders [14], the VA vendors
with the most significant market shares are Tenable (Nessus Scanner), Qualys
(Qualys Vulnerability Management, Detection, and Response), and Rapid7 (In-
sightVM). A brief discussion of these popular solutions is proposed in Section 2.3.1.
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In general, VA can be categorized into approaches that perform scanning tech-
niques (e.g. scanning for connected devices, available IPs, open ports, available
services) and approaches that link software inventory information to a vulnerabil-
ity database. Initially, this thesis focusses on the latter. However, Amro performed
a Systematic Literature Review for vulnerability scanning approaches, published
in Computer Security in 2020 [3]. With only 10 unique works focussing on IoT
vulnerability scanning taken into thorough consideration, the freshness of this re-
search area is highlighted. Hence, combining both techniques is promising for
further reducing the attack surface in the future.

By combining VA with vulnerability prioritization, patching functionality, and
continuous monitoring, it can be extended to powerful Vulnerability Management
(VM) tools. VM solutions allow the user to continuously gain extensive insight
into the network with all valuable assets, make predictions, and initiate counter-
measures to improve the overall security. However, as of now, commercial solutions
mainly focus on larger companies with dedicated IT security teams [58, 47, 50].
Although the IoT domain as a nonstandard IT asset is named in Gartner’s market
guide, it does not provide further information about which vendors provide VA
or VM solutions targeting the IoT sector. Apparently, the largely inexperienced
end-user operating commercial IoT devices in a smart home network is not a com-
mon target group for such applications. Nevertheless, a smart home end-user may
operate IoT devices with critical functionality, such as smart door locks or smart
smoke detectors, and would strongly benefit from proper vulnerability manage-
ment.

For the rest of this thesis, the term ”Vulnerability Assessment” includes identi-
fying and collecting vulnerabilities of a device or system under consideration. The
term ”Vulnerability Management” includes Vulnerability Assessment, but extends
it with additional management functionality to counteract or prevent vulnerabil-
ities. This includes, but is not limited to, prioritizing vulnerabilities, deploying
software updates or patches that eliminate a disclosed vulnerability after this vul-
nerability has been discovered to be present on a managed device, and continuous
monitoring.

A comparison of the most popular industrial VM solutions and a detailed de-
scription of the CVE system are provided in the following sections.

The results of this chapter are concluded in a concept for a VM solution for
the IoT described in Chapter 4.
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2.3.1 Scanning-based Vulnerability Management Solutions

Nessus is a proprietary industry solution for comprehensive vulnerability assess-
ment for organizations for various platforms including Raspberry Pi [58]. It is
advertised to provide ”the deepest and broadest vulnerability coverage in the in-
dustry”. To proof that claim, a comparison of Nessus professional with OpenVAS
and Rapid7 Nexpose is provided [57, 45]. This comparison covers e.g. CVE
coverage (for Nessus professional: 67K CVEs), scanning accuracy (for Nessus pro-
fessional: ”Industry’s lowest false-positive rate – better than six-sigma accuracy”
(99.99966%), and speed of vulnerability check release (for Nessus professional: re-
leases within an average of 24 hours after vulnerability disclosure). However, there
is no evidence provided with these claims.

An important feature of Nessus professional are live results (see Figure 2.5 for
an exemplary screenshot). In order to achieve real-time visibility, an offline scan
for newly published vulnerabilities using historical scan data is performed. Indi-
cation exists that scanning for open ports using nmap is part of the vulnerability
assessment procedure [67] and the claim of very high CVE coverage raises the
presumption that linking to a CVE database is also performed. However, further
information on how the scanning is performed is not provided. The range of sup-
ported Operating Systems (OS) does not include an OS typically used in the IoT
domain.

Figure 2.5: Screenshot with exemplary Live Results of the Nessus professional
scanner, taken from [58]
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Due to the lack of support of appropriate OS and business customers being
the target group, the Nessus Scanner is not an appropriate choice for an end-user
smart home environment.

Qualys Vulnerability Management, Detection, and Response (VMDR) is an-
other proprietary industry solution for vulnerability management that advertises a
scanning accuracy of six sigma [47] and integrates CVE and CVSS standards [46].
In addition to Vulnerability Assessment, Qualys VMDR also offers threat prioriti-
zation and patch deployment. When combined with Qualys Continuous Monitor-
ing (CM), Vulnerability Assessment during runtime can be performed manually,
on schedule, or continuously [48]. In [46], it is suggested to perform vulnerability
scans at least daily. Qualys Zero-Day Risk Analyzer provides a prediction of hosts
most threatened by zero-day exploits. A grouping and rating of vulnerabilities
is also possible (see Figure 2.6). Configurations are compared with Center for
Internet Security (CIS)-benchmarks to identify critical misconfiguration.

Figure 2.6: Screenshot with exemplary vulnerability scorecard report of Qualys
VM, taken from [48]

According to [46], vulnerabilities are divided into common classes first, and
then combined with sets of rules. Based on these rules, hosts that appear or
disappear in the network or run an unexpected operating system are detected.
When an alert is detected, the host’s name, IP address, DNS name, NetBIOS
name, operating system, open ports, installed software, and vulnerabilities affect-
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ing the host are collected. Further details as to how vulnerabilities are assessed
and scored into severity levels, or on the process of suggesting appropriate patches
are not provided.

Information on which devices or operating systems are supported by Qualys
is not available online. There is no indication whether their solutions cover IoT
devices. Additionally, Qualys’ target group are industrial applications, no smart
home end-users.

With InsightVM, Rapid7 offers yet another proprietary industry software so-
lution for (network) vulnerability assessment and management. Rapid7 claims
to combine the Common Vulnerability Score System (CVSS) with their rating
of exploitability, exposure to malware and vulnerability age resulting in a ”Real
Risk Score” between 1 and 1000 [50]. In accordance with Nessus professional and
QualysVM, InsightVM extends mere vulnerability assessment with management
and real-time reporting functionality [49]. An exemplary screenshot of the result-
ing default dashboard is given in Figure 2.7.

Figure 2.7: Screenshot of the default dashboard of InsightVM, taken from [49]

Again, further information on how the actual scanning and scoring are per-
formed and which devices or operating systems are supported is not provided
online. There is also no indication that Rapid7 targets IoT devices.
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2.3.2 Database-based Vulnerability Management Solutions

A straightforward way of assessing vulnerabilities of the software deployed on IoT
devices is proposed by the IETF [34]. Similar to SBOMs for describing software
inventory information, there exist several data formats for describing vulnerability
information. They can be used to compile reports about the system state, but also
be combined with SBOMs. The Vulnerability Assessment procedure proposed by
the IETF includes the assessment of all SBOMs of the devices under consideration.
These are then linked to a vulnerability database to find disclosed vulnerabilities
related to the software modules.

An extensive system to correlate data of publicly disclosed vulnerabilities with
standardized description across tools, databases, and people is provided by the
Common Vulnerabilities and Exposures (CVE) system [60]. It is maintained by the
U.S. National Cybersecurity Federally Funded Research and Development Cen-
ter (FFRDC) that is operated by MITRE Corporation and also supports the U.S.
National Institute of Standards and Technology (NIST). Its main contribution is
the list of CVE records that allows standardized, centralized, and automated Vul-
nerability Management [45].

Figure 2.8: Lifecycle for any CVE Record in the CVE List, taken from [63]

The lifecycle of every such CVE record is depicted in Figure 2.8. Whenever a
new, independently fixable vulnerability is discovered by either a private individ-
ual or an organization, it is reported to a CVE Program participant. The CVE
Program participant is then responsible for requesting a unique CVE ID that is
reserved upon request by a CVE Numbering Authority (CNA). As next step to-
wards publishing the new vulnerability, details concerning the reserved CVE ID
are to be submitted. ”Details include but are not limited to affected product(s);
affected or fixed product versions; vulnerability type, root cause, or impact; and
at least one public reference.” [63] Finally, when the minimum required informa-
tion are included in the CVE Record, it is published by the responsible CNA and
added to the official, publicly disclosed CVE List.
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The CVE ID is composed of the prefix ”CVE”, the year either the CVE ID
was reserved or the vulnerability was made public and a sequence of four or more
arbitrary digits. Hence, for example CVE-2021-12345.

The minimum required information for a CVE Record to be published is de-
fined as follows [62]: the CVE ID, the name of an affected product, the affected
or fixed version(s), at least one public reference, a prose description written in
English, an indication whether this vulnerability only affects end-of-life products,
and at least one of the following: the vulnerability type, its root cause, or its
impact. In addition to that, the CVE Program encourages CVE CNAs to provide
additional information.

The full XML Schema Design for the CVE List available for download can
be found in Listing 1 in the appendix. Vulnerabilities that result in a new CVE
record can be found by private individuals, organizations or the affected product
vendor itself.

2.3.3 Conclusion

To conclude, the most popular Vulnerability Assessment and Management solu-
tions according to Gartner [24] are all targeting business customers and no end-
users. Information on whether IoT devices and typical IoT operating systems are
supported is sparse, if available at all. Since all discussed solutions are proprietary,
deep information on how the scanning process is implemented or how the scoring
and prioritization of vulnerabilities is performed are not provided.

Additionally, Vulnerability Assessment in the IoT domain is a relatively new
research field [3]. Hence, assessment approaches that are based on actively scan-
ning the network and devices is considered a meaningful future enhancement for
the VAM solution proposed by this thesis. Nevertheless, a linking to a CVE-
database seems to be performed by all presented solutions. Qualys VMDR even
bases their vulnerability scoring on the CVSS described in Section 2.4.

The CVE database is fast growing with tens of new entries per day [9]. It is
widely used among many large organizations, but not yet as popular in the IoT
domain. Nevertheless, it can be expected that vendors of IoT devices will incor-
porate CVEs in their product vulnerability management in the future, since it is
one of the largest public sources of vulnerability information:
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”Across organizations, IT-security solutions vendors, and security experts,
CVE has become the de facto standard of sharing information on known vul-
nerabilities and exposures.” [9] Therefore, the CVE database has been chosen for
the VAM solution proposed by this thesis for linking SBOMs to it.
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2.4 IoT Security Scoring Systems

After the Vulnerability Assessment process is completed (see Section 2.3), the vul-
nerabilities present in the monitored network have to be rated. Depending on the
chosen evaluation criteria, vulnerabilities can have different grades of severity and
pose a different risk to the device or the network.

One widely used approach is to translate characteristics of the vulnerability
to a single score that represents the severity. The actual risk assessment then
strongly depends on individual details of the affected device and its environment:
A vulnerability with medium severity in a device that serves as a smart door lock
may pose a higher risk to the user than a vulnerability with high severity in a
smart light bulb. Due to the strong dependency on individual circumstances, con-
siderations regarding risk assessment will not be discussed here.

However, being able to rate the severity of assessed vulnerabilities not only
serves as the foundation for further risk assessment, but also abstracts the details
that might overwhelm an inexperienced user and provides a numeral basis for the
computation of a Security Label (see Section 2.1).

Such scoring systems for the IoT domain are subject of current research and
selected approaches are presented in the following section. The most widely used
scoring system is the Common Vulnerability Scoring System (CVSS). Its enormous
practical relevance makes it the de-facto standard in industry. However, it is not
explicitly targeting the IoT domain. With [35], Loi et al. propose a three-level
rating for selected IoT devices that may serve as a basis for a star-rating or for
deriving a single numerical score value from it. However, the rating mechanism
is solely based on the authors’ expert knowledge and cannot be automated. A
precicely specified scoring system based on CVSS but extended with additional
metrics is provided by Alrawi et al. [2].

”The Common Vulnerability Scoring System (CVSS) is an open framework for
communicating the characteristics and severity of software vulnerabilities.” (see [22],
p. 1) It is widely used worldwide for risk assessment and prioritization of vulnera-
bilities and serves as de-facto industry standard, most prominently recommended
by the U.S. National Institute of Standards and Technology (NIST), and the global
payment card industry [55]. With the Special Publication 800-115, NIST rec-
ommends the NIST National Vulnerability Database (NVD) for analysing the
vulnerabilities found through VA. In the NVD, CVEs are attributed with their
corresponding CVSS [39].

To assess the CVSS v3.1 base score [22], eight questions about the vulnerabil-
ity have to be answered by an expert with deep knowledge about the vulnerability
and its impacts. This input is then translated to a score between 0 and 10, where
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relative importance is reflected in ratio values [55]. The purpose of the base score
is to reflect the constant, intrinsic characteristics of the vulnerability [22]. In an
optional extension on top of this base score, temporal and environmental metrics
can be taken into account to further refine the risk assessment. Since it is common
for entities responsible of the vulnerable product to only provide the base score,
which is constant over time and across user environments, this overview focusses
on the base score computation.

Figure 2.9: Metric groups of the Common Vulnerability Scoring System (CVSS)
v3.1, taken from [22]

The base metric group consists of exploitability metrics and impact metrics [22]
as presented in Figure 2.9. The temporal and environmental metric groups are pro-
vided for completeness. The exploitability metrics are the attack vector, the attack
complexity, the privileges required, and the user interaction. They characterize
the vulnerable component, which is typically a software component (application,
module, driver, etc.), but may also be a hardware device. The exploitability met-
rics result in a exploitability sub-score.

• Attack Vector
The attack vector metric value is larger the more remotely the vulnerability
can be exploited. Possible metric values with their numerical values are
Network (0.85), Adjacent (0.62), Local (0.55), and Physical (0.2).

• Attack Complexity
The attack complexity metric value reflects whether specific configurations
and conditions beyond the attacker’s control are necessary for the exploit.
Possible metric values are Low (0.77) and High (0.44).
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• Privileges Required
The privileges required metric value is larger the less privileges the attacker
has to possess for executing the exploit. Possible metric values are None
(0.85), Low (0.62, resp. 0.68 if Scope is Changed), and High (0.27, resp.
0.5 if Scope is Changed).

• User Interaction
The user interaction metric value is larger when a successful exploit does
not require a user input other than the attacker’s. Possible metric values are
None (0.85) and Required (0.62).

The Exploitability sub score is defined as:

Exploitability = 8.22 ∗AttackV ector ∗AttackComplexity

∗ PrivilegesRequired ∗ UserInteraction
(2.1)

The impact metrics consist of the impact on the CIA-triade: Confidentiality,
Integrity, Availability. They take the direct consequences of successful exploits of
this vulnerability into account, whereby the impacted component does not nec-
essarily have to be the vulnerable component itself, but can also be a network
resource. The impact metrics result in an impact sub-score.

• Confidentiality
The confidentiality metric value is larger when a successful exploit results
in more extensive disclosure of information to unauthorized users. Possible
metric values are High (0.56), Low (0.22), and None (0).

• Integrity
The integrity metric value is larger when the trustworthiness and veracity of
information is more extensively impaired. Possible metric values are High
(0.56), Low (0.22), and None (0).

• Availability
The availability metric value is larger when the availability of the impacted
component is more extensively impaired. Possible metric values are High
(0.56), Low (0.22), and None (0).

The Impact sub score (ISS) and the Impact are defined as:

ISS = 1− [(1− Confidentiality) ∗ (1− Integrity) ∗ (1−Availability)]

Impact = 6.42 ∗ ISS, if Scope is Unchanged

= 7.52 ∗ (ISS − 0.029)− 3.25 ∗ (ISS − 0.02)15, if Scope is Changed

(2.2)
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In addition to the exploitability and impact metrics, the scope of the exploit
is incorporated as eighth metric value. It reflects a change of the security scope of
a vulnerable component. Possible metric values are Changed and Unchanged.

Please, refer to the specification document for further details on the metric
values [22].

The Base Score is defined as:

BaseScore = 0, if Impact <= 0, else

= Roundup(Minimum[(Impact + Exploitability), 10]),

if Scope is Unchanged

= Roundup(Minimum[1.08 ∗ (Impact + Exploitability), 10]),

if Scope is Changed

(2.3)

The resulting CVSS Base Score is then mapped to a textual representation:

• CVSS Base Score 0.0: None

• CVSS Base Score 0.1-3.9: Low

• CVSS Base Score 4.0-6.9: Medium

• CVSS Base Score 7.0-8.9: High

• CVSS Base Score 9.0-10.0: Critical

Despite the worldwide utilization of the CVSS, however, Spring et al. argue
that ”it is not justified, either formally or empirically”. They criticise that ”the
CVSS v3.0 documentation offers no evidence or argument that the formula or
construction method are robust. The calculation method is clear, though
unjustified. ” [55] Additionally, Figueroa-Lorenzo et al. criticise that the CVSS
is not properly adapted to industrial IoT environments [21]. Despite all criticism,
the Common Vulnerability Scoring System convinces with its practical relevance
and the availability of scoring data for all disclosed CVEs through the National
Vulnerability Database. The search for more justified severity assessment systems
better suited for the IoT domain is subject to ongoing research and as long as
no candidate has prevailed there, the CVSS is a good starting point for the risk
assessment of this VAM solution (see Section 3).

However, since the CVSS is not targeted to the IoT domain, other approaches
for scoring systems are considered as well.
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In [35], Loi et al. propose a security test suite that supports 20 consumer
IoT devices and automatically checks for attack vectors that threaten the con-
fidentiality of data, the integrity of data, and the access control and that allow
for reflective attacks launched from another IoT device. All measures concerning
these dimensions are given below. Loi et al. claim that the proposed methodology
may serve as basis for a star-based security rating for IoT devices.

• Confidentiality of exchanged data:
all exchanged data is either

– plaintext,

– encoded, or

– encrypted

• Integrity:
the device only performs intended functions and all exchanged messages are
unmodified
includes tests for:

– replay attacks

∗ legitimate packets from user application to device are captured and
replayed using a Python script

∗ for non-encrypted-packets: certain packet fields are modified and
send to the device to check the device’s response

– DNS spoofing

∗ check DNS queries for DNSSEC

∗ perform DNS spoofing, if DNSSEC is not used

• Access Control and Availability:
perform vulnerability assessment for attacks with low complexity and DoS
attacks

– scan for open ports using nmap

– test for ports with known login credentials used by the Mirai botnet
(Telnet, SSH, HTTP)

– automatically perform ICMP pings and send UDP packets using hping3
and send TCP SYN packets to flood the device and stop it from oper-
ating properly

In order to achieve data confidentiality, all communication channels between
device and cloud server, device and user application and user application and cloud
server are assessed using ARP spoofing. To identify the utilized security protocol,
then, the protocol field gets inspected. If the packet’s payload is human-readable,
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it is considered to be plaintext. Otherwise, an automated entropy test for the
presence of encryption and its strength is performed.

It is not explained in detail if and how the proposed tests can be completely
automated without any user interaction, e.g. for capturing or inspecting packets.
However, the proposed checks for integrity and access control and availability are
not applicable to a runtime risk assessment system during normal operation of the
device under test in a smart home environment, since they stop the device from
functioning properly.

Loi et al. performed the proposed tests on 20 consumer IoT devices. The
results are shown in figures 2.10 and 2.11.

In order to derive a score from the test suite’s result, a three-level rating
is proposed for the 20 consumer IoT devices under test (see figure 2.12), where a
rating of A represents the device being secure, B being moderately secure/insecure,
and C being insecure. It is not explained in further detail, how the differentiation
is being made. Instead, the proposed rating is described as ”subjective and given
based on authors perceptions”. Deriving a single score by giving weights to each
dimension is described as future work.

Figure 2.10: Results of evaluating 20 IoT devices’ confidentiality and integrity
using the test suite proposed by Loi et al., taken from [35]
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Figure 2.11: Results of evaluating 20 IoT devices’ access control and availability
using the test suite proposed by Loi et al., taken from [35]

Figure 2.12: Security rating results of evaluating 20 IoT devices using the test
suite proposed by Loi et al. with ”A” being secure, ”B” being moderately se-
cure/insecure, and ”C” being insecure, taken from [35]

An approach that extends a rating of CVSS-attributed database-based Vulner-
ability Assessment as described above, but with additional metrics, is proposed
by Alrawi et al. in [2]. There, Alrawi et al. propose a methodology for secu-
rity analysis of home-based IoT devices: attack vectors and mitigations can be
differentiated in those concerning the device, the mobile application, the commu-
nication or the cloud endpoint. Based on this methodology, both a systematic
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review of literature and the evaluation of 45 home-based IoT devices using Nessus
Scanner is performed. As explained in Section 2.3.1, Nessus Scanner scans devices
for services and performs a vulnerability scoring based on the Common Vulnera-
bility Scoring System explained above. An exemplary list of detected CVEs and
their corresponding CVSS for one device can be found in Figure 2.13.

In addition to the proposed results, Alrawi et al. established an evaluation
portal that also includes a scoring system for all evaluated devices [71], that dif-
ferentiates scoring rubrics into concerning the device, the mobile application, the
cloud endpoint and the network connection. Since the security index proposed
here is focussed on the device, only the device-related scoring factors are given
below (see [2]):

• Device (42 Points of a total of 175 Points)

– Internet Pairing (3 Points)

∗ Wifi - device broadcasts unsecured wifi to allow user to connect
and configure (3 Points)

∗ Low-Energy (LE) - device uses LE protocol to pair with mobile to
configure the device (2 Points)

∗ Wired - device uses a wired medium to directly connect to the local
network (1 Point)

∗ Manual - device requires user to manually input network credentials
to connect and configure the device (0 Points)

– Configuration (7 Points)

∗ Default configuration (7 Points)

∗ Forced configuration (0 Points)

– Upgradeability (4 Points)

∗ Manual (4 Points)

∗ Consent-based (1 Point)

∗ Automatic (0 Points)

– Exposed Services (4 Points)

∗ 5 or more services (4 Points)

∗ 3-4 services (3 Points)

∗ 1-2 services (2 Points)

∗ No services (0 Points)

– Vulnerabilities (24 Points)

∗ Critical

· 11 or more critical vulnerabilities (10 Points)

· 6-10 (9 Points)



2.4 IoT Security Scoring Systems 43

· 1-5 (8 Points)

∗ High

· 11 or more highly severe vulnerabilities (7 Points)

· 6-10 (6 Points)

· 1-5 (5 Points)

∗ Medium

· 11 or more medium severe vulnerabilities (4 Points)

· 6-10 (3 Points)

· 1-5 (2 Points)

∗ Low

· 11 or more low severe vulnerabilities (3 Points)

· 6-10 (2 Points)

· 1-5 (1 Point)

Further justification of the weighting of the scoring points is not proposed.

Based on those points, a simple score is calculated for each rubric: divide the
sum of points by the total number of points of that rubric and subtract the result
from one (therefore, a higher score means less security vulnerabilities detected).
Based on general cutoffs, a grade letter can be assigned (A - 0.9+, B - 0.8+, etc.).

Scorecards for currently 45 devices are proposed as well (see Figure 2.14) [70].

Figure 2.13: Exemplary list of CVEs and their CVSS score, taken from [2]
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Figure 2.14: Exemplary extract of scorecards, taken from [70]

Although the scoring system proposed by Alrawi et al. does not provide jus-
tification of their score computation either, they rely on the globally used CVSS
and therefore benefit from its practical relevance. But based on CVE assessment
and their attribution with CVSS scores, further risk assessment is provided with
additional metrics that are of special interest in the smart home IoT domain.
Therefore, the device scoring system proposed by Alrawi et al. serves as a basis
for the runtime security score proposed with this thesis and described in detail in
Section 3.
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2.5 Trusted Execution Environments through Hard-
ware Root of Trust

In the Personal Computer (PC) domain, security by design principles are well
researched and established. A main building block of security for general purpose
machines is process isolation. Thereby, processes from different Software Providers
can be securely separated from each other. Commonly, this is enabled through
Virtual Memory enforced by the Memory Management Unit (MMU). During run-
time, virtual memory regions of processes are assigned to physical memory by the
MMU. The latter then also ensures that processes cannot access memory regions
assigned to another process.

In contrast, the concept of processes separated from each other is not com-
monly supported in the embedded domain. Especially devices with a very simple
and dedicated functionality do not support interleaved execution of different pro-
cesses and hence do not provide isolation mechanisms. Nevertheless, more and
more embedded devices are connected to the worldwide Internet and form the
IoT sector. It is increasingly becoming a use case that an entity, e.g. the device
Manufacturer, merges different software products (firmware, application software,
third-party software, libraries) into one binary file that is flashed on the device be-
fore shipment, hence gathering several pieces of software from different providers
on the device.

Therefore, there is an increasing need in the IoT domain to securely separate
pieces of software from each other and to establish so called Trusted Execution
Environments (TEE) supported by secure Hardware mechanisms, the so called
Hardware Root of Trust (RoT). Nevertheless, isolation mechanisms known from
the PC domain (such as Virtual Memory) cannot be applied easily to constrained
IoT devices. Due to the limitations in computational power, power consumption
and form factor, a complex MMU cannot be placed on the System on Chip (SoC).
Thus, software isolation mechanisms for constrained IoT devices represent a rel-
atively new branch of research and selected representatives are presented in the
following sections.

A main advantage of the processor architectures with Hardware Root of Trust
presented in this section is that the hardware-enforced isolation does not require
the help of an OS to secure the separation. Hence, the OS in total does not neces-
sarily have to be trusted. The underlying idea is to keep the Trusted Computing
Base (TCB) as small as possible since smaller code size inherently reduces the like-
lihood of undetected code vulnerabilities, instead of incorporating the OS kernel,
privileged services, and libraries in it. Therefore, providing a Trusted Execution
Environment (TEE) allows for an isolated environment to execute trusted
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applications in. Such a TEE could then be used to securely provide services
such as remote attestation (see Section 2.6) in order to determine the system se-
curity state.

The most widespread approach from industry is the ARMv8-M architecture
with Trustzone, presented in Section 2.5.1. A processor architecture developed in
academic context is provided with Sancus by the KU Leuven and described in Sec-
tion 2.5.2. A large open-source community project is formed around the RISC-V
processor architecture described in Section 2.5.3. It originated at the University
of California, Berkeley, in 2010 and comprises modular, open standards for micro-
processors. There exist several industry partner that offer SoCs compliant with
RISC-V standards, both proprietary and open-source. Therefore, it is to be clas-
sified between industry and academia.

2.5.1 ARMv8-M with Trustzone

According to [44], with 60%, ARM processors have the greatest share in the em-
bedded market. With ARMv8-M, ARM introduced the first microprocessor ar-
chitecture with their Trustzone technology for their range of Cortex-M processors
that ”power the most energy-efficient embedded devices” [4]. Before, Trustzone
has only been available for Cortex-A processors for ”supreme performance at op-
timal power” [4]. Despite the same name, both Trustzone implementations differ
significantly. This thesis focusses exclusively on Trustzone for ARMv8-M.

Trustzone represents a system-wide security approach for providing the two
separated protection domains ”secure world” and ”non-secure world” [44]. Secure
context switching between both worlds is not implemented using a monitor or a
hypervisor, but through a set of mechanisms implemented in Hardware. Hence,
Trustzone for Cortex-M provides a Hardware Root of Trust and a strong hardware-
enforced separation of the secure world from the non-secure world. Within the
secure world, however, there is no additional separation of software components
possible per default. Without a Memory Protection Unit (see below), all software
running in the secure world has the same extensive permissions.

The separation of both worlds is based on a configurable memory-map that
divides all memory in secure regions, non-secure regions and non-secure callable
regions. Hence, the processor state is derived directly from the position of the
instruction pointer. If it points to a memory address assigned to the secure world,
the processor state is secure, and vice versa. The processor modes are orthogonal
to its states: There is a Thread mode and a Handler mode in both worlds. Apart
from the differentiation of secure and non-secure memory, there is no further sep-
aration of code and data in memory supported by Trustzone.
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Switching between both worlds utilizes dedicated entry points. Therefore,
three new processor instructions are implemented in hardware: secure gateway (SG),
branch with exchange to non-secure state (BXNS) and branch with link and ex-
change to non-secure state (BLXNS). Only the secure gateway instruction allows
for switching to secure world. All SG instructions have to lie in non-secure callable
memory to be treated as such in order to prevent other binary data (e.g. a lookup
table) with a value that equals the SG instruction’s opcode to be misused as entry
function for the secure world.

An optional Memory Protection Unit (MPU) can be included in the SoC design
and provides additional opportunities for assigning memory access permissions for
privileged and unprivileged software. It is possible to add an MPU for only the
secure world, or only the non-secure world, or both. Both the secure and the non-
secure MPU can be implemented to allow different numbers of protected memory
regions.

In practise, Trustzone allows for not having to trust the OS by loading a se-
cure firmware in the secure world through a secure bootloading mechanism. This
secure firmware then takes responsibility for ”setting up its internal data struc-
tures, configuring the interrupt controller of the entire system, and setting up
protections for secure memory regions and peripherals” [44]. Upon completion,
execution can be handed over to the bootloader of the rich OS in non-secure world.

2.5.2 Sancus

An approach from academia for a processor architecture providing a Trusted Ex-
ecution Environment was developed at KU Leuven and first presented in 2013
at the USENIX Conference on Security [41]. An extended version has then been
published in 2017 [42]. All further discussion of the architecture refers to Sancus
2.0 from 2017.

The main proposal of the Sancus project is the Sancus security architecture.
It is claimed to provide strong isolation, remote attestation, and secure communi-
cation [42]. The underlying system model is shown in Figure 2.15 and is based on
the idea that the infrastructure provider IP owns and administrates the hardware,
hence nodes N1 to Nk. The Software deployed on the devices is then provided by
the software providers SP1 to SPj in the form of software modules SM1,1 to SMj,k.
This use case requires strong isolation in particular due to the extensibility pro-
vided by new software modules from the software providers.
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Figure 2.15: Overview of the Sancus system model, taken from [42]

The main advantage of the Sancus architecture is that only the hardware has
to be trusted. There is no software Trusted Computing Base (TCB), all iso-
lation is strongly hardware-enforced and based on a set of three cryptographic
primitives for symmetric encryption. These are a cryptographic hash function,
a key derivation function ”to derive a cryptographic key from a master key and
some diversification data”, and an authenticated encryption with associated data,
providing both encryption and decryption of data. For a hardware TCB, these
cryptographic primitives have to be implemented in hardware.

Using these primitives, a hierarchy of keys is established. The underlying mas-
ter key is the symmetric node master key KN , shared between the node and the
infrastructure provider. Using this secret node master key and the unique soft-
ware provider ID SP as input for the key derivation function mentioned above, a
symmetric key KN,SP for securing the communication between the node and the
software provider is available.

Every software module on a node is divided into a protected and unprotected
text section for code and a protected and unprotected data section for runtime
data as shown in Figure 2.16. This offers software providers the possibility of
keeping their software TCB as small as possible.

The cryptographic hash function is then used to compute the identity of a
software module IDSMn from the content of the corresponding protected text sec-
tion and the start and end addresses of the protected text and data sections. The
latter is also referred to as the layout of the software module.
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Figure 2.16: Memory layout of the Sancus architecture, taken from [42]

Memory protection in Sancus is enabled without a dedicated Memory Protec-
tion Unit, but through ”program counter-based memory access control”. Thereby,
the data region is not executable and can only be accessed if the program counter
resides in the corresponding text section of the exact same software module. Ad-
ditionally, all keys described above are stored in a protected memory region and
can only indirectly be accessed through a set of processor instructions. This ac-
cess depends on the program counter as well and always returns the keys of the
software module the program counter resides in. Entering a software module is
only allowed through designated entry points. All other access is inhibited.

2.5.3 RISC-V with Physical Memory Protection (PMP)

RISC-V is an open-source Reduced Instruction Set Computer (RISC) architecture
with background in academia. It started as fifth generation of RISC architectures
in 2010 at the University of California, Berkeley, and stands out between other
ISA designs due to its open source license. Additionally, its modular design allows
SoC manufacturers to combine extensions to precisely meet an application use case.

Based on the base ISA and the combination of extensions, there exist ap-
proaches that provide Trusted Execution Environments. A lightweight represen-
tative is Multizone, a software layer that manages the hardware security blocks to
provide secure isolation of TEEs. In contrast to Trustzone, Multizone provides a
configurable number of hardware-enforced, software-defined isolated zones instead
of only one secure and one non-secure world. Additionally, it provides a dedicated
TEE in machine mode (the Multizone nanoKernel) with a secure inter-zone com-
munication service to monitor switches to other zones. It requires a rv32i, rv32e,
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or rv64i RISC-V base with the U-mode extension and the Physical Memory Pro-
tection.

Figure 2.17: Architectural overview of Multizone Security, taken from [26]

An architectural overview of Multizone is provided with Figure 2.17. It is
based on the ”lightweight, formally verifiable, bare metal” MultiZone nanoKer-
nel [26] with the Multizone Secure Communications messenger, both running in
machine mode (M). The Secure Communication is based on messaging without
any shared memory. The zones upon the nanoKernel are exemplary filled with
a network stack, a Root of Trust (e.g. for key management), cryptographic li-
braries, an OS (e.g. RTOS) and optional additional user applications. All zones
run in user mode (U). Utilizing the machine mode for the nanoKernel and the
communication manager, however, results in the fact that the applications in the
zones cannot differentiate between user mode and machine mode and hence, do
not benefit from this processor extension.

The underlying idea behind Multizone Security is to provide both a software
solution and a toolchain to seamlessly integrate operating systems, applications,
and libraries into one firmware image that can be flashed to the device (see Fig-
ure 2.18). Hence, it follows the idea of having one entity that is responsible for
the one executable deployed on the device.
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Figure 2.18: Graphical representation of the compiling process of Multizone Secu-
rity, resulting in one firmware image, taken from [26]

2.5.4 Conclusion

With ARM’s Trustzone, a widespread processor architecture for providing a Trusted
Execution Environment from industry has been presented. In contrast, the Sancus
architecture is a sophisticated approach from academia. The Multizone Security
approach for RISC-V is a project for an instruction set architecture that originated
in academia but has large partners in industry as well. All three architectural con-
cepts have in common that they provide lightweight hardware-enforced isolation
mechanisms for software components of constrained devices in the IoT domain.
Nevertheless, they differ in many details.

First, both Trustzone and Sancus only rely on a hardware Trusted Computing
Base (TCB). A software provider of a software component running in isolation on
a Trustzone or Sancus-based device does not need to trust any other software, not
even the operating system. Contrasting, Multizone requires a lightweight mon-
itoring software layer for orchestration purposes and to manage the inter-zone
communication.

Second, cryptographic functions implemented in hardware may be available as
extensions for the manufacturers of Trustzone-based and Multizone-based SoCs,
but are not provided per default for every device. In contrast, Sancus requires a
set of three cryptographic primitives per design.

Third, Multizone requires the Physical Memory Protection extension of RISC-
V to enable secure isolation of zones. Sancus and Trustzone, on the other hand,
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do not require an additional unit for memory access control (note, however, that
only the optional Memory Protection Unit for Trustzone enables fine-grain differ-
entiation of permissions within the secure world). Additionally, both Sancus and
Trustzone divide the memory in secure/protected and non-secure/unprotected re-
gions and derive the processor state directly from the instruction/program counter.

And last, Trustzone and Sancus introduce designated entry instructions for
entering the secure/protected region whereas in Multizone, the nanoKernel moni-
tors the scheduling of all zones and only allows for message-based communication
between zones.
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2.6 Remote Attestation (RA)

The significance of considering security by design in the IoT domain has been
emphasized in the previous sections. In Section 2.5, processor security architec-
tures with a hardware RoT that enables TEEs have been presented and discussed.
Remote Attestation (RA) is a security service that builds upon and is enabled by
such security architectures. It offers a remote verifier the possibility of attesting
the state of a connected device [5] and thus evaluating if it can still be trusted [7].

A universal ”Remote Attestation Procedures Architecture” is provided by the
IETF as Internet-Draft [7]. This draft is declared as work in progress and hence,
it may be subject to change or removal. All information given here are based on
the draft version from July 28, 2022.

.--------------------------------.

| |

| Verifier |

| |

’--------------------------------’

^

|

.-------------------------|----------.

| | |

| .----------------. | |

| | Target | | |

| | Environment | | |

| | | | Evidence |

| ’--------------+-’ | |

| | | |

| | | |

| Collect | | |

| Claims | | |

| | | |

| v | |

| .-------+-----. |

| | Attesting | |

| | Environment | |

| | | |

| ’-------------’ |

| Attester |

’------------------------------------’

Figure 2.19: Relations of the Target and Attesting Environment within the At-
tester with the Verifier, taken from [7]

This draft attempts to provide ”a model that is neutral towards processor ar-
chitectures, the content of claims, and protocols”. The proposed model includes
an ”Attester” that is able to produce trustworthy information about itself, hence
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”Evidence”, to send it to a remote ”Relying Party” that can analyse the Evidence
(e.g., compare it with an expected attesting result, or consult an external ”Veri-
fier”), and decide about the trustworthiness of the Attester. However, an entity
is allowed to take on multiple roles simultaneously.

Within the Attester, further differentiation into a Target Environment and
an Attesting Environment is proposed as shown in Figure 2.19. Note, that the
Relying Party is omitted in that example. However, this separation into two en-
vironments is not mandatory for compliance with the architecture. Depending on
the implementation, both environments may be merged, or there may be multiple
Attesting and Target Environments. Nevertheless, there exists an entity within
the Attester that collects the targeted Claims, typically performs cryptographic
functions on it, and provides it as Evidence to the Verifier. It is crucial that the
Attesting Environment is designed to be robust against malicious modification.

.-----------------------------.

| Verifier |

’-----------------------------’

^

|

| Evidence of

| Composite Device

|

.----------------------------------|-------------------------------.

| .--------------------------------|-----. .------------. |

| | Collect .---------+--. | | | |

| | Claims .--------->| Attesting |<--------+ Attester B +-. |

| | | |Environment | | ’------------’ | |

| | .--------+-------. | |<----------+ Attester C +-. |

| | | Target | | | | ’------------’ | |

| | | Environment(s) | | |<------------+ ... | |

| | | | ’------------’ | Evidence ’------------’ |

| | ’----------------’ | of |

| | | Attesters |

| | lead Attester A | (via Internal Links or |

| ’--------------------------------------’ Network Connections) |

| |

| Composite Device |

’------------------------------------------------------------------’

Figure 2.20: Overview of Composite Device with layered approach structure of
several Attesting Environments providing Evidence for one lead Attester A, taken
from [7]

In more complex scenarios, a layered or ”staged” approach can be followed
to collect Claims for several Target Environments and provide Evidence in a hi-
erarchy of Attesting Environments. An example for such a ”Composite Device”
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is shown in Figure 2.20. There, the overall trustworthiness of the device is de-
termined by collecting the Evidence from all underlying Attesting Environments
(Attester B, Attester C, etc.). In this example, only the leading Attesting Envi-
ronment provides Evidence of the overall device to the Verifier. Note, that again,
the Relying Party is omitted in this example.

.------------.

| | Compare Evidence

| Verifier | against appraisal policy

| |

’--------+---’

^ |

Evidence | | Attestation

| | Result

| v

.---+--------. .-------------.

| +------------->| | Compare Attestation

| Attester | Attestation | Relying | Result against

| | Result | Party | appraisal policy

’------------’ ’-------------’

Figure 2.21: Example topology called ”Passport Model” with Attester, Relying
Party and Verifier, taken from [7]

.-------------.

| | Compare Evidence

| Verifier | against appraisal

| | policy

’--------+----’

^ |

Evidence | | Attestation

| | Result

| v

.------------. .----|--------.

| +-------------->|---’ | Compare Attestation

| Attester | Evidence | Relying | Result against

| | | Party | appraisal policy

’------------’ ’-------------’

Figure 2.22: Example topology called ”Background-Check Model” with Attester,
Relying Party and Verifier, taken from [7]

Two basic examples for the overall system topology are proposed as ”Passport
Model” and ”Background-Check Model” and shown in Figures 2.21 and 2.22,
respectively. Both include one entity each for the roles of Attester, Relying Party
and Verifier. They differ in the positioning of the Verifier. In the Passport Model,
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the Attester sends its Evidence to the Verifier first, to then receive the Attes-
tation Result from the Verifier and forward it to the Relying Party.

In contrast, in the Background-Check Model, the Verifier is connected to the
Relying Party. The latter requests the Evidence from the Attester, forwards it to
the Verifier and receives the Attestation Result in exchange.

The appraisal policy used to appraise Evidence and Attestation Result may
consist of a comparison with a reference value.

What is not reflected in the Figures but represents a decisive countermeasure
against replay-attacks is the freshness of the Evidence or Attestation Result. Only
if freshness information is included in the challenge-response-schema, it is assured
that the collected Claims actually reflect the latest state of the Target Environ-
ment. This can be solved by sending non-predictable nonces with the request for
remote attestation. This nonce is then included in the Claims and attested as
Evidence. If both the nonce sent and the nonce received are identical, the Relying
Party is assured of the freshness of the attestation.

Concerning the terminology, there is a subtle difference advertised for ”trust”
and ”trustworthiness”: ”Trust is a choice one makes about another system. Trust-
worthiness is a quality about the other system that can be used in making one’s
decision to trust it or not.” (see [7], p. 3) Applying this to the roles described
above, the Relying Party attempts to assess the trustworthiness of the Attester in
order to decide whether it can still be trusted. If it relies on an external Verifier
to receive the Attestation Result, is has to trust the Verifier. This trust can be
established using a trust anchor, e.g. a certificate, a symmetric key, etc. Likewise,
it has to trust the Root of Trust of the Attesting Environment. Concerning the
processor security architectures described in Section 2.5, they provide a Hardware
Root of Trust in offering Hardware-enabled Trusted Execution Environments. A
more detailed discussion of the underlying trust model can be found in [7].

Remote attestation is a decisive building block for trustworthiness assessment.
Based on this trustworthiness assessment, further application specific actions may
be performed. Hence, Section 4.3.2 discusses the application of the principles of
the model and roles described above to the Vulnerability Assessment and Man-
agement Solution proposed by this thesis.
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2.7 Conclusion

Among the main contributions of this thesis is a holistic architectural concept
for a Vulnerability Assessment and Management solution for IoT devices with a
Hardware Root of Trust. Due to the scale and complexity of this approach, many
large research areas are touched upon. This requires the extensive study of related
work in the different research areas, that has been presented with this chapter and
that lays the foundation for further design decisions.

Approaches for pre-purchase combined security and privacy labels exist and
have been discussed. However, the proposed label designs all focus on pre-purchase
information, whereas the aim of the work presented in this thesis is to assess the
security state of devices in operation. Although Emami-Naeini et al. acknowl-
edge the relevance of such post-purchase security information [16], it has not yet
been the subject of research. Additionally, the use of TEEs is mentioned as best
practise, but the label designs themselves do not focus on hardware security ar-
chitectures that provide a TEE.

Then, assessing the vulnerability of a device requires a concept for representing
the software components present on the device. Approaches for appropriate file
formats of such software inventory information and for the retrieving procedure
have been discussed in this chapter. It can be concluded that such a format has
to enable a partitioning of software into Software Modules, it has to provide a
universal identifier for each and every Software Module in that very version, and
it has to provide a model and a format for its description as SBOM file. Along
with the retrieval process proposed by the IETF with the Internet-Draft ”Discov-
ering and Retrieving Software Transparency and Vulnerability Information” [34],
the SPDX format specified by the Linux Foundation [59] has become apparent to
be the best suitable choice.

Approaches for Vulnerability Management solutions can be divided into scanning-
based solutions and database-based solutions. Representatives for both classes
have been presented. Since scanning-based approaches are a fairly new research
area with mainly proprietary solutions available, the focus of this thesis is on
database-based approaches. The CVE database is fast growing with tens of new
entries per day [9]. It is widely used among many large organizations, but not yet
as popular in the IoT domain. Nevertheless, it can be expected that vendors of
IoT devices will incorporate CVEs in their product vulnerability management in
the future, and has therefore been chosen for the VAM solution proposed by this
thesis for linking SBOMs to it.

When the results of such Vulnerability Assessment are then combined with
further risk assessment, a numerical security score can be derived from the gath-
ered information. A selection of appropriate IoT security scoring systems has been
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discussed. Since the scoring system proposed by Alrawi et al. relies on the globally
used CVSS, it serves as a basis for the runtime security score proposed with this
thesis and described in detail in Section 3.

A very interesting enhancement of such security scoring systems is Trustwor-
thiness Assessment. This requires a concept of trust and the presence of Trusted
Execution Environments (TEE). However, in the IoT domain, security architec-
tures that provide TEEs through a Hardware Root of Trust are rare. Influential
representatives have been presented.

Remote attestation is a decisive building block for trustworthiness assessment.
An attempt for generalizing RA procedures is proposed by the IETF and has been
presented. Based on this trustworthiness assessment, further application specific
actions may be performed. Hence, Section 4.3.2 discusses the application of the
principles of the model and roles to the Vulnerability Assessment and Management
Solution proposed by this thesis.

With this extensive literature review, the foundation is provided for the devel-
opment of an enhanced runtime security score, presented in Chapter 3, and the
architectural design of a comprehensive Vulnerability Management Solution for
the IoT, presented in Chapter 4.



Chapter 3

Runtime Security Score

In Section 2.1, the idea of including a security star rating in the primary layer of a
combined security and privacy label is mentioned. However, a precise specification
for the underlying computation of such a rating is not provided.

Instead, such calculation formulae are provided by security scoring systems for
the IoT domain as presented in Section 2.4. Although there exists critique on the
formally not justifiable CVSS specification (see [55]), such a security scoring sys-
tem that translates experts’ input to a score with respect to relative importance
of some aspects over others, can become a de-facto standard and serve as a very
valuable basis for further risk assessment.

In extension to the pre-purchase security scoring system based on the CVSS
proposed by Alrawi et al. (see Section 2.4), one of the major contributions of
this thesis is the development of a runtime security score that combines the find-
ings from Section 2.4 with the possibilities offered by Hardware Root of Trust
security architectures (see Section 2.5) and trustworthiness assessment through
remote attestation (see Section 2.6). This is a novel approach that enables the
user of a smart home network to continuously monitor the security state of op-
erated devices. Aspects adopted from Vulnerability Assessment provides the user
with insight into disclosed vulnerabilities of operated devices. The Hardware Root
of Trust of these devices provides a Trusted Computing Base in Hardware that
further Trustworthiness Assessment can be build upon. And this Trustworthiness
Assessment provides the user with insight into the trustworthiness of trusted soft-
ware components deployed on those operated devices. This represents a holistic
approach that provides the user with a profound information base in order to take
management decisions. The proposed runtime security score is specified and de-
scribed in detail in this chapter.

59
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For better comparability, the specification of this security scoring system is
provided in relative proportions, instead of absolute numbers. Thereby, the score
can easily be adjusted to any total number of points.

The device-related scoring proposed by Alrawi et al. can be adopted as fol-
lows. Since it shows a strong asymmetry towards vulnerabilities, a large number
of achieved points for this rubric will always result in a poor overall device security
score. Additionally, a data basis for device characteristics such as the configura-
tion and pairing process, the upgradeability and the number of exposed services
is required to include them in the rating. In contrast to the approach proposed by
Alrawi et al., the security scoring system proposed with this thesis is required to
be fully automatable. Therefore, an entity responsible for providing an interface to
gather this information in a standardized fashion would be necessary. In order to
keep the amount of standardization, that is required to put the proposed concept
into practice, minimal, the aspects Internet pairing (7% of points), configuration
(16% of points), upgradeability (10% of points), and exposed services (10% of
points) are excluded and left for future work.

A proposal for incorporating the hereby proposed scoring system into the Vul-
nerability Assessment and Management (VAM) solution proposed with this thesis
is given in Section 4.

3.1 Vulnerability Assessment

Alrawi et al. suggest to perform a one-time Vulnerability Assessment (VA) to
gather the CVE records that the software components deployed on the device un-
der consideration are affected by. This VA is then included in the device score
with 24 points out of 42 points for the device-related section (hence, with ∼ 57%)
and 175 points in total and reflects a pre-purchase security rating for consumers.

Since this one-time VA falls into the class of database-based Vulnerability
Assessment (see Section 2.3.2), it can be extended to a Continuous Monitoring
solution with periodic Vulnerability Assessment and periodic scoring.

In accordance with the proposed scoring system of Alrawi et al., this continuous
VA should receive the largest weighting in the security scoring system proposed
with this thesis. Disclosed vulnerabilities always pose a risk to the impacted de-
vice and with every CVSS severity level, a higher risk can be assumed. Therefore,
the weighting proposed by Alrawi et al. is adopted as follows:
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Vulnerabilities (100% of points):

• Critical

– 11 or more critical vulnerabilities (42% of points)

– 6-10 (38% of points)

– 1-5 (33% of points)

• High

– 11 or more highly severe vulnerabilities (29% of points)

– 6-10 (25% of points)

– 1-5 (21% of points)

• Medium

– 11 or more medium severe vulnerabilities (17% of points)

– 6-10 (13% of points)

– 1-5 (8% of points)

• Low

– 11 or more low severe vulnerabilities (12% of points)

– 6-10 (8% of points)

– 1-5 (4% of points)

Finally, the question remains as with what frequency the Vulnerability Assess-
ment is to be performed. In [46], Qualys, Inc. suggest to perform vulnerability
scans at least on a daily basis. A discussion of this aspect is provided in Section 4.

3.2 Trustworthiness Assessment

Trustworthiness Assessment is an important enhancement of the security scoring
system provided by Alrawi et al. The concept of trust is introduced with hardware
security architectures that provide Trusted Execution Environments (TEE) based
on a Hardware Root of Trust (see Section 2.5) and allows to continuously assess
the trustworthiness of a software component with Remote Attestation (RA). As
explained in Section 2.6, the RA procedure should be based on a nonce sent from
the Relying Party to the Attester in order to guarantee freshness of the Attesta-
tion Result and to thereby prevent replay attacks.

Where Qualys CM claims to detect changes on the operating system of con-
nected hosts [46], the objective here is to provide less constrained information
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about any software module deployed on a device - ranging from firmware over op-
erating system to application software. Therefore, breaches in the Trustworthiness
Assessment procedure have far-reaching consequences. A failed Trustworthiness
Assessment of a software module always has to be interpreted as a malicious al-
teration of the software as it was intended by its Software Provider.

In theory, it would be conceivable to take the relevance or ”purpose” of a soft-
ware component into consideration here. There may be Software Modules that
fulfil more critical purposes than others. In practise, however, such considerations
can only be applied to an automated scoring system, if such relevance informa-
tion is available. This would require an instance at the Software Provider that is
willing and able to attribute the incorporated software components accordingly.
However, the proposed approach can easily be extended to take such information
into account, if they are available.

Consequently, it is assumed that all Software Modules incorporated in the
Trustworthiness Assessment have the same relevance and their unintended alter-
ation has the same effect on the overall security state. Then, one or more failures
in the Trustworthiness Assessment of a device always result in the maximum of
all assigned points and break the score computation immediately. This can be
combined with warnings or recommendations for action for the user as described
in Section 4.

3.3 Relevance Level

Another relevance level that may be taken into consideration is the relevance of
the device under consideration to the user. Depending on the device type or its
purpose, it may be more or less relevant in its environment. E.g. the proper func-
tion of a main door lock is typically more relevant for the user experience than
that of a room humidity sensor.

However, this is highly individual risk assessment and therefore, it requires user
configuration. For some classes of devices, generally accepted rules for differences
in their relevance to the user experience may be found, but there definitely is no
universal ranking of device relevance levels. Therefore, the user is required to con-
figure its individual risk assessment during the initial device connection process.
This coincides with Qualys, Inc., who suggest to assign custom weighted values to
assets to denote ”the business value of critical assets” [46].

The relevance level of the device under consideration for the entire system or
for the user experience shall not directly factor into the runtime security score. An
extensive and undisturbed security report with the bare results of the proposed
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security state assessment may provide valuable information to the user. Instead,
it is proposed to make the warnings and recommendations for action depending
on the individual relevance level of this device. Thereby, a device whose security
state is highly relevant to the user may receive a recommendation for immediate
shutdown once a pre-defined threshold is exceeded. A detailed discussion of these
management aspects can be found in Section 4.

3.4 Non-Numerical Representation

The hereby proposed runtime security scoring system results in a numerical repre-
sentation of the assessed security state of the IoT device. However, it is a common
assumption that humans find it difficult to attach meaning to numerical values.
Therefore, alternative representations are suggested.

Loi et al. suggest a three-level rating based on the letters A−C, similar to the
EU energy labels for electrical devices [35]. However, this rating is solely based
on expert opinion. Although Alrawi et al. also suggest a letter-based rating, they
propose a mapping based on general cutoffs as explained in Section 2.4.

Such general cutoffs could also be represented in a star rating as suggested
by Emami-Naeini [18]. However, the determination of a representation that the
majority of users responds best to is a matter of research in the area of human-
centered design and, hence, considered out of scope for this thesis.

Therefore, for this initial proposal, a representation of the numerical scoring
result as a traffic light with the three evenly distributed levels and colors RED
(for a score from 66.1% to 100%), Y ELLOW (for a score from 33.1% to 66%),
and GREEN (for a score from 0% to 33%) is suggested. This scheme of colors
is very well known from actual traffic lights and food nutrition facts labels, and
therefore, it is assumed that the user can interpret the different colors very well.
However, a detailed survey of such effects on the user is subject to future work.

3.5 Conclusion

To conclude, the runtime security scoring system proposed with this chapter is
based on the scoring system proposed by Alrawi et al., but with decisive exten-
sions. Thereby, it represents a major contribution in this research area. It focusses
on the proposed Vulnerability Assessment and extends it towards Continuous Mon-
itoring. Thereby, the user is enabled to continuously monitor the security state of
all operated devices and provided with insight into disclosed vulnerabilities.



64 3. Runtime Security Score

Additionally, it utilizes the concept of Trusted Execution Environments to in-
clude Trustworthiness Assessment. Since the trustworthiness of all software com-
ponents on a device is assumed to be critical, a failed Trustworthiness Assessment
of one Software Module always results in the maximum point value in order to
represent the poorest security state. This provides the user with insight into the
trustworthiness of trusted software components deployed on operated devices.

This assessment of the security state lays the foundation and can be combined
with individual risk assessment in order to provide the most useful warnings or
recommendations for actions to the user.

Lastly, the resulting numerical security score is represented as a three-level
traffic light. This is a reasonable choice for the non-numerical representation,
since traffic lights are commonly known from everyday life and can be interpreted
easily by the user.



Chapter 4

Vulnerability Management
Solution for IoT

In addition to the Runtime Security Index for IoT devices described in Chapter 3,
a process for retrieving software inventory information, a format for SBOM files,
and an architectural concept for a complete Vulnerability Management Solution
for the IoT are further main contributions of this thesis. The following Section 4.1
provides a system model definition which forms the basis for further work. The
Device and Software Module Management is then described in Section 4.2.

Continuous Monitoring functionality provides the information necessary for
the computation of the Runtime Security Index and is described in Section 4.3.
Its main building blocks are the Vulnerability Assessment procedure described
in Section 4.3.1 and the Trustworthiness Assessment procedure described in Sec-
tion 4.3.2.

The actual computation procedure of the Runtime Security Index for IoT de-
vices at runtime is then described in Section 4.4 and followed by the description
of further risk assessment in Section 4.5 on Vulnerability Management.

4.1 System Model Definition

The System Model presented here is an extension of the System Model proposed
by Noorman et al. in [42] in 2017 and serves as the basic architectural concept for
the Vulnerability Management solution presented in this thesis. Figure 4.1 shows a
high-level overview of the overall system architecture and the components involved.

As outlined in this high-level overview, most consumer smarthome systems
come with some kind of dedicated control unit. Depending on the vendor, this
component may be called controller (e.g. Bosch’s Smart Home Controller), gate-

65



66 4. Vulnerability Management Solution for IoT

way (e.g. IKEA’s TRÅDFRI gateway), bridge, hub, base (e.g. Telekom’s Magenta
SmartHome router or SmartHome Home Base), or base station (e.g. IETF RFC
7228 [10]). Other cloud-based solutions exist (e.g. Amazon’s Alexa, Samsung’s
Smart Things), but are not the focus of this work. Nevertheless, the additional
functionality proposed by this work could be adapted to such smarthome systems
as well.

Figure 4.1: High-level overview of the overall system architecture

For generalization, this dedicated control unit will be called gateway in the fol-
lowing. Typically, it is far less resource-constrained than the IoT devices connected
to it, as described by the IETF in [10]. Hence, it comes with more computational
power, more memory, more interfaces (most notably, the full TCP/IP-protocol
stack and often a range of wireless communication protocols, e.g. Wi-Fi, Blue-
tooth Low Energy (BLE), Zigbee) and a larger battery or direct connection to
the domestic power supply. This makes it a vital link between the connected IoT
devices and the user and opens up a wide range of possibilities. Especially for
constrained IoT devices, it is common that they only support very lightweight
wireless communication protocols such as BLE or Zigbee. Hence, any access from
the Internet has to be realized via the gateway. This is actually beneficial from a
security perspective as security measures can be put in place at the gateway more
easily due to the availability of more powerful resources.
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Apart from automated control functions, some kind of graphical user interface
is typically provided to enable the user to access the network and comfortably
perform management functions. Whether this access is enabled through a smart-
phone application, a browser interface, or voice control is considered irrelevant for
this work. All details concerning user-centered design decisions make up a whole
branch of research and are out of scope here.

Software Providers can deploy Software Modules (SM1, 1, etc. in Figure 4.1)
on the connected IoT devices. During the initial connection setup, these software
modules are registered at the gateway. Subsequently, the gateway is responsible
for further device and software module management and tracks available updates
for all deployed software modules using the depicted interface to the Software
Providers as described in detail in Section 4.2.

It is a reasonable assumption that a commercial IoT device is shipped with an
initial set of Software Modules and not as general purpose machine that can run
different firmware and/or software chosen by the user. Additionally, in the IoT
domain, all software on the device is usually provided by one entity that merges
firmware, application software, third-party software, and libraries into one binary
that is flashed on the device before shipment [54]. In the context of this thesis,
this entity is called ”Manufacturer” as proposed in [33]. This may indeed be the
hardware manufacturer of the retail customer IoT device. In case of a less con-
strained device with a built in Linux stack, this could also be the entity integrating
the device. However, it is a reasonable assumption that one such entity exists for
every device.

To enable the management of Software Modules, a standardized description for
them that is complied with by all components is a fundamental requirement. Such
descriptions have been discussed in detail in Section 2.2. The specific underlying
information model in SPDX format is presented in the upcoming Section 4.2.1.
The necessary device registration process with SBOM retrieval is then presented
in the upcoming Section 4.2.2.

To summarize this system model definition, the results of this work can be
adapted to any smart home system with the following features:

1. It includes exactly one gateway that provides the following components as
specified in the upcoming sections: Device and Software Module Manage-
ment, Continuous Monitoring, Security Score Computation, Vulnerability
Management. It can be assumed that a future extension towards systems
with two or more interconnected and cooperating gateways is possible with
moderate effort.

2. It provides any kind of graphical user interface to the user.
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3. It supports one or more constrained IoT devices connected to the gateway
via standard wired or wireless connection protocols.

4. There exists one standardized description for Software Modules that is com-
plied with by all components and provides fields equivalent to the VAM
SBOM format described in Section 4.2.1.

5. There exists an entity called Manufacturer that provides such an SBOM file
in a way that is compliant with the procedure specified in Section 4.2.2.

6. There exists a specified interface to a Vulnerability Database, e.g. the NIST
National Vulnerability Database (NVD) for CVE records.

4.2 Device and Software Module Management

Device and Software Module Management lays the foundation for Vulnerability
Assessment and Vulnerability Management. For the following considerations, the
focus is dedicated to the main Software Module Management tasks: the check for
newly disclosed vulnerabilities and the check for trustworthiness of that Software
Module. All other common tasks of operating a smart home IoT device, e.g. the
pairing of the device with the gateway on host-to-network-layer of the TCP/IP
layer model, are not considered here as they are irrelevant to the Vulnerability
Management Solution that this thesis focusses on.

As described in Chapter 2.2, a standardized description of the software inven-
tory is a fundamental requirement for the Vulnerability Assessment and Manage-
ment System proposed by this thesis. Hence in the following, it is assumed that a
description in accordance with the proposal described in Section 4.2.1 exists and
all components agree upon it. Since the Manufacturer is the entity with complete
insight into all Software Modules deployed on the device, it is the component that
provides this software inventory information. The Manufacturer could do so by
collecting SWID tags provided by the SWID tag producers, e.g. the Software
Providers, but details of this process are not the focus of this thesis.

During the initial connection of a new IoT device to a Gateway (the device
registration) this software inventory information needs to be transmitted to the
Gateway. Only afterwards, the Software Modules can be appropriately managed:
they can be linked against a vulnerability database, the manufacturer can be
queried for more recent software updates or patches, and the IoT device can be
updated to that new software version. The proposed procedure for device registra-
tion focussing on these Software Module Management tasks is described in detail
in Section 4.2.2.



4.2 Device and Software Module Management 69

4.2.1 Software Inventory Information

Since the Vulnerability Management solution proposed in this thesis is supposed
to be suitable for constrained IoT devices, the software inventory information file
is not supposed to be stored directly on the device. Therefore, its file size is not
crucial. Due to its compatibility with the SBOM retrieval mechanism proposed by
the IETF and its straightforward implementation, the SPDX format proposed by
the Linux Foundation is a well-suited choice as SBOM file format in the context
of this thesis.

Lots of terms in this research area exist. This ambiguity has already been
discussed in chapter 2.2. For the remainder of this thesis, the term ”Software
Bill of Material (SBOM)” describes the Software Inventory Information needed to
reliably discriminate a certain Software Module with designated version number,
components, and licenses. The latter is mentioned for the sake of completeness,
but is not the focus of this thesis.

In order to meet the requirements of the Vulnerability Management solution
proposed in this thesis, a new SBOM file format is specified based on the SPDX
format. In the following, this format is called ”VAM SBOM”. Table 4.1 shows all
fields that are mandatory in this format. For full compatibility with the SPDX
format, the tag : value notation and the tag-names have been adopted. Note, how-
ever, that all indicated fields are mandatory in the VAM SBOM, whereas some of
them are optional in the original SPDX format. The VAM SBOM file must be a
flat text file with ∗.spdx-extension.

The DocumentNamespace described in Table 4.1 must be composed as follows:
https://[CreatorWebsite]/[pathToSpdx]/[PID]-[UUID]-[version].spdx,
where:

• CreatorWebsite refers to the domain of the entity providing the SPDX file;

• pathToSPDX contains the path to the SPDX file;

• PID contains the product ID;

• UUID contains a Universally Unique Identifier (UUID) that is unique for
this specific SPDX file version;

• version contains the software binary version of the Software Module.



70 4. Vulnerability Management Solution for IoT

SPDX field name [59] Description

Document Creation Information

SPDXVersion Provides a reference number for parsing the
SPDX file. Must be set to ”SPDX-2.2”.

SPDXID Provides an identifier for the current SPDX
file. The data format for this field is
SPDXRef −DOCUMENT .

DocumentName Provides an additional identifier for the cur-
rent SPDX file that is easier to refer to than
the SPDXID.

DocumentNamespace Provides a unique absolute URI in https-
scheme that serves as document specific
namespace for the specific SPDX in that very
version. Since in the context of this thesis, the
SPDX file is accessible on the Internet, this is
a URL. The format for composing this URI is
given above.

Creator Identifies the person or entity creating the
SPDX file.

Created Provides date and timestamp for the SPDX
file creation. The data format for this field is
Y Y Y Y −MM −DDThh : mm : ssZ.

Package Information

PackageName Provides a textual identifier for the Software
Module in the SPDX file.

SPDXID Provides a unique identifier for the Software
Module in the SPDX file. Since in the context
of this thesis, the SPDX file is accessible
on the Internet, the format of this field
is [DocumentNamespace]#SPDXRef −
[idstring], where idstring is a unique string
containing letters, numbers, ’.’ and ’-’.

PackageVersion Identifies the specific version of the Software
Module.

PackageDownloadLocation Provides the URL for downloading the Soft-
ware Module in the specified version from the
Manufacturer webserver.

FilesAnalyzed Provides a boolean indicator of whether the
Software Module has been analzed. Must be
set to ”true”.
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File Information

FileName Provides the full path (relative to the root of the Package)
and the full file name (including the file type) for every file
belonging to the Package.

SPDXID Provides a unique identifier for the file. Since in the context
of this thesis, the SPDX file is accessible on the Internet, the
format of this field is [DocumentNamespace]#SPDXRef−
[idstring], where idstring is a unique string containing let-
ters, numbers, ’.’ and ’-’.

FileChecksum Provides a checksum for every file belonging to the Package.
Providing a SHA1-checksum is mandatory, other optional
algorithms may be: SHA224, SHA256, SHA384, SHA512,
MD2, MD4, MD5, MD6.

Table 4.1: Overview of all fields of the VAM SBOM format, adopted from the
SPDX 2.2 specification, and their description [59]. For better readability, fields
related with licensing are omitted, even if they are mandatory for SPDX 2.2 com-
pliance. Fields which are mandatory according to the SPDX 2.2 specification are
written in bold letters. Note, however, that for compliance with the VAM SBOM
specification presented in this thesis, all fields are mandatory.

In the initial version of the VAM SBOM format described here, the
PackageDownloadLocation must be the URL to the Manufacturer webserver. An
extension towards version control systems is provided by the underlying SPDX for-
mat and planned as independent future extension for the VAM SBOM format.

An example for a VAM SBOM file as specified above is provided in the follow-
ing listing:

SPDXVersion: SPDX-2.2

DataLicense: CC0-1.0

SPDXID: SPDXRef-RISC-V

DocumentName: risc-V

DocumentNamespace: https://SoftwareProvider.org/spdxdocs/devices/

risc-v/PhysicalMemoryProtection/sifive-hifive1-revB-01-2.11.1

Creator: Organization: Software Provider A

Created: 2022-01-01T18:30:22Z

PackageName: freeRTOS

SPDXID: https://SoftwareProvider.org/spdxdocs/devices/risc-v/

PhysicalMemoryProtection/

sifive-hifive1-revB-01#SPDXRef-freeRTOS-2.11.1

PackageVersion: 2.11.1
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PackageDownloadLocation: https://SoftwareProvider.org/downloads/

devices/risc-v/PhysicalMemoryProtection/sifive-hifive1-revB-01.tar

FilesAnalyzed: true

PackageLicenseConcluded: LGPL-2.0

PackageLicenseDeclared: LGPL-2.0

PackageCopyrightText: <text>

Copyright 2020-2022 Jane Roe

</text>

FileName: ./bin/foo.

SPDXID: https://SoftwareProvider.org/spdxdocs/devices/risc-v/

PhysicalMemoryProtection/

sifive-hifive1-revB-01#SPDXRef-freeRTOS-2.11.1-foo

FileChecksum: SHA1: d6a770ba38583ed4bb4525bd96e50461655d2758

Concerning this initial version of the VAM SBOM format described here, the
CoSWID-format was considered irrelevant due to the fact that the SBOM file
is not directly received from the device. Nevertheless, this could be a beneficial
extension for more capable devices. If the device is able to transmit its SBOM
file directly, the Manufacturer would not need to host a dedicated webserver. As
demonstrated in Section 2.2.1, most SPDX format fields have equivalents in the
SWID and CoSWID formats, respectively. However, there are mandatory fields
in the SWID/CoSWID-formats that do not have obvious equivalents in the SPDX
format. Hence, an extension of the VAM SBOM format towards SWID/CoSWID-
compliance requires an appropriate mapping. The support of yet another SBOM
format is not crucial for proving the general feasibility of the architectural concept,
however, and is therefore planned for future work.

To conclude, the presented VAM SBOM format is suitable for constrained
IoT devices that are not capable of sending their SBOM file themselves. Putting
additional licensing information aside, it requires only 14 mandatory fields to
precisely and unambiguously describe and identify Software Modules. In the initial
version presented here, it only requires a flat text file, which enables a simple
parsing process. It is compliant with the SPDX 2.2 specification and with the
SBOM retrieval mechanism proposed by the IETF. The complete proposed SBOM
retrieval mechanism during the device registration is presented in the following
section.

4.2.2 Device Registration

The device registration at the gateway with the transmission of complete software
inventory information is an important building block for all further Software Mod-
ule Management tasks. When a new IoT device enters the smart home network,
it has to be set up at the gateway. For the following considerations, the focus
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is dedicated to the main Software Module Management tasks: the check for new
vulnerabilities and the check for trustworthiness. As explained above, all other
common tasks of operating a smart home IoT device, e.g. the pairing of the device
with the gateway on host-to-network-layer, are not considered here.

In summary, the requirements for the proposed device registration procedure
are as follows:

1. There exists a communication interface between the gateway and the con-
strained IoT device. Details of the communication protocol do not matter. It
may be a wired serial interface, a wifi connection or one of the in the IoT do-
main widely used Zigbee, Zwave or Bluetooth Low Energy (BLE) protocols.
Since System-on-Chips (SoC) with Hardware Root of Trust functionality
that enables Trusted Execution Environments are a fairly new development,
they have not yet found their way into retail customer smart home devices.
Therefore, hardware development boards that are available for research pur-
poses most often do not provide a large variety of communication interfaces.
The modularity of the concept and of the reference implementation proposed
in this thesis allows the network connection to be expanded with the release
of corresponding hardware.

2. It is assumed that the IoT device has been connected to the same local
network that the gateway operates in. This is reasonable, since the pairing
of the device with the gateway is considered out of scope for this work as
described above.

3. There exists an entity called Manufacturer that provides a VAM SBOM file
for the IoT device in accordance with the procedure specified in the following.

4. The IoT device is associated with a product ID, a serial number, an URL to
the Manufacturer webservice that provides the software inventory informa-
tion, and a version of the binary by the Manufacturer before shipment.

Based on these requirements, the proposed procedure for the device registra-
tion is specified in the following. Figure 4.2 shows the exchanged messages for the
error-free case accordingly.

Please remark that the following specification for discovering and retrieving
software inventory information is in accordance with the IETF Draft ”Discovering
and Retrieving Software Transparency and Vulnerability Information” and falls
into the second category described thereby: ”objects may be found in one of three
ways: [. . . ], on a web site (e.g., via URI), [. . . ]” [34].
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Figure 4.2: Message sequence chart showing the device registration procedure

The new IoT device initially is in the state unregistered.

1. Then, it starts searching for a reachable gateway in the network, e.g. due
to a user input, by sending a broadcast hello-message. This hello-message in-
cludes the device identification information, namely the product ID PID,
the software binary version version, a serial number serial and the sbom url
to the Manufacturer’s webserver that provides the software inventory infor-
mation CreatorWebsite. The PID, version, and serial are all assigned by
the Manufacturer and used to differentiate products and software versions
at the webserver to provide accurate software inventory information.

2. Initially, the gateway is in idle mode and becomes ready for pairing with a
new device, e.g. due to a user input. Then, it is in the state waiting. As soon
as the gateway receives the broadcast hello-message in the waiting state, it
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changes to new dev. The device identification information is then stored in a
local database and used to compose the request for the Manufacturer’s web-
server. In accordance with the VAM SBOM format specified in Section 4.2.1,
the webserver’s address is derived from the DocumentNamespace field and
has the following format:
https://[CreatorWebsite]/[pathToSpdx]/[PID]-[UUID]-[version].spdx.

3. The gateway then changes to state new dev.sbom req and sends the re-
quest as https-GET message to the composed address. From the PID and
version in the url, the webserver can differentiate different products and
different software binary versions and selects the appropriate VAM SBOM
file.

4. Initially, the Manufacturer webserver is in state waiting, waiting for new
requests. Upon receiving the GET message from the gateway, it changes to
reply state, answers the request with the appropriate VAM SBOM file and
http-OK-state and changes back to waiting state again.

The gateway receives the VAM SBOM file, changes to new dev.sbom ok
and analyses the received VAM SBOM file. At this point, additional secu-
rity measures such as certificates and encryption of the VAM SBOM file may
be implemented to guarantee authenticity and integrity but are considered
out of scope for this thesis.

5. If the analysis succeeds, the gateway changes to new dev.update db state
and updates its local database with the information parsed from the VAM
SBOM file. Subsequently, an OK-message with a device ID assigned by the
gateway is sent back to the IoT device. The gateway changes back to idle
state.

Finally, the IoT device stores the received device ID locally and changes to
registered state.

Note, that the gateway’s idle state could be any state where the gateway per-
forms tasks that are not related to the procedure described above. Analogously,
the IoT device can leave the registered state and start performing tasks that are
related to its purpose as smart home IoT device.

The specification above strictly defines the format of the url to the Manufac-
turer webserver. In order to achieve broad acceptance and standardization across
many manufacturers, it is always preferable to give as few restrictions as possible.
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Hence, the given specification can easily be expanded to support other interfaces
between the gateway and the manufacturer. As proposed by [34] and described in
Chapter 2.2, this interface may not only support http, but there could be a more
sophisticated API established. And if the device was able to directly transmit
its SBOM from its local storage itself, a Manufacturer webserver would even be
dispensable. All of this is a valuable but independent future extension.

After the device is properly set up at the gateway, it can take up its dedicated
function as smart home IoT device. All further Software Module Management
tasks are taken care of by the gateway as described in Section 4.3.

4.3 Continuous Monitoring

In addition to the basic Software Module Management functionality described
above, the gateway performs several background checks to implement continuous
monitoring and to lay the foundation for the subsequent security score computa-
tion. These include the Vulnerability Assessment and Trustworthiness Assessment
as main building blocks, which are described in detail in the following paragraphs.

4.3.1 Vulnerability Assessment

Vulnerability Management (VM) is one of the gateway’s main features the pro-
posed software architecture provides. As discussed in Section 2.3, VM requires
Vulnerability Assessment (VA) in the first place. Apart from more sophisticated
approaches that can hardly be automated, such as reverse engineering, a widely
used starting point for automated VA is the Common Vulnerabilities and Expo-
sures (CVE) database for publicly disclosed cybersecurity vulnerabilities.

During operation, the gateway is responsible of finding new CVE records that
are related to the software modules deployed on any connected device. To realize
this, the gateway has to provide the following functionality.

Searching new CVE IDs

First, the gateway periodically performs a search for new CVE IDs related to any
of the deployed software modules. Since an automated classification and assign-
ment of CVE records to a class of IoT devices or even specific device models has
been proven difficult by Khoury et al. in [31] and Blinowski et al. in [9] (see
Section 2.4), an entity that is responsible for manually assigning CVE records to
specific IoT device models and versions is required. As specified in Section 4.1, it
is assumed that there exists an entity that merges firmware, application software,
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third-party software, and libraries into one binary that is flashed on the device be-
fore shipment: the Manufacturer. Therefore, the Manufacturer is also the entity
responsible for assigning CVE records to its Software Modules and providing the
corresponding Vulnerability Information.

Thus, a well-defined interface to the Manufacturer is introduced here. This
requires standardization, but comes with the great advantage of a significantly
reduced complexity. Additionally, there already exist standardization efforts con-
cerning Software Bills of Material (see Section 2.2). Hence, it is a feasible assump-
tion that such a standard can be instantiated or extended accordingly.

This interface to the Manufacturer can be defined in two different ways.

First case: If compliance with the SPDX format is not mandatory, the VAM
SBOM format specified in 4.2.1 can be extended with a
V ulnerabilityInformationDownloadLocation field in the Package Information-
area. This field provides the URL for downloading the Vulnerability Information
for this Software Module in the specified version from the Manufacturer webserver.
The corresponding message sequence chart is based on the Device Registration
procedure described above and shown in Figure 4.3.

0) Message 0) represents the last message from the Manufacturer to the Gate-
way during the device registration process described in Section 4.2.2 and
shown in Figure 4.2. Note, that all previous messages of the device registra-
tion process are omitted here for better readability.

1) Initially, the Gateway is in idle mode and starts searching for new Vul-
nerability Information based on the configurable frequency freqnewCV E de-
scribed below. Based on the V ulnerabilityInformationDownloadLocation
received with the VAM SBOM during device registration, the Gateway
changes to state vulninf req and sends a https-GET message to the corre-
sponding address.

2) Initially, the Manufacturer webserver is in state waiting. Upon receiving the
GET message from the gateway, it changes to reply state, answers the re-
quest with the appropriate Vulnerability Information file and http-OK-state
and changes back to waiting state again.
Upon receiving the Vulnerability Information from the Manufacturer web-
server, the gateway changes to vulninf rec state, analyses the file and up-
dates its local database with the information parsed from the Vulnerability
Information file. At this point, additional security measures such as cer-
tificates and encryption of the Vulnerability Information file may be imple-
mented to guarantee authenticity and integrity, but are considered out of
scope for this thesis.
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Figure 4.3: Message sequence chart showing the download procedure of
the Vulnerability Information for case 1: The VAM SBOM includes the
V ulnerabilityInformationDownloadLocation field for reaching the Manufacturer

Afterwards, the gateway proceeds with retrieving the CVE records corre-
sponding to the received Vulnerability Information as described below.

Note, that the message 0) only has to be exchanged once during the De-
vice Registration process described in Section 4.2.2. The sequence of messages
1) and 2) is issued periodically during the continuous monitoring process with
frequency freqnewCV E for every connected IoT device.

Second case: If compliance with the SPDX format is necessary, the IoT device
has to provide a dedicated interface for retrieving the
V ulnerabilityInformationDownloadLocation. The corresponding message se-
quence chart is shown in Figure 4.4.
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Note, that the messages 0.1) and 0.2) only have to be exchanged once. Hence,
they extend the device registration process described in Section 4.2.2.

Figure 4.4: Message sequence chart showing the download procedure of the
Vulnerability Information for case 2: The VAM SBOM does not provide the
V ulnerabilityInformationDownloadLocation. Instead, the IoT device provides
a dedicated interface to answer requests from the Gateway with the Manufacturer’s
webserver address

0.1) Message 0.1) replaces the last OK-message of the device registration process
shown in Figure 4.2. Thereby, the Gateway changes to vulninf locator req
state and sends a REQUEST V ULNINF LOCATOR-message to the IoT
device. Note, that all other messages of the device registration process are
omitted here for better readability.

0.2) Upon receiving the REQUEST V ULNINF LOCATOR-message from the
Gateway, the IoT device changes to state reply vulninf locator and answers
with the V ulnerabilityInformationDownloadLocation.

0.3) Upon receiving the V ulnerabilityInformationDownloadLocation, the Gate-
way responses with the original OK-message of the device registration pro-
cess shown in Figure 4.2, changes to state vulninf locator rec, and updates
its local database accordingly.

1)-2) The messages 1) and 2) are equivalent to the ones in Figure 4.3.
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Note, that the IoT device’s and the Gateway’s idle states could be any states
where both entities perform tasks that are not related to the procedure described
above.

In both cases, the Manufacturer webserver’s address is derived from the
DocumentNamespace field in the VAM SBOM and has the following format:
https://[CreatorWebsite]/[pathToVulnerabilityInformation]/

[PID]-[UUID]-[version].

For the initial version described in this thesis, the Vulnerability Information
is a plain string including all CVE IDs related to the Software Module separated
with semicolon. For expandability in the future, this can be replaced with a more
sophisticated data format, such as json, supporting other vulnerability databases
apart from the CVE database, e.g. the Open Source Vulnerability Database [43].

For both cases, the well-defined interface to the Manufacturer is thereby spec-
ified and the Gateway’s local database is updated with all CVE IDs that are
currently assigned to the Software Module deployed on the IoT device under con-
sideration.

Retrieving CVE records

The CVE records are then retrieved from the API provided for the National Vul-
nerability Database by the U.S. National Institute of Standards and Technol-
ogy [38] with mention of the CVE IDs.The corresponding message sequence chart
is shown in Figure 4.5.

1) The Gateway starts in cve req state and sends a https-GET message to the
webserver provided by NIST at the address
https://services.nvd.nist.gov/rest/json/cve/1.0/[CVE_ID].

2) The NIST webserver answers the request with the corresponding CVE record
in json format. Upon receiving, the Gateway changes to cve rec state, anal-
yses the file and updates its local databases accordingly. Afterwards, it
changes to idle state.

Frequency-based Vulnerability Assessment

Let the time interval at which this search for new CVE IDs is performed be con-
figurable by the choice of frequency freqnewCV E . According to [46], vulnerability
scans should be performed at least on a daily basis, which therefore serves as de-
fault value. Note, that the procedure for searching new CVE IDs as described in
Section 4.3.1 is necessary for every connected IoT device. Accordingly, retrieving
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Figure 4.5: Message sequence chart showing the download procedure of the CVE
record in json format

the corresponding CVE records as described in Section 4.3.1 is necessary for every
such CVE ID. Introducing this kind of periodical search for new vulnerabilities
makes the proposed system a solution providing Continuous Monitoring as de-
scribed in Section 2.3.

Finally, whenever the internal database of all deployed Software Modules is
changed (e.g. because a new IoT device is registered at the gateway), an excep-
tional search for all CVE records concerning this module is performed. Afterwards,
this module is covered by the periodical routine described above.

It can be argued that a very sophisticated user may want to have additional
functionality. Hence, the user can be provided with the possibility of manually
triggering an immediate search for new CVEs. Additionally, the user can be
enabled to enter CVEs and manually assign it to a certain type of device or a
Software Module to overcome the issue of a not properly working manual assign-
ment. Another additional feature could be an ignore list for CVE records the user
specifically wants to exclude from the vulnerability check. Certainly, this option is
clearly not recommended and poses the risk of severe failure of the VA process for
inexperienced users. All these extensions and their analysis are considered future
work.

The proposed Vulnerability Assessment procedure enables Continuous Mon-
itoring by continuously performing vulnerability scans with a configurable fre-
quency. It supports both connected IoT devices with an extending VAM SBOM
format, and connected IoT devices with a dedicated interface to transmit the Man-
ufacturer’s webserver address. It supports CVE records in json format, but can
easily be extended with further Vulnerability Information file formats. Thereby,
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this VA procedure allows for providing the user with detailed Vulnerability Infor-
mation concerning the operated IoT devices and lays the foundation for further
Vulnerability Scoring as described in Section 3.

4.3.2 Trustworthiness Assessment (TA)

Trustworthiness Assessment (TA) is the next big building block for the Continu-
ous Monitoring performed by this VAM solution and serves as important basis for
the Runtime IoT Score described in Section 3.

Figure 4.6: Underlying Trustworthiness Assessment model of the VAM solution
proposed by this thesis. The roles according to the IETF RATS Internet-Draft [7]
are written in black. The terminology used throughout this thesis is written in
red. The entities that represent the trust anchor are marked as ”Trusted”.

A well-established method for assessing the trustworthiness of a device is Re-
mote Attestation as described in Section 2.6. Hence, it is chosen for the VAM
solution proposed by this thesis for assessing the trustworthiness of the Software
Module deployed on devices connected to the gateway. As reasoned above, it is
assumed here that there is only one Software Module deployed on every device.
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An extension towards larger numbers of deployed Software Modules is planned
for future work.

The Gateway Application of the VAM solution proposed by this thesis is com-
parable to the ”Trusted Application Manager (TAM)” described in the use case
of ”Trusted Execution Environment Provisioning” in the IETF Internet-Draft for
”Remote Attestation Procedures Architectures” (RATS) [7]. There, the TAM is
responsible for managing software components deployed in a TEE and for assessing
their trustworthiness. Therefore, it performs a Remote Attestation as described
in Section 2.6 for software components in the TEE.

Based on the Background-Check Model described in Section 2.6, the System
Model presented in Section 4.1 has been extended. It is shown in Figure 4.6 and
assigns the roles of Attester, Relying Party, and Verifier.

Figure 4.7: Message sequence chart showing the download procedure of the Evi-
dence in the Remote Attestation procedure

The IoT device serves as Attester and contains one or more Target Envi-
ronments with the isolated Software Modules. They may reside in one or more
separated TEEs, or in unprotected memory areas. In addition to these Target
Environments, an Attesting Environment provides the actual Remote Attestation
service to the Gateway. This service has to be trusted, hence, it is required to re-
side in a TEE. Ideally, its Trusted Computing Base should be as small as possible.
When using one of the security architectures presented in Section 2.5 for the IoT
device, the TEE is implemented with a Hardware Root of Trust. In this case, no
software has to be trusted to guarantee the TEE’s trustworthiness (with exception
of Multizone, which is hardware-enforced, but requires a small, verifiable software
layer).
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When challenged with a TA request, the RA service collects the Claims of all
challenged Target Environments, hence, Software Modules. Details of what these
Claims may contain are described below.

The Relying Party in the context of this VAM solution is the Gateway Appli-
cation. It runs the hereby described Trustworthiness Assessment service. Therein,
it sends its TA request and a nonce as Challenge to the RA service of connected
devices as shown in the message sequence chart in Figure 4.7 with message 1). As
described in Section 2.6, the nonce is incorporated into processing the Claims in
order to guarantee freshness of the provided Evidence. If the process of calculating
the next nonce is a secret, a man-in-the-middle-attacker cannot guess it properly
and use it to proclaim an old or maliciously modified Evidence. The RA service
on the IoT device processes the nonce and the collected Claims and answers the
TA request with the Evidence as response in message 2).

This Evidence is then verified by the Gateway Application. Therefore, an ad-
ditional component within the Gateway Application takes the role of the Verifier
and has sufficient information for appraising the Evidence. For this VAM solution,
this is solved by managing a database with reference values for all Evidences of
all Software Modules deployed on all devices. Thereby, there is no need for an
external Verifier that has to be trusted, to whom interfaces have to be specified
and with which messages have to be exchanged. This reduces complexity, network
traffic, and the number of necessary trust anchors.

In order to enable this, the Device Registration procedure described in Sec-
tion 4.2.2 has to be extended as demonstrated in Figure 4.8. In addition to the
VAM SBOM file, the reference value for this Software Module in form of a hash
of the Claims has to be sent to the Gateway by the Manufacturer as shown with
message 1). Upon receiving, the Gateway Application updates its database ac-
cordingly.

Since the SPDX format chosen to represent software inventory information
for this VAM solution does not provide an appropriate field for such reference
evidence, it would have to be extended in order to incorporate this information.
Thereby, the proposed VAM SBOM format would not be SPDX-compliant any-
more. Therefore, it is encouraged to find a universal representation of such refer-
ence evidence and include a corresponding field in a future version of the SPDX
format. Until then, it is proposed to send the reference Evidence as message ad-
ditional to the SPDX-compliant VAM SBOM file as described above.
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Figure 4.8: Message sequence chart showing the download procedure of the refer-
ence Evidence during the device registration procedure

In order to enable symmetric encryption of the Evidence between the IoT de-
vice and the Gateway during the remote attestation, a symmetric key is necessary.
In general, this key could be generated by:

1. the Software Provider and transmitted with the VAM SBOM as described
above, or

2. the Gateway during the Device Registration procedure.

The latter has the clear advantage, that identical IoT devices can receive differ-
ent symmetric keys in order to guarantee authenticity of the encrypted message.
Therefore, this option is chosen for the VAM solution proposed with this thesis.
In both cases, the symmetric key has to be securely stored in a TEE.

An appropriate specification for the appearance of the reference Evidence is
proposed below.

Since the reference Evidence is crucial for appraising the Evidence received
from the IoT device, its creation and receipt has to be trusted as well.

In order to verify the attestation result, the Evidence is compared to its corre-
sponding reference value for every Software Module. If they are equal, the Remote
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Attestation is considered successful and the corresponding Software Module trust-
worthy. If they differ, the Trustworthiness Assessment failed for this Software
Module on this very IoT device. There is no further gradation in between success
and failure. As indicated in Figure 4.1 and described in Section 3, this TA result
is included in the calculation of the Runtime IoT Score proposed above. Based on
this score, the user can be provided with further recommendations for action as
described below.

When discussing trust and trust anchors, the role of the Gateway has to be
taken into consideration as well. As described in Section 4.1, the hardware prop-
erties fulfilled by the Gateway are not as precisely specified as the ones of the con-
strained IoT devices. It is generally assumed that it is less resource-constrained
than the IoT devices. In order to keep the solution proposed by this thesis as
generic as possible, further restrictions should be avoided at this point. However,
if the Gateway is nearly as restricted as the IoT devices, a security architecture
comparable to those described in Section 2.5 may be used to enable a TEE that
contains all components of the proposed VAM solution as they are all crucial for
the Vulnerability Assessment and Management tasks of the Gateway.

If the Gateway has more powerful hardware, there exist security architectures
such as Intel SGX [13] or ARM Trustzone for Cortex-A [44]. However, the focus
of this thesis is placed on assessing the overall security of constrained IoT devices
in a smart home environment and hence, such architectures are omitted here.

In the upcoming section, a specification for the reference Evidence is provided.
Based on this specification, the TA model described above is applied to the three
already discussed security architectures. Then, this Section is concluded with a
discussion of the frequency with which this TA procedure shall be executed.

Reference Evidence

A universal specification for the reference Evidence expected by the Verifier is
necessary to provide support of different security architectures. For Sancus [42],
one of the security architectures described in Section 2.5, such an identity of a
Software Module has been proposed and serves as a basis here.

For better reference, the representation of the Memory layout of the Sancus ar-
chitecture is included here again in Figure 4.9. The Software Module in memory is
separated into its text section and its data section. The layout of the SM consists
of the start and end addresses of both the text section and the data section. The
identity of the SM consists of a hash of the text section and the layout. Thereby,
the resulting identity of two identical Software Modules running in parallel on the
device will have different identities.
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In addition to this identity, there exists a private key KN,SP,SM for this Soft-
ware Module of this Software Provider for this very device. This key is stored in
a protected TEE and can be used for symmetric encryption of the Evidence.

Figure 4.9: Memory layout of the Sancus architecture, taken from [42]

Based on these universal parameters, RA procedures for different security ar-
chitectures can be implemented. The following sections propose RA procedures
for the security architectures described in Section 2.5.

Remote Attestation for ARM’s Trustzone

System on Chips with ARMv8-M architecture with Trustzone provide a secure
and a non-secure world. The secure world is well-isolated from the non-secure
world, but without a Memory Protection Unit (MPU), no further differentiation
of privileged and unprivileged software within the secure world is possible. Since
the MPU is an optional extension, its presence is not assumed here.

To keep the TCB within the secure world small, it shall only contain a Secure
Boot process, the RA service described hereby, and the necessary metadata. Ac-
cordingly, it is assumed that the actual Software Module resides in the non-secure
world. A Secure Boot is necessary to start up the IoT Device in a state where the
secure world can be set up securely before handing control over to the non-secure
world (e.g. to the bootloader of a rich OS in non-secure world [44]). To reduce
complexity, the focus of this work is set to the RA service and details of the Secure
Boot process are omitted here.
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For the Software Module deployed on the IoT Device, the RA service has to be
informed about the SM’s memory layout. It is suggested that this is done during
the Linking of the SM image by the Manufacturer, since the IoT Device’s memory
layout is determined there, and following the assumption that the development
process at the Manufacturer is not compromised.

Later changes on this memory layout are only legal, if the TCB is extended
with a Secure Update process in the secure world. During every update of the
Software Module, the RA service has to be updated as well.

In addition to the SM’s layout, the private key for encryption is required. As
part of the Device Registration procedure, the Gateway chooses a private key and
transmits it to the RA service in the secure world. Mechanisms for securing the
private key during transmission are subject of future work.

Thereby, the secure RA service is able to keep track of the start and end
addresses of the text and data sections of all Software Modules on the device.
Whenever an RA is requested for a Software Module, the RA service computes a
hash of its text section and its layout.

The resulting hash and the nonce are then encrypted using the SM’s private
key and sent back to the Gateway by the RA service.

Remote Attestation for RISC-V Multizone

Implementing Remote Attestation for Multizone requires an extension of the Mul-
tizone nanoKernel. This nanoKernel is responsible for assigning and protecting
the zones for different Software Modules and provides a secure communication
channel (see Figure 2.17). The nanoKernel is the only software component in
Multizone that runs in machine mode and has full access to memory.

During compiling (see Figure 2.18), the zone binaries are arranged and assigned
to memory addresses. Hence, at this point, the layouts of all Software Modules
can be determined and have to be made available to the nanoKernel.

Again, the private key for encryption is required and is supplied by the Gate-
way during Device Registration as described above for ARM’s Trustzone. A secure
Bootloader is already included in the nanoKernel.

In addition to the metadata, the extension of the nanoKernel has to include
the RA service itself. This secure RA procedure is similar to the one described
above for ARM’s Trustzone. Whenever an RA is requested for a Software Module,
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the RA service within the nanoKernel computes a hash of the text section of the
corresponding zone and its layout. The resulting hash and the nonce are then
encrypted using the corresponding private key and sent to the Gateway.

Except for the nanoKernel, no other zone has the permission to access the
other zones’ memory for computing the hash of the text section. In fact, this is
the purpose behind the memory protection. Therefore, it is inevitable to extend
the nanoKernel. Doing so shall not break its qualities of being ”lightweight, for-
mally verifiable, bare metal” [26].

Remote Attestation for Sancus

With Sancus [42], Noorman et al. propose a security architecture that inherently
provides an RA service. It is based on the identity and KN,SP,SM described in
Section 4.3.2, but since RA is considered in the processor architecture by design,
it differs significantly from typical implementations. The RA procedure provided
with the Sancus processor architecture is described as follows.

Both the identity and the KN,SP,SM are stored in a protected memory area
that is inaccessible directly from software, and can only implicitly be used by dedi-
cated processor instructions. Additionally, KN,SP,SM is derived from the Software
Module’s identity and since it is stored in protected memory and this protec-
tion is trusted, it only has to be computed once. This key is then used program
counter-dependent: If the program counter resides in the text section of Soft-
ware Module SMn, cryptographic processor instructions will automatically use
the corresponding KN,SP,SMn for encryption and decryption. Additionally, these
instructions can only be invoked if the memory protection of this Software Module
has been enabled. ”It follows that only a well-isolated SM installed on behalf of SP
on [node] N can compute cryptographic primitives with KN,SP,SM , and this is the
basis for implementing both remote attestation and secure communication.” [42]

To provide Remote Attestation, the Software Module only has to encrypt any
message (e.g. the nonce) implicitly with its KN,SP,SM and the Receiving Party
”will have high assurance that it has been produced by SM since, as mentioned
above, only SM is able to use this key.” [42] Since after the memory protection has
been enabled, this SM is considered to be well-isolated, and since the encryption
key can only be used by a SM with enabled memory protection, only the encryp-
tion key of the received Evidence has to be verified.

For this RA procedure, the isolation and memory protection mechanisms of the
underlying security architecture have to be completely trusted. If an additional
security layer on top of this hardware Root of Trust is requested, an additional
layer with extended permission similar to the nanoKernel in Multizone is required.
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This would require extensive changes to the Sancus security architecture and is
considered out of scope here.

Frequency-based Trustworthiness Assessment

Let the time interval at which the proposed Trustworthiness Assessment proce-
dure is performed be configurable by the choice of frequency freqTA. To the best
of our knowledge, a structured study of a reasonable choice for this frequency has
not yet been conducted. It shall not be selected lightheadedly, because it occu-
pies resources on the constrained IoT Device: it requires computation; potentially
including expensive cryptographic functions, and potentially including switches
between TEEs (depending on the underlying security architecture and the imple-
mentation).

On the other hand, if an attacker has been able to gain access to the memory
assigned to a Software Module, this may have severe consequences. Hence, it is
desirable to become aware of this security breach as soon as possible.

It might be argued that a Software Module residing in a TEE does not re-
quire Remote Attestation at all. This can only be true, if it can be unmistakenly
guaranteed that the underlying security architecture providing this TEE is error
free and works completely as intended. However, these are developed by humans
and errors occur. Therefore, performing Trustworthiness Assessment on a regular
basis serves as an additional layer of security.

However, the sweet spot between occupying the constrained IoT Device too
much, and not being able to react to successful attacks fast enough, still has to be
studied.

Depending on the so configured frequency, the TA procedure described in Sec-
tion 4.3.2 is performed accordingly for every connected IoT Device. Thereby, this
TA procedure enables Continuous Monitoring, and provides the necessary foun-
dation for the computation of the Runtime IoT Score described in Section 3 and
its representation as Security Label to the user as described in Section 4.4.

4.4 Security Score Computation

As described in detail in Section 3, the Vulnerability Assessment (VA) and Trust-
worthiness Assessment (TA) procedures defined above lay the foundation for the
computation of the proposed runtime security score. It is assumed that their latest
results per Software Module per IoT Device are stored in a database.
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For this VAM solution, the total number of points is set to 100.

As mentioned in Section 3, a failed TA for one or more Software Modules de-
ployed on the device under consideration always results in the maximum possible
security score immediately, hence, 100 in the case of this VAM solution. Further
aspects of the score computation can be skipped in that case.

Since the NIST NVD is used for retrieving the CVE record during VA (see Sec-
tion 4.3.1), the CVSS base score and the base severity can be directly extracted
from the query result at the fields ”baseScore” and ”baseSeverity”. Therefore, the
vulnerabilities present in the device under consideration can be counted and clas-
sified into the four severity levels: LOW , MEDIUM , HIGH, and CRITICAL.
The points are then assigned with respect to the weighting suggested in Section 3.

In order to keep the security score up-to-date, its computation has to be trig-
gered with the following events:

• if the CVE entries in the device database change

• if the latest TA result changes

As discussed in Section 3.4, this score is then mapped to a traffic light color
and displayed to the user based on the following mapping:

• GREEN : for a score from 0% to 33%

• Y ELLOW : for a score from 33.1% to 66%

• RED: for a score from 66.1% to 100%

4.5 Vulnerability Management

As mentioned before, the mere Vulnerability Assessment is extended with man-
agement functionality in order to provide a holistic Vulnerability Assessment and
Management (VAM) solution. This includes an individual risk assessment on a
per-device-basis and warnings, resp. recommendations for action for the user. The
latter is based on the security score computation described above and the individ-
ually configured relevance level of the device under consideration (see Section 3.3).

In order to enable this consideration of a relevance level, it has to be config-
ured during the device registration procedure. Hence, the procedure presented in
Section 4.2.2 has to be extended accordingly. Therefore, at the beginning of the
state new dev.update db, a user input is provided for choosing a relevance level of



92 4. Vulnerability Management Solution for IoT

either LOW or HIGH for this IoT device. This configuration is then stored
in the database as well.

Scoring Result
Relevance Level

LOW HIGH

GREEN no action no action

Y ELLOW no action send informa-
tive warning

RED send informative warning send recom-
mendation
for shutting
down this
IoT Device

Table 4.2: Decision matrix for the warning/recommended action in dependence of
the scoring result and the IoT device’s relevance level

The decision matrix for sending warnings, resp. recommendations for action
to the user is provided with Table 4.2. If the security scoring result is GREEN ,
hence, the device is less likely to possess severe vulnerabilities and all deployed
Software Modules are considered to be trustworthy, no action is required indepen-
dent of the configured relevance level.

If the security scoring result is Y ELLOW , hence, the device is more likely to
possess a medium number of vulnerabilities with a medium level of severity on
average, and all deployed Software Modules are considered to be trustworthy, the
system’s reaction depends on the configured relevance level. If it is set to LOW ,
no action is required. If it is set to HIGH, an informative warning is issued.

If the security scoring result is RED, hence, the device is very likely to possess
a larger number of more severe vulnerabilities, and/or at least one of the deployed
Software Modules is not considered to be trustworthy anymore, the system’s re-
action depends on the configured relevance level again. If it is set to LOW , an
informative warning is issued. If it is set to HIGH, a recommendation for shutting
down this IoT Device immediately is issued.

In both cases, the informative warning includes the security report that is also
provided with the Gateway Application. The method of transfer depends on the
configuration of the VAM solution. It could be a push message on a mobile device
or an email with normal priority to the user’s email address.

The method of transfer for the recommendation for shutting down this IoT
Device immediately depends on the configuration of the VAM solution as well. It
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could be a push message with high priority on a mobile device or an email with
high priority to the user’s email address.

Since this proposal is the first attempt for combining a security score with a
level of individual relevance, it is kept fairly simple. Effects of a alternative differ-
entiations of relevance levels have to be investigated in future work.

4.6 Conclusion

To conclude, the Runtime Security Index for IoT devices described in Chapter 3
has been extended with a process for retrieving software inventory information,
a precise specification for a standardized SBOM file format that can be used in
a network with heterogeneous IoT devices, and an architectural concept for a
complete Vulnerability Management Solution for the IoT. Those are further main
contributions of this thesis and have been presented in detail, starting with the
system model definition and the Device and Software Module Management.

Continuous Monitoring functionality then provides the information necessary
for the computation of the Runtime Security Index and has been described in
detail as well. Its main building blocks are the Vulnerability Assessment proce-
dure and the Trustworthiness Assessment procedure. Thereby, a concept for the
effective interaction of the proposed Vulnerability Assessment and Management
solution with the constrained IoT device, its Manufacturer, and a CVE database
that includes all relevant specifications and descriptions of interfaces has been pro-
posed.

In order to provide the user with the security state of the smart home system
at runtime, a precise specification for the calculation of a novel online IoT security
score has been presented in detail, that represents a significant enhancement of
existing pre-purchase IoT security indices and brings together several branches of
research. The actual computation procedure of the Runtime Security Index for
IoT devices at runtime has been described and followed by the description of fur-
ther risk assessment on Vulnerability Management.

The contributions of this chapter led to a concept of a holistic Vulnerability
Assessment and Management (VAM) solution for the smart home IoT domain. It
includes a numerical runtime security score that provides insight into the security
state of connected constrained devices with a Trusted Execution Environment.
This runtime security score computation has been embedded in a comprehensive
system architecture that specifies all necessary interfaces between the system com-
ponents. The effective and functional interaction of all relevant system components
is demonstrated in a Proof of Concept implementation described in Chapter 5.
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Chapter 5

Proof of Concept
Implementation

Based on the related work discussed in Chapter 2, a system architecture for a Vul-
nerability Assessment and Management solution has been presented in Chapter 4.
In order to show the general feasibility and functionality of the proposed approach,
a Proof of Concept (PoC) implementation has been realized and is presented in
the following sections.

As explained above, System-on-Chips (SoC) with Hardware Root of Trust
functionality that enables Trusted Execution Environments are a relatively new
development. Therefore, there are not many development boards available for
research purposes. For the processor architectures discussed in Section 2.5, e.g.
the following development boards are published (the following list may not be
exhaustive):

• ARMv8-M with Trustzone:

– STMicroelectronics NUCLEO board L552ZE-Q

– Microchip SAM L11 Cortex-M23

• RISC-V with Physical Memory Protection (PMP):

– SiFive HiFive1 Rev B board

– Digilent Arty A7 FPGA

• Sancus:

– Xula 2 Stickit! Board V4.0 (unavailable)

Depending on the number of available platforms and on the size of the research
community, the amount of open source software for these development boards is

95
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rather limited and most often, only provides basic support and limited documen-
tation. Starting points can be the FreeRTOS port [1], or the STM32CubeL5 MCU
Firmware Package [56] for the ARMv8-M architecture with Trustzone, the Multi-
zone SDK for RISC-V architectures [25] or the Sancus TEE Project for the Sancus
architecture [53]. Due to improvable documentation, dependence on certain IDEs
(e.g. STM32CubeIDE for STMicroelectronics boards, Keil Microcontroller De-
velopment Kit (MDK) for Microchip boards), constraints on the availability of
development boards, and other unexpected challenges, the entry barrier for pro-
ducing high quality software is quite high.

Hence, a Proof of Concept (PoC) implementation employing mock-ups to cover
secondary parts of the system shows all relevant aspects and is sufficient to show
the feasibility and functional capability of the architectural concept. The focus
of this PoC implementation is to show the correct interaction of the connected
components that collect all information necessary to provide a proper assessment
of the overall security state and present it to the user. These essential features
remain the same with the actual implementation of firmware for actual develop-
ment platforms. Since this is rather an engineering task, where technical problems
of compilers, undocumented platforms, fast changes of hardware, etc. have to be
solved, it does not provide a fundamental gain in scientific knowledge. It can be
expected that this situation relaxes in the future when a common ground is found
for such hardware architectures, so that these platforms overcome the state of
”bleeding edge”, gain stability, and receive a proper documentation that is tested
by large communities developing firmware, operating systems and applications for
them.

In the following sections, the relevant aspects of this PoC implementation are
described, both for the gateway application and for the constrained device mock-
up. In Section 5.1, the general setup is described. Thereupon, Section 5.2 describes
the implementation of the Device and Software Module Management procedure
as it has been defined in Section 4.2.

The implementation of the Continuous Monitoring procedures that have been
defined in Section 4.3 and that can be divided into Vulnerability Assessment and
Trustworthiness Assessment is described in Section 5.3.

The collected security-relevant information is then merged into the Runtime
Security Score that has been defined in Chapter 3 and whose computation proce-
dure has been described in Section 4.4. Its PoC implementation is shown below
in Section 5.4.

Last, the implementation of the Vulnerability Management features that have
been defined in Section 4.5 is described in Section 5.5.
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5.1 General Setup

5.1.1 Gateway Application

As described in the System Model Definition in Section 4.1, the gateway is the
dedicated control unit in the underlying system model of this PoC implementa-
tion. It provides a simple Graphical User Interface (GUI), performs the device
and Software Module management described in Section 4.2, computes the secu-
rity score proposed in Chapter 3, performs the continuous monitoring discussed
in Section 4.3, and the Vulnerability Management described in Section 4.5.

Figure 5.1: Example for the overview of all connected devices in the gateway
application

The gateway application for this PoC implementation is realized as web-based
application using the Python Flask web application framework in version 2.1 [64]
running on a general purpose machine. Flask is a very suitable choice for this use
case of a PoC implementation as it enables a quick and easy prototype implemen-
tation. It is based on the Web Server Gateway Interface (WSGI) [69].

In development mode, the Flask framework runs a webserver at localhost at
port 5000. Hence, it provides a GUI that is accessible with any browser application
and shows an overview of all connected devices (see Figure 5.1). This overview
includes a device identifier, its Software Module version, its serial number, and its
IP address. A more detailed security report can be accessed and the result of the
last security score is represented as a traffic light icon. As described in Section 4.1,
all details concerning user-centered design decisions are considered out of scope
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for this thesis and the traffic light icon proposed in this PoC implementation may
be replaced with another user-friendly representation of the underlying security
score with neglectable effort.

5.1.2 Constrained Device Mock-Up

In order to show the general feasibility and functionality of the proposed approach,
a mock-up for constrained IoT devices with Hardware Root of Trust functionality
that enables Trusted Execution Environments has been implemented. Thereby,
the proposed PoC implementation abstracts away the network connection. As
explained in the requirements for the proposed device registration procedure in
Section 4.2.2, actual hardware development boards that are available for research
purposes most often do not provide a large variety of communication interfaces
anyway. Therefore, the network connection is neglectable at this time. Hence,
the device mock-up runs on the same general purpose machine as the gateway
application.

The proposed device mock-up is realized as a plain Python script, indepen-
dent of Flask or any other web application framework. The device identification
information, that would normally be assigned by the Manufacturer and stored in
a secure memory region on the IoT device, and the well-defined gateway port and
device port are set using a configuration (config) file for now.

5.2 Device and Software Module Management

5.2.1 Gateway Application

Concerning the device and Software Module management, a scan for new de-
vices can be initiated as user interaction by clicking on the corresponding link
and on ”Start Scan” (see Figure 5.2), which puts the gateway from idle mode to
waiting. With starting the scan, a background task is started that handles the
device registration procedure described in Section 4.2.2 and proceeds as follows:
In the task, a UDP-socket is opened and bound to a well-defined gateway port,
e.g. 12345. All incoming messages are then subjected to a pattern matching for
the regular expression r"^HELLO;.*;.*;.*;.*$". If such a message is received,
the gateway changes its state to new dev and the message is parsed and the prod-
uct ID PID, the software binary version version, the serial number serial and
the url to the Manufacturer’s webserver that provides the software inventory in-
formation CreatorWebsite are temporarily stored in a database with all devices
found during the scanning process. All scanned devices are then displayed to the
user and available for adding (see Figure 5.3).
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Figure 5.2: Initial appearance of the route /devices/scan before starting the device
registration process

Figure 5.3: List of all devices found in the scanning process during the device
registration process

After the user has chosen a device for adding it, the gateway changes to
new dev.sbom req state and a background task is started that sends a http-GET -
request to the CreatorWebsite-URL. Upon receiving the VAM SBOM file from
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the Manufacturer, the gateway changes to new dev.sbom ok state and performs
basic sanity-checks. At this point, the PoC implementation is prepared for fur-
ther security measures to be implemented in the future, e.g. encryption and/or
certificates. When the file analysis succeeds, the gateway changes its state to
new dev.update db, parses the file, and stores it into a persistent device database.

Finally, the gateway sends a OK;{id}-message with a device ID assigned by
the gateway back to the device using another well-defined device port, e.g. 5020.
Thereby, the device registration procedure at the gateway is complete.

5.2.2 Constrained Device Mock-Up

Since the device mock-up keeps sending its broadcast message until it receives the
OK from the gateway, two separate threads are utilized for the different tasks.
Initially, the device is in unregistered state. Due to a console-based user input,
the device changes to find gw state and starts broadcasting. For the actual IoT
device, the search for a reachable gateway could e.g. be initiated due to the user
pressing a dedicated pairing button on the IoT device.
The HELLO;{pid};{version};{serial};{sbom_url}-message is sent over a UDP-
broadcast-socket to the well-defined gateway port of the gateway application on
the same localhost every 5 seconds.

In parallel, the second thread listens on another UDP-socket on the well-defined
device port. All received messages are then subjected to a pattern matching for the
regular expression r"^OK;\d+$". If such a message is received, the device changes
to registered state, the thread is terminated, and it joins the main application
thread. This event is used to stop the broadcasting thread as well. As explained
in Section 4.2.2, the actual IoT device could now start performing tasks that are
related to its purpose as smart home IoT device.

5.3 Continuous Monitoring

The continuous monitoring functionality includes both Vulnerability Assessment
and Trustworthiness Assessment as main building blocks, whose PoC implemen-
tations are described in detail in the following paragraphs.

5.3.1 Vulnerability Assessment

Gateway Application

As presented in Section 4.3.1, the Vulnerability Assessment process is divided into
the search for new CVE IDs that are associated with any of the Software Modules
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deployed on connected constrained devices and the retrieval of the corresponding
CVE records from a CVE database. Thereby, the search for new CVE IDs de-
pends on the configurable frequency freqnewCV E that is valid for all connected
constrained devices.

The default value for the configurable frequency freqnewCV E is daily.

For the first case described in Section 4.3.1, the VAM SBOM format is ex-
tended with a V ulnerabilityInformationDownloadLocation field in the Package
Information-area. Hence, the file parsing during the device registration procedure
described in Section 5.2.1 is extended accordingly and the URL is stored in the
persistent local device database of the gateway.

For the second case, the IoT device has to provide a dedicated interface for re-
trieving the V ulnerabilityInformationDownloadLocation during the device reg-
istration procedure. Therefore, the device registration procedure described in Sec-
tion 5.2.1 remains unchanged until the gateway would normally send the OK;{id}-
message back to the device. Instead, the gateway changes to vulninf locator req
state and sends a REQUEST V ULNINF LOCATOR-message with the pay-
load REQ_VULNINF_LOCATOR to the IoT device using the UDP-socket described
above. Upon receiving the device’s response, the gateway responses with the OK-
message of the original device registration process as described above, changes
to vulninf locator rec state and stores the URL in its persistent local device
database.

The PoC implementation of the gateway application proposed with this thesis
supports both cases.

A background task is in charge of periodically requesting the Vulnerability
Information for all connected devices in a loop. Therefore, the gateway changes
to vulninf req state every 1

freqnewCV E
s, iterates through all local device database

entries, and sends http-GET -requests to the corresponding
V ulnerabilityInformationDownloadLocation-URLs . Upon receiving the Vul-
nerability Information, the gateway changes to vulninf rec state and performs
basic sanity-checks. At this point, the PoC implementation is prepared for fur-
ther security measures to be implemented in the future, e.g. encryption and/or
certificates. When the file analysis succeeds, the gateway changes its state to
new dev.update db, parses the received string with a pattern matching for the
regular expression r"^(CVE-\d{4}-\d{4,};)+$", stores it into the persistent de-
vice database, and continues with the next device. Thereby, the search for new
CVE IDs at the gateway is complete.

For retrieving the CVE records for all CVE IDs stored in the gateway’s device
database, another background task is used that periodically sends requests to the
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API provided for the National Vulnerability Database by the U.S. National Insti-
tute of Standards and Technology [38]. Therefore, the gateway changes to cve req
state and sends http-GET -requests to the webserver provided by NIST at the ad-
dress https://services.nvd.nist.gov/rest/json/cve/1.0/[CVE_ID] for ev-
ery CVE ID stored in the database. Upon receiving the corresponding CVE record
in json format, the Gateway changes to cve rec state, parses the file, and updates
its local databases accordingly. Afterwards, it changes to idle state.

In addition to the periodical procedure described above, the search and re-
trieval process is also triggered exclusively for the affected Software Modules when-
ever the internal database of all deployed Software Modules is changed (e.g. be-
cause a new IoT device is registered at the gateway). Combining this exception
with the periodical procedure, both the search for new CVE IDs and the retrieval
of the corresponding CVE records from a CVE database at the gateway are com-
plete. This results in a device database with vulnerability information that is as
actual as the frequency freqnewCV E allows it.

Constrained Device Mock-Up

The first case for the search for new CVE IDs does not require any changes on
the device implementation. Both the Gateway Application and the Manufacturer
webserver commit to the extension of the VAM SBOM format and exchange the
relevant URL without involving the constrained device whatsoever.

The second case requires the constrained device to provide an interface for
requesting the V ulnerabilityInformationDownloadLocation during the device
registration procedure. As described in Section 5.2.2, a dedicated thread is used
to listen on another UDP-socket on the well-defined device port. All received
messages are then subjected to a pattern matching for the regular expression
r"^REQ_VULNINF_LOCATOR$". If such a message is received, the device changes
to reply vulninf locator state, the thread is terminated, and it joins the main
application thread. This event is used to stop the broadcasting thread as well.

In the main application thread, the http://[CreatorWebsite]/

[pathToVulnerabilityInformation]/[PID]-[UUID]-[version]-message is sent
over a newly opened UDP-socket to the well-defined gateway port of the gateway
application. The handling of the OK-message as last message of the device regis-
tration process remains unchanged.

The PoC implementation of the constrained device mock-up proposed with
this thesis supports both cases.
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The retrieval process of the corresponding CVE records from a CVE database
does not involve the constrained device and therefore does not require any changes
whatsoever.

5.3.2 Trustworthiness Assessment

Gateway Application

As presented in Section 4.3.2, Remote Attestation is chosen for assessing the trust-
worthiness of the Software Modules deployed on connected constrained devices.
The Trustworthiness Assessment procedure depends on the configurable frequency
freqTA that is valid for all connected constrained devices.

The default value for the configurable frequency freqTA is daily.

In order to provide the Gateway with the reference Evidence that is necessary
to verify the Evidence received from the constrained device as described in Sec-
tion 4.3.2, it is necessary to extend the device registration procedure accordingly.
As described in Section 5.2.1, a background task is responsible for the commu-
nication with the Manufacturer webservice. With this extension, the Gateway
application does not only expect to receive the VAM SBOM file, but also the
reference Evidence in form of a hash of the Claims. Upon receiving both, the
Gateway changes to new dev.sbom ok state. When the VAM SBOM file handling
succeeds, the Gateway changes its state to new dev.update db, and stores both
the VAM SBOM file and the reference Evidence into a persistent device database.

Then, the Gateway sends an extended OK;{id};{symmetricKey}-message with
the device ID and the symmetric key assigned by the gateway back to the device
using the well-defined device port. Thereby, the device registration procedure with
the extension towards Trustworthiness Assessment at the gateway is complete.

A background task is in charge of periodically requesting the current Evidence
for all connected devices in a loop. Therefore, the Gateway changes to tareq
state every 1

freqTA
s, iterates through all local device database entries, establishes

a TCP-connection with the corresponding device, and sends a REQUEST TA-
message with the payload REQ_TA;{nonce} to the IoT device. Upon receiving the
encrypted Evidence and nonce, the gateway changes to new evidence.evidence ok
state, decrypts the message using the symmetric key of this device, and com-
pares the received Evidence to the reference Evidence and the received nonce with
the one sent. When this verification succeeds, the Gateway changes its state to
new evidence.update db, and updates the database entry for the last TA for the
corresponding device with a timestamp. Then, it continues with the next device.
Thereby, the periodical Trustworthiness Assessment procedure at the gateway is
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complete. This results in a device database with trustworthiness information that
is as actual as the frequency freqTA allows it.

Constrained Device Mock-Up

The extension of the device registration procedure concerning the retrieval of the
reference Evidence does not require any changes on the device implementation.
Both the Gateway Application and the Manufacturer webserver commit to the
extension of the VAM SBOM format and exchange the relevant reference Evi-
dence in form of a hash of the Claims without involving the constrained device
whatsoever.

Concerning the OK-message that the device receives in the final step of the
device registration procedure, the pattern matching for the regular expression is
changed to r"^OK;\d+;.*$" and the symmetric key for the encryption of future
Evidences is stored in persistent memory.

For the periodical Trustworthiness Assessment procedure, the constrained de-
vice receives the REQUEST TA-message with the nonce via the TCP-connection
and changes its state to collect claims. For the purpose of this PoC implemen-
tation, both a trustworthy and a not trustworthy constrained device mock-up are
implemented.

For the trustworthy constrained device mock-up, the reference Evidence is
manually deployed on the constrained device. For the not trustworthy constrained
device mock-up, a deviating Evidence is deployed.

For composing the response message to the Gateway, the device changes to
compute evidence state, the Evidence stored on the device is encrypted together
with the received nonce and sent back to the Gateway via the TCP-connection.
Afterwards, the device changes to idle state.
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5.4 Security Score Computation

5.4.1 Gateway Application

As presented in Section 4.4, the Vulnerability Assessment (VA) and Trustworthi-
ness Assessment (TA) procedures implemented above lay the foundation for the
computation of the proposed runtime security score. In order to keep the secu-
rity score up-to-date, its computation has to be triggered with the following events:

• if the CVE entries in the device database change

• if the latest TA result changes

During the security score computation in another background task, the Gate-
way application iterates through all local device database entries, looks up the lat-
est results of the Vulnerability Assessment and the Trustworthiness Assessment,
and computes the score as follows. If the latest result of the Trustworthiness
Assessment is ”false”, the security score is immediately set to 100 and the com-
putation procedure breaks.

Otherwise, the stored CVE records are iterated and the occurrences of the
CVSS ”baseSeverity” levels LOW , MEDIUM , HIGH, and CRITICAL are
counted. Based on the number of vulnerabilities found, the security score is incre-
mented with the indicated points as described in Section 3.1:

• Critical

– 11 or more critical vulnerabilities (42 points)

– 6-10 (38 points)

– 1-5 (33 points)

• High

– 11 or more highly severe vulnerabilities (29 points)

– 6-10 (25 points)

– 1-5 (21 points)

• Medium

– 11 or more medium severe vulnerabilities (17 points)

– 6-10 (13 points)

– 1-5 (8 points)
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• Low

– 11 or more low severe vulnerabilities (12 points)

– 6-10 (8 points)

– 1-5 (4 points)

As described in Section 3.4, the resulting score is then stored in the device
database, mapped to a traffic light color, and displayed to the user based on the
following mapping:

• GREEN : for a score from 0 to 33

• Y ELLOW : for a score from 33.1 to 66

• RED: for a score from 66.1 to 100

Thereby, the computation of the security score at the gateway is complete.
This results in a device database with up-to-date security information.

5.4.2 Constrained Device Mock-Up

The computation of the security score does not require any changes on the device
implementation, since it exclusively takes place at the Gateway.

5.5 Vulnerability Management

5.5.1 Gateway Application

As described in Section 4.5, the mere Vulnerability Assessment described above
is extended with the Vulnerability Management aspects of individual risk assess-
ment on a per-device basis and warnings, resp. recommendations for action for
the user. The former is based on a relevance level that is individually configured
during the device registration procedure of that very device. Therefore, the device
registration procedure implemented above has to be extended as follows.

At the beginning of the state new dev.update db at the Gateway, a selection
form is displayed to the user. Depending on the user’s choice, the relevance level of
that device is either set to LOW or HIGH and stored in the local device database.

Then, the background task that performs the security score computation de-
scribed in Section 5.4.1 is extended as follows. After the computation of the
security score is complete and has been mapped to the traffic light color, the
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decision matrix presented in Table 4.2 in Section 4.5 is implemented. The ”infor-
mative warning” is displayed as highlighted text box in the device overview view
shown in Figure 5.1 with the warning text that ”The security state of this device
is {Y ELLOW |RED}! More details on possible vulnerabilities can be found in
the security report.”

The ”recommendation for shutting down this device immediately” is displayed
to the user as pop-up window and includes the following warning text: ”The
security state of the highly relevant device with device ID {id} is RED. It is rec-
ommended to shut this device down immediately, until the possibility for severe
security breaches has been investigated. More details on possible vulnerabilities
can be found in the security report. Contact the device Manufacturer for infor-
mation on software updates that solve the security issues.”

Thereby, the Vulnerability Management of the VAM solution at the gateway
is complete.

5.5.2 Constrained Device Mock-Up

The computation of the security score does not require any changes on the device
implementation, since it exclusively takes place at the Gateway.

5.6 Conclusion

Based on the related work discussed in Chapter 2 and the system architecture for
a Vulnerability Assessment and Management solution presented in Chapter 4, a
Proof of Concept (PoC) implementation, that shows the general feasibility and
functionality of the proposed approach, has been realized and presented. It con-
sists of the actual implementation of a Gateway application and a mock-up of a
constrained IoT device that provides the following features:

• the initial device registration with transmission of an SBOM in accordance
with the proposed SBOM file specification

• an online Vulnerability Assessment for all registered Software Modules with
periodic checks for new disclosed vulnerabilities and updated vulnerability
information

• an online Trustworthiness Assessment of all registered Software Modules in
order to assess the modules’ integrity

• an online computation of the aforementioned security score for constrained
IoT devices
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• an online Vulnerability Management for all registered Software Modules with
individual risk assessment on a per-device level and warnings and recom-
mended user actions derived therefrom

• a basic webbrowser-based Graphical User Interface (GUI) that presents an
overview of all connected devices, their security scores, a more detailed se-
curity report, and allows access to individual per-device risk assessment

With the contributions of this chapter, the effective and functional interaction
of all relevant system components has been shown.



Chapter 6

Evaluation

The contributions of this thesis led to a concept of a holistic Vulnerability As-
sessment and Management (VAM) solution for the smart home IoT domain. It
includes a numerical runtime security score that provides insight into the security
state of connected constrained devices with a Trusted Execution Environment.
This runtime security score computation was embedded in a comprehensive sys-
tem architecture that specifies all necessary interfaces between the system compo-
nents. The effective and functional interaction of all relevant system components
has been shown in a Proof of Concept implementation.

With these contributions, this thesis represents the first step into a new re-
search direction by combining findings from several research areas to a novel ap-
proach. This required the thorough analysis of the related research fields in Chap-
ter 2 that laid the foundation for following design decisions.

Before the numerical runtime security score was proposed in Chapter 3, there
existed scoring systems for the IoT domain based on the Common Vulnerability
Scoring System and on experts’ manual assessments of device characteristics, e.g.
its update process, open ports, its susceptibility for replay attacks, etc. However,
the identification of these device characteristics can hardly be automated and does
not prove suitable for a computation at runtime. Most often, this manual assess-
ment requires to disrupt the device’s normal operation. Additionally, to the best
of our knowledge, there exists no approach for an IoT scoring system that takes
Trustworthiness Assessment into account at all. Therefore, the runtime security
score proposed with this thesis provides a concise overview of the overall system
health at a glance during operation. It incorporates both database-based Vulner-
ability Assessment and Trustworthiness Assessment based on remote attestation
and targets constrained devices in the IoT domain. This represents a novel ap-
proach and an important scientific advance in this field of research.

109
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One of the main building blocks for Vulnerability Assessment and Trustworthi-
ness Assessment is a concept for a standardized description of the software inven-
tory in order to reliably discriminate a certain Software Module with designated
version number and components. Based on the proposed VAM SBOM format, a
standardized device registration procedure with SBOM retrieval is proposed. It
only requires an existing communication interface between the gateway and the
IoT device, the existence of a Manufacturer as entity responsible for providing the
VAM SBOM file and the existence of a product ID and a serial number, an URL
to the Manufacturer webservice assigned by the Manufacturer and stored on the
device. For the IoT device to implement the specified interface to the gateway, it
only has to be capable of sending a broadcast message with the device identifica-
tion information and the SBOM URL to the gateway at a well-defined gateway
port and of receiving a response at a well-defined device port.

Depending on the rate of the broadcasting messages, the communication proto-
col for the basic device registration procedure requires at least 2 messages between
the Gateway and the constrained IoT device. Hence, this thesis proposes a feasible
approach with preliminaries that can be met by any constrained IoT device.

Besides being suitable for constrained IoT devices, another advantageous fea-
ture of the proposed VAM solution is that it is fully automated. Opposed to
approaches where the SBOM URL is e.g. in the device documentation or within
a QR code on the packaging, the proposed SBOM retrieval mechanism does not
require any such user interaction.

The scalability of the proposed device registration procedure solely depends
on the scalability of the Gateway, following the assumption that the Manufac-
turer webservice can handle an amount of requests that exceeds the number of
smart home IoT devices in a local network by far. It is not probable that the user
performs the device registration procedure in parallel for a large number of con-
strained IoT devices. But even if so, a larger number of constrained IoT devices
in the system does not affect the individual device at all, except for the additional
time the Gateway may need to process all device registrations. This may result in
a larger time span in which the device keeps sending its broadcasting messages.
However, this should not be significant over the total battery life.

The main building block for Vulnerability Assessment and Trustworthiness
Assessment that links software to a vulnerability database is a model for parti-
tioning all software on the device into Software Modules. Existing specifications
for such software inventory information have been analysed and a precise specifi-
cation based on the SPDX format for a standardized SBOM format that can be
used in a network with heterogeneous IoT devices was proposed. This Vulner-
ability Assessment and Management Software Bill of Material (VAM SBOM) is
suitable for constrained IoT devices that are not capable of sending their SBOM
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file themselves. Excluding licensing information, it requires only 14 mandatory
fields to precisely and unambiguously describe and identify Software Modules. In
the initial version presented here, it only requires a flat text file, which enables a
simple parsing process. It is compliant with the SPDX specification in version 2.2
and with the SBOM retrieval mechanism proposed by the IETF.

The Vulnerability Assessment and Management (VAM) solution proposed in
this thesis does not implement an interface for retrieving the SBOM file directly
from the device. Hence, the SBOM file size is not crucial and a more concise
representation not absolutely necessary. Instead, it complies with the scope of the
IETF Internet-Draft for SBOM retrieval in so far as the VAM solution serves as
network-layer management system retrieving an SBOM from an IoT device that
may not be capable of transmitting the SBOM file directly.

Without the software inventory information being included in a Gateway ap-
plication for a smart home IoT network, the information what software in which
version is running on which constrained IoT device is not easily available for an
inexperienced user. Such information may be available in the device manual or
online, but most often requires an amount of research that is unreasonable for an
inexperienced user. Therefore, including it in the security report as proposed with
this thesis makes it far more easily accessible and easier to survey.

Periodical Vulnerability Assessment based on a CVE database is a major
part of the Continuous Monitoring functionality proposed with the VAM solu-
tion. Without such database-based Vulnerability Assessment, neither undisclosed
nor disclosed vulnerabilities can be identified systematically. With the Vulnera-
bility Assessment approach proposed in this thesis, disclosed vulnerabilities that
possess a corresponding CVE record can be assessed easily.

The number of messages between the Gateway and the constrained IoT de-
vice that the communication protocol for the Vulnerability Assessment procedure
requires, depends on the implementation of the interface for retrieving the down-
load location for the Vulnerability Information as specified in Section 4.3.1. If the
V ulnerabilityInformationDownloadLocation can be found as additional field in
the VAM SBOM, the whole Vulnerability Assessment does not require any addi-
tional messages between the Gateway and the constrained IoT device: the VAM
SBOM is retrieved during the device registration, the V ulnerabilityInformation
DownloadLocation is stored in the local Gateway database and the further search
for new CVE IDs and the retrieval of the corresponding CVE records only involves
the Manufacturer webserver and the NIST webserver.

If on the other hand, the IoT device has to provide a dedicated interface to
transmit the V ulnerabilityInformationDownloadLocation to the Gateway, the
device registration process has to be adjusted accordingly, introducing 3 additional
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messages between the Gateway and the constrained IoT device. As argued above,
the system’s scalability depends on the scalability of the Gateway.

Periodical Trustworthiness Assessment based on remote attestation is another
major part of the Continuous Monitoring functionality proposed with the VAM
solution. Without such Trustworthiness Assessment, unintended, hence, malicious
modifications of software running in a Trusted Execution Environment cannot be
identified systematically. Moreover, including it into a holistic approach as pro-
posed by this thesis enables the user to assess such information easily.

The communication protocol for the proposed Trustworthiness Assessment pro-
cedure requires only 2 messages between the Gateway and the constrained IoT
device. Hence, this thesis proposes a feasible approach with preliminaries that can
be met by any constrained IoT device. As argued above, the system’s scalability
solely depends on the scalability of the Gateway: The individual TA requests do
not affect those of other devices.

The specification and periodical computation of the Runtime Security Score
as proposed with this thesis represents a novel combination of Vulnerability As-
sessment and Trustworthiness Assessment. Thereby, an inexperienced user has
easy access to important security information in a concise fashion: the user is
not only able to identify which software on what device possesses which disclosed
vulnerability, but also to ensure that all software running in Trusted Execution
Environments on the constrained IoT device has not been compromised.

As stated by the Google Open Source Security Team in [36], ”generating an
SBOM is only one half of the story. Once an SBOM is available for a given
piece of software, it needs to be mapped onto a list of known vulnerabilities to
know which components could pose a threat. By connecting these two sources of
information, consumers will know not just what’s in their software, but also its
risks and whether they need to remediate any issues.” This linking of software
to a vulnerability database is extended with Trustworthiness Assessment, so that
consumers will know at runtime whether their software is still trustworthy and
uncompromised. This is a very valuable scientific advance.

Additionally, the numerical representation of the security score allows for an
adjustment to any total number of points. Thereby, it can be adapted to different
use cases and requirements and is prepared for future surveys on the impact of
different numerical representations to the user. As proposed with the general cut-
offs, a representation with letters, that is comparable to the EU energy labels for
electrical devices, can also be implemented easily, as well as a mapping to traffic
lights, that is comparable to food Nutrition facts labels. This provides versatile
possibilities for customization to meet user needs.
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The security score computation solely takes place at the Gateway and does
not require any message exchange with the constrained IoT device. Therefore, the
system’s scalability only depends on the scalability of the Gateway.

The Vulnerability Management procedure proposed with this thesis includes
individual risk assessment that is based on a user-driven per-device relevance level.
Without such individual risk assessment, it would not be possible to differentiate
more important constrained IoT devices and adjust their management accordingly.
By introducing different relevance levels, the user can receive more fine-grained
warnings and recommendations.

The individual risk assessment solely takes place at the Gateway and does not
require any message exchange with the constrained IoT device. Therefore, the
system’s scalability only depends on the scalability of the Gateway.

In the IoT domain, heterogeneous devices from different manufacturers are of-
ten operated in the same network and require interoperability. This can only be
achieved when all components agree upon standardized interfaces. The modular
and extensible Vulnerability Assessment and Management solution proposed in
this thesis requires standardization for a shared SBOM format and for the com-
munication interfaces between the IoT device and the gateway, and the gateway
and the manufacturer webserver. Complying to these standards can set incentives
for device manufacturers when the thereby achieved insight into the security state
of the connected devices during runtime positively affects the consumers’ buying
decision. An analysis of the effects on the consumer is planned for future work.

Among the contributions of this thesis is a Proof of Concept implementation
of the proposed system architecture that shows the effective and functional in-
teraction of all relevant system components. The modularity and extendability
of the proposed concept is also reflected in the PoC implementation, where all
interfaces of relevant components are well-defined. Hence, this PoC implementa-
tion serves very well as reference implementation for future research developments.
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This PoC implementation employs mock-ups to cover secondary parts of the
system and is strictly oriented to the interfaces and communication protocols spec-
ified in Section 4. Thereby, it proves the underlying concept and system architec-
ture. Hence, the availability of actual implementations for development platforms
does not provide a fundamental gain in scientific knowledge. Nevertheless, the
modularity and well-defined interfaces allow for exchanging the mock-up imple-
mentation with actual firmware implementation as soon as it becomes available.

Providing a Graphical User Interface in form of a web application for the Gate-
way application as proposed with this thesis is a convenient choice. It enables a
browser-based representation that is platform-independent and provides extensive
design possibilities.

To conclude, the contributions proposed with this thesis represent an important
scientific advance in the research fields of Vulnerability Assessment, Vulnerability
Management, and IoT Security Scoring Systems. This includes a novel approach
for a Runtime Security Score for the IoT domain that combines Vulnerability As-
sessment with Trustworthiness Assessment that is embedded in an architectural
concept of a comprehensive Vulnerability Assessment and Management solution
with well-defined interfaces. The correct and effective interoperability of all rele-
vant components has been shown in a modular and extensible PoC implementa-
tion.



Chapter 7

Conclusion and Outlook

With the contributions of this thesis, I propose the concept of a software system
architecture for networked constrained IoT devices, that can provide the user with
a profound insight into the security state of the connected devices during runtime.
I achieve this by combining findings from several areas of ongoing research.

Chapter 2 presented a thorough investigation and detailed presentation of these
research areas and laid the necessary foundation for all further conceptual deci-
sions. The initial ideas for this thesis have been motivated by the pre-purchase
consumer security labels discussed in Section 2.1 and refined by the Vulnerabil-
ity Assessment and Vulnerability Management approaches presented in Section 2.3
and the IoT security scores discussed in Section 2.4. However, to conclude the find-
ings: pre-purchase consumer security labels do not provide security information
during operation of devices. Solutions for Vulnerability Assessment and Vulnera-
bility Management do not cover constrained IoT devices. And IoT security scores
most often lack automation capabilities and do not take Trustworthiness Assess-
ment into account. Therefore, the novel combination of these research areas has
been identified as very valuable contribution to the state of current research.

Database-based Vulnerability Assessment requires a common understanding
of the partitioning of software into Software Modules and an unambiguous iden-
tification of them. Hence, the current state of research in the field of Software
Inventory Information was presented in Section 2.2.

Trustworthiness Assessment requires a concept of trust that can be provided by
Trusted Execution Environments based on Hardware Root of Trust architectures,
which have therefore been presented in Section 2.5. The actual Trustworthiness
Assessment can then be realized by Remote Attestation, that has been discussed
in Section 2.6.
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Chapter 3 provided the specification of a novel Runtime Security Score that
combines the findings from available IoT security scores with the possibilities of-
fered by Hardware Root of Trust security architectures and Trustworthiness As-
sessment through Remote Attestation. Therefore, it serves as the basis for the
concept of a holistic Vulnerability Assessment and Management solution that is
another major contribution of this thesis.

This Runtime Security Score is a novel approach that enables the ongoing as-
sessment of the security state of a smart home network. However, this thesis is
the first to set a foot into this new research direction. Therefore, it opens up a
new field of research opportunities that can be covered in the upcoming years. In
Figure 7.1, a concise presentation of the identified research opportunities is given.

Figure 7.1: Graphical representation of the identified research opportunities con-
cerning the underlying IoT Scoring System

As outlined in Section 2.4, there exist critics of the Common Vulnerability
Scoring System, that is the most widely used scoring system for vulnerabilities with
enormous practical relevance and therefore served as the underlying vulnerability
scoring system for the proposed Runtime Security Score. Despite its practical
relevance, it is not formally justifiable. However, there exist only preliminary
approaches for formally justifiable Scoring Systems targeting the IoT domain. As



117

soon as a candidate has prevailed there, the proposed Runtime Security Score
can be extended accordingly.

The existing, though formally not justifiable Runtime Security Score incorpo-
rates the CVSS as proposed by Alrawi et al. Further research can be done towards
the incorporation of device-specific characteristics apart from disclosed vulnerabil-
ities, that also contribute to its vulnerability: how does it implement the internet
pairing process? Does it force the user to perform an individual device configu-
ration? Does it provide an automatic upgrade process? It shall be investigated
how such characteristics can be included in an automated score computation that
requires as little standardization as possible.

Subsequent surveys shall be conducted concerning the identification of the most
preferable representation of such a security score to the consumer and concerning
alternative differentiations of relevance levels during the individual risk assessment.

In Chapter 4, the ideas of this Runtime Security Score have been transferred
to an actual software system architecture for a holistic Vulnerability Management
Solution for constrained IoT devices. The underlying system model definition
that incorporates the modular components and entities of the concept and whose
well-defined interfaces provide interchangeability and extensibility of the compo-
nents was presented in Section 4.1. Figure 7.2 presents the research opportunities
identified for this system model.

Figure 7.2: Graphical representation of the identified research opportunities con-
cerning the System Model Definition

In the context of this thesis, the underlying system model requires exactly one
Gateway and implements the Vulnerability Assessment and Management solution
as application for this Gateway. With moderate effort, this can be extended to-
wards systems with multiple interconnected Gateways and towards a cloud-based
application. Identifying the most preferable user-friendly Graphical User Interface
is another identified research opportunity in the field of human-centered comput-
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ing.

Both Vulnerability Assessment and Trustworthiness Assessment require a con-
cept for software inventory information and a corresponding format. The SPDX-
compliant VAM SBOM format has been specified in Section 4.2.1. Figure 7.3
presents the research opportunities identified for the proposed software inventory
information format.

Figure 7.3: Graphical representation of the identified research opportunities con-
cerning the Software Inventory Information Format

In the context of this thesis, the software inventory information is not stored
directly on the constrained IoT device, but is provided by the Manufacturer in-
stead. Among the candidates, the SPDX format has been identified as the most
suitable and has therefore been incorporated in the concept with its representa-
tion as flat text file. The PackageDownloadLocation-field has been chosen to
contain the URL to the Manufacturer webserver for SBOM retrieval. With mod-
erate effort, the architecture can be extended towards support of version control
systems for SBOM retrieval and alternative file format such as JSON and YAML.
In addition to the SPDX-compliant VAM SBOM format, support of alternative
SBOM specifications such as SWID and CoSWID can be incorporated with mod-
erate effort as well. The latter is characterized by a very lightweight footprint
and would therefore support the extension of the SBOM retrieval process towards
SBOM information that are stored directly on the IoT device.

This SBOM retrieval process is covered in the Device and Software Module
Management process that has been described in Section 4.2.2. Figure 7.4 presents
the corresponding identified research opportunities.
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Figure 7.4: Graphical representation of the identified research opportunities con-
cerning the Device and Software Module Management

In the context of this thesis, the number of supported Software Modules per
IoT device was limited to one Software Module that is bundled up by the Man-
ufacturer. This is a common case in the IoT domain. However, the proposed
concept will gain generality when being extended towards the support of several
Software Modules per IoT device that can be provided by independent Software
Providers.

In order to retrieve the VAM SBOM file, the corresponding webserver URL has
to be transmitted to the Gateway. In the context of this thesis, this is effectively
solved by broadcasting the URL from the IoT device during the device registration
process. However, the proposed concept will gain generality when being extended
towards the support of the URL being transmitted within a Manufacturer Usage
Description file.

The actual Vulnerability Assessment process incorporated in the VAM solution
has been described in detail in Section 4.3.1. Figure 7.5 presents the corresponding
identified research opportunities.
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Figure 7.5: Graphical representation of the identified research opportunities con-
cerning the Vulnerability Assessment procedure

In addition to software inventory information, a suitable vulnerability infor-
mation file format is required as well in order to specify the interface between
Manufacturer and Gateway application. In the context of this thesis, the file for-
mat for the transmission of such vulnerability information is supported as plain
text file and can be extended towards alternative file formats such as JSON.

In the context of this thesis, the Vulnerability Assessment process supports
databases for CVE records. Since the CVE system serves as de-facto standard
for the description and identification of disclosed vulnerabilities, this is a reason-
able limitation. However, the proposed concept will gain generality when being
extended towards the support of alternative vulnerability databases such as the
Open Source Vulnerability Database.

As identified in Section 4.3.2, additional opportunities for user interaction can
serve as valuable extension of the proposed concept in order to better cover the
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needs of more experienced users.

The actual Trustworthiness Assessment process incorporated in the VAM so-
lution has been described in detail in Section 4.3.2. Figure 7.6 presents the corre-
sponding identified research opportunities.

Figure 7.6: Graphical representation of the identified research opportunities con-
cerning the Trustworthiness Assessment procedure

In the context of this thesis, the Trustworthiness Assessment process supports
one Software Module per IoT device. An extension towards larger number of Soft-
ware Modules per device requires an extension of the underlying Trustworthiness
Assessment process as well: the Remote Attestation Service will have to collect
and transmit the Claims of several Software Modules and the Verifier will have to
collect the Reference Evidences of multiple Software Modules from different inde-
pendent Software Providers, just to name a few. This is not a trivial extension of
the concept, but feasible.

In the context of this thesis, the symmetric key is exchanged during the device
registration process using a potentially insecure channel. It may be more beneficial
to e.g. ship the IoT device with a private key. Further research shall be conducted
here.

Concerning the frequency with which Trustworthiness Assessment is to be per-
formed, a survey on the most appropriate choice shall be conducted as well.
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Figure 7.7: Graphical representation of the identified research opportunities con-
cerning the Reference Implementation
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In addition to the specification of the system architecture, Chapter 5 provided
a detailed description of a Proof of Concept (PoC) implementation that showed
the feasibility and functionality of the proposed approach and the cooperating
components. Figure 7.7 presents the corresponding identified engineering oppor-
tunities.

In the context of this thesis, a mock-up implementation of the constrained IoT
device is provided. In order to prove the feasibility and correct cooperation of all
relevant components, this is a feasible limitation. As outlined in Section 5, the
essential characteristics of the concept remain the same with the actual implemen-
tation of firmware for actual development platforms. However, this is rather an
engineering task, where technical problems of compilers, undocumented platforms,
fast changes of hardware, etc. have to be solved. Therefore, it does not provide a
fundamental gain in scientific knowledge. For the near future, this situation is ex-
pected to relax. As soon as architectures such as the discussed platforms become
standard hardware, actual firmware implementations shall be incorporated in the
reference implementation.

Concerning the implementation of the Gateway application, the target ma-
chine in the context of this thesis has been a general purpose Linux machine. This
is a feasible limitation, since Gateways in smart home systems often provide the
computational power and memory of a general purpose machine. However, the
proposed concept will gain generality when being extended towards the support
of more constrained target machines here, e.g. a Raspberry Pi.

In order to further improve the reference implementation, security measures
to guarantee the authenticity and integrity of both the VAM SBOM file and the
Vulnerability Information file can be put in place with moderate effort.

In the context of this thesis, the reference implementation includes informa-
tive user warnings as browser pop-up messages, depending on the individual risk
assessment and per-device relevance level assigned by the user. In order to further
improve the reference implementation, further channels for the transmission of
such messages, e.g. e-mails or push messages, can be put in place with moderate
effort.

In the context of this thesis, common tasks of operating a smart home IoT
device, e.g. the pairing of the device with the gateway or the performance of ac-
tual tasks that are related to the device’s purpose as smart home IoT device, are
excluded, as they do not provide a contribution to the state of research. However,
they may improve the suitability of the reference implementation for demonstra-
tion or teaching purposes and can be put in place with moderate effort.
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In Chapter 6, this thesis was concluded with a qualitative evaluation of the pro-
posed software system architecture and the reference implementation. The added
value of this concept with regard to the resulting overhead has been discussed here.

To conclude, with the contributions of this thesis, the concept of a software
system architecture for networked constrained IoT devices was proposed, that can
provide the user with a profound insight into the security state of the connected
IoT devices during runtime.
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Appendix A

Summary in German (Zusammenfassung)

Die Popularität und Verbreitung von Geräten des Internets der Dinge (engl. In-
ternet of Things, IoT) nimmt ständig zu. Sie haben Einzug in unser tägliches
Leben gehalten und verwandeln unsere Wohnumgebung zunehmend in ein intelli-
gentes Zuhause. Die meisten dieser eingeschränkten Geräte verfügen jedoch nicht
über genügend Rechenleistung, Speicher und Akkulaufzeit, um Sicherheitsfunk-
tionen zu implementieren, die für allgemeine Personal Computer üblich sind. Mit
der zunehmenden Zahl der vernetzten IoT-Geräte für Verbraucher steigen daher
auch deren Angriffsfläche und Schwachstellen.

Die vorliegende Arbeit widmet sich diesem Sicherheitsproblem, indem sie einen
neuartigen Ansatz für einen Runtime IoT Security Score vorstellt, der dem uner-
fahrenen Benutzer eines Smart-Home-Systems einen tiefen Einblick in den Sicher-
heitszustand der angeschlossenen IoT-Geräte zur Laufzeit gibt. Dies wird durch
die Kombination von Vulnerability Assessment mit einer Bewertung der Ver-
trauenswürdigkeit der angeschlossenen Geräte erreicht. Dies stellt einen neuar-
tigen Ansatz darf und leistet damit einen sehr wertvollen Beitrag zum aktuellen
Stand der Forschung.

Neben dem Runtime Security Score wird als weiterer wichtiger Beitrag dieser
Arbeit ein ganzheitliches Konzept für eine Vulnerability Assessment and Manage-
ment (VAM) Lösung vorgeschlagen. Die effektive und funktionale Interoperabilität
aller relevanten Komponenten, die in diesem Konzept spezifiziert sind, wird mit
einer Proof of Concept Implementierung gezeigt.
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Appendix B

Listing 1: XML Schema Design for the CVE List available for download[61]

<?xml version ="1.0" encoding ="UTF -8"?>

<xsd:schema xmlns:xsd="http :// www.w3.org /2001/ XMLSchema"

xmlns="http ://cve.mitre.org/cve/downloads /1.0"

targetNamespace="http ://cve.mitre.org/cve/downloads /1.0"

elementFormDefault="qualified" attributeFormDefault="unqualified"

↪→ version="1.0">

<!-- *********************************************************** -->

<!-- Changelog:

1.0 - Initial version

-->

<!-- *********************************************************** -->

<xsd:annotation >

<xsd:documentation xml:lang="en"> Simple schema that defines the

↪→ format of the CVE List

provided by MITRE </xsd:documentation >

</xsd:annotation >

<!-- *********************************************************** -->

<!-- Start Item Element Definition -->

<!-- *********************************************************** -->

<xsd:element name="cve">

<xsd:annotation >

<xsd:documentation xml:lang="en"> cve is the top level element

↪→ of the CVE List provided

by MITRE. It represents holds all CVE Items. </xsd:

↪→ documentation >

</xsd:annotation >

<xsd:complexType >

<xsd:sequence >

<xsd:element name="item" type="ItemType" minOccurs="1"

↪→ maxOccurs="unbounded"/>

</xsd:sequence >

<xsd:attribute name="schemaVersion" type="xsd:token" use="

↪→ optional"/>

</xsd:complexType >

</xsd:element >

<!-- *********************************************************** -->

<!-- Simple Types -->

<!-- *********************************************************** -->

<!-- CUSTOM TYPE DEFINITIONS -->

<xsd:simpleType name="typeEnumType">

<xsd:restriction base="xsd:token">

<xsd:enumeration value="CAN"/>

<xsd:enumeration value="CVE"/>
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</xsd:restriction >

</xsd:simpleType >

<xsd:simpleType name="statusEnumType">

<xsd:restriction base="xsd:token">

<xsd:enumeration value="Entry"/>

<xsd:enumeration value="Candidate"/>

</xsd:restriction >

</xsd:simpleType >

<!-- need to verify enumeration -->

<xsd:simpleType name="simplePhaseEnumType">

<xsd:restriction base="xsd:token">

<xsd:enumeration value="Proposed"/>

<xsd:enumeration value="Interim"/>

<xsd:enumeration value="Modified"/>

<xsd:enumeration value="Assigned"/>

</xsd:restriction >

</xsd:simpleType >

<!-- *********************************************************** -->

<!-- Complex Types -->

<!-- *********************************************************** -->

<xsd:complexType name="ItemType">

<xsd:sequence >

<xsd:element name="status" type="statusEnumType" minOccurs="1"

↪→ maxOccurs="1"/>

<xsd:element name="phase" type="specificPhaseType" minOccurs="0"

↪→ maxOccurs="1"/>

<xsd:element name="desc" type="xsd:string" minOccurs="1"

↪→ maxOccurs="1"/>

<xsd:element name="refs" type="refsType" minOccurs="1" maxOccurs

↪→ ="1"/>

<xsd:element name="votes" type="votesType" minOccurs="0"

↪→ maxOccurs="1"/>

<xsd:element name="comments" type="commentsType" minOccurs="0"

↪→ maxOccurs="1"/>

</xsd:sequence >

<!--Need to Verify Enumeration -->

<xsd:attribute name="type" type="typeEnumType" use="required"/>

<xsd:attribute name="name" type="xsd:token" use="required"/>

<xsd:attribute name="seq" type="xsd:token" use="required"/>

</xsd:complexType >

<xsd:complexType name="commentsType">

<xsd:sequence >

<xsd:element name="comment" minOccurs="0" maxOccurs="unbounded">

<xsd:complexType >

<xsd:simpleContent >

<xsd:extension base="xsd:string">

<xsd:attribute name="voter" type="xsd:token" use

↪→ ="required"/>

</xsd:extension >

</xsd:simpleContent >

</xsd:complexType >

</xsd:element >

</xsd:sequence >

</xsd:complexType >

<xsd:complexType name="votesType">

<xsd:sequence >

<xsd:element name="accept" minOccurs="0" maxOccurs="1">
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<xsd:complexType >

<xsd:simpleContent >

<xsd:extension base="xsd:string">

<xsd:attribute name="count" type="xsd:token" use

↪→ ="required"/>

</xsd:extension >

</xsd:simpleContent >

</xsd:complexType >

</xsd:element >

<xsd:element name="modify" minOccurs="0" maxOccurs="1">

<xsd:complexType >

<xsd:simpleContent >

<xsd:extension base="xsd:string">

<xsd:attribute name="count" type="xsd:token" use

↪→ ="required"/>

</xsd:extension >

</xsd:simpleContent >

</xsd:complexType >

</xsd:element >

<xsd:element name="noop" minOccurs="0" maxOccurs="1">

<xsd:complexType >

<xsd:simpleContent >

<xsd:extension base="xsd:string">

<xsd:attribute name="count" type="xsd:token" use

↪→ ="required"/>

</xsd:extension >

</xsd:simpleContent >

</xsd:complexType >

</xsd:element >

<xsd:element name="recast" minOccurs="0" maxOccurs="1">

<xsd:complexType >

<xsd:simpleContent >

<xsd:extension base="xsd:string">

<xsd:attribute name="count" type="xsd:token" use

↪→ ="required"/>

</xsd:extension >

</xsd:simpleContent >

</xsd:complexType >

</xsd:element >

<xsd:element name="reject" minOccurs="0" maxOccurs="1">

<xsd:complexType >

<xsd:simpleContent >

<xsd:extension base="xsd:string">

<xsd:attribute name="count" type="xsd:token" use

↪→ ="required"/>

</xsd:extension >

</xsd:simpleContent >

</xsd:complexType >

</xsd:element >

<xsd:element name="reviewing" minOccurs="0" maxOccurs="1">

<xsd:complexType >

<xsd:simpleContent >

<xsd:extension base="xsd:string">

<xsd:attribute name="count" type="xsd:token" use

↪→ ="required"/>

</xsd:extension >

</xsd:simpleContent >

</xsd:complexType >

</xsd:element >

<xsd:element name="revote" minOccurs="0" maxOccurs="1">

<xsd:complexType >

<xsd:simpleContent >
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<xsd:extension base="xsd:string">

<xsd:attribute name="count" type="xsd:token" use

↪→ ="required"/>

</xsd:extension >

</xsd:simpleContent >

</xsd:complexType >

</xsd:element >

</xsd:sequence >

</xsd:complexType >

<xsd:complexType name="specificPhaseType">

<xsd:simpleContent >

<xsd:extension base="simplePhaseEnumType">

<xsd:attribute name="date" type="xsd:token" use="optional"/>

</xsd:extension >

</xsd:simpleContent >

</xsd:complexType >

<xsd:complexType name="refsType">

<xsd:annotation >

<xsd:documentation >holds all hyperlink elements </xsd:

↪→ documentation >

</xsd:annotation >

<xsd:sequence >

<xsd:element name="ref" type="refType" minOccurs="0" maxOccurs="

↪→ unbounded"/>

</xsd:sequence >

</xsd:complexType >

<xsd:complexType name="refType">

<xsd:annotation >

<xsd:documentation >Holds individual hyperlink element </xsd:

↪→ documentation >

</xsd:annotation >

<xsd:simpleContent >

<xsd:extension base="xsd:string">

<xsd:attribute name="source" type="xsd:token" use="required"

↪→ />

<xsd:attribute name="url" type="xsd:anyURI" use="optional"/>

</xsd:extension >

</xsd:simpleContent >

</xsd:complexType >

</xsd:schema >
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Listing 2: An example for a minimal XML file for the SWID tag specification
described in Chapter 2.2, taken from [28]

<?xml version =~"1.0~" encoding =~"utf -8~"?>

<SoftwareIdentity

xmlns =~" http :// standards.iso.org/iso /19770/ -2/2015/ schema.xsd~"+

xmlns:xsi=~" http ://www.w3.org /2001/ XMLSchema -instance ~"

xmlns:ds=~" http ://www.w3.org /2000/09/ xmldsig #~"

xmlns:SHA256 =~" http ://www.w3.org /2001/04/ xmlenc#sha256 ~"

xsi:schemaLocation =~" http :// standards.iso.org/iso /19770/ -2/2015/

↪→ schema.xsd~"

name =~" ACME System Protection~"

        tagId=~"iso -sid -app -acme -endpoint -protection -v12 -1-mp1~"

        version =~"12.1.1~"

        versionScheme =~"multipartnumeric~"

        corpus =~"true~">

<Payload >

<File name=~"EPV12.cab~" size=~"1024000~"

SHA256:hash=~"

↪→ a314fc2dc663ae7a6b6bc6787594057396e6b3f569cd50fd5ddb4d1bbafd2b6a~" />

<File name=~"installer.exe~" size=~"524012~"

SHA256:hash=~"54

↪→ e6c3f569cd50fd5ddb4d1bbafd2b6ac4128c2dc663ae7a6b6bc67875940573~" />

</Payload >

</SoftwareIdentity >
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Appendix D

Listing 3: The mud-sbom augmentation to the MUD YANG model described in
Chapter 2.2, taken from [34]

file "ietf -mud -sbom@2020 -03 -06. yang"

module ietf -mud -sbom {

yang -version 1.1;

namespace "urn:ietf:params:xml:ns:yang:ietf -mud -sbom";

prefix mud -sbom;

import ietf -inet -types {

prefix inet;

}

import ietf -mud {

prefix mud; }

organization

"IETF OPSAWG (Ops Area) Working Group";

contact "WG

     Web: http :// tools.ietf.org/wg/opsawg/

     WG List: opsawg@ietf.org

     Author: Eliot Lear lear@cisco.com ";

description

"This YANG module augments the ietf -mud model to provide for

     reporting of SBOMs.

     Copyright (c) 2019 IETF Trust and the persons identified as

     authors of the code.  All rights reserved.

     Redistribution and use in source and binary forms , with or

     without modification , is permitted pursuant to, and subject to

     the license terms contained in , the Simplified BSD License set

     forth in Section 4.c of the IETF Trusts Legal Provisions

     Relating to IETF Documents

     (https :// trustee.ietf.org/license -info).

   This version of this YANG module is part of RFC XXXX

   (https ://www.rfc -editor.org/info/rfcXXXX); see the RFC itself for

   full legal notices.

   The key words  MUST ,  MUST NOT ,  REQUIRED ,  SHALL ,  SHALL

   NOT ,  SHOULD ,  SHOULD NOT ,  RECOMMENDED ,  NOT RECOMMENDED ,

    MAY , and  OPTIONAL  in this document are to be interpreted as

   described in BCP 14 (RFC 2119) (RFC 8174) when , and only when ,

   they appear in all capitals , as shown here.  ";

revision 2020 -03 -06 {

description

"Initial proposed standard.";

reference

"RFC XXXX: Extension for MUD Reporting";

}

grouping mud -sbom -extension {

description

"SBOM extension grouping";
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list sboms {

key "version -info";

leaf version -info {

type string;

description

"A version string that is applicable for this SBOM list entry.

         The format of this string is left to the device manufacturer.

         How the network administrator determines the version of

         software running on the device is beyond the scope of this

         memo.";

}

choice sbom -type {

case url {

leaf sbom -url {

type inet:uri;

description

"A statically located URI.";

}

}

case local -uri {

leaf -list sbom -local {

type enumeration {

enum coap {

description

"Use COAP schema to retrieve SBOM";

}

enum coaps {

description

"Use COAPS schema to retrieve SBOM";

}

enum http {

description

"Use HTTP schema to retrieve SBOM";

}

enum https {

description

"Use HTTPS schema to retrieve SBOM";

}

}

description

"The choice of sbom -local means that the SBOM resides at

          a location indicated by an indicted scheme for the

          device in question , at well known location

           /.well -known/sbom .  For example , if the MUD file

          indicates that coaps is to be used and the host is

          located at address 10.1.2.3 , the SBOM could be retrieved

          at  coaps ://10.1.2.3/. well -known/sbom .  N.B., coap and

          http schemes are NOT RECOMMENDED.";

} }

case contact -info {

leaf contact -uri {

type inet:uri;

description

"This MUST be either a tel , http , https , or

           mailto uri schema that customers can use to

           contact someone for SBOM information.";

} }

description

"choices for SBOM retrieval.";

}

description

"list of methods to get an SBOM.";
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}

}

augment "/mud:mud" {

description

"Add extension for SBOMs.";

uses mud -sbom -extension;

} }
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