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a b s t r a c t

Given any length k ≥ 3 and density 0 < δ ≤ 1, we introduce and study the set Sz(k, δ) 
consisting of all positive integers n such that every subset of {1, 2, . . . , n} of density at 
least δ contains an arithmetic progression of length k. A famous theorem of Szemerédi 
guarantees that this set is not empty. We show that Sz(k, δ) ∪ {0} is a numerical semigroup 
and we determine it for (k, δ) = (4, 1/2) and for more than thirty pairs (3, δ) with δ > 1/5. 

1. Introduction

Denote N = {0, 1, 2, . . . } and N+ = N \ {0}. Given integers a ≤ b, we denote by [a, b] = {z ∈ Z | a ≤ z ≤ b} the integer
interval they span, and [a, ∞[ = {z ∈ Z | z ≥ a}.

A famous theorem of Szemerédi states that any subset of N+ of positive upper density contains arbitrary long arithmetic
progressions. Informally, an equivalent finitary version states that given any length k ≥ 3, any sufficiently dense subset of a
sufficiently large integer interval contains an arithmetic progression of length k.

Our purpose in this paper is to introduce and study a closely related set Sz(k, δ), parametrized by a desired length k ≥ 3
and density 0 < δ ≤ 1. That set, introduced in Section 2, consists of all positive integers n satisfying Szemerédi’s theorem
relative to k and δ. In Section 3, we prove that Sz(k, δ) ∪ {0} is a numerical semigroup. Section 4 displays value tables of
closely related functions r3(n), r4(n). In the last Section 5, we completely determine Sz(k, δ) for (k, δ) = (4, 1/2) and for
more than thirty pairs (3, δ) with δ > 1/5. Interestingly, in a majority of these examples, it occurs that Sz(k, δ) contains
some integer n but not n + 1. Said otherwise, the conductor of the numerical semigroup Sz(k, δ) ∪ {0} does not necessarily
coincide with itsmultiplicity. The simplest occurrence of this phenomenon is the case Sz(3, 1/3), which contains 50 but not
51; more precisely, the corresponding multiplicity and conductor equal 49 and 55, respectively.

2. The set Sz(k, δ)

Definition 2.1. Given any length k ≥ 3 and density 0 < δ ≤ 1, let Sz(k, δ) denote the set consisting of all n ∈ N+ satisfying
the following property: every subset X ⊆ [1, n] of density |X |/n ≥ δ contains an arithmetic progression of length k.
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That the set Sz(k, δ) is not empty follows from a famous theorem of Szemerédi, stated here in its finitary version [9].

Theorem 2.2 (Szemerédi). Given any integer k ≥ 3 and real number 0 < δ ≤ 1, there exists n(k, δ) ∈ N+ such that for any
integer n ≥ n(k, δ), every subset A ⊆ [1, n] of density |A|/n ≥ δ contains an arithmetic progression of length k.

We shall denoteM(k, δ) = min Sz(k, δ). Observe thatM(k, δ) owes its existence to Szemerédi’s theorem above as already
noted, and that2 if δ ≤ (k − 1)/k, then

M(k, δ) ≥ k + 1

since no proper subset of [1, k] contains an arithmetic progression of length k. As for δ = 1, it is clear that Sz(k, 1) = [k,∞[

for all k ∈ N+.

2.1. The function rk(n)

Closely linked to Szemerédi’s theorem is the function rk(n), defined as the maximal cardinality of a subset A ⊆ [1, n]
containing no arithmetic progression of length k. Indeed, Szemerédi’s theorem is equivalent to the asymptotic bound
rk(n) = o(n). This function can be used to reformulate membership in Sz(k, δ), as follows.

Lemma 2.3. Let k ≥ 3 be an integer and let 0 < δ ≤ 1. Then, for every positive integer n, we have n ∈ Sz(k, δ) if and only if
rk(n)/n < δ.

Proof. Assume n ∈ Sz(k, δ). Let A ⊆ [1, n] be a subset of cardinality rk(n) containing no arithmetic progression of length k.
Then rk(n)/n = |A|/n < δ since n ∈ Sz(k, δ). Conversely, assume rk(n)/n < δ. Let A ⊆ [1, n] be a subset of density |A|/n ≥ δ.
Then |A| ≥ nδ > rk(n). Hence, by definition of rk(n), the subset A contains an arithmetic progression of length k. Therefore
n ∈ Sz(k, δ). □

2.2. Comparison with the van der Waerden numbers

Not much explicit information about M(k, δ) seems to be currently available in the literature. For δ = 1/r with r ∈ N+,
the number M(k, 1/r) is bounded below by the corresponding van der Waerden number W (k, r). Given integers k, r ≥ 2,
recall thatW (k, r) denotes the least integerM such that, for every r-coloring of [1,M], there is a monochromatic arithmetic
progression of length k in [1,M]. To show

M(k, 1/r) ≥ W (k, r), (1)

let N = M(k, 1/r), and consider any r-coloring of [1,N]. Then some color class X ⊆ [1,N] is of density |X |/N ≥ 1/r , and
hence X contains an arithmetic progression of length kwhich is monochromatic by construction. This settles (1), as desired.

The only exactly known van der Waerden numbers at the time of writing are given in the following table. See e.g. [10], a
web page which also displays lower bounds onW (k, r) for many more pairs (k, r).

W (3, 2) = 9 W (3, 3) = 27 W (3, 4) = 76
W (4, 2) = 35 W (4, 3) = 293
W (5, 2) = 178
W (6, 2) = 1132

In subsequent sections, we shall prove that Sz(k, δ)∪{0} is a numerical semigroup and shall determine it for several pairs
(k, δ). We first recall some basic notions regarding numerical semigroups.

3. Sz(k, δ) ∪ {0} as a numerical semigroup

A numerical semigroup is a cofinite submonoid of N. That is, a subset S ⊂ N containing 0, stable under addition and with
finite complement N \ S. Equivalently, it is a subset of N of the form S = ⟨a1, . . . , an⟩ = a1N + · · · + anN for some globally
coprime positive integers a1, . . . , an.

Given a numerical semigroup S ⊆ N, the multiplicity of S is m = min(S \ {0}), its Frobenius number is F = max(Z \ S),
that is its largest gap, and its conductor is c = F + 1 or, equivalently, the smallest integer c such that [c, ∞[ ⊆ S.

If S = ⟨a1, . . . , an⟩ = a1N + · · · + anN with the ai increasing and globally coprime, the multiplicity of S is m = a1. But
determining the Frobenius number of S from the sole generators ai is a notoriously difficult problem for n ≥ 3. See e.g. [2,4].
As for n = 2, Sylvester proved long ago [8] that the Frobenius number of ⟨a1, a2⟩ equals (a1 − 1)(a2 − 1) − 1. See [5,6] for
extensive information on numerical semigroups.

Our objective in this section is to prove that Sz(k, δ) ∪ {0} is a numerical semigroup, using only a weakened version of
Szemerédi’s theorem.

2 Thanks are due to Pierre Catoire, an undergraduate math student in Calais, for pointing out an error in a preliminary version of this statement.



3.1. Stability under addition

Our first task is to prove that Sz(k, δ) is stable under addition. We shall need the following elementary lemma [1].

Lemma 3.1. Let A, E be nonempty finite sets such that A ⊆ E. Denote δ = |A|/|E| the density of A in E. Let E = E1 ⊔ . . . ⊔ Er be
a partition of E into r nonempty parts. Then there exists an index i ≤ r such that |A ∩ Ei|/|Ei| ≥ δ.

Proof. If |A ∩ Ei|/|Ei| < δ for all i, then
∑

i|A ∩ Ei| < δ
∑

i|Ei|. Since
∑

i|A ∩ Ei| = |A| and
∑

i|Ei| = |E|, this implies
|A| < δ|E| = |A|, a contradiction. □

Proposition 3.2. For any integer k ≥ 3 and 0 < δ ≤ 1, the set Sz(k, δ) ∪ {0} is stable under addition.

Proof. Let n1, n2 ∈ Sz(k, δ). Let E = [1, n1 + n2], and consider the partition E = E1 ⊔ E2 with E1 = [1, n1] and
E2 = [n1 + 1, n1 + n2]. Thus |Ei| = ni for i = 1, 2. Let X ⊆ E be of density |X |/(n1 + n2) ≥ δ. We must show that X contains
an arithmetic progression of length k. Let Xi = X ∩ Ei for i = 1, 2. By the above lemma, either |X1|/n1 ≥ δ or |X2|/n2 ≥ δ. It
follows that either X1 or X2 contains an arithmetic progression of length k, whence X also does. Thus n1 + n2 ∈ Sz(k, δ), as
stated. □

3.2. Cofiniteness in N

It directly follows from Szemerédi’s Theorem 2.2 that N \ Sz(k, δ) is finite since it implies that, for some n(k, δ) ∈ N+,
every integer n ≥ n(k, δ) belongs to Sz(k, δ). However, that statement can also be deduced by elementary arguments from
the following weaker version of Szemerédi’s theorem.

Theorem 3.3. Given an integer k ≥ 3 and 0 < δ ≤ 1, there exists a positive integer n = n(k, δ) such that every subset A ⊆ [1, n]
of density |A|/n ≥ δ contains an arithmetic progression of length k.

This version ‘only’ states that Sz(k, δ) is nonempty, and hence that the numberM(k, δ) = min Sz(k, δ) exists, whereas the
original version states thatN \ Sz(k, δ) is finite. As shown here, these statements are equivalent. Indeed, belowwe shall only
use the existence of M(k, 1/r) for k, r ∈ N+ to deduce the cofiniteness of Sz(k, δ) in N in general. That is, we shall deduce
Theorem 2.2 from its weaker version Theorem 3.3.

Let us start by observing that Sz(k, δ) is monotonous in the parameter δ.

Lemma 3.4. Let k ≥ 3 be an integer, and let 0 < δ1 ≤ δ2 ≤ 1. Then Sz(k, δ1) ⊆ Sz(k, δ2).

Proof. Let n ∈ Sz(k, δ1). Every subset of [1, n] of density at least δ2 has density at least δ1, whence contains an arithmetic
sequence of length k. Therefore n ∈ Sz(k, δ2). □

We shall first prove the cofiniteness of Sz(k, δ) when δ = 1/r with r ∈ N+, and shall then use the above lemma for δ

arbitrary. The case δ = 1/r relies upon the following intermediary result.

Proposition 3.5. Let k, r, n be integers with k ≥ 3 and r, n ≥ 2. If n ∈ Sz(k, 1/r) and n ̸≡ 1mod r, then n − 1 ∈ Sz(k, 1/r).

Proof. By Euclidean division by r with remainder in [1, r], there are integers q, t such that n = qr + t with 1 ≤ t ≤ r . We
have t ≥ 2 since n ̸≡ 1mod r . Let X ⊆ [1, n − 1] be any subset of density |X |/(n − 1) ≥ 1/r . We claim that |X |/n ≥ 1/r .
Indeed, we have r|X | ≥ n− 1, whence |X | ≥ q+ (t − 1)/r . But since 2 ≤ t ≤ r , we have 1/r ≤ (t − 1)/r < 1. Since |X | is an
integer, it follows that |X | ≥ q+1, whence r|X | ≥ qr + r ≥ qr + t = n, whence |X |/n ≥ 1/r . Thus X is still of density at least
1/r in [1, n]. It follows that X contains an arithmetic progression of length k. Therefore n − 1 ∈ Sz(k, 1/r), as claimed. □

Corollary 3.6. Let k, r be integers with k ≥ 3 and r ≥ 2. Then M(k, 1/r) ≡ 1mod r.

Proof. Let n = M(k, 1/r) = min Sz(k, 1/r). Since n − 1 ̸∈ Sz(k, 1/r), the above proposition implies n ≡ 1mod r , as
desired. □

Proposition 3.7. For any integers k ≥ 3 and r ≥ 2, the complement N \ Sz(k, 1/r) is finite.

Proof. Set n = M(k, 1/r). Then n ≡ 1mod r as seen above. Moreover, we have 2n ∈ Sz(k, 1/r), and 2n ≡ 2mod r . It follows
that 2n − 1 also belongs to Sz(k, 1/r). Therefore Sz(k, 1/r) contains the numerical semigroup ⟨2n − 1, 2n⟩, and in particular
it contains all integers greater than or equal to the conductor of the latter semigroup, namely (2n − 2)(2n − 1) as given by
the old result of Sylvester recalled above [8]. □



3.3. Completing the proof

Wemay now reach the objective of this section.

Theorem 3.8. For every integer k ≥ 3 and 0 < δ ≤ 1, the set Sz(k, δ) ∪ {0} is a numerical semigroup.

Proof. The stability of Sz(k, δ) under addition is given by Proposition 3.2. It remains to prove that its complement in N is
finite, without invoking the full force of Theorem 2.2. There exists r ∈ N+ such that 1/r ≤ δ. Since Sz(k, 1/r) ⊆ Sz(k, δ) by
Lemma 3.4, and since the complement of Sz(k, 1/r) in N is finite by Proposition 3.7, the same holds for Sz(k, δ). □

We propose to call numerical semigroups of Szemerédi type those numerical semigroups S of the form S = Sz(k, δ) ∪ {0}
for k ≥ 3 and 0 < δ ≤ 1.

3.4. The number C(k, δ)

Recall thatM(k, δ) = min Sz(k, δ). Thus, in the standard terminology of numerical semigroups, the numberM(k, δ) is the
multiplicity of Sz(k, δ) ∪ {0}. We now introduce a notation for the conductor of that numerical semigroup.

Notation 3.9. Let k ≥ 3 and 0 < δ ≤ 1. We shall denote C(k, δ) the conductor of the numerical semigroup Sz(k, δ) ∪ {0}.

We have

M(k, δ) ≤ C(k, δ), (2)

since the multiplicity of any numerical semigroup is smaller than or equal to its conductor. Of course,M(k, 1) = C(k, 1) = k.
Here is yet another consequence of Proposition 3.5, similar in content and proof to Corollary 3.6.

Corollary 3.10. Let k, r be integers with k ≥ 3 and r ≥ 2. Then C(k, 1/r) ≡ 1mod r.

Proof. The conductor n = C(k, 1/r) of Sz(k, 1/r) satisfies n − 1 ̸∈ Sz(k, 1/r). Hence n ≡ 1mod r by Proposition 3.5. □

We shall need the following characterization of the conductor.

Lemma 3.11. Let S be a numerical semigroup with multiplicity m. Then the conductor of S is the smallest integer c ∈ S such that
S contains m consecutive integers starting from c.

Proof. Indeed, if S contains [c, c + m − 1], then by successively adding multiples ofm, it will contain all of [c, ∞[. □

The following statement was suggested by one of the referees.

Corollary 3.12. Let k, r be integers with k ≥ 3 and r ≥ 2. Let M = M(k, 1/r) and C = C(k, 1/r). Then C ≤ (M − 1)2 + 1.

Proof. Denote S = Sz(k, 1/r). By Lemma 3.11, it suffices to show that S contains M consecutive integers starting from
(M − 1)2 + 1, i.e. that[

(M − 1)2 + 1, (M − 1)2 + M
]

⊂ S. (3)

Recall from Proposition 3.5 that if n ∈ S and n ̸≡ 1mod r , then n−1 ∈ S. Hence, if n ∈ S and n ≡ amod r with 1 ≤ a ≤ r−1,
then [n − a + 1, n] ⊂ S. In particular, we haveM ≡ 1mod r by Corollary 3.6.

Let Ji = [iM − i + 1, iM] for any positive integer i ≥ 1. Then card(Ji) = i. We claim that Ji ⊂ S for all i ≥ 1. Indeed, this
holds for i = 1 since J1 = {M}. For i ≥ 2 assume, by induction hypothesis, that the claim holds for i − 1, i.e. that Ji−1 ⊂ S.
Then Ji−1 + M ⊂ S, i.e. [iM − i + 2, iM] ⊂ S. Now, since iM − i + 2 ≡ 2modM , it follows that iM − i + 1 ∈ S. Hence S
contains [iM − i + 1, iM] = Ji, as claimed.

For i = M − 1, the claim yields [(M − 1)2 + 1,M2
−M] ⊂ S. Moreover, since min(Jm) = M2

−M + 1, the claim for i = M
impliesM2

− M + 1 ∈ S. Therefore [(M − 1)2 + 1,M2
− M + 1] ⊂ S, whence (3) holds. □

Note that the conclusion of Corollary 3.12 may not necessarily hold for densities δ other than 1/r with r ≥ 2 an integer.
For instance, with k = 3 and δ = 3/4, we have Sz(3, 3/4) = {3}∪[6, ∞[, so thatM = 3 and C = 6, whence C > (M−1)2+1.

4. Exact values of rk(n)

Exact values of the functions r3(n) and r4(n) defined in Section 2.1 are currently known for n ≤ 187 and n ≤ 112,
respectively. They are partly listed in the two tables below, which were read off from [3] and [7], respectively. In the next
section, we shall use these values, in conjunction with Lemma 2.3, to determine Sz(k, δ) in many instances.



n r3(n) n r3(n) n r3(n) n r3(n)

1 1 26 − 29 11 71 − 73 21 121 31
2 − 3 2 30 − 31 12 74 − 81 22 122 − 136 32
4 3 32 − 35 13 82 − 83 23 137 − 144 33
5 − 8 4 36 − 39 14 84 − 91 24 145 − 149 34
9 − 10 5 40 15 92 − 94 25 150 − 156 35
11 − 12 6 41 − 50 16 95 − 99 26 157 − 162 36
13 7 51 − 53 17 100 − 103 27 163 − 164 37
14 − 19 8 54 − 57 18 104 − 110 28 165 − 168 38
20 − 23 9 58 − 62 19 111 − 113 29 169 − 173 39
24 − 25 10 63 − 70 20 114 − 120 30 174 − 187 40

n r4(n) n r4(n)

53 27 84 − 86 39
54 − 57 28 87 − 90 40
58 − 59 29 91 − 92 41
60 − 63 30 93 − 96 42
64 − 65 31 97 − 98 43
66 − 67 32 99 − 100 44
68 − 69 33 101 − 103 45
70 − 73 34 104 46
74 − 76 35 105 − 106 47
77 − 78 36 107 − 111 48
79 − 81 37 112 49
82 − 83 38

5. Determining Sz(k, δ)

Wenow determine Sz(3, δ) for various values of δ < 1, and Sz(4, 1/2), using Lemma 2.3 and the two tables above. In each
case, we give the multiplicityM(k, δ), the conductor C(k, δ) and the full set Sz(k, δ).

In most cases, the set Sz(3, δ) can be directly read off from the displayed values of r3(n) for n ≤ 187. Yet sometimes, we
need upper bounds on r3(n) for several n > 187. For that, we use the easy and well-known inequality

rk(n + i) ≤ rk(n) + rk(i) (4)

for all k, n, i ≥ 1.
Determining themultiplicityM(k, δ) = min Sz(k, δ) is straightforward from Lemma 2.3 and the tables in Section 4. As for

the conductor C(k, δ), it may be determined using Lemma 3.11. Tables 1 and 2 give Sz(k, δ) for more than 30 pairs (k, δ).
For illustration purposes, we now prove one case in detail.

Proposition 5.1. We have Sz(3, 1/4) = [129,∞[.

Proof. Looking at the values of r3(n) in Section 4, we see that the smallest n ≥ 1 satisfying r3(n) < n/4 is 129. Hence
M(3, 1/4) = 129 by Lemma 2.3. Let us now prove C(3, 1/4) = 129. By Lemma 3.11, is suffices to show that Sz(3, 1/4)

Table 1
The sets Sz(3, δ) for selected values of δ.

(k, δ) M(k, δ) C(k, δ) Sz(k, δ)

(3, 1/2) 17 17 [17, ∞[

(3, 1/3) 49 55 {49, 50, 52, 53} ∪ [55, ∞[

(3, 1/4) 129 129 [129, ∞[

(3, 2/3) 7 7 [7, ∞[

(3, 2/5) 23 33 {23, 28, 29, 31} ∪ [33, ∞[

(3, 2/7) 78 85 [78, 83] ∪ [85, ∞[

(3, 2/9) 181 ? ?

(3, 3/4) 3 6 {3} ∪ [6, ∞[

(3, 3/5) 7 7 [7, ∞[

(3, 3/7) 19 22 {19} ∪ [22, ∞[

(3, 3/8) 35 43 {35, 38, 39} ∪ [43, ∞[

(3, 3/10) 67 67 [67, ∞[

(3, 3/11) 81 96 {81} ∪ [89, 94] ∪ [96, ∞[

(3, 3/13) 144 170? {144, 148, 149} ∪ [152, 168] ∪ [170, 187] ∪ ?



Table 2
More instances of sets Sz(3, δ), and Sz(4, 1/2).

(k, δ) M(k, δ) C(k, δ) Sz(k, δ)

(3, 4/5) 3 6 {3, 4} ∪ [6, ∞[

(3, 4/7) 8 15 [8, 13] ∪ [15, ∞[

(3, 4/9) 19 21 {19} ∪ [21, ∞[

(3, 4/11) 39 45 {39} ∪ [45, ∞[

(3, 4/13) 62 66 {62} ∪ [66, ∞[

(3, 4/15) 91 106 {91, 94, 98, 99, 102, 103} ∪ [106, ∞[

(3, 4/17) 141 141? [141, ∞[ ?

(3, 5/6) 3 3 [3, ∞[

(3, 5/7) 3 6 {3} ∪ [6, ∞[

(3, 5/8) 7 7 [7, ∞[

(3, 5/9) 8 15 {8} ∪ [10, 13] ∪ [15, ∞[

(3, 5/11) 18 18 [18, ∞[

(3, 5/12) 22 27 {22, 23, 25} ∪ [27, ∞[

(3, 5/13) 29 42 {29, 34, 35} ∪ [37, 40] ∪ [42, ∞[

(3, 5/14) 45 45 [45, ∞[

(3, 5/16) 61 65 {61, 62} ∪ [65, ∞[

(3, 5/17) 69 75 {69, 70, 72, 73} ∪ [75, ∞[

(3, 5/18) 80 87 {80, 81, 83} ∪ [87, ∞[

(3, 5/19) 99 115 {99, 103} ∪ [107, 113] ∪ [115, ∞[

(3, 5/21) 135 139? {135, 136} ∪ [139, 200] ∪ ?

(4, 1/2) 57 61 {57, 59} ∪ [61, ∞[

contains the whole of [129, 257], i.e. that

r3(n) < n/4 (5)

for all 129 ≤ n ≤ 257. The relevant table in Section 4 shows that (5) holds for all 129 ≤ n ≤ 187. It remains to see that
187 + i satisfies (5) for all 1 ≤ i ≤ 70. This follows from the inequality rk(n + i) ≤ rk(n) + rk(i) recalled in (4). Indeed, we
have r3(187) = 40, and

r3(187) + r3(i) < (187 + i)/4

for all 1 ≤ i ≤ 70, as checked by scanning the values of r3(i) in this range. More precisely, the smallest difference
(187 + i)/4 − (r3(187) + r3(i)) for 1 ≤ i ≤ 70 comes at i = 41 and equals 228/4 − (40 + 16) = 1. □

5.1. Concluding questions

The present results raise some obvious questions regarding numerical semigroups of Szemerédi type. For instance, all
cases met so far satisfy C(k, δ)/M(k, δ) ≤ 2. Is this true in general? More generally, what is the value of max C(k, δ)/M(k, δ)
as k ≥ 3 and 0 < δ ≤ 1 vary? Is it finite or infinite? If finite, is it attained?
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