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Abstract. It is widely accepted that role-based modelling is quite ade-
quate in the context of multi-agent systems (MAS) modelling techniques.
Unfortunately, very little work has been reported on how to describe
the relationships between several role models. Furthermore, many au-
thors agree on that protocols need to be encapsulated into high-level
abstractions. The synthesis of role models is an operation presented in
the OORAM methodology that allows us to build new role models from
others in order to represent the interrelations they have. To the best of
our knowledge this operation has to be performed manually at protocol
level and works with protocols expressed by means of messages. In this
paper, we present two algorithms to extract the protocol of a role from
the protocol of a role model and vice versa that automate the synthesis
or role models at the protocol level. Furthermore, in order to deal with
protocol descriptions in a top down approach both operations work with
protocols expressed by means of an abstraction call multi-role interaction
(mRI).

1 Introduction

When a large system is modelled, complexity becomes a critical factor that has
to be dealt with properly. In order to tackle complexity G. Booch recommended
several powerful tools such as: Decomposition, Abstraction, and Hierarchy [5].
In addition, these tools were also presented as appropriate for Agent-Oriented
Software Engineering (AOSE) for complex MAS, and were adapted to this field
in [18] as follows:

– Decomposition: It is based on the principle divide and conquer. Its main
advantage is that it helps to limit the designers scope to a portion of the
problem.

– Abstraction: It is based on defining simplified models of the system that
emphasises some details and avoid others. It is interesting since it limits
the designer scope of interest and the attention can be focused on the most
important details.

– Organisation/Hierarchy: It relies on identifying and managing the relation-
ships between the various subsystems in the problem. It makes it possible to



group together various basic components and deal with them as higher-level
units of analysis, and, provides means of describing the high-level relation-
ships between several units.

Unfortunately, we think that these tools have not been carefully applied in the
approaches that are appearing in this field. We have identified several problems
in current methodologies that our approach tries to solve.

On the one hand, there exists a huge semantic gap in MAS protocol descrip-
tion methodologies because most of them first identify which tasks have to be
performed, and then use low level descriptions such as sequences of messages
to detail them. Although these messages may represent a high level view of a
protocol, which shall be refined later, the tasks that are performed are formu-
lated as a set of messages. This representation implies that the abstraction level
falls dramatically since a task requires several messages to be represented. For
instance, an information request between two agents must be represented with
two messages at least (one to ask, and another to reply). This introduces a se-
mantic gap between tasks and their internal design since it is difficult to identify
the tasks represented in a sequence of messages. This representation becomes an
important problem regarding readability and manageability of large MAS and
can be palliated using the abstraction tool presented above.

On the other hand, in AOSE is widely accepted that describing the system
as a set of role models that are mapped onto agents is quite adequate since
it applies the decomposition tool [6,12,21,19,22,23,34]. Unfortunately, we have
failed to find methodologies for MAS that use some interesting ideas about role
modelling presented by Reenskaug and Andersen in the OORAM methodology
[1,27]. Obviously, when we deal with a complex and large systems several role
models may appear, and usually, they are interrelated. The role model synthesis
operation [2], attempts to detail how role models are related, thus applying
the organisation tool. This operation consists of describing new synthesised role
models in terms of others. In a synthesised role model, new roles may appear
and synthesised roles may also appear as aggregation of others. Unfortunately,
OORAM also suffers from the first problem we have shown above since it deals
with behaviour specification in terms of messages.

In this paper, we provide the first step towards the solution of these prob-
lems enumerated above using the tools proposed by Booch: i) In order to apply
the abstraction tool, we have defined an abstraction called multi-role interaction
(mRI) which encapsulates the interaction protocol (hereafter protocol) corre-
sponding to a task that is performed by an arbitrary number of roles. mRIs are
used as first modelling class elements to represent an abstract view of the pro-
tocol of a role model which can be refined with the techniques proposed in [25].
ii) In order to apply the organisational tool, we have also defined two operations
on protocols (described in terms of mRIs) to automate and ease the synthesis
operation since it operates on interaction protocols of a role instead of with the
whole interaction protocol of a role model: the first one, called decomposition,
infers a role protocol from a role model protocol automatically; and the second



one, that we called composition, infers a role model protocol from a set of role
protocols automatically.

This paper is organized as follows: in Section 2, we present the related work
and the advantages of our approach over others; in Section 3, we present the ex-
ample we use; in Section 4, we present the protocol abstraction we have defined;
in Section 5, we show how to describe the protocol of a role model; in Section 6,
we present the algorithms to compose and decompose protocols, and, in Section
7, we present our main conclusions.

2 Related Work

In the context of distributed systems many authors have identified the need
for advanced interaction models and have proposed multi-object interactions
that encapsulates a piece of protocol between several objetcs [24]. Furthermore,
most object-oriented analysis and design methods also recognise the need for
coordinating several objects and provide designers with tools to model such
multi-object collaborations. Different terms are used to refer to them: object
diagrams [4], process models [7], message connections [8], data-flow diagrams
[28], collaboration graphs [32], scenario diagrams [27], collaborations [13,29]. In
MAS methodologies many authors have also proposed abstraction to model co-
ordinated actions such as nested protocols [3], interactions [6] or micro-protocols
[22], and so on. Unfortunately, the abstractions presented above are usually used
to hide unnecessary details at some level of abstraction, reuse the protocol de-
scriptions in new systems, and improve modularity and readability; however,
most designers use message–based descriptions.

We think that most AOSE approaches model protocols at low level of abstrac-
tion since they require the designer to model complex cooperations as message-
based protocols from the beginning. This issue has been identified in the GAIA
Methodology [33], and also in the work of Caire et. al. [6], where the proto-
col description process starts with a high level view based on describing tasks
as complex communication primitives (hereafter interactions). We think that
the ideas presented in both papers are adequate for this kind of systems where
interactions are more important than in object-oriented programming. As the
methodologies GAIA and Caire’s Methodology, we also use interactions (mRIs)
to deal with the first stage of protocol modelling.

In the GAIA methodology, protocols are modelled using abstract textual tem-
plates. Each template represents an interaction or task to be performed between
an arbitrary number of participants. In [6], Caire et al. propose a methodology
in which the first protocol view is a static view of the interactions in a system.
Later, the internals of these interactions are described using AUML [3].

Unfortunately, the operations we propose are difficult to be integrated with
these methodologies. The reason why this happens is that we have found neither
an interaction model for MAS able to describe formally a sequence protocol ab-
stractions, nor operations on these high level protocol definitions. GAIA protocol
descriptions, for example, are based on textual description thus it is difficult to



reason formally on them. In Caire’s methodology, it is not shown how to se-
quence interactions. Although Koning et al. describe the sequence of execution
of their abstraction using a logic-based formulae (CPDL), which consists of an
extension of transition function of Finite State Automata (hereafter FSA), they
do not define operations to operate with protocols. In our approach, we also de-
fine the sequence of mRI by means of Finite State Automaton (FSA) which has
been also used by others authors at message level. We have chosen FSAs because
this technique has been proved to be adequate for representing the behaviour of
reactive agents [11,14,16,22].

Regarding the operations we present to the best of our knowledge the decom-
position operation has not been defined before in this context. This operation
can be useful for reuse, performing synthesis of role models since it operates with
the protocol of a role instead of with the whole protocol and to map several pro-
tocol onto the same agent class. Unfortunately, in OORAM methodology such
operation has to be applied manually to UML sequence diagrams.

The inverse operation, that we call composition, has been already defined by
other authors, but, to the best of our knowledge, they do not use interaction
with an arbitrary number of participants as we do [9,16,30,31]. This operation
can be useful for building new role models reusing already defined role protocols
stored in a behaviour repository, performing tests for adaptive behaviours [16],
deadlock detection or to understand easily the protocol of a new role model [25].
Unfortunately, in OORAM this operation has to be also performed manually.

3 The Example

To illustrate our approach, we present an example in which a MAS delivers
satellite images on a pay per use basis. We have divide the problem into two
role models: one whose goal is obtaining the images (images role model) and the
other for paying them (purchase role model). This decomposition of the problem
allow us to deal with both cases separately.

In the Images role model the user (role Client) has to specify the images
features that he or she needs (resolution, target, format, etcetera). Furthermore,
we need a terrestrial centre (role Buffer) to store the images in a buffer because
the throughput of a satellite (role Satellite) is higher than the average user can
process and we need to analyse images features in order to determine their total
price which is the goal of role Counter.

In the Purchase role model we need to contact the payment system to con-
clude the purchase. It involves three different roles: a customer role (Customer),
a customer account manager role (Customer’s Bank), and a terrestrial centre
account manager role (Buffer’s Bank). When a customer acquires a set of im-
ages he uses his or her debit–card to pay them, the agent playing role Customer
agrees with a Customer’s Bank agent and Buffer’s Bank agent on performing a
sequence of tasks to transfer the money from the customer account to the buffer
account. If the Customer’s Bank cannot afford the purchase because it has not
enough money, the Customer’s Bank agent then pays on hire–purchase.



4 Our Protocol Abstraction: Multi-role Interactions

The description of the protocol of a role model is made by means of mRIs. This
provides an abstract view of the protocol that makes it easier to face the problem
at the first stages of system modelling. Thus, we do not have to take into account
all the messages that are exchanged in a role model in stages where these details
have not been identified clearly.

A multi-role interaction (mRI) is an abstraction that we propose to encap-
sulate a set of messages for an arbitrary number of roles. At conceptual level,
an mRI encapsulates each task that a role model should execute to perform its
goal. These tasks can be inferred in a hierarchical diagram [20] where we can
identify which tasks shall execute each role model.

mRIs are based on the ideas presented in two interaction models for dis-
tributed systems [15,10]. We have made that choice because both models have
a set of formal tools that may be used for MAS systems improving the power of
our approach, this allows, to perform deadlock testing and automatic interaction
refinements [25] or efficient distributed implementations [26]. The definition of
an mRI is:

{(G(β)} & mRI name[r1, r2, . . . , rN ]

Where mRI name is an unified identifier of the interaction and r1, r2, . . . , rN

are the roles that execute the mRI mRI name. β is the set of beliefs of agents
playing the roles implied in the mRI and G(β) is a boolean condition over β.
This guard is partitioned in a set of subconditions, one for each role. G(β) holds
iff the conjunction of all subconditions of each role is true.

The idea behind guarded interactions has been adapted from the interaction
model in which our proposal is based; furthermore, Koning et al. also adopt
a similar idea. It promotes the proactivity of agents as we can see in [10,22]
because agents are able to decide whether executing an mRI or not.

Thus, an mRI x shall be executed if the guard of the mRI holds and all roles
that participate on it are in a state where the x is one of mRIs that can be
executed. Furthermore, all of them must not be executing other mRIs since the
interaction execution is made atomically and each role can execute only one mRI
at the same time. For example, if we consider FSAs in Figure 3 after executing
an mRI sequence that makes the the Satellite to be in state 1, the Buffer in state
4, the Client in state 8 and the Counter in state 11, if all the guards holds, we
can execute Receive, Send or LastSat. In this case LastBuffer cannot be executed
because it requires the Buffer to be in state 5.

Finally, for each interaction we should describe some details that we enumer-
ate roughly below since it is not the purpose of this paper. To describe an mRI
internally, we should include the sequence of messages using AUML. Further-
more, we may use coordination or negotiation patterns from a repository if its
possible (FIPA has define a repository of interaction patterns 1) and an objective
1 http://www.fipa.org/specs/fipa00025/XC00025E.html
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function that determines which of available mRIs shall be better to execute if
several of them can do so at the same moment.

Regarding the example, the description of one of the mRIs of the Images role
model which it is used to ask for images (see Figure 3) is:

{Counter.Connected(Buffer.ID())&Counter.enable()}&
ask[Client, Buffer, Counter]

The rest of the mRIs in the Images role model are: ask, which is used to
ask for images, send, which sends an image from the Satellite to the Buffer,
receive, which sends an image from Buffer to Client, LastSat, which indicates
the last image for transferring from Satellite to Buffer and stores information
about images in a log file, and, LastBuffer, which indicates the last image
for transferring from Buffer to Client and makes the Counter to calculate the
bill. The static relation between these mRIs and the roles that perform them is
represented in the collaboration diagram in Figure 1.

5 Modelling the Protocol of a Role Model

Once the roles and its mRIs have been identified we must describe how to se-
quence them. Thus, the protocol of a role model is defined as the set of sequences
of mRIs execution it may performs. We can use two equivalent representations
to describe the protocol of a role model (see Figure 2):

– Representing the protocol of the role model as a set of FSAs, one for each
role (see Figure 3). Thus, in a role model with N roles we have N FSAs
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Ai where each Ai = (Si, Σi, δi, s
0
i , Fi), where Si is a set of states, Σi is a

vocabulary where each symbol σ ∈ Σi represents an mRI, δi : Si ×Σi → Si

is the transition function that represents an mRI execution, s0
i ∈ Si is a

initial state and Fi ⊆ Si is the set of final states. Thus, the set of words
produced by this set of FSAs is set of possible traces of execution of mRIs.
All this FSAs executes its transitions coordinately as it is shown in Section 4.
Roughly speaking, when an mRI is executed by more than one role we must
perform a transition in all of its participant roles. Each of these transitions
represents the part of the mRIs that each of them performs. Whereby, to
execute an mRI we must transit from one state to another in all the roles
that participate in it.

– Representing the protocol of the role model as a whole using a single FSA
for all the roles (see Figure 4). This FSAs is of the form B = (S, Σ, δ, s0, F )
where S is a set of states that represents one state for each FSA of roles, Σ
is a vocabulary where each symbol σ ∈ Σ represents an mRI, δi : S×Σ → S
is the transition function that represents an mRI execution, s0

i ∈ Si is the
initial state and F ⊆ S is the set of final states. Thus, the set of words
produced by this FSA is set of possible traces of execution of mRIs.

If we are dealing with a new role model, it may be more adequate to use
a single FSA than one for each role since we see the problem in a centralised
manner. The protocol for the Images role model by means of a single FSA is
shown in Figure 4.

Once the protocol of all role models in our system have been described we
can synthesise those role models that are interrelated. In our example, both role
models are interrelated since the images obtained in the Images role model have
to be paid using the Purchase role model.

In order to synthesise role models, we have to identify which roles are related
and we have to merge their protocols to create the new synthesised role model. In
our example, the synthesised role model Purchase-Images role model in Figure
5 is build by creating a new role where the protocol of the Customer and the
Client is merged.
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Thus, we have to know the protocol of both the Customer and the Client in
order to build the new role model. This can be done using the decomposition
operation.

Once we have built the protocol of the Client/Customer role, it is difficult
to infer mentally which shall be the protocol of the new synthesised role model.
Then, we can use the composition operation to infer it. In addition, we can
perform deadlock testing in order to assure the correctness of the new protocol
[25].

6 Composition and Decomposition of Interaction
Protocols

These operations perform a transformation from one representation of protocol
to another. As it is shown in the followings sections, these operations do not
take guards into account. As we have shown above, a guard allows agents to
decide if they want to execute an mRI or not. Thus, guards can make some
execution traces of the protocol impossible. Unfortunately, we cannot determine
this at design time. Even, if we are dealing with adaptive agents these decision



can change at runtime. Thus, in both operations, we work with the set of all
possible traces leaving proactivity as a runtime feature.

6.1 Composition

The composition operation is an algorithm that builds a role model FSA from
a set of FSA of roles obtained from a behaviour repository or from synthesis of
role models.

To represent the role protocol of each role in a role model we use the FSAs
Ai = (Si, Σi, δi, s

0
i , Fi) (i = 1, 2, . . . , N). Thus, the composition algorithm is

defined as a new FSA of the form B = (S, Σ, δ, s0, F ), where:

– S = S1 × . . .× SN ,
– Σ =

⋃n
i=1 Σi,

– δ(a, (s1, . . . , sn)) = (s′
1, . . . , s

′
N ) iff ∀ i ∈ [1..N ] · (a �∈ Σi ∧ si = s′

i) ∨
∨ (a ∈ Σi ∧ δ(a, si) = s′

i),
– s0 = (s0

1, . . . , s
0
N ), and

– F = F1 × . . .× FN .

This algorithm builds the new FSA exploring all the feasible executions of
mRIs. Their states are computed as the cartesian product of all states. Each
state of this FSA is formed by a N -tuple that stores a state of each role. To
execute an mRI, we have to preform it from a tuple-state where the mRI can
be execute to change to a new tuple-state where the states of roles implied in
the mRI shall only change. Thus, for each new tuple-state we check if an mRI
may be executed (all their roles can do it from its corresponding state in the
tuple-state); if so, we add it to the result. Finally, the final state of the role
model FSA is formed of all possible combinations of final states of each Ai and
the initial state is a tuple with the initial state of each Ai.

Intuitively, it is easier to comprehend a protocol if it is described by means
of a single FSA than if we use a set of them. Furthermore, we can perform
deadlock testing on it to assure that the synthesis we have made is deadlock free
and results in what we have thought when we synthesised them. Furthermore,
this representation is easier to understand than several separated FSAs. With
this operation, we can obtain automatically the FSA in Figure 4 that represents
the protocol executed by the FSAs in Figure 3 of Images role model.

6.2 Decomposition

To obtain the protocol of a role we must take into account the mRIs a role execute
only. That is to say, we can take all the possible traces that the FSA of the role
model produces and ignore the mRIs that the role does not execute. For instance,
if we take the a trace (Ask, Receive, Receive, Send, LastSat, Send, LastBuffer)
from the FSA of the Images role model, the trace that the role Satellite executes
is (Receive, Receive, LastSat) since it participates only in mRIs Receive and
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LastSat. If we perform the same operation for all the traces produced by the
FSA of a role model for each of its roles, we can obtain their protocol.

In [17, page 60] it is proved that if we take a regular expression r we can
obtain a new regular expression r′ = h(r) where h is a function that replaces
each occurrence of symbols a in r by another regular expression obtaining r′. If
L(r) is the language accepted by r, it is proved that h(r) = h(L(r)) = r′, that it
is to say, the language accepted by r′ is the same language accepted by applying
h(r) to every word in L(r).

Thus, we can perform the decomposition operation to obtain the FSAof each
role from the FSA of a role model as follows:

– We obtain the regular expression of the FSA of the role model using one
of the algorithms presented in [17]. In our example, it is: Ask · (Send +
Receive)∗ · LastSat · Send∗ · LastBuffer.

– We take the regular expression of each role and we replace the mRISs where
the role do not participate by ε (empty word). For example, the result for
the Client role is: Ask · Send∗ · LastBuffer.

– Finally, we build the FSA corresponding to each regular expression obtained
in the previous step using the algorithms presented in [17].

As we illustrate in Figure 2, we can use this algorithm to obtain the FSAs
showed in Figure 3 from the FSA in Figure 4. If we compose then again, we
obtain the same result.

As we have sketched in Section 5, we can use one of the FSA obtained to build
a new synthesised role where the Customer and the Client are merged generating
the protocol represented in Figure 5. In this Figure the mRI Approval is used
to check if the Customer has enough money to perform the purchase, Transfer
is used to transferring the money from Customer’s Bank to Buffer’s Bank, and
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NextSale prepares the Customer and Client for next purchase. Finally, we can
compose the protocol of both role models in order to improve the readability of
the description or to perform deadlock testing.

7 Conclusions

In this paper, we have presented an approach that puts together several ideas
from different research contexts to ease protocol modelling of large MASs since
our approach provides the tools to decompose, abstract and organise the de-
scriptions.

With this purpose, we have presented two operations to automatically tackle
with protocols. These operations are useful for large MASs since they allow us
to define the interrelation of several role models as a new synthesised role model
without dealing with protocols manually. Furthermore, they ease the reuse of
protocol already defined for other systems.

In our approach, we also propose mRIs for avoiding to determine all the
messages that agents have to interchange in early modelling stages. This allows
us to describe protocols in a layered method since we can describe the tasks that
a role model has to perform at a high level of abstraction to describe each mRI
internally later.
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