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Abstract
DP is the class of problems that are the differences between two languages from NP. Most difficult problems from DP are 
called DP-complete problems, that can be seen as the conjunction of an NP-complete problem and a co-NP-complete prob-
lem. It is easy to see that the problem P vs NP is equivalent to the problem P vs DP, and therefore DP-complete problems 
would be better candidates to attack the conjecture, since they seem to be harder than NP-complete problems. In this paper, 
a methodology to transform an efficient solution of an NP-complete problem into an efficient solution of a DP-complete 
problem is applied. More precisely, a solution to SAT is given by means of a uniform family of recognizer polarizationless 
P systems with active membranes with dissolution rules and division rules for both elementary and non-elementary mem-
branes, and later it is transformed into a solution to the problem SAT-UNSAT.

Keywords Complexity class DP · Membrane computing · Product problem · Satisfiability problem

Mathematics Subject Classifications 68Q07 · 68Q15

1 Introduction

Membrane Computing is a computing paradigm introduced 
by Gh. Păun in 1998 [12]. It gives rise to computing models 
called P systems or membrane systems, that are inspired by 
the behavior and structure of living cells. Some different 
types of P systems exist, the three more popular are: cell-
like membrane systems, having a hierarchical structure of 
membranes; tissue-like membrane systems, where cells are 
connected with other cells and with the environment and 
can interchange objects between them; and neural-like mem-
brane systems, where neurons are connected as in the brain.

One of the most prominent research lines in this frame-
work is computational complexity theory, where different 
classes of P systems are analyzed to know which problems 
can be solved efficiently in them [15]. For this purpose, 

recognizer membrane systems were introduced in [16], being 
systems capable of solving decision problems giving a cer-
tain answer in the last step of the computation. An efficient 
solution to a decision problem is usually given by means of 
an infinite family of P systems in contrast to the solution of 
a problem by means of a unique Turing machine. The differ-
ence between them is that, while in Turing machine, we have 
access to an infinite tape, with P systems, we are allowed to 
access only to a finite number of resources. Therefore, we 
can define a family of P systems � = {�(u) ∣ u ∈ IX} , being 
IX the set of instances of the decision problem X.

Inspired by the concept of uniformity in circuits, a uni-
form family of P systems solving a decision problem X is 
defined as a family � = {�(n) ∣ n ∈ ℕ} . Let (cod, s) be an 
ordered pair of polynomial-time computable functions. We 
say that each P system �(n) solves all the instances u of X 
such that n = s(u) . Function s thus corresponds to the intui-
tive concept of size of the instance, while cod(u) represents 
an encoding of the instance into a multiset of objects, that 
will be present in the input compartment of the P system at 
the initial configuration. The instance u ∈ IX will be pro-
cessed by the P system �(s(u)) with input multiset cod(u), 
denoted by �(s(u)) + cod(u) . The family � is polynomi-
ally bounded, sound and complete with regard to (X, cod, s), 
being cod the polynomial-time computable encoding of the 
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instance (i.e. the input of the system) and s the polynomial-
time computable function that “selects” the P system cor-
responding to the size of the input; that is, the system will 
return yes if and only if �X(u) = 1 , and it will halt in a time 
bounded by a polynomial.

We denote that a problem X can be efficiently solved by a 
uniform family of recognizer membrane systems from R by 
X ∈ ���R . The class ���R is closed under complement 
and under polynomial-time reductions. Let X be a C-com-
plete problem. If X ∈ ���R , then � ∪ �� − � ⊆ ���R . 
For more details, see [15].

A computing model is said to be efficient (respectively, 
presumably efficient) with respect to a computational 
resource if it has the ability to provide solutions that use 
a reasonable (i.e. polynomial) amount of the resource. In 
this work, the computational resource is time, and therefore 
we will say that a computing model is said to be efficient if 
it has the ability to provide polynomial-time solutions for 
intractable problems (resp., NP-complete problems) [7]. The 
term presumably efficient refers to the fact that, as gener-
ally believed, if P ≠ NP then each NP-complete problem 
is intractable and, consequently, any presumably efficient 
model would be efficient. The class of problems efficiently 
solvable by a computing model R is denoted by ���R . 
This complexity class is closed under complementary and 
under polynomial-time reductions  [15]. The computing 
model AM of recognizer P systems with active membranes 
and electrical charges is presumably efficient [13], as well as 
the computing model AM

0(+d,+ne) of recognizer polari-
zationless P systems with active membranes which makes 
use of dissolution rules and division for elementary and non-
elementary membranes [4]. However, the computing model 
AM

0(−d) of recognizer polarizationless P systems with 
active membranes not making use of dissolution rules is not 
efficient, even when allowing division rules for elementary 
and non-elementary membranes [4]. Thus, if R is a pre-
sumably efficient computing model of recognizer membrane 
systems, then ��∪ co-NP ⊆ ���R.

Several variants of P systems have been demonstrated to 
be presumably efficient. A solution to QSAT, a well-known 
PSPACE-complete problem, has been given in the frame-
work of P systems with active membranes and division rules 
for elementary and non-elementary membranes but only 
evolution rules of the RHS limited to length 1 [9]. When 
creation rules are used instead of division rules as a method 
of generating an exponential workspace in polynomial time, 
it is possible to get rid of polarizations to obtain a solution 
to the QSAT problem [8]. A new research line taking tissue 
P systems with symport/antiport rules where objects can 
evolve during the application of the rules has been developed 
recently. Several results have been obtained, and new solu-
tions to NP-complete and PSPACE-complete problems have 
been given in this framework [17].

In [18], a methodology to translate solutions of problems 
X1 and X2 to the product problem X1 ⊗ X2 is presented. 
Given an efficient solution to an NP—complete problem by 
means of a uniform family of recognizer membrane systems, 
it is easy to obtain a solution to its corresponding co-NP—
complete problem, only by changing the role of objects yes 
and no through the computation. Therefore, this methodol-
ogy can be particularly used to transform a solution of an 
NP-complete problem X into a solution of the DP-problem 
X ⊗ X . Obtaining this kind of solutions, we can attack the 
P vs DP problem giving efficiency frontiers between models 
of membrane systems. Moreover, it is easy to see that this 
problem is equivalent to the P vs NP problem, since any 
solution to one of the problems would lead to the same solu-
tion in the other one.

In this paper, we apply the methodology explained in that 
paper to the problem SAT with a uniform family of rec-
ognizer polarizationless P systems with active membranes 
with dissolution rules and division rules for both elementary 
and non-elementary membranes; that is, the main result of 
this paper is that �� ∪ �� − �� ⊆ ���AM

0(+d,+ne) . This 
result can be extracted (and an even stronger) result can be 
extracted from [5] and [6]. The main idea of this protocol is 
that it can be automated.

The rest of the paper is organized as follows: In Sec-
tion 2, some concepts will be introduced to make the work 
self-contained. The complexity class DP is introduced 
in Section 3. In Section 5, an efficient solution to SAT in 
AM

0(+d,+ne) is given, and then the methodology will be 
applied in Section 6. We finish the work with some conclu-
sions and research lines being investigated.

2  Preliminaries

Some concepts will be introduced for making the work 
self-contained.

An alphabet is a non-empty set whose elements are called 
symbols. A string u over an alphabet is an ordered finite 
sequence of symbols. The length of a string u, denoted by 
|u|, is the number of occurrences of symbols that it contains. 
The empty string (with length 0) contains no symbols, and 
it is denoted by � . The set of all strings over an alphabet �  is 
denoted by � ∗ . A language over �  is a subset of � ∗ . If L1, L2 
are languages over �  , the set-theoretic difference of L1 and 
L2 (in this order), denoted by L1 ⧵ L2 , is defined as follows: 
L1 ⧵ L2 = {u ∈ � ∗ ∣ u ∈ L1 ∧ u ∉ L2}.

A multiset m over an alphabet �  is a mapping from �  onto 
the set ℕ of natural numbers. A multiset m over �  is finite 
(respectively, empty) if the set {x ∈ 𝛤 |m(x) > 0} is a finite 
(respectively, empty) set. If m,m′ are multisets over �  , then 
the union of m and m′ , denoted by m + m� , is the multiset 
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over �  defined as follows: (m + m�)(x) = m(x) + m�(x) , for 
each x ∈ � .

2.1  The Cantor pairing function

The Cantor pairing function is the mapping from 
ℕ × ℕ onto ℕ defined as follows: the natural number 
[(t1 + t2) ⋅ (t1 + t2 + 1)∕2] + t1 is associated with every 
ordered pair (t1, t2) of natural numbers. We denote it by 
⟨t1, t2⟩ , that is, ⟨t1, t2⟩ = [(t1 + t2) ⋅ (t1 + t2 + 1)∕2] + t1 . The 
Cantor pairing function is a primitive recursive function and 
bijective from ℕ × ℕ onto ℕ . Consequently, for each natural 
number t, there exists a unique pair of natural numbers t1, t2 
such that t = ⟨t1, t2⟩.

2.2  Decision problems and languages

A decision problem X is an ordered pair (IX , �X) , where IX is 
a language over a finite alphabet �X and �X is a total boolean 
function over IX . The elements of IX are called instances of 
the problem X. If �X(u) = 1 (respectively, �X(u) = 0 ) then we 
say that the answer of the problem for instance u is “yes” 
(respectively, “no”). Each decision problem X has associated 
a language LX over �X : the set of instances whose answer 
is “yes”. Conversely, every language L over an alphabet � 
has associated a decision problem whose set of instances is 
�∗ , and for each u ∈ �∗ the answer of the problem is “yes” 
if and only if u ∈ L.

The complement problem X  of a decision problem 
X = (IX , �X) is the decision problem with the same set of 
instances, characterized by the following property: for each 
instance u ∈ IX , the answer of X for u is “yes” if and only 
if the answer of X for u is “no”. Obviously, X = X.

The class P (respectively, NP) is the class of decisions 
problems efficiently solvable by deterministic (resp., non-
deterministic) Turing machines. The class co-NP is the 
class of decision problems such that if X ∈ �� − �� , then 
the complementary problem X is in NP.

In accordance with this definition, a problem X is an NP-
complete problem if and only if its complement problem X 
is a co-NP-complete problem.

2.3  The satisfiability problem

Let us recall that the set of propositional Boolean variables 
VP is a countably infinite set {x1, x2,…} such that each of 
their elements can take only two possible Boolean values 
(truth values) from {0, 1} . Boolean expressions are captured 
through the recursive definition of the minimal set BE veri-
fying: (a) any propositional Boolean variable is in BE; (b) 
if � is in BE then its negation ¬� is also in BE; and (c) if �1 
and �2 are in BE, then its disjunction �1 ∨ �2 is also in BE. 
Also, if �1 and �2 are in BE then its conjunction �1 ∧ �2 is 

also in BE. Every Boolean expression � has a finite number 
of Boolean variables associated with it, being denoted by 
Var(�) . A truth assignment � for a Boolean expression � is 
a mapping from Var(�) onto the set {0, 1} . According to the 
classical definition of truth tables for negation and disjunc-
tion, every truth assignment � for a Boolean expression � 
provides a unique Boolean value to it. If the associated truth 
value is 1, then it is said that � makes the Boolean expres-
sion � true.

A literal is a Boolean variable or the negation of a 
Boolean variable. A clause is a finite disjunction of literals. 
Moreover, a Boolean expression is in conjunctive normal 
form if it is a finite conjunction of clauses. We say that a 
Boolean expression is in a simplified conjunctive normal 
form if it is in conjunctive normal form, literals are not 
repeated in each clause, and a literal and its negation do not 
appear in the same clause. We say that a Boolean expression 
� is satisfiable if and only if there exists a truth assignment 
for � making such an expression true. Let us recall that the 
satisfiability problem, denoted by SAT, is the problem of 
deciding whether a given Boolean formula in a simplified 
conjunctive normal form is satisfiable. The complement 
problem ��� is denoted by ����� : determining whether or 
not a Boolean expression in a simplified conjunctive normal 
form is unsatisfiable. That is, given a Boolean expression � 
in a simplified conjunctive normal form, determines whether 
all truth assignments � for � make it false. It is well known 
that the SAT problem is an NP complete problem [3]. Thus, 
the UNSAT problem is a co-NP complete problem.

3  The complexity class DP

The complexity class DP was introduced by C.H. Papadimi-
triou and M. Yannakis in 1982 [10] as follows:

Definition 1 A language L is in the class DP if and only if 
there are two languages L1 and L2 such that L1, L2 ∈ �� and 
L = L1 ⧵ L2.

The complexity class DP can be easily characterized 
by the following property: a language L is in DP if and 
only if there exist two languages L1 and L2 in NP such that 
L = L1 ∩ L2 . Class DP is the second level in the Boolean 
hierarchy. Besides, classes in the Boolean hierarchy can be 
described by finite unions of DP sets (or by finite intersec-
tions of co-DP sets). For more details, see [2, 19].

The complexity class DP can also be expressed in terms 
of decision problems as follows: a decision problem X is in 
class DP if and only if the language LX associated with it 
belongs to class DP; that is, if there are two decision prob-
lems X1 = (IX1

, �X1
) and X2 = (IX2

, �X2
) such that LX1

, LX2
 are 
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languages in NP and LX = LX1
∩ LX2

 . It is easy to prove that 
��∪ co-NP ⊆ ��∩ co-DP.

Next, we define the product of two decision problems and 
some properties of the new concept are analyzed.

Definition 2 Let X1 = (IX1
, �X1

) and X2 = (IX2
, �X2

) be two 
decision problems. The product problem of X1 and X2 , 
denoted by X1 ⊗ X2 , is the decision problem (IX1⊗X2

, 𝜃X1⊗X2
) 

defined as follows: IX1⊗X2
 = IX1

× IX2
 , and for each 

(u1, u2) ∈ IX1⊗X2
 we have 𝜃X1⊗X2

(u1, u2) = 1 if and only if 
�X1

(u1) = 1 and �X2
(u2) = 1.

A product problem YX  can be naturally associ-
ated to a problem X. This problem YX is the product 
problem, defined as follows: YX = (IYX , �YX ) such that 
IYX = {(u1, u2) ∣ u1 ∈ IX , u2 ∈ IX̄} , being X  the comple-
mentary problem of X; and �YX ((u1, u2)) = 1 if and only if 
𝜃X(u1) = 𝜃X̄(u2) = 1.

According to these definitions, the following results 
concerning to the product of two decision problems are 
obtained.

Proposition 1 Let X1,X2 be decision problems.

– If X1 ∈ �� and X2 ∈ co-NP then X1 ⊗ X2 ∈ ��.
– If X1 is an NP complete problem and X2 is a co-NP com-

plete problem then X1 ⊗ X2 is a DP complete problem.
– If X1 is an NP complete problem then the product prob-

lem X1 ⊗ X1 is a DP complete problem.

Since the SAT problem is an NP complete problem we 
deduce that the product problem ���⊗ ��� is a DP com-
plete problem. This problem is referred as the SAT-UNSAT 
problem [11] and can be expressed as follows: given two 
Boolean expressions �1 , �2 in simplified conjunctive normal 
forms, determine whether or not �1 is satisfiable and �2 is 
unsatisfiable.

4  Recognizer polarizationless P systems 
with active membranes

Polarizationless P systems with active membranes 
were introduced as a weaker version of P systems with 
active membranes, where no polarizations (or only one 
polarization) are taken into account. A recognizer P sys-
tem with active membranes of degree q ≥ 1 is a tuple 
� = (� ,�,�,H,M1,… ,Mq,R, iin, iout) , where: 

1. �  is a finite (working) alphabet.
2. 𝛴 ⊈ 𝛤  is the input alphabet.

3. � is a rooted tree whose nodes are bijectively labelled by 
elements of the set H = {1,… , q}.

4. Mi, 1 ≤ i ≤ q are multisets over � .
5. R is the set of rules over �  of the following forms: 

(a) [ a → u ]h , for h ∈ H, a ∈ � , u ∈ � ∗ (object-evo-
lution rules).

(b) a [ ]h → [ b ]h , for h ∈ H, a, b ∈ �  (send-in com-
munication rules).

(c) [ a ]h → b [ ]h , for h ∈ H, a, b ∈ �  (send-out 
communication rules).

(d) [ a ]h → b , for h ∈ H, a, b ∈ �  (dissolution rules).
(e) [ a ]h → [ b ]h [ c ]h , for h ∈ H, a, b, c ∈ �  (elemen-

tary division rules).
(f) [ [ ]h1 [ ]h2 ] → [ [ ]h1 ]h [ [ ]h2 ]h  ,  f o r 

h, h1, h2 ∈ H (non-elementary division rules).

6. iin ∈ H, iout = env.

A configuration of a P system is given by the state of the 
system at a certain moment, that is formed by the multisets 
of objects in each region (both membranes and the envi-
ronment), and the current membrane structure. A (finite) 
sequence of configurations (C0,C1,… ,Cn) is called a com-
putation, given that: (a) The first configuration C0 is given 
by the objects from the initial multisets and the input and 
(b) for each configuration Ct+1, t ∈ ℕ , Ct+1 can be obtained 
from Ct by the application of rules by the semantics given 
in  [14]. A solution to a certain decision problem X by 
means of a uniform family of P systems from R is given by 
(� , cod, s) , such that for each n ∈ ℕ , there exists �(n) ∈ � 
that solves all the instances of X of size n. In this sense, a 
solution is characterized by two main keypoints: (a) All the 
computations halt; and (b) if �x(u) = 1 , then the P system 
�(s(u)) + cod(u) will halt and will send an object yes to the 
environment at the last step of the computation; otherwise, 
it will return an object no to the environment.

For a broader definition of recognizer membrane systems 
and polarizationless P systems with active membranes, we 
refer the reader to [14].

5  A solution to SAT in AM
0(+d)

Let ⟨x, y⟩ be the Cantor pairing function. Then,

is a recognizer P system with active membranes, with dis-
solution rules and division rules for elementary and non-
elementary membranes that solves the instances with n vari-
ables and p clauses, where: 

�(⟨n, p⟩) = (� ,�,�,H,M1,… ,Mq,R, iin, iout)
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1. � = � ∪ {���, ��, p, z, z∗, #} ∪ {dk ∣ 0 ≤ k ≤ 5n + p + 1} ∪

{ai,j ∣ 1 ≤ i ≤ n, 0 ≤ j ≤ 2i − 1} ∪ {cj ∣ 1 ≤ j ≤ p}∪

{x∗
i,j
, x

∗
i,j
∣ 1 ≤ i ≤ n, 1 ≤ j ≤ p} ∪ {ti, fi, f

∗
i
∣ 1 ≤ i ≤ n} ;

2. � = {xi,j, xi,j ∣ 1 ≤ i ≤ n, 1 ≤ j ≤ p};
3. � = [ [… [ ]2n+p+3 …]2 ]1;
4. H = {1,… , 2n + p + 3};
5. M1 = �,M2 = {d0},M2n+p+3 = {d0} ∪ {ai,0 ∣ 1 ≤ i ≤ n},

Mk = �, 3 ≤ k ≤ 2n + p + 2;

6. The set R contains the following rules: 

6.1. Rules to generate the 2n possible truth assignments:   

 r1,1,k ≡[ dk → dk+1 ]2n+p+3 for 0 ≤ k ≤ 2n − 1  
 r2 ≡[ d2n ]2n+p+3 → p r3,k,i ≡[ ai,k → ai,k+1 ]2n+p+3 
  for 1 ≤ i ≤ n, 0 ≤ k ≤ 2i − 2

  r4,i ≡[ ai,2i−1 ]2n+p+3 → [ ti ]2n+p+3 [ fi ]2n+p+3  
  for 1 ≤ i ≤ n

  r5,i ≡[ [ ]
i+1 [ ]

i+1 ]i → [ [ ]
i+1 ]i [ [ ]

i+1 ]i  
  for 3 ≤ i ≤ 2n + p + 2

6.2 Rules to check which clauses are satisfied: 

r6,i ≡[ ti ]2+p+2i → z

r7,i ≡[ z → z∗ ]2+p+2i−1
r8,i ≡[ fi → f ∗

i
]2+p+2i

r9,i ≡[ f
∗
i
]2+p+2i → z∗

r10,i ≡[ z
∗ ]2+p+2i−1 → #

⎫
⎪⎪⎬⎪⎪⎭

for 1 ≤ i ≤ n

 

r11,i,j ≡[ xi,j → x∗
i,j
]2+p+2i

r12,i,j ≡[ xi,j → x
∗

i,j
]2+p+2i

r13,i,j ≡[ x
∗
i,j
→ � ]2+p+2i

r14,i,j ≡[ x
∗

i,j
→ cj ]2+p+2i

r15,i,j ≡[ x
∗
i,j
→ cj ]2+p+2i−1

r16,i,j ≡[ x
∗

i,j
→ � ]2+p+2i−1

⎫
⎪⎪⎪⎬⎪⎪⎪⎭

for 1 ≤ i ≤ n, 1 ≤ j ≤ p

6.3 Rules to check if all clauses are satisfied: 
r17,j ≡[ cj ]2+j → # for 1 ≤ j ≤ p

6.4 Rules to check if there is at least an object p in mem-
brane 2: r18,k ≡ [ dk → dk+1 ]2 for 1 ≤ k ≤ 5n + p 
r19 ≡[ p ]2 → ���

r20 ≡[ d5n+p+1 ]2 → ��

r21 ≡[ ��� ]1 → ���[ ]1
r22 ≡[ �� ]1 → ��[ ]1

7. iin = p + 2 and iout = env.

An instance � with n variables and p clauses from  
SAT is defined as follows: Let Var(�) = {x1,… , xn} . Then, 
� = C1 ∧… ∧ Cp  ,  w h e r e  Cj = lj,1 ∨… ∨ lj,rj  , 
lj,k ∈ {xi,¬xi}, xi ∈ Var(�) . cod(u) is the set that contains xi,j 

if the variable xi appears in the clause Cj and xi if ¬xi appears 
in the clause Cj.

5.1  A glance to the computation

The computation is divided into four stages. 

1. Generation of truth assignments: In this stage, 2n mem-
branes with label 2n + p + 2 are generated. Each object 
ai,i−1 generates two new membranes each two steps with 
rules from 6.1, one of them with an object ti and the 
other with an object fi , representing the value acquired 
of the corresponding variable i. This stage takes 2n com-
putational steps.

2. First checking stage: In this stage, rules from 6.2 will 
be used to check which clauses of � are satisfied. For 
this, objects ti , xi,j and xi,j will interact in membranes 
2 + p + 2i and 2 + p + 2i − 1 to return an object cj in the 
case that the literal i satisfies the clause j. Each variable 
is checked in 3 computational steps. Therefore, this stage 
takes 3n computational steps. In the Figure 1, each pos-
sible configuration can be observed.

3. Second checking stage: In this stage, with rules from 6.3, 
objects cj dissolve the corresponding membrane labelled 
by 2 + j . If membrane 3 is dissolved, the corresponding 
truth assignment makes true the whole formula, and an 
object p appears in membrane 2.

4. Output stage: If an object p is present in membrane 
labelled by 2 in the configuration C5n+p , there is at least 
one truth assignment that makes true the formula � . 
Therefore, an object ��� will be sent to the environ-
ment. Otherwise, rules from 6.4 will transform the 
object d5n+p+1 in an object �� , that will be sent to the 
environment. This stage takes 2 steps in the affirmative 
case and 3 steps in the negative case. This process can 
be observed in Figure 2.

6  Application of the methodology 
to an NP‑complete problem

Let

be a recognizer polarizationless P system with dissolution 
rules that solve the instances of SAT of n1 variables and 
p1 clauses as described above. We can define a recognizer 
polarizationless P system with dissolution rules

� (1)(⟨n1, p1⟩) = (� (1),�(1),�(1),H(1),(1)
1 ,

… ,(1)
2n1+p1+3

,(1), i(1)in , i
(1)
out)
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� (2)(⟨n2, p2⟩) = (� (2)
,�(2)

,�(2)
,H(1)

,M
(2)

2n1+p1+4
,… ,M

(2)

2n1+p1+2n2+p2+6
,

R
(2)
, i
(2)

in
, i
(2)
out)

that solves the instances of ����� of n2 variables and p2 
clauses as follows: Since � (i)(ti) should be disjoint, � (2)(t2) 
will consist of the symbols from � (1)(t1) in capital letters. 
All the rules are changed according to this. To make H(1) and 
H(2) disjoint, given n1, n2, p1, p2 > 0 , we change the label i 

Cn+1+3(i−1) Cn+1+3(i−1)+1 Cn+1+3(i−1)+2 Cn+1+3i

tixi,j

2i

zx∗
i,j

2i− 1

z∗cj

2i− 1

cj

2(i− 1)

r6,i, r11,i,j r7,i, r15,i,j r10,i

tixi,j

2i

zx∗
i,j

2i− 1

z∗

2i− 1 2(i− 1)

r6,i, r12,i,j r7,i, r16,i,j r10,i

fixi,j

2i

f∗
i x

∗
i,j

2i

z∗

2i− 1 2(i− 1)

r8,i, r11,i,j r9,i, r13,i,j r10,i

fixi,j

2i

f∗
i x

∗
i,j

2i

z∗cj

2i− 1

cj

2(i− 1)

r8,i, r12,i,j r9,i, rr14,i,j r10,i

Fig. 1  Possible evolution of checking a single variable i. The mem-
brane shown in each step corresponds with the last non-dissolved 
membrane of the branch. For instance, in the top row, object ti dis-
solves membrane 2i in the first step, and therefore a membrane 
labelled by 2i − 1 would be the last non-dissolved membrane of that 
branch. Some renaming steps are made for synchronisation, so that 
the checking takes always 3 computational steps, for each one of the 

four cases. Each row corresponds to a different possibility of assign-
ment: The first row, the behaviour of a positive literal with a positive 
assignment; the second row, it is the case of a negative literal with 
a positive assignment; the third row corresponds to a positive literal 
with a negative assignment; and in the fourth row there exists a nega-
tive literal with a negative assignment

C5n+p C5n+p+1 C5n+p+2 C5n+p+3

d5n+pp

2

d5n+p+1yes

1

d5n+p+1

1

yes
r18,5n+p, r19 r21

d5n+p

2

d5n+p+1

2

no

1 1

no
r18,5n+p r20 r22

Fig. 2  Above, in the positive case, object p dissolves the membrane 2 in the first step, stopping the evolution of the object d5n+p+1 . Below, this 
object resides in the membrane 2 in the configuration C5n+p+1 , dissolving that membrane and transforming into an object ��
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of H(2) to 2n1 + p + 3 + i . In � (i) we change objects ��� and 
�� by ���i and ��i , respectively.

Let ti = ⟨ni, pi⟩ ,  and t = ⟨t1, t2⟩ .  Let qi = ti and 
di = 2ni + pi + 3  .  L e t  pi(|ui|) = 5ni + pi + 3  .  L e t 
mi = qi + di + 2 = ti + 2ni + pi + 5 and n = max{di + qi + pi
(|ui|)} = max{t1 + 2n1 + p1 + 5, t2 + 2n2 + p2 + 5}.

Now we can define a recognizer P system that solves the 
problem ��� ⊗ ����� , defined as follows: An instance of 
the problem ��� ⊗ ����� is a pair of formulas (�1,�2) and

We define a recognizer polarizationless P system with dis-
solution rules

where:

– � = � (1∗)(t) ∪ � (2∗)(t) ∪ � (3)(t) ∪ � (4)(t) ∪ � (5)(t) ∪ � (6)(t) , where: 

– �(t) = �(1)(t1) ∪ �(2)(t2) , being �(1)(t1) = {xi,j, xi,j ∣ 1 
≤ i ≤ n1, 1 ≤ j ≤ p1} a n d  �(2)(t2) = {Xi,j,Xi,j ∣ 1 ≤

i ≤ n2, 1 ≤ j ≤ p2}.

𝜃���⊗ �����(𝜑1,𝜑2) =

{
1 iff 𝜑1 ∈ L��� ∧ 𝜑2 ∈ L�����
0 otherwise

�(t) = (� ,�,�,M1,… ,M2n1+p1+2n2+p2+6
,Mrt

,Mr�(t),Mr��(t),Mh(1)(t1)
,

Mh(2)(t2)
,R, iin, iout)

� (1∗)(t) = �(1)(t1) ∪ {���1, ��1, p, z, z
∗, #} ∪ {dk ∣ 0 ≤ k ≤ 5n1 + p1 + 1} ∪

{cj ∣ 1 ≤ j ≤ p1} ∪ {ai,j ∣ 1 ≤ i ≤ n1, 0 ≤ j ≤ 2i − 1} ∪

{ti, fi, f
∗
i
∣ 1 ≤ i ≤ n1} ∪ {x∗

i,j
, x

∗

i,j
∣ 1 ≤ i ≤ n1, 1 ≤ j ≤ p1}

� (2∗)(t) = �(2)(t2) ∪ {���2, ��2,P, Z, z
∗, #} ∪ {Dk ∣ 0 ≤ k ≤ 5n2 + p2 + 1} ∪

{Cj ∣ 1 ≤ j ≤ p2} ∪ {Ai,j ∣ 1 ≤ i ≤ n2, 0 ≤ j ≤ 2i − 1} ∪

{Ti,Fi,F
∗
i
∣ 1 ≤ i ≤ n2} ∪ {X∗

i,j
,X

∗

i,j
∣ 1 ≤ i ≤ n2, 1 ≤ j ≤ p2}

� (3)(t) = {#, ���, ��} ∪ {x�
i,j
, x

�

i,j
∣ 1 ≤ i ≤ n1, 1 ≤ j ≤ p1} ∪

{X�
i,j
,X

�

i,j
∣ 1 ≤ i ≤ n2, 1 ≤ j ≤ p2}

� (4)(t) = {���1k , ��1k , pk, zk, z
∗
k
, # ∣ 0 ≤ k ≤ m1} ∪

{dkk� ∣ 0 ≤ k ≤ 5n1 + p1 + 1, 0 ≤ k� ≤ m1} ∪

{cjk ∣ 1 ≤ j ≤ p1, 1 ≤ k ≤ m1} ∪

{ai,jk ∣ 1 ≤ i ≤ n1, 0 ≤ j ≤ 2i − 1, 0 ≤ k ≤ m1} ∪

{tik , fik , f
∗
ik
∣ 1 ≤ i ≤ n1, 0 ≤ k ≤ m1} ∪

{xi,jk , xi,jk , x
∗
i,jk
, x

∗

i,jk
∣ 1 ≤ i ≤ n1, 1 ≤ j ≤ p1, 0 ≤ k ≤ m1} ∪

{���2k , ��2k ,Pk, Zk, Z
∗
k
, # ∣ 0 ≤ k ≤ m2} ∪

{Dkk�
∣ 0 ≤ k ≤ 5n1 + p1 + 1, 0 ≤ k� ≤ m2} ∪

{Cjk
∣ 1 ≤ j ≤ p1, 1 ≤ k ≤ m2} ∪

{Ai,jk
∣ 1 ≤ i ≤ n1, 0 ≤ j ≤ 2i − 1, 0 ≤ k ≤ m2} ∪

{Tik ,Fik
,F∗

ik
∣ 1 ≤ i ≤ n1, 0 ≤ k ≤ m2} ∪

{Xi,jk
,Xi,jk

,X∗
i,jk
,X

∗

i,jk
∣ 1 ≤ i ≤ n1, 1 ≤ j ≤ p1, 0 ≤ k ≤ m2}

� (5)(t) = {�0, �1} ∪ {�j ∣ 0 ≤ j ≤ n}

� (6)(t) = {�j ∣ 0 ≤ j ≤ max{m1,m2}}

– H(t) = H(1) ∪ H(2) ∪ {rt, r
�
t
, r��

t
, h(1)(t1), h

(2)(t2)} , where 
rt, r

�
t
, r��

t
, h(1)(t1), h

(2)(t2) are different from each other, 
and rt, r�t , r

��
t
, h(1)(t1), h

(2)(t2) ∉ H(1) ∪ H(2).

– � = [ [ [ [… [ [ ]
h(1)(t1)

]
h1
…]1 [… [ [ ]

h(2)(t2)
]
h3
…]

h2
]
r
��
t

]
r
�
t

]
r
t

 , 
where  h1 = 2n1 + p1 + 3 ,  h2 = 2n1 + p1 + 4  and 
h3 = 6 + 2n1 + 2n2 + p1 + p2.

– M2 = {d00},M2n1+p1+3
= {d00} ∪ {ai,00 ∣ 1 ≤ i ≤ n1},

M2n1+p1+5
= {D00

},M2n1+p1+2n2+p2+6
= {D00

} ∪

{A
i,00

∣ 1 ≤ i ≤ n2},Mr
��
t

(t) = {�0, �0} and M
h(i)(t

i
)(t)

= {�0} , for i = 1, 2 and Mj = � for the rest of membranes.
– The set of rules is R� (1)(t1)

∪R� (2)(t2)
∪R

∗
t
 , where R� (i)(ti)

 

is the set of rules of � (i)(ti) , for i = 1, 2 , obtained through the 
replacement of objects yes and no by objects ���i and ��i , 
respectively, in each rule. R∗

t
 is the following set of rules:

1 Rules for simultaneously transporting codi(ui) from r′′
t
 to 

h(i)(ti) , for i = 1, 2 and transforming it into codi(u�i) : 
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a [ ]1 → [ a� ]1

A [ ]2n1+p1+4 → [A� ]2n1+p1+4

⎫⎪⎬⎪⎭
for

⎧⎪⎨⎪⎩

a ∈ {x
i,j , xi,j ∣ 1 ≤ i ≤ n1, 1 ≤ j ≤ p1},

A ∈ {X
i,j ,Xi,j ∣ 1 ≤ i ≤ n2, 1 ≤ j ≤ p2}

 

a� [ ]i → [ a� ]1

a� [ ]h(1) (t1 ) → [ a� ]h(1) (t1 )

A� [ ]j → [A� ]j

A� [ ]h(2) (t2 ) → [A� ]h(2) (t2 )

⎫⎪⎪⎪⎬⎪⎪⎪⎭

for

⎧⎪⎪⎪⎨⎪⎪⎪⎩

a ∈ {xi,jxi,j ∣ 1 ≤ i ≤ n1, 1 ≤ j ≤ p1},

3 ≤ i ≤ 3 + ⌊n1∕2⌋
A ∈ {Xi,jXi,j ∣ 1 ≤ i ≤ n2, 1 ≤ j ≤ p2},

2n1 + p1 + 5 ≤ j ≤ 2n1 + p1 + 2n2 + p2 + 6

2 Rules for simultaneously transporting codi(u�i) from 
h(i)(ti) to the input membrane in� (i)(ti)

 , by transforming it 
i n t o  codi(ui)  ,  f o r  i = 1, 2  : 
[ �j → �j+1 ]h(i)(ti) for i ∈ {1, 2}, 0 ≤ j ≤ mi − 1 
[ �mi

]h(i)(ti) → # for i ∈ {1, 2} 
[a

�
→ a]h(1) t(1)

[A
�
→ A]h

(2)
t(2)

}
for

{
a ∈ {xi,j, xi,j 1 ≤ i ≤ n1, 1 ≤ j ≤ p1},

A ∈ {Xi,j,Xi,j 1 ≤ i ≤ n2, 1 ≤ j ≤ p2}

3 Rules for synchronizing the simulation of 
� (i)(ti) + codi(ui) in order to start at the (mi + 2)-th tran-
s i t i o n  s t e p ,  f o r  i = 1, 2  : 
[ d0k → d0k+1 ]2
[ d0k → d0k+1 ]2n1+p1+3
[ ai,0k → ai,0k+1 ]2n1+p1+3

⎫⎪⎬⎪⎭
for 0 ≤ k ≤ m1 

[D0k
→ D0k+1

]2n1+p1+5
[D0k

→ D0k+1
]2n1+p1+2n2+p2+6

[Ai,0k
→ Ai,0k+1

]2n1+p1+2n2+p2+6

⎫⎪⎬⎪⎭
for 0 ≤ k ≤ m2 

[ d0m1
→ d0 ]2

[ d0m1
→ d0 ]2n1+p1+3

[D0m1
→ D0 ]2n1+p1+5

[D0m1
→ D0 ]2n1+p1+2n2+p2+6

 

[ ai,0m1
→ ai,0 ]2n1+p1+3 for 1 ≤ i ≤ n1 

[Ai,0m1
→ Ai,0 ]2n1+p1+2n2+p2+6 for 1 ≤ i ≤ n2

4 R u l e s  f o r  s y n c h r o n i z i n g  t h e  i n s t a n t 
n = 2 + max{di + qi + pi(|ui|) ∶ 1 ≤ i ≤ 2} in which the 
answers of � (1)(t1) + cod1(u1) and � (2)(t2) + cod2(u2) 
reach the membrane r′′

t
 : [ �j → �j+1 ]r��t for 0 ≤ j ≤ n − 1

5 Rules for the output of the system �(t) + cod(u1, u2) : 
[ �n ]r��t → #

[ ��i ]r�t → ��

[ �0 → �1]r�t
[ �1 ]r�t → ��� [ ]r�t
[ ��� ]rt → ��� [ ]rt

⎫
⎪⎪⎬⎪⎪⎭

for i ∈ {1, 2}

Apart from these rules, rules from R� (1)(t1)
 and R� (2)(t2)

 are 
present in the set of rules R

– iin = r��
t
 and iout = env.

Theorem 1 ���⊗ ����� ∈ ���AM
0(+d,+ne)

Proof It can be seen from the previous family of P systems 
that the previous P system takes an instance of the problem 

���⊗ ����� , (�1,�2) , and it returns an object ��� if and 
only if �1 is satisfiable and �2 is unsatisfiable. This system 
will return an object ��� or an object �� , but not both, only 
in the last step of the computation. Taking into account the 
definition of n from above, the computation will take n + 4 
computational steps in the affirmative case and n + 3 steps 
in the negative case.

Corollary 1 DP ∪ co-DP ⊆ ���AM
0(+d,+ne).

7  Conclusion

In previous works, several solutions to NP-complete prob-
lems have been given, but while some of them this solution 
is non-uniform, in other there is a solution to other problem 
different than SAT. Since this work was though as a SAT-
UNSAT solver, an efficient solution to SAT has been given 
in this paper by means of a uniform family of recognizer 
membrane systems from AM

0(+d,+ne).
In [18], a methodology for transforming an efficient solu-

tion for an NP-complete problem into an efficient solution 
for a DP-complete problem was given. In this paper, we 
have applied this methodology to make easier to under-
stand how can it be used to obtain efficient solutions for 
harder problems. The final result is that, given the fact 
that ��� ∈ ���AM

0(+d,+ne) , and we can apply the meth-
odology to that solution (since it has dissolution rules, 
one of the main ingredients of this methodology), then 
�� ∪ �� − �� ⊆ ���AM

0(+d,+ne) . From [1], we know that 
������ ⊆ ���AM

0(+d,+ne) , so it seems to be a non-sur-
prising result, since �� ⊆ ������ . But the main contribu-
tion of this paper is to provide an example of the application 
of the methodology presented in [18], in such a way that 
every solution to a NP-complete problem can be transformed 
into a solution to its corresponding DP-complete problem. 
It is really interesting as the P vs NP problem is equiva-
lent to the P vs DP problem. As DP-complete problems 
are supposed to be harder than NP-complete problems, they 
are better candidates to find a solution to the conjecture. 
Therefore, it is interesting to find borderlines between non-
efficient computing models and models capable of efficiently 
solving DP-complete problems.

The most interesting research lines that arise from here 
is to create methodologies for different variants of P sys-
tems, such as tissue P systems with symport/antiport rules 
and other types of cell-like membrane systems. In general, 
we think that this process can be translated to any type of 
membrane system that has some minimum requirements. 
Another interesting research line is to apply the method-
ology to different solutions of decision problems, since a 
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natural extension to the parallel resolution of n problems 
can arise from this protocol.
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