
Vol.:(0123456789)1 3

Journal of Membrane Computing
https://doi.org/10.1007/s41965-022-00095-5

REGULAR PAPER

From SAT to SAT‑UNSAT using P systems with dissolution rules

Agustín Riscos‑Núñez1,2 · Luis Valencia‑Cabrera1,2

Received: 15 July 2021 / Accepted: 9 March 2022
© The Author(s) 2022

Abstract
DP is the class of problems that are the differences between two languages from NP. Most difficult problems from DP are
called DP-complete problems, that can be seen as the conjunction of an NP-complete problem and a co-NP-complete prob-
lem. It is easy to see that the problem P vs NP is equivalent to the problem P vs DP, and therefore DP-complete problems
would be better candidates to attack the conjecture, since they seem to be harder than NP-complete problems. In this paper,
a methodology to transform an efficient solution of an NP-complete problem into an efficient solution of a DP-complete
problem is applied. More precisely, a solution to SAT is given by means of a uniform family of recognizer polarizationless
P systems with active membranes with dissolution rules and division rules for both elementary and non-elementary mem-
branes, and later it is transformed into a solution to the problem SAT-UNSAT.

Keywords Complexity class DP · Membrane computing · Product problem · Satisfiability problem

Mathematics Subject Classifications 68Q07 · 68Q15

1 Introduction

Membrane Computing is a computing paradigm introduced
by Gh. Păun in 1998 [12]. It gives rise to computing models
called P systems or membrane systems, that are inspired by
the behavior and structure of living cells. Some different
types of P systems exist, the three more popular are: cell-
like membrane systems, having a hierarchical structure of
membranes; tissue-like membrane systems, where cells are
connected with other cells and with the environment and
can interchange objects between them; and neural-like mem-
brane systems, where neurons are connected as in the brain.

One of the most prominent research lines in this frame-
work is computational complexity theory, where different
classes of P systems are analyzed to know which problems
can be solved efficiently in them [15]. For this purpose,

recognizer membrane systems were introduced in [16], being
systems capable of solving decision problems giving a cer-
tain answer in the last step of the computation. An efficient
solution to a decision problem is usually given by means of
an infinite family of P systems in contrast to the solution of
a problem by means of a unique Turing machine. The differ-
ence between them is that, while in Turing machine, we have
access to an infinite tape, with P systems, we are allowed to
access only to a finite number of resources. Therefore, we
can define a family of P systems � = {�(u) ∣ u ∈ IX} , being
IX the set of instances of the decision problem X.

Inspired by the concept of uniformity in circuits, a uni-
form family of P systems solving a decision problem X is
defined as a family � = {�(n) ∣ n ∈ ℕ} . Let (cod, s) be an
ordered pair of polynomial-time computable functions. We
say that each P system �(n) solves all the instances u of X
such that n = s(u) . Function s thus corresponds to the intui-
tive concept of size of the instance, while cod(u) represents
an encoding of the instance into a multiset of objects, that
will be present in the input compartment of the P system at
the initial configuration. The instance u ∈ IX will be pro-
cessed by the P system �(s(u)) with input multiset cod(u),
denoted by �(s(u)) + cod(u) . The family � is polynomi-
ally bounded, sound and complete with regard to (X, cod, s),
being cod the polynomial-time computable encoding of the

 * Agustín Riscos-Núñez
 ariscosn@us.es

 Luis Valencia-Cabrera
 lvalencia@us.es

1 Research Group on Natural Computing, Department
of Computer Science and Artificial Intelligence, Universidad
de Sevilla, Avda. Reina Mercedes s/n, 41012 Seville, Spain

2 SCORE Lab, I3US, Universidad de Sevilla, Seville, Spain

http://orcid.org/0000-0002-5409-3578
http://orcid.org/0000-0002-6576-9529
http://crossmark.crossref.org/dialog/?doi=10.1007/s41965-022-00095-5&domain=pdf

 A. Riscos-Núñez, L. Valencia-Cabrera

1 3

instance (i.e. the input of the system) and s the polynomial-
time computable function that “selects” the P system cor-
responding to the size of the input; that is, the system will
return yes if and only if �X(u) = 1 , and it will halt in a time
bounded by a polynomial.

We denote that a problem X can be efficiently solved by a
uniform family of recognizer membrane systems from R by
X ∈ ���R . The class ���R is closed under complement
and under polynomial-time reductions. Let X be a C-com-
plete problem. If X ∈ ���R , then � ∪ �� − � ⊆ ���R .
For more details, see [15].

A computing model is said to be efficient (respectively,
presumably efficient) with respect to a computational
resource if it has the ability to provide solutions that use
a reasonable (i.e. polynomial) amount of the resource. In
this work, the computational resource is time, and therefore
we will say that a computing model is said to be efficient if
it has the ability to provide polynomial-time solutions for
intractable problems (resp., NP-complete problems) [7]. The
term presumably efficient refers to the fact that, as gener-
ally believed, if P ≠ NP then each NP-complete problem
is intractable and, consequently, any presumably efficient
model would be efficient. The class of problems efficiently
solvable by a computing model R is denoted by ���R .
This complexity class is closed under complementary and
under polynomial-time reductions [15]. The computing
model AM of recognizer P systems with active membranes
and electrical charges is presumably efficient [13], as well as
the computing model AM

0(+d,+ne) of recognizer polari-
zationless P systems with active membranes which makes
use of dissolution rules and division for elementary and non-
elementary membranes [4]. However, the computing model
AM

0(−d) of recognizer polarizationless P systems with
active membranes not making use of dissolution rules is not
efficient, even when allowing division rules for elementary
and non-elementary membranes [4]. Thus, if R is a pre-
sumably efficient computing model of recognizer membrane
systems, then ��∪ co-NP ⊆ ���R.

Several variants of P systems have been demonstrated to
be presumably efficient. A solution to QSAT, a well-known
PSPACE-complete problem, has been given in the frame-
work of P systems with active membranes and division rules
for elementary and non-elementary membranes but only
evolution rules of the RHS limited to length 1 [9]. When
creation rules are used instead of division rules as a method
of generating an exponential workspace in polynomial time,
it is possible to get rid of polarizations to obtain a solution
to the QSAT problem [8]. A new research line taking tissue
P systems with symport/antiport rules where objects can
evolve during the application of the rules has been developed
recently. Several results have been obtained, and new solu-
tions to NP-complete and PSPACE-complete problems have
been given in this framework [17].

In [18], a methodology to translate solutions of problems
X1 and X2 to the product problem X1 ⊗ X2 is presented.
Given an efficient solution to an NP—complete problem by
means of a uniform family of recognizer membrane systems,
it is easy to obtain a solution to its corresponding co-NP—
complete problem, only by changing the role of objects yes
and no through the computation. Therefore, this methodol-
ogy can be particularly used to transform a solution of an
NP-complete problem X into a solution of the DP-problem
X ⊗ X . Obtaining this kind of solutions, we can attack the
P vs DP problem giving efficiency frontiers between models
of membrane systems. Moreover, it is easy to see that this
problem is equivalent to the P vs NP problem, since any
solution to one of the problems would lead to the same solu-
tion in the other one.

In this paper, we apply the methodology explained in that
paper to the problem SAT with a uniform family of rec-
ognizer polarizationless P systems with active membranes
with dissolution rules and division rules for both elementary
and non-elementary membranes; that is, the main result of
this paper is that �� ∪ �� − �� ⊆ ���AM

0(+d,+ne) . This
result can be extracted (and an even stronger) result can be
extracted from [5] and [6]. The main idea of this protocol is
that it can be automated.

The rest of the paper is organized as follows: In Sec-
tion 2, some concepts will be introduced to make the work
self-contained. The complexity class DP is introduced
in Section 3. In Section 5, an efficient solution to SAT in
AM

0(+d,+ne) is given, and then the methodology will be
applied in Section 6. We finish the work with some conclu-
sions and research lines being investigated.

2 Preliminaries

Some concepts will be introduced for making the work
self-contained.

An alphabet is a non-empty set whose elements are called
symbols. A string u over an alphabet is an ordered finite
sequence of symbols. The length of a string u, denoted by
|u|, is the number of occurrences of symbols that it contains.
The empty string (with length 0) contains no symbols, and
it is denoted by � . The set of all strings over an alphabet � is
denoted by � ∗ . A language over � is a subset of � ∗ . If L1, L2
are languages over � , the set-theoretic difference of L1 and
L2 (in this order), denoted by L1 ⧵ L2 , is defined as follows:
L1 ⧵ L2 = {u ∈ � ∗ ∣ u ∈ L1 ∧ u ∉ L2}.

A multiset m over an alphabet � is a mapping from � onto
the set ℕ of natural numbers. A multiset m over � is finite
(respectively, empty) if the set {x ∈ 𝛤 |m(x) > 0} is a finite
(respectively, empty) set. If m,m′ are multisets over � , then
the union of m and m′ , denoted by m + m� , is the multiset

From SAT to SAT-UNSAT using P systems with dissolution rules

1 3

over � defined as follows: (m + m�)(x) = m(x) + m�(x) , for
each x ∈ � .

2.1 The Cantor pairing function

The Cantor pairing function is the mapping from
ℕ × ℕ onto ℕ defined as follows: the natural number
[(t1 + t2) ⋅ (t1 + t2 + 1)∕2] + t1 is associated with every
ordered pair (t1, t2) of natural numbers. We denote it by
⟨t1, t2⟩ , that is, ⟨t1, t2⟩ = [(t1 + t2) ⋅ (t1 + t2 + 1)∕2] + t1 . The
Cantor pairing function is a primitive recursive function and
bijective from ℕ × ℕ onto ℕ . Consequently, for each natural
number t, there exists a unique pair of natural numbers t1, t2
such that t = ⟨t1, t2⟩.

2.2 Decision problems and languages

A decision problem X is an ordered pair (IX , �X) , where IX is
a language over a finite alphabet �X and �X is a total boolean
function over IX . The elements of IX are called instances of
the problem X. If �X(u) = 1 (respectively, �X(u) = 0) then we
say that the answer of the problem for instance u is “yes”
(respectively, “no”). Each decision problem X has associated
a language LX over �X : the set of instances whose answer
is “yes”. Conversely, every language L over an alphabet �
has associated a decision problem whose set of instances is
�∗ , and for each u ∈ �∗ the answer of the problem is “yes”
if and only if u ∈ L.

The complement problem X of a decision problem
X = (IX , �X) is the decision problem with the same set of
instances, characterized by the following property: for each
instance u ∈ IX , the answer of X for u is “yes” if and only
if the answer of X for u is “no”. Obviously, X = X.

The class P (respectively, NP) is the class of decisions
problems efficiently solvable by deterministic (resp., non-
deterministic) Turing machines. The class co-NP is the
class of decision problems such that if X ∈ �� − �� , then
the complementary problem X is in NP.

In accordance with this definition, a problem X is an NP-
complete problem if and only if its complement problem X
is a co-NP-complete problem.

2.3 The satisfiability problem

Let us recall that the set of propositional Boolean variables
VP is a countably infinite set {x1, x2,…} such that each of
their elements can take only two possible Boolean values
(truth values) from {0, 1} . Boolean expressions are captured
through the recursive definition of the minimal set BE veri-
fying: (a) any propositional Boolean variable is in BE; (b)
if � is in BE then its negation ¬� is also in BE; and (c) if �1
and �2 are in BE, then its disjunction �1 ∨ �2 is also in BE.
Also, if �1 and �2 are in BE then its conjunction �1 ∧ �2 is

also in BE. Every Boolean expression � has a finite number
of Boolean variables associated with it, being denoted by
Var(�) . A truth assignment � for a Boolean expression � is
a mapping from Var(�) onto the set {0, 1} . According to the
classical definition of truth tables for negation and disjunc-
tion, every truth assignment � for a Boolean expression �
provides a unique Boolean value to it. If the associated truth
value is 1, then it is said that � makes the Boolean expres-
sion � true.

A literal is a Boolean variable or the negation of a
Boolean variable. A clause is a finite disjunction of literals.
Moreover, a Boolean expression is in conjunctive normal
form if it is a finite conjunction of clauses. We say that a
Boolean expression is in a simplified conjunctive normal
form if it is in conjunctive normal form, literals are not
repeated in each clause, and a literal and its negation do not
appear in the same clause. We say that a Boolean expression
� is satisfiable if and only if there exists a truth assignment
for � making such an expression true. Let us recall that the
satisfiability problem, denoted by SAT, is the problem of
deciding whether a given Boolean formula in a simplified
conjunctive normal form is satisfiable. The complement
problem ��� is denoted by ����� : determining whether or
not a Boolean expression in a simplified conjunctive normal
form is unsatisfiable. That is, given a Boolean expression �
in a simplified conjunctive normal form, determines whether
all truth assignments � for � make it false. It is well known
that the SAT problem is an NP complete problem [3]. Thus,
the UNSAT problem is a co-NP complete problem.

3 The complexity class DP

The complexity class DP was introduced by C.H. Papadimi-
triou and M. Yannakis in 1982 [10] as follows:

Definition 1 A language L is in the class DP if and only if
there are two languages L1 and L2 such that L1, L2 ∈ �� and
L = L1 ⧵ L2.

The complexity class DP can be easily characterized
by the following property: a language L is in DP if and
only if there exist two languages L1 and L2 in NP such that
L = L1 ∩ L2 . Class DP is the second level in the Boolean
hierarchy. Besides, classes in the Boolean hierarchy can be
described by finite unions of DP sets (or by finite intersec-
tions of co-DP sets). For more details, see [2, 19].

The complexity class DP can also be expressed in terms
of decision problems as follows: a decision problem X is in
class DP if and only if the language LX associated with it
belongs to class DP; that is, if there are two decision prob-
lems X1 = (IX1

, �X1
) and X2 = (IX2

, �X2
) such that LX1

, LX2
 are

 A. Riscos-Núñez, L. Valencia-Cabrera

1 3

languages in NP and LX = LX1
∩ LX2

 . It is easy to prove that
��∪ co-NP ⊆ ��∩ co-DP.

Next, we define the product of two decision problems and
some properties of the new concept are analyzed.

Definition 2 Let X1 = (IX1
, �X1

) and X2 = (IX2
, �X2

) be two
decision problems. The product problem of X1 and X2 ,
denoted by X1 ⊗ X2 , is the decision problem (IX1⊗X2

, 𝜃X1⊗X2
)

defined as follows: IX1⊗X2
 = IX1

× IX2
 , and for each

(u1, u2) ∈ IX1⊗X2
 we have 𝜃X1⊗X2

(u1, u2) = 1 if and only if
�X1

(u1) = 1 and �X2
(u2) = 1.

A product problem YX can be naturally associ-
ated to a problem X. This problem YX is the product
problem, defined as follows: YX = (IYX , �YX) such that
IYX = {(u1, u2) ∣ u1 ∈ IX , u2 ∈ IX̄} , being X the comple-
mentary problem of X; and �YX ((u1, u2)) = 1 if and only if
𝜃X(u1) = 𝜃X̄(u2) = 1.

According to these definitions, the following results
concerning to the product of two decision problems are
obtained.

Proposition 1 Let X1,X2 be decision problems.

– If X1 ∈ �� and X2 ∈ co-NP then X1 ⊗ X2 ∈ ��.
– If X1 is an NP complete problem and X2 is a co-NP com-

plete problem then X1 ⊗ X2 is a DP complete problem.
– If X1 is an NP complete problem then the product prob-

lem X1 ⊗ X1 is a DP complete problem.

Since the SAT problem is an NP complete problem we
deduce that the product problem ���⊗ ��� is a DP com-
plete problem. This problem is referred as the SAT-UNSAT
problem [11] and can be expressed as follows: given two
Boolean expressions �1 , �2 in simplified conjunctive normal
forms, determine whether or not �1 is satisfiable and �2 is
unsatisfiable.

4 Recognizer polarizationless P systems
with active membranes

Polarizationless P systems with active membranes
were introduced as a weaker version of P systems with
active membranes, where no polarizations (or only one
polarization) are taken into account. A recognizer P sys-
tem with active membranes of degree q ≥ 1 is a tuple
� = (� ,�,�,H,M1,… ,Mq,R, iin, iout) , where:

1. � is a finite (working) alphabet.
2. 𝛴 ⊈ 𝛤 is the input alphabet.

3. � is a rooted tree whose nodes are bijectively labelled by
elements of the set H = {1,… , q}.

4. Mi, 1 ≤ i ≤ q are multisets over � .
5. R is the set of rules over � of the following forms:

(a) [a → u]h , for h ∈ H, a ∈ � , u ∈ � ∗ (object-evo-
lution rules).

(b) a []h → [b]h , for h ∈ H, a, b ∈ � (send-in com-
munication rules).

(c) [a]h → b []h , for h ∈ H, a, b ∈ � (send-out
communication rules).

(d) [a]h → b , for h ∈ H, a, b ∈ � (dissolution rules).
(e) [a]h → [b]h [c]h , for h ∈ H, a, b, c ∈ � (elemen-

tary division rules).
(f) [[]h1 []h2] → [[]h1]h [[]h2]h , f o r

h, h1, h2 ∈ H (non-elementary division rules).

6. iin ∈ H, iout = env.

A configuration of a P system is given by the state of the
system at a certain moment, that is formed by the multisets
of objects in each region (both membranes and the envi-
ronment), and the current membrane structure. A (finite)
sequence of configurations (C0,C1,… ,Cn) is called a com-
putation, given that: (a) The first configuration C0 is given
by the objects from the initial multisets and the input and
(b) for each configuration Ct+1, t ∈ ℕ , Ct+1 can be obtained
from Ct by the application of rules by the semantics given
in [14]. A solution to a certain decision problem X by
means of a uniform family of P systems from R is given by
(� , cod, s) , such that for each n ∈ ℕ , there exists �(n) ∈ �
that solves all the instances of X of size n. In this sense, a
solution is characterized by two main keypoints: (a) All the
computations halt; and (b) if �x(u) = 1 , then the P system
�(s(u)) + cod(u) will halt and will send an object yes to the
environment at the last step of the computation; otherwise,
it will return an object no to the environment.

For a broader definition of recognizer membrane systems
and polarizationless P systems with active membranes, we
refer the reader to [14].

5 A solution to SAT in AM
0(+d)

Let ⟨x, y⟩ be the Cantor pairing function. Then,

is a recognizer P system with active membranes, with dis-
solution rules and division rules for elementary and non-
elementary membranes that solves the instances with n vari-
ables and p clauses, where:

�(⟨n, p⟩) = (� ,�,�,H,M1,… ,Mq,R, iin, iout)

From SAT to SAT-UNSAT using P systems with dissolution rules

1 3

1. � = � ∪ {���, ��, p, z, z∗, #} ∪ {dk ∣ 0 ≤ k ≤ 5n + p + 1} ∪

{ai,j ∣ 1 ≤ i ≤ n, 0 ≤ j ≤ 2i − 1} ∪ {cj ∣ 1 ≤ j ≤ p}∪

{x∗
i,j
, x

∗
i,j
∣ 1 ≤ i ≤ n, 1 ≤ j ≤ p} ∪ {ti, fi, f

∗
i
∣ 1 ≤ i ≤ n} ;

2. � = {xi,j, xi,j ∣ 1 ≤ i ≤ n, 1 ≤ j ≤ p};
3. � = [[… []2n+p+3 …]2]1;
4. H = {1,… , 2n + p + 3};
5. M1 = �,M2 = {d0},M2n+p+3 = {d0} ∪ {ai,0 ∣ 1 ≤ i ≤ n},

Mk = �, 3 ≤ k ≤ 2n + p + 2;

6. The set R contains the following rules:

6.1. Rules to generate the 2n possible truth assignments:

 r1,1,k ≡[dk → dk+1]2n+p+3 for 0 ≤ k ≤ 2n − 1
 r2 ≡[d2n]2n+p+3 → p r3,k,i ≡[ai,k → ai,k+1]2n+p+3
 for 1 ≤ i ≤ n, 0 ≤ k ≤ 2i − 2

 r4,i ≡[ai,2i−1]2n+p+3 → [ti]2n+p+3 [fi]2n+p+3
 for 1 ≤ i ≤ n

 r5,i ≡[[]
i+1 []

i+1]i → [[]
i+1]i [[]

i+1]i
 for 3 ≤ i ≤ 2n + p + 2

6.2 Rules to check which clauses are satisfied:

r6,i ≡[ti]2+p+2i → z

r7,i ≡[z → z∗]2+p+2i−1
r8,i ≡[fi → f ∗

i
]2+p+2i

r9,i ≡[f
∗
i
]2+p+2i → z∗

r10,i ≡[z
∗]2+p+2i−1 → #

⎫
⎪⎪⎬⎪⎪⎭

for 1 ≤ i ≤ n

r11,i,j ≡[xi,j → x∗
i,j
]2+p+2i

r12,i,j ≡[xi,j → x
∗

i,j
]2+p+2i

r13,i,j ≡[x
∗
i,j
→ �]2+p+2i

r14,i,j ≡[x
∗

i,j
→ cj]2+p+2i

r15,i,j ≡[x
∗
i,j
→ cj]2+p+2i−1

r16,i,j ≡[x
∗

i,j
→ �]2+p+2i−1

⎫
⎪⎪⎪⎬⎪⎪⎪⎭

for 1 ≤ i ≤ n, 1 ≤ j ≤ p

6.3 Rules to check if all clauses are satisfied:
r17,j ≡[cj]2+j → # for 1 ≤ j ≤ p

6.4 Rules to check if there is at least an object p in mem-
brane 2: r18,k ≡ [dk → dk+1]2 for 1 ≤ k ≤ 5n + p
r19 ≡[p]2 → ���

r20 ≡[d5n+p+1]2 → ��

r21 ≡[���]1 → ���[]1
r22 ≡[��]1 → ��[]1

7. iin = p + 2 and iout = env.

An instance � with n variables and p clauses from
SAT is defined as follows: Let Var(�) = {x1,… , xn} . Then,
� = C1 ∧… ∧ Cp , w h e r e Cj = lj,1 ∨… ∨ lj,rj ,
lj,k ∈ {xi,¬xi}, xi ∈ Var(�) . cod(u) is the set that contains xi,j

if the variable xi appears in the clause Cj and xi if ¬xi appears
in the clause Cj.

5.1 A glance to the computation

The computation is divided into four stages.

1. Generation of truth assignments: In this stage, 2n mem-
branes with label 2n + p + 2 are generated. Each object
ai,i−1 generates two new membranes each two steps with
rules from 6.1, one of them with an object ti and the
other with an object fi , representing the value acquired
of the corresponding variable i. This stage takes 2n com-
putational steps.

2. First checking stage: In this stage, rules from 6.2 will
be used to check which clauses of � are satisfied. For
this, objects ti , xi,j and xi,j will interact in membranes
2 + p + 2i and 2 + p + 2i − 1 to return an object cj in the
case that the literal i satisfies the clause j. Each variable
is checked in 3 computational steps. Therefore, this stage
takes 3n computational steps. In the Figure 1, each pos-
sible configuration can be observed.

3. Second checking stage: In this stage, with rules from 6.3,
objects cj dissolve the corresponding membrane labelled
by 2 + j . If membrane 3 is dissolved, the corresponding
truth assignment makes true the whole formula, and an
object p appears in membrane 2.

4. Output stage: If an object p is present in membrane
labelled by 2 in the configuration C5n+p , there is at least
one truth assignment that makes true the formula � .
Therefore, an object ��� will be sent to the environ-
ment. Otherwise, rules from 6.4 will transform the
object d5n+p+1 in an object �� , that will be sent to the
environment. This stage takes 2 steps in the affirmative
case and 3 steps in the negative case. This process can
be observed in Figure 2.

6 Application of the methodology
to an NP‑complete problem

Let

be a recognizer polarizationless P system with dissolution
rules that solve the instances of SAT of n1 variables and
p1 clauses as described above. We can define a recognizer
polarizationless P system with dissolution rules

� (1)(⟨n1, p1⟩) = (� (1),�(1),�(1),H(1),(1)
1 ,

… ,(1)
2n1+p1+3

,(1), i(1)in , i
(1)
out)

 A. Riscos-Núñez, L. Valencia-Cabrera

1 3

� (2)(⟨n2, p2⟩) = (� (2)
,�(2)

,�(2)
,H(1)

,M
(2)

2n1+p1+4
,… ,M

(2)

2n1+p1+2n2+p2+6
,

R
(2)
, i
(2)

in
, i
(2)
out)

that solves the instances of ����� of n2 variables and p2
clauses as follows: Since � (i)(ti) should be disjoint, � (2)(t2)
will consist of the symbols from � (1)(t1) in capital letters.
All the rules are changed according to this. To make H(1) and
H(2) disjoint, given n1, n2, p1, p2 > 0 , we change the label i

Cn+1+3(i−1) Cn+1+3(i−1)+1 Cn+1+3(i−1)+2 Cn+1+3i

tixi,j

2i

zx∗
i,j

2i− 1

z∗cj

2i− 1

cj

2(i− 1)

r6,i, r11,i,j r7,i, r15,i,j r10,i

tixi,j

2i

zx∗
i,j

2i− 1

z∗

2i− 1 2(i− 1)

r6,i, r12,i,j r7,i, r16,i,j r10,i

fixi,j

2i

f∗
i x

∗
i,j

2i

z∗

2i− 1 2(i− 1)

r8,i, r11,i,j r9,i, r13,i,j r10,i

fixi,j

2i

f∗
i x

∗
i,j

2i

z∗cj

2i− 1

cj

2(i− 1)

r8,i, r12,i,j r9,i, rr14,i,j r10,i

Fig. 1 Possible evolution of checking a single variable i. The mem-
brane shown in each step corresponds with the last non-dissolved
membrane of the branch. For instance, in the top row, object ti dis-
solves membrane 2i in the first step, and therefore a membrane
labelled by 2i − 1 would be the last non-dissolved membrane of that
branch. Some renaming steps are made for synchronisation, so that
the checking takes always 3 computational steps, for each one of the

four cases. Each row corresponds to a different possibility of assign-
ment: The first row, the behaviour of a positive literal with a positive
assignment; the second row, it is the case of a negative literal with
a positive assignment; the third row corresponds to a positive literal
with a negative assignment; and in the fourth row there exists a nega-
tive literal with a negative assignment

C5n+p C5n+p+1 C5n+p+2 C5n+p+3

d5n+pp

2

d5n+p+1yes

1

d5n+p+1

1

yes
r18,5n+p, r19 r21

d5n+p

2

d5n+p+1

2

no

1 1

no
r18,5n+p r20 r22

Fig. 2 Above, in the positive case, object p dissolves the membrane 2 in the first step, stopping the evolution of the object d5n+p+1 . Below, this
object resides in the membrane 2 in the configuration C5n+p+1 , dissolving that membrane and transforming into an object ��

From SAT to SAT-UNSAT using P systems with dissolution rules

1 3

of H(2) to 2n1 + p + 3 + i . In � (i) we change objects ��� and
�� by ���i and ��i , respectively.

Let ti = ⟨ni, pi⟩ , and t = ⟨t1, t2⟩ . Let qi = ti and
di = 2ni + pi + 3 . L e t pi(|ui|) = 5ni + pi + 3 . L e t
mi = qi + di + 2 = ti + 2ni + pi + 5 and n = max{di + qi + pi
(|ui|)} = max{t1 + 2n1 + p1 + 5, t2 + 2n2 + p2 + 5}.

Now we can define a recognizer P system that solves the
problem ��� ⊗ ����� , defined as follows: An instance of
the problem ��� ⊗ ����� is a pair of formulas (�1,�2) and

We define a recognizer polarizationless P system with dis-
solution rules

where:

– � = � (1∗)(t) ∪ � (2∗)(t) ∪ � (3)(t) ∪ � (4)(t) ∪ � (5)(t) ∪ � (6)(t) , where:

– �(t) = �(1)(t1) ∪ �(2)(t2) , being �(1)(t1) = {xi,j, xi,j ∣ 1
≤ i ≤ n1, 1 ≤ j ≤ p1} a n d �(2)(t2) = {Xi,j,Xi,j ∣ 1 ≤

i ≤ n2, 1 ≤ j ≤ p2}.

𝜃���⊗ �����(𝜑1,𝜑2) =

{
1 iff 𝜑1 ∈ L��� ∧ 𝜑2 ∈ L�����
0 otherwise

�(t) = (� ,�,�,M1,… ,M2n1+p1+2n2+p2+6
,Mrt

,Mr�(t),Mr��(t),Mh(1)(t1)
,

Mh(2)(t2)
,R, iin, iout)

� (1∗)(t) = �(1)(t1) ∪ {���1, ��1, p, z, z
∗, #} ∪ {dk ∣ 0 ≤ k ≤ 5n1 + p1 + 1} ∪

{cj ∣ 1 ≤ j ≤ p1} ∪ {ai,j ∣ 1 ≤ i ≤ n1, 0 ≤ j ≤ 2i − 1} ∪

{ti, fi, f
∗
i
∣ 1 ≤ i ≤ n1} ∪ {x∗

i,j
, x

∗

i,j
∣ 1 ≤ i ≤ n1, 1 ≤ j ≤ p1}

� (2∗)(t) = �(2)(t2) ∪ {���2, ��2,P, Z, z
∗, #} ∪ {Dk ∣ 0 ≤ k ≤ 5n2 + p2 + 1} ∪

{Cj ∣ 1 ≤ j ≤ p2} ∪ {Ai,j ∣ 1 ≤ i ≤ n2, 0 ≤ j ≤ 2i − 1} ∪

{Ti,Fi,F
∗
i
∣ 1 ≤ i ≤ n2} ∪ {X∗

i,j
,X

∗

i,j
∣ 1 ≤ i ≤ n2, 1 ≤ j ≤ p2}

� (3)(t) = {#, ���, ��} ∪ {x�
i,j
, x

�

i,j
∣ 1 ≤ i ≤ n1, 1 ≤ j ≤ p1} ∪

{X�
i,j
,X

�

i,j
∣ 1 ≤ i ≤ n2, 1 ≤ j ≤ p2}

� (4)(t) = {���1k , ��1k , pk, zk, z
∗
k
, # ∣ 0 ≤ k ≤ m1} ∪

{dkk� ∣ 0 ≤ k ≤ 5n1 + p1 + 1, 0 ≤ k� ≤ m1} ∪

{cjk ∣ 1 ≤ j ≤ p1, 1 ≤ k ≤ m1} ∪

{ai,jk ∣ 1 ≤ i ≤ n1, 0 ≤ j ≤ 2i − 1, 0 ≤ k ≤ m1} ∪

{tik , fik , f
∗
ik
∣ 1 ≤ i ≤ n1, 0 ≤ k ≤ m1} ∪

{xi,jk , xi,jk , x
∗
i,jk
, x

∗

i,jk
∣ 1 ≤ i ≤ n1, 1 ≤ j ≤ p1, 0 ≤ k ≤ m1} ∪

{���2k , ��2k ,Pk, Zk, Z
∗
k
, # ∣ 0 ≤ k ≤ m2} ∪

{Dkk�
∣ 0 ≤ k ≤ 5n1 + p1 + 1, 0 ≤ k� ≤ m2} ∪

{Cjk
∣ 1 ≤ j ≤ p1, 1 ≤ k ≤ m2} ∪

{Ai,jk
∣ 1 ≤ i ≤ n1, 0 ≤ j ≤ 2i − 1, 0 ≤ k ≤ m2} ∪

{Tik ,Fik
,F∗

ik
∣ 1 ≤ i ≤ n1, 0 ≤ k ≤ m2} ∪

{Xi,jk
,Xi,jk

,X∗
i,jk
,X

∗

i,jk
∣ 1 ≤ i ≤ n1, 1 ≤ j ≤ p1, 0 ≤ k ≤ m2}

� (5)(t) = {�0, �1} ∪ {�j ∣ 0 ≤ j ≤ n}

� (6)(t) = {�j ∣ 0 ≤ j ≤ max{m1,m2}}

– H(t) = H(1) ∪ H(2) ∪ {rt, r
�
t
, r��

t
, h(1)(t1), h

(2)(t2)} , where
rt, r

�
t
, r��

t
, h(1)(t1), h

(2)(t2) are different from each other,
and rt, r�t , r

��
t
, h(1)(t1), h

(2)(t2) ∉ H(1) ∪ H(2).

– � = [[[[… [[]
h(1)(t1)

]
h1
…]1 [… [[]

h(2)(t2)
]
h3
…]

h2
]
r
��
t

]
r
�
t

]
r
t

 ,
where h1 = 2n1 + p1 + 3 , h2 = 2n1 + p1 + 4 and
h3 = 6 + 2n1 + 2n2 + p1 + p2.

– M2 = {d00},M2n1+p1+3
= {d00} ∪ {ai,00 ∣ 1 ≤ i ≤ n1},

M2n1+p1+5
= {D00

},M2n1+p1+2n2+p2+6
= {D00

} ∪

{A
i,00

∣ 1 ≤ i ≤ n2},Mr
��
t

(t) = {�0, �0} and M
h(i)(t

i
)(t)

= {�0} , for i = 1, 2 and Mj = � for the rest of membranes.
– The set of rules is R� (1)(t1)

∪R� (2)(t2)
∪R

∗
t
 , where R� (i)(ti)

is the set of rules of � (i)(ti) , for i = 1, 2 , obtained through the
replacement of objects yes and no by objects ���i and ��i ,
respectively, in each rule. R∗

t
 is the following set of rules:

1 Rules for simultaneously transporting codi(ui) from r′′
t
 to

h(i)(ti) , for i = 1, 2 and transforming it into codi(u�i) :

 A. Riscos-Núñez, L. Valencia-Cabrera

1 3

a []1 → [a�]1

A []2n1+p1+4 → [A�]2n1+p1+4

⎫⎪⎬⎪⎭
for

⎧⎪⎨⎪⎩

a ∈ {x
i,j , xi,j ∣ 1 ≤ i ≤ n1, 1 ≤ j ≤ p1},

A ∈ {X
i,j ,Xi,j ∣ 1 ≤ i ≤ n2, 1 ≤ j ≤ p2}

a� []i → [a�]1

a� []h(1) (t1) → [a�]h(1) (t1)

A� []j → [A�]j

A� []h(2) (t2) → [A�]h(2) (t2)

⎫⎪⎪⎪⎬⎪⎪⎪⎭

for

⎧⎪⎪⎪⎨⎪⎪⎪⎩

a ∈ {xi,jxi,j ∣ 1 ≤ i ≤ n1, 1 ≤ j ≤ p1},

3 ≤ i ≤ 3 + ⌊n1∕2⌋
A ∈ {Xi,jXi,j ∣ 1 ≤ i ≤ n2, 1 ≤ j ≤ p2},

2n1 + p1 + 5 ≤ j ≤ 2n1 + p1 + 2n2 + p2 + 6

2 Rules for simultaneously transporting codi(u�i) from
h(i)(ti) to the input membrane in� (i)(ti)

 , by transforming it
i n t o codi(ui) , f o r i = 1, 2 :
[�j → �j+1]h(i)(ti) for i ∈ {1, 2}, 0 ≤ j ≤ mi − 1
[�mi

]h(i)(ti) → # for i ∈ {1, 2}
[a

�
→ a]h(1) t(1)

[A
�
→ A]h

(2)
t(2)

}
for

{
a ∈ {xi,j, xi,j 1 ≤ i ≤ n1, 1 ≤ j ≤ p1},

A ∈ {Xi,j,Xi,j 1 ≤ i ≤ n2, 1 ≤ j ≤ p2}

3 Rules for synchronizing the simulation of
� (i)(ti) + codi(ui) in order to start at the (mi + 2)-th tran-
s i t i o n s t e p , f o r i = 1, 2 :
[d0k → d0k+1]2
[d0k → d0k+1]2n1+p1+3
[ai,0k → ai,0k+1]2n1+p1+3

⎫⎪⎬⎪⎭
for 0 ≤ k ≤ m1

[D0k
→ D0k+1

]2n1+p1+5
[D0k

→ D0k+1
]2n1+p1+2n2+p2+6

[Ai,0k
→ Ai,0k+1

]2n1+p1+2n2+p2+6

⎫⎪⎬⎪⎭
for 0 ≤ k ≤ m2

[d0m1
→ d0]2

[d0m1
→ d0]2n1+p1+3

[D0m1
→ D0]2n1+p1+5

[D0m1
→ D0]2n1+p1+2n2+p2+6

[ai,0m1
→ ai,0]2n1+p1+3 for 1 ≤ i ≤ n1

[Ai,0m1
→ Ai,0]2n1+p1+2n2+p2+6 for 1 ≤ i ≤ n2

4 R u l e s f o r s y n c h r o n i z i n g t h e i n s t a n t
n = 2 + max{di + qi + pi(|ui|) ∶ 1 ≤ i ≤ 2} in which the
answers of � (1)(t1) + cod1(u1) and � (2)(t2) + cod2(u2)
reach the membrane r′′

t
 : [�j → �j+1]r��t for 0 ≤ j ≤ n − 1

5 Rules for the output of the system �(t) + cod(u1, u2) :
[�n]r��t → #

[��i]r�t → ��

[�0 → �1]r�t
[�1]r�t → ��� []r�t
[���]rt → ��� []rt

⎫
⎪⎪⎬⎪⎪⎭

for i ∈ {1, 2}

Apart from these rules, rules from R� (1)(t1)
 and R� (2)(t2)

 are
present in the set of rules R

– iin = r��
t
 and iout = env.

Theorem 1 ���⊗ ����� ∈ ���AM
0(+d,+ne)

Proof It can be seen from the previous family of P systems
that the previous P system takes an instance of the problem

���⊗ ����� , (�1,�2) , and it returns an object ��� if and
only if �1 is satisfiable and �2 is unsatisfiable. This system
will return an object ��� or an object �� , but not both, only
in the last step of the computation. Taking into account the
definition of n from above, the computation will take n + 4
computational steps in the affirmative case and n + 3 steps
in the negative case.

Corollary 1 DP ∪ co-DP ⊆ ���AM
0(+d,+ne).

7 Conclusion

In previous works, several solutions to NP-complete prob-
lems have been given, but while some of them this solution
is non-uniform, in other there is a solution to other problem
different than SAT. Since this work was though as a SAT-
UNSAT solver, an efficient solution to SAT has been given
in this paper by means of a uniform family of recognizer
membrane systems from AM

0(+d,+ne).
In [18], a methodology for transforming an efficient solu-

tion for an NP-complete problem into an efficient solution
for a DP-complete problem was given. In this paper, we
have applied this methodology to make easier to under-
stand how can it be used to obtain efficient solutions for
harder problems. The final result is that, given the fact
that ��� ∈ ���AM

0(+d,+ne) , and we can apply the meth-
odology to that solution (since it has dissolution rules,
one of the main ingredients of this methodology), then
�� ∪ �� − �� ⊆ ���AM

0(+d,+ne) . From [1], we know that
������ ⊆ ���AM

0(+d,+ne) , so it seems to be a non-sur-
prising result, since �� ⊆ ������ . But the main contribu-
tion of this paper is to provide an example of the application
of the methodology presented in [18], in such a way that
every solution to a NP-complete problem can be transformed
into a solution to its corresponding DP-complete problem.
It is really interesting as the P vs NP problem is equiva-
lent to the P vs DP problem. As DP-complete problems
are supposed to be harder than NP-complete problems, they
are better candidates to find a solution to the conjecture.
Therefore, it is interesting to find borderlines between non-
efficient computing models and models capable of efficiently
solving DP-complete problems.

The most interesting research lines that arise from here
is to create methodologies for different variants of P sys-
tems, such as tissue P systems with symport/antiport rules
and other types of cell-like membrane systems. In general,
we think that this process can be translated to any type of
membrane system that has some minimum requirements.
Another interesting research line is to apply the method-
ology to different solutions of decision problems, since a

From SAT to SAT-UNSAT using P systems with dissolution rules

1 3

natural extension to the parallel resolution of n problems
can arise from this protocol.

Acknowledgements This work was supported by “FEDER/Ministerio
de Ciencia e Innovación - Agencia Estatal de Investigación/ _Proyecto
(TIN2017-89842-P)” - MABICAP.

Funding Open Access funding provided thanks to the CRUE-CSIC
agreement with Springer Nature.

Open Access This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article's Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in
the article's Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

References

 1. Alhazov, A., & Pérez-Jiménez, M. J. (2007). Uniform solution
of QSAT using polarizationless active membranes. In J. Durand-
Lose & M. Margenstern (Eds.), Machines, Computations, and
Universality (pp. 122–133). Berlin Heidelberg, Berlin, Heidel-
berg: Springer.

 2. Cai, J. Y., Gundermann, T., Hartmanis, J., Hemachandra, L. A.,
Sewelson, V., Wagner, K., & Wechsung, G. (1988). The boolean
hierarchy i: Structural properties. SIAM Journal on Computing,
17(6), 1232–1252. https:// doi. org/ 10. 1137/ 02170 78.

 3. Garey, M.R., Johnson, D.S.: Computers and Intractability; A
Guide to the Theory of NP-Completeness. W. H. Freeman & Co.,
USA (1990)

 4. Gutiérrez-Naranjo, M. A., Pérez-Jiménez, M. J., Riscos-Núñez,
A., & Romero-Campero, F. J. (2006). On the power of dissolu-
tion in p systems with active membranes. In R. Freund, G. Păun,
G. Rozenberg, & A. Salomaa (Eds.), Membrane Computing (pp.
224–240). Berlin Heidelberg, Berlin, Heidelberg: Springer.

 5. Leporati, A., Manzoni, L., Mauri, G., Porreca, A., & Zandron, C.
(2020). Subroutines in P systems and closure properties of their
complexity classes. Theoretical Computer Science, 805, 193–205.

 6. Leporati, A., Manzoni, L., Mauri, G., Porreca, A., & Zandron,
C. (2020). A Turing machine simulation by P systems without
charges. Journal of Membrane Computing, 2, 71–79.

 7. Macías-Ramos, L.F., Pérez-Jiménez, M.J., Riscos-Núñez, A.,
Valencia-Cabrera, L.: Membrane fission versus cell division:
When membrane proliferation is not enough. Theoretical Com-
puter Science 608, 57 – 65 (2015). doi: 10.1016/j.tcs.2015.06.025.

http:// www. scien cedir ect. com/ scien ce/ artic le/ pii/ S0304 39751
50053 56

 8. Orellana-Martín, D., Valencia-Cabrera, L., Riscos-Núñez, A., &
Pérez-Jiménez, M. (2019). Membrane creation in polarization-
less P systems with active membranes. Fundamenta Informaticae,
171(1–4), 297–311.

 9. Pan, L., Orellana-Martín, D., Song, B., Pérez-Jiménez, M.J.:
Cell-like P systems with polarizations and minimal rules. The-
oretical Computer Science 816, 1 – 18 (2020). doi: 10.1016/j.
tcs.2019.10.001. http:// www. scien cedir ect. com/ scien ce/ artic le/
pii/ S0304 39751 93062 31

 10. Papadimitriou, C., Yannakakis, M.: The complexity of fac-
ets (and some facets of complexity). Journal of Computer and
System Sciences 28(2), 244 – 259 (1984). doi: 10.1016/0022-
0000(84)90068-0. http:// www. scien cedir ect. com/ scien ce/ artic le/
pii/ 00220 00084 900680

 11. Papadimitriou, C.H.: Computational complexity. Addison-Wesley
(1994)

 12. Păun, G.: Computing with membranes. Journal of Computer
and System Sciences 61(1), 108 – 143 (2000). doi: 10.1006/
jcss.1999.1693. http:// www. scien cedir ect. com/ scien ce/ artic le/
pii/ S0022 00009 99169 38

 13. Păun, G. (2001). Computing with membranes: Attacking NP-
complete problems. In I. Antoniou, C. S. Calude, & M. J. Din-
neen (Eds.), Unconventional Models of Computation, UMC2K
(pp. 94–115). London, London: Springer.

 14. Păun, G., Rozenberg, G., & Salomaa, A. (2010). The Oxford
Handbook of Membrane Computing. USA: Oxford University
Press Inc.

 15. Pérez-Jiménez, M. J., Romero-Jiménez, A., & Sancho-Caparrini,
F. (2003). Complexity classes in models of cellular computing
with membranes. Natural Computing, 2(3), 265–285. https:// doi.
org/ 10. 1023/A: 10254 49224 520.

 16. Pérez Jiménez, M. J., Romero Jiménez, Á., & Sancho Caparrini,
F. (2003). Decision P systems and the P ≠ NP conjecture. In G.
Păun, G. Rozenberg, A. Salomaa, & C. Zandron (Eds.), Membrane
Computing (pp. 388–399). Berlin Heidelberg, Berlin, Heidelberg:
Springer.

 17. Song, B., Li, K., Orellana-Martín, D., Valencia-Cabrera, L., Pérez-
Jiménez, M.J.: Cell-like P systems with evolutional symport/anti-
port rules and membrane creation. Information and Computation
p. 104542 (2020). doi: 10.1016/j.ic.2020.104542. http:// www.
scien cedir ect. com/ scien ce/ artic le/ pii/ S0890 54012 03003 04

 18. Valencia-Cabrera, L., Orellana-Martín, D., Martínez-del Amor,
M.A., Pérez-Hurtado, I., Pérez-Jiménez, M.J.: From NP-complete-
ness to DP-completeness: A membrane computing perspective.
Complexity 2020(6765097), 10 pages (2020)

 19. Wechsung, G. (1985). On the Boolean closure of NP. In L. Budach
(Ed.), Fundamentals of Computation Theory (pp. 485–493). Ber-
lin Heidelberg, Berlin, Heidelberg: Springer.

Publisher's Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1137/0217078
http://www.sciencedirect.com/science/article/pii/S0304397515005356
http://www.sciencedirect.com/science/article/pii/S0304397515005356
http://www.sciencedirect.com/science/article/pii/S0304397519306231
http://www.sciencedirect.com/science/article/pii/S0304397519306231
http://www.sciencedirect.com/science/article/pii/0022000084900680
http://www.sciencedirect.com/science/article/pii/0022000084900680
http://www.sciencedirect.com/science/article/pii/S0022000099916938
http://www.sciencedirect.com/science/article/pii/S0022000099916938
https://doi.org/10.1023/A:1025449224520
https://doi.org/10.1023/A:1025449224520
http://www.sciencedirect.com/science/article/pii/S0890540120300304
http://www.sciencedirect.com/science/article/pii/S0890540120300304

 A. Riscos-Núñez, L. Valencia-Cabrera

1 3

Agustín Riscos‑Núñez is an Asso-
ciate Professor at Dpt. Computer
Science and Artificial Intelli-
gence, guarantor researcher at
the Smart Computer systems
Research and Engineering Lab
(SCORE), head of the Research
Group on Natural Computing,
founding member and Secretary
of the Research Institute of Com-
puter Engineering (I3US) at Uni-
versidad de Sevilla, Spain.
Founding member of the “Inter-
national Membrane Computing
Society (IMCS)”, IEEE Member.
His main areas of expertise are

bio-inspired computing and artificial intelligence. His research interests
mainly focus on computational complexity theory and computational
modelling of complex systems (specially population dynamics in ecol-
ogy), as well as other practical applications in the fields of bioinformat-
ics, biomedicine, high performance computing and robotics.He has
co-authored around 50 scientific papers published at indexed interna-
tional journals, and more than 35 conference contributions (some of
them as invited speaker). He has also co-authored several book chapters

and one monograph, and has served as editor for more than 15 collec-
tive volumes.

Luis Valencia‑Cabrera received
his BSc in 2005, and was work-
ing for an IT company from 2005
to 2010, getting professional cer-
tifications SCJP, SCWCD,
SCBCD (Oracle, 2008) and
CFPS (IFPUG, 2006), plus a
professional MSc in 2007. In
2013 he got an academic MSc
(2013), and in 2015 he defended
his Ph.D. in Logics, computing
and Artificial Intelligence,
receiving a Ph.D. Extraordinary
award. He is cur rently a
researcher at the Smart Com-
puter systems Research and

Engineering Lab (SCORE) and an Associate Professor at Universidad
de Sevilla (Spain), where he has supervised many MSc/BSc, 2 doctoral
theses, and has more than a hundred scientific contributions, including
43 papers in ISI-JCR indexed journals.

	From SAT to SAT-UNSAT using P systems with dissolution rules
	Abstract
	1 Introduction
	2 Preliminaries
	2.1 The Cantor pairing function
	2.2 Decision problems and languages
	2.3 The satisfiability problem

	3 The complexity class DP
	4 Recognizer polarizationless P systems with active membranes
	5 A solution to SAT in
	5.1 A glance to the computation

	6 Application of the methodology to an NP-complete problem
	7 Conclusion
	Acknowledgements
	References

