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Galectin-3, a rising star in modulating microglia activation
under conditions of neurodegeneration
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The advent of high-throughput single-cell transcriptomic analysis of microglia has revealed different phenotypes that are inherently
associated with disease conditions. A common feature of some of these activated phenotypes is the upregulation of galectin-3.
Representative examples of these phenotypes include disease-associated microglia (DAM) and white-associated microglia (WAM),
whose role(s) in neuroprotection/neurotoxicity is a matter of high interest in the microglia community. In this review, we summarise
the main findings that demonstrate the ability of galectin-3 to interact with key pattern recognition receptors, including, among
others, TLR4 and TREM2 and the importance of galectin-3 in the regulation of microglia activation. Finally, we discuss increasing
evidence supporting the involvement of this lectin in the main neurodegenerative diseases, including Alzheimer’s disease,
Parkinson’s disease, Huntington’s disease, amyotrophic lateral sclerosis, multiple sclerosis, traumatic brain injury, and stroke.

Cell Death and Disease          (2022) 13:628 ; https://doi.org/10.1038/s41419-022-05058-3

FACTS

● Galectin-3 (Gal-3) is a pleiotropic protein that binds to
β-galactoside residues present in glycoproteins.

● Gal-3 is mainly expressed and released in the damaged brain
by reactive microglia.

● Gal-3 interacts with immune receptors like TREM2 and TLR4.
● Gal-3 appears upregulated in the transcriptomic profile of

microglia in distinct neurodegenerative environments.

OPEN QUESTIONS

● Should we consider Gal-3 a broad marker for neurodegen-
erative diseases?

● Does microglia-secreted Gal-3 play a significant role in non-
microglia cells?

● How can the microenvironment affect Gal-3 binding proper-
ties and its role in neurodegenerative diseases?

● Could gal-3 inhibitors be a therapeutic option in neurode-
generative diseases?

A BRIEF OVERVIEW OF GALECTINS
The central nervous system (CNS) is a complex structure of
interconnected specialised areas. The functionality of the entire

system relies on a delicate equilibrium that is occasionally
challenged by the different disrupting stimuli.
This review aims to describe the roles of Galectin-3 (Gal-3) in the

diseased brain. Galectins are small proteins that play a variety of
functions interacting with glycoproteins and glycolipids from
different brain cell types [1]. These promiscuous proteins
contribute to the regulation of innate and adaptive immunity,
among other processes, and their role depends on their
expression levels and preferences for particular structural features
of β-galactosides [2].
In general, galectin molecules are based on conserved

β-galactoside-binding sites found within their characteristic
∼130 amino acid carbohydrate recognition domains (CRDs) [3].
This conserved domain binds to β-galactosides with different
specificities and affinities [4]. Some of these lectins are expressed
constitutively, while others are expressed upon stimulation.
Importantly, glycosylation patterns change under physiological
and pathogenic conditions impacting galectin functions [5].
Among the 15 members of the galectin family, only Gal-1, Gal-3,

Gal-4, Gal-8, and Gal-9 have been found to be significantly
expressed in the brain, where their functions are still little
understood. Galectins are classified according to their CRD into
three different groups: ‘Prototypic’ galectins, that have only one
CRD that can dimerise (Gal-1, Gal-2, Gal-5, Gal-7, Gal-10, Gal-11,
Gal-13, Gal-14, and Gal-15), ‘tandem-repeat’ galectins (Gal-4, Gal-6,
Gal8, Gal-9, and Gal-12) with two CRDs within a single polypeptide
chain, one at the N-terminal and the other at the C-terminal
region, linked by a peptide bridge of variable length. The last
group would be the ‘chimera type’ galectin, only represented by
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Gal-3 bearing a single C-terminal CRD and a non-lectin collagen-
like N-terminal region that mediates oligomerisation and regula-
tory modifications [6].
The immune system contributes to homeostasis by preparing

the body to fight infection and help the healing process in the
event that harm occurs. Therefore, there must be efficient
crosstalk between the different players of the immune response.
In this vein, galectins are crucial determinants in neuroinflamma-
tory responses and neuroprotection mechanisms in the brain,
recognising glycan structures and sensing their modifications
both extracellularly and intracellularly. However, the mechanisms
that regulate galectin expression are still unknown. Understanding
the functional interplay of different galectins in glial phenotypes
and neuronal survival systems under different damaging contexts
may reveal new therapeutic possibilities.

MICROGLIA DIVERSITY AND GAL-3
Gal-3 is associated with activated microglia since homeostatic
microglia do not express Gal-3 [7, 8]. The advent of whole-genome
transcriptomic at the single-cell level has revealed a microglia
diversity that overcomes the simplistic view of M1/M2 polarisation
states under disease conditions [9, 10]. Gal-3 is emerging as a
relevant marker in specific clusters associated with activated
microglia, as further discussed.
Holtman et al. [11] compared the gene expression networks of

microglia isolated from different mouse models of neurodegen-
erative diseases (Alzheimer’s disease (AD), amyotrophic lateral
sclerosis (ALS)) and ageing. They found an independent core gene
expression profile that differed from proinflammatory activated
microglia [11], including, among other upregulated genes, Itgax,
Axl, Clec7a, and Lgals3 (gene coding Gal-3). In particular, the
authors used Weighted Gene Co-expression Network Analysis to
identify hub genes likely involved in driving the identified
microglia polarisation state under different disease conditions.
Following this approach, they identified four hub genes: Csf1, Axl,
Igf1, and Lgals3 [11]. Each of these genes was believed to be
instrumental in driving essential microglia functions such as
proliferation, activation, and phagocytosis. In 2017, two indepen-
dent studies using single-cell RNA analysis of microglial cells
identified a common activated microglia phenotype associated
with different brain diseases such as AD, ALS, and multiple
sclerosis (MS), which was defined as either disease-associated
microglia (DAM) [7] or microglia neurodegenerative phenotype
(MGnD) [8]. A common feature of both phenotypes is the
downregulation of homeostatic microglial genes such as P2ry12,
Cx3cr1, Hexb or Tmem119, along with upregulation of particular
genes, including Trem2, Apoe, Itgax, Spp1 and Clec7a [7, 8].
Intriguingly, Gal-3 was not found to be altered in DAM [7] but
highly upregulated in MGnD [8]. However, new studies have
clearly shown that Gal-3 is one of the most upregulated genes
under conditions of brain disease [12–14]. In fact, the DAM
phenotype is exemplified by microglia clustering amyloid beta
plaques in AD [7], and we have identified a subset of plaque-
associated microglia that express high levels of Gal-3 in human
and mouse models of AD [13]. However, new evidence discards a
universal common activated microglia phenotype but rather
suggests multiple activated subtypes. In fact, distinct and
functionally divergent DAM subtypes have been identified in AD
mouse models, including proinflammatory and anti-inflammatory
profiles [15]. Further evidence is supported by studies by Mathys
and colleagues who applied single-cell RNAseq in microglial cells
in the CK-p25 inducible mouse of severe neurodegeneration,
which develops some aspects of AD pathology [12]. The
advantage of using CK-p25 mice is that neurodegeneration occurs
shortly after induction of p25, ranging from DNA damage at two
weeks to progressive neuronal damage and synaptic loss at six
weeks [12]. This short temporal window allows for the

characterisation of the molecular signature of isolated microglia
at different stages of the disease (early and delayed stages). Using
this approach, different microglial clusters were identified after
induction of p25, and more importantly, they were identified at
different temporal stages (early response versus late response)
[12]. Late-response microglia were enriched in a specific cluster
(cluster 6), and Gal-3 was identified as one of the most
upregulated genes in this cluster [12]. Interestingly, the authors
identified genes associated with the antiviral and interferon
response and with MHC class II. However, there was no correlation
between the antiviral and interferon response modules and the
MHC class II module, suggesting the existence of at least two
different reactive microglial phenotypes under neurodegeneration
conditions. DAM microglia have been suggested to be neuropro-
tective [7] and MGnD (neurotoxic) [8], and hence the possibility
that protective and deleterious reactive microglia populations
coexist is certainly plausible. Since Gal-3 deletion has been shown
to be neuroprotective in different models of neurodegeneration,
including AD [13], it is certainly tempting to speculate that Gal-3
expression makes microglia prone to be neurotoxic. Do we have
evidence supporting this view? Two recent studies performed in a
model of frontotemporal dementia (FTD) associated with loss of
the progranulin (Grn) gene support the view that Gal-3 expressing
microglia are neurotoxic, at least in this model [16, 17]. The
proteomic analysis of Grn knockout mice (Grn KO) identified two
proteins, Gpnmb and Gal-3, as two of the most enriched proteins
in the brain proteome of Grn KO, especially in aged animals [16].
Both markers were found to be solely expressed by reactive
microglia, which were especially evident at sites of damage,
including the thalamus, cortex, and hippocampus [16]. Aggrega-
tion of the RNA-binding protein TDP-43 in the neuronal cytoplasm
and dendrites is a typical hallmark of FTD associated with Grn
mutations [18]. Interestingly, a recent study has shown that
activated microglia in Grn KO mice act as a key disease driving
factor that induces neurodegeneration and aggregation of TDP-43
protein during ageing [17].
It is important to note that DAM is enriched in genes associated

with AD pathology. Illustrative examples are Trem2 and ApoE,
which play critical roles in the transition from canonical microglia
to DAM or MGnD [7, 8]. It is intriguing that a significant number of
genes upregulated by DAM are associated with lipid metabolism
[7]. In fact, TREM2 has been found to bind to anionic and
zwitterionic lipids [19] and regulate myelin debris clearance [20].
However, when TREM2 signalling is disrupted, microglia is prone
to acquire a proinflammatory phenotype upon defective lipid
metabolism [21]. Even though no direct interaction between Gal-3
and lipid metabolism or myelin has been described, Gal-3 can
interact with some membrane lipids [22] anticipating a potential
role for Gal-3 in lipid clearance. In that sense, in the cuprizone
model of demyelination in WT and TREM2 KO mice, single-cell
RNAseq in microglia identified two treatment- and genotype-
dependent clusters of activated microglia (clusters 4 and 8). While
cluster 4 was predominant in WT mice exposed to cuprizone,
cluster 8 was enriched in TREM2 KO [23]. Although genes exclusive
to a single cluster were rare, Gal-3 was identified as one of the
most exclusive markers of cluster 4 [23], anticipating essential
roles for this molecule in driving the microglia response to myelin/
cholesterol metabolism in a TREM2-dependent manner. Very
recently, Simons and colleagues identified age-dependent white-
matter-associated microglia (WAM) that share part of the DAM
gene signature and are TREM2-dependent [24]. WAM was
enriched in genes related to hypoxia-inducible factor (HIF-1)
signalling, lysosomal, and cholesterol pathways along with a
robust upregulation of Clec7a, Axl, Itgax, and Lgals3 [24]. WAM has
been suggested to play a significant role in the removal of myelin
debris most likely associated with degenerated myelin sheaths
that accumulate over time during ageing and other neurological
conditions [24]. In fact, WAM-like populations were found in
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mouse models of AD even before the appearance of the DAM
signature. Since Gal-3 is a prominent marker of WAM during
ageing and in AD mouse models, it remains to be established
whether Gal-3 is involved in myelin clearance under disease
conditions and during ageing.
It is important to highlight that two independent studies using

single-cell RNAseq at different postnatal development stages
identified a TREM2-independent microglia subtype associated
with white matter [25, 26]. The study by Stevens and colleagues
identified a microglial cluster (cluster 4) that was named Axon
Tract-Associated microglia (ATM) [25]. ATM showed a very specific
spatiotemporal expression (barely detected in adult animals),
characterised by expression of high levels of Spp1, Gpnmb, Igf1,
Cd68, and Lgals3 and presented amoeboid morphology [25].
Preferential expression included the corpus callosum and
cerebellar axon tracts [25]. Following a similar approach, Barres
and colleagues identified several microglial clusters on postnatal
day 7 [26]. One specific cluster demonstrated high expression of
selective genes including Gpnmb, Spp1, Igf1, Itgax, and Clec7a, and
their preferential expression in the corpus callosum and cerebellar
white matter [26], thus highly coinciding with the ATM cluster
identified by Hammond et al. [25]. This white matter-associated
cluster was named proliferative-region-associated microglia
(PAM), exhibited an amoeboid morphology again, a feature of
high phagocytic function, and was intermingled with Mbp+
oligodendrocytes (OLG) [26]. In fact, PAM exhibited cleaved
caspase-3-positive and MBP inclusions, suggesting that this early
microglial subtype phagocytose apoptotic newly formed OLG
during myelination [26]. Although ATM or PAM share molecular
features with WAM, contrary to the last one, (i) the acquisition of
the PAM phenotype was not dependent on either TREM2 or APOE,
and (ii) while WAM was associated with ageing and neurodegen-
erative conditions and it is supposed to play a role in myelin
clearance, ATM/PAM are transient during early postnatal devel-
opment, and they are likely associated with phagocytosis of newly
formed OLG.

ROLE(S) OF GAL-3 IN MICROGLIA ACTIVATION DURING
NEURODEGENERATION
Our concept of how microglia become activated has changed
recently, thanks to the emergence of novel technological
advances that substantially increased our knowledge of microglia
behaviour under different inflammatory conditions [10]. This has
allowed us to evolve from the simplistic classic view of the M1/M2
phenotype to a more comprehensive and realistic point of view
[27]. Gal-3 plays an essential role in driving microglial polarisation
under different pathological conditions. In the CNS, the interaction
of Gal-3 with different proteins (such as different Toll-like
receptors (TLRs), Trem2, Igf1R, MerTK, etc.) has been shown to
promote a wide variety of responses that could be considered

either supportive or detrimental depending on the context. In this
section of the review, we will briefly discuss such interactions with
Gal-3 and their effect on microglial activation.
In the CNS, one of the most common types of inflammatory

response is the pathogen-free type (known as sterile inflamma-
tion). This can be promoted by a variety of ligands, including
protein aggregates (i.e., α-synuclein (SYN), amyloid β (Aβ)), many
of which are known to interact with different TLRs [14, 28–34]. This
fact indicates the relevance of TLRs in the progression of different
neurodegenerative diseases, such as AD [35]. As mentioned
above, in the field of Gal-3 research, crosstalk between Gal-3 and
several TLRs [31, 36, 37] has been reported. Functionally, the effect
of Gal-3 on the inflammatory response depends on several factors,
including the subcellular localisation of Gal-3 [31, 38], the cell type
involved [39, 40], or the disease context. For example, reduced
expression of Gal-3 reduces TLR-induced IL-6 expression in human
synovial fibroblasts [41] and several other proinflammatory
cytokines in human monocyte-derived dendritic cells [42]. On
the other hand, Gal-3 expression in dendritic cells has been linked
to the development of an immunosuppressive environment and
an increase in nephrotoxicity in a mouse model with acute kidney
injury induced by cisplatin [43].
In the CNS, TLRs play a key role in the neuroinflammatory

response orchestrated by microglia under different pathological
conditions [44]. We have previously demonstrated that Gal-3
mediates the TLR4-induced proinflammatory response under
various conditions both in vivo and in vitro (Fig. 1). For example,
its absence decreases the proinflammatory response driven by
microglia and increases neuronal survival [14, 31, 45]. Interestingly,
in two different studies using the Middle Cerebral Artery Occlusion
(MCAO) mouse model from the same lab, the authors showed that
Gal-3 expression was indeed neuroprotective. In the first study
conducted in Gal-3 KO mice, they showed that Gal-3 was capable
of interacting with Igf-1R, and it was necessary for proper non-
canonical Igf-R1 [46]. This demonstrates the pleiotropic nature of
Gal-3 and how the environment can affect Gal-3-receptor
interaction and functionality.
Another aspect of the effect of Gal-3 on microglia activation is

its ability to initiate the phagocytic response, either as a ligand for
MerTK [47] and to promote opsonisation of cells [48, 49] and
bacteria [50] or as a ligand for TREM2 [13], mediating the clearance
of amyloid plaques. TLRs are also acknowledged to participate in
the phagocytic response of latex beads [51], E. coli [52], stressed
but viable neurons (“phagoptosis” [53]) as well as SYN (in a process
termed synucleinphagy [54]). In addition, some studies have
shown that TLRs prevent phagocytosis of Aβ [55, 56]. However, a
recent study was able to precisely characterise Aβ-phagocytic
microglia showing significant upregulation of Gal-3 [57]. The
authors identified TLR-pathways as essential for activating such
Aβ-phagocytic phenotype in microglial cells. Therefore, based on
the previously known ability of Gal-3 to bind several TLRs, it

Fig. 1 Illustration from Burguillos et al. 2015 [31]: Gal-3 acts as a ligand to TLR4. Left panel: Colocalisation of Gal-3 and TLR4 in BV2 cells
after 1 h exposure with sGal-3 protein. Right panel: Microscale thermophoresis was used to analyse the direct binding of TLR4 to Gal-3, Gal-3
CRD, Gal-3 R186S, and Gal-3 in the presence of inhibitory lactose (40mM). Whereas the concentration of fluorescently labelled TLR4 was kept
constant, the non-labelled proteins were titrated (x axis), and the minimal and maximal Fnorm values of the unbound and bound state of
TLR4, respectively, were used to calculate the percent of TLR4 bound to Gal-3 (y axis).
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should be taken into account for the potential role of Gal-3 in the
phagocytosis of Aβ amyloid plaques.

GALECTIN-3 IN MAIN NEURODEGENERATIVE DISEASES
Alzheimer’s disease
A growing body of evidence supports the role of inflammatory
mechanisms in the development of AD [58–60], and specifically
the importance of myeloid cells [61]. Over the last 5 years, Gal-3
has been associated with AD pathology and specifically with
microglial activation [8, 13, 62, 63]. Indeed, Gal-3 expression is
strictly associated with microglial cell activation around Aβ
plaques, and, similar to sTREM2, Gal-3 is released by activated
microglial cells under disease conditions [64, 65].
The brain inflammatory response in AD has focused mainly on

DAM [7], which is involved in the inflammatory response and Aβ
plaque formation associated with AD and governed by
TREM2 signalling [66]. To further unravel the role of Trem2 in
AD, Lee et al. used BAC-TREM2 mice to increase TREM2 gene
dosage, which induced microglial reprogramming, leading to an
overall reduction of AD pathology [67]. Notably, Gal-3 was one of
the key microglial genes upregulated in neurodegenerative
diseases, along with Spp1, Gpnmb, and Lag [67], strengthening
the relationship between Gal-3 and Trem2. In 2018, we demon-
strated upregulation of inflammatory-related pathways in micro-
glial cells prior to plaque deposition (6 weeks of age) in 5xFAD
mice [68] using a proteomical approach. In this study, we detected
Gal-3+ microglia surrounding neurons expressing APP. Later, we
were the first to evaluate the role of Gal-3 in AD [13]. The deletion
of Gal-3 in 5xFAD mice reduced overall pathology, restored
cognitive behaviour, and attenuated microglial immune
responses, particularly those associated with TLR and
Trem2 signalling, which confirmed the link between Gal-3 and
TREM2 [13]. The relation between Gal-3 and Trem2 was further
explored by Fluorescent Anisotropy and STORM microscopy. In
both cases, we confirmed the binding capacity and proximity of
Gal-3 to TREM2, respectively (Fig. 2). Gal-3 was highly upregulated
in the brains of AD patients and 5xFAD mice and was mainly
associated with Aβ plaques. However, not all microglia around a
plaque or near tau-burdened neurons expressed Gal-3, suggesting
a specific subset of microglia with a Gal-3-dependent phenotype.
We described, for the first time, single-nucleotide polymorphisms
associated with the LGALS3 gene using a meta-analysis approach
of several AD cohorts. In particular, a recent large-scale human
proteomic analysis of AD brains (>2000 brains) confirmed that the
microglia module is one of the most affected in the AD brain and
strikingly revealed that the astrocytic/microglial metabolism
module was significantly enriched in gene products contained
within AD risk factor loci [63]. In that study, the authors identified
the 30 top microglial transcripts most differentially abundant in an
AD mouse model that overlap with proteins in the human
microglia module. Remarkably, within this selected list of

candidates, Gal-3 ranked 5th, thus emerging as one of the most
promising molecules driving AD pathology [63]. Recently,
Monasor et al. identified a large panel of microglial Aβ response
proteins (defined as MARPS) involved in microglial activation at
different stages of pathology progression in two different AD
mouse models, APP/PS1 and APP-KI. Notably, Gal-3 was one of the
key proteins upregulated in the early stages of the pathology
along with other DAM-associated proteins such as Clec7a, Cd11c,
or ApoE [69]. In support of the critical role of Gal-3 in AD
pathology, this protein has been measured in the serum of
sporadic cases of AD and Mild Cognitive impairment (MCI),
showing significantly increased levels in AD cases compared to
age-matched controls [70, 71]. Although there is no information
published regarding the presence of Gal-3 in microglia from mild
cognitive impairment (MCI) postmortem brains, some papers have
pointed out the presence of Gal-3 in the serum of these patients,
which again suggest a role of Gal-3 in this pathology [70, 72, 73].
Moreover, it has been described that Gal-3 increases in white
matter associated with microglia during ageing, which is
associated with cognitive impairment. This result suggests that
this Gal-3 positive phagocytic microglia could be involved in the
processing of accumulating myelin that takes place during ageing
[74]. However, despite the importance of Gal-3 in AD, some
aspects remain unclear, particularly the role of Gal-3 in tau
aggregation and tauopathies where data is scarce. In this context,
Lim et al. suggested that Gal-3 could be involved in the removal of
aberrant forms of tau by reducing hyperphosphorylation through
decrements in the glycogen synthase kinase 3 beta [75].
Finally, using specific Gal-3 inhibitors, we have been able to

suppress microglial activation [13, 76]. Inhibitors have been
previously used safely in other clinical studies [77]
(NCT04473053). Taken together, Gal-3 emerges as an exciting
therapeutic target and deserves to be tested clinically to hamper
the most common neurodegenerative disease, AD.

Parkinson’s disease
Parkinson’s disease (PD) is the second most prevalent neurode-
generative disorder in the world. The pathology is characterised
by intracytoplasmic accumulation of SYN. Despite the potential
role of neuroinflammation in PD, no specific microglial phenotype
has been associated with PD. Furthermore, evidence supporting
the role of Gal-3 in PD pathogenesis is scarce. We described for
the first time the upregulation of Gal-3 and proinflammatory
factors in primary microglia in the presence of different forms of
SYN [76]. In this study, we demonstrated that phagocytosis of
oligomeric and fibrillar forms of SYN provoked the selective
overexpression of Gal-3 in vitro and in vivo. Indeed, genetic
deletion of Gal-3 or pharmacological inhibition led to reduced
inflammatory cytokine production and phagocytic activity. This
view was supported by two independent studies showing
elevated Gal-3 levels in serum from PD patients [78, 79]. Both
studies showed a precise correlation between Gal-3 serum levels
and disease progression based on Hoehn and Yahr scores,
suggesting a potential role for Gal-3 as a biomarker of PD
progression. An increase in Gal-3 levels in serum from PD patients
could establish a link between PD and inflammation. For instance,
in Garcia-Dominguez et al. [80], we investigated the effect of
combined PD and systemic inflammation mouse models. After
challenging mice with neurotoxic 1-methyl-4-phenyl-1,2,3,6-tetra-
hydropyridine (MPTP) and proinflammatory lipopolysaccharide
(LPS), we observed increased neurodegeneration and cytokine
release and, more importantly, the appearance of selective Gal-3
positive microglia in the substantia nigra of mice after combined
treatment with MPTP and LPS. Similarly, Gal-3 has been described
to increase after MPTP treatment, but only in a transient manner
after the first hours [81]. Interestingly, this increase was abrogated
in TREM2 knockout mice, suggesting that a microglia PD-specific
phenotype reminiscent of DAM microglia is plausible. That would

Fig. 2 Illustration from Boza-Serrano et al. 2019 [13]: Gal-3
interacts with TREM2. Left panel: Gal-3 and TREM2 in plaque-
associated microglia in the brain of 5xFAD mice reveal colocalisation
of Gal-3 and TREM2. Right panel: Gal-3 and TREM2 interaction in
5xFAD mouse brain using Stochastic Optical Reconstruction Micro-
scopy (STORM). All images were taken in 5xFAD mice at 18 months.
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place Gal-3 on the verge between inflammation and neurode-
generation (or vice versa); however, other authors have shown
that Gal-3 can play alternative roles in PD beyond neuroinflamma-
tion. For instance, Flavin and colleagues identified Gal-3 in the
outer layers of Lewy Bodies from PD patients, which they
associated with increased vesicle rupture [82]. To our knowledge,
this is the first demonstration of intraneuronal Gal-3 in the context
of PD. The authors also showed that Gal-3 selectively binds to
lysosomes after SYN fibrils stimulation in vitro, promoting
autophagy induction of broken lysosomes. Gal-3 is known to
bind to broken lysosomes (and other organelle membranes) and
participate in mechanisms that try to repair the damaged vesicle
interacting with the ALG-2-interacting protein X (ALIX) and
possibly with the leucine-rich repeat kinase 2 (LRRK2) [83, 84].
At the same time, Lewy Bodies are structures that can be full of
damaged organelles, particularly lysosomes and mitochondria
[85]. These studies suggest that Gal-3 plays a significant role in the
dynamics of SYN within the affected neuron, particularly in
lysosome and organelles damage. It should be considered that
microglia can release Gal-3 into the extracellular space [62], which
could be a source of Gal-3 from neighbouring neurons and also
related to lysosome damage and organelle recruitment to the
outer layer of Lewy Bodies. These studies raise the exciting view
that Gal-3 may be involved in Lewy Body formation and/or
neurotoxicity.

Gal-3 and Huntington’s disease
Huntington’s disease (HD) is an autosomal dominant degenerative
motor disorder that manifests itself with movement dysfunction. It
is caused by CAG repeats in the Huntingtin (HTT) gene [86]. When
they are more than 36 years old, the mutant HTT protein (mHTT)
forms inclusions that compromise brain cell functions [87].
Previous studies have suggested that irregular activation of
microglia contributes to the pathogenesis of HD [88, 89]. In this
sense, as in other neurodegenerative and neuroinflammatory
disorders, Gal-3 has recently been described to play an essential
role in brain inflammation associated with HD [90]. In this study,
the authors observed that the plasma levels of Gal-3 increased in
HD patients. Furthermore, these levels were notably correlated
with the severity of the disease. At the brain level, upregulation of
Gal-3 was found in the caudate putamen region of the
postmortem brains of these patients [90].
In animal models, R6/2 mice (mHTT transgenic mice) presented

elevated plasma Gal-3 levels in 12-week-old mice. Furthermore,
R6/2 mice presented elevated Gal-3 levels in the striatum,
resembling what has been observed in patients. This upregulation
was only detected in microglia, occurred before motor impair-
ment, and remained throughout disease progression to the end
stage. In HdH150Q mice (a knock-in model), increased levels of
Gal-3 protein and transcript were also found [90]. Interestingly,
Gal-3 was also expressed in some microglia from aged WT mice.
Thus, ageing could contribute to the upregulation of Gal-3 [74].
An important mediator of Gal-3 regulation in HD microglia

appears to be Nuclear factor κB (NFκB). It has been demonstrated
that NFκB inhibition in primary microglia culture reduces the
expression of Gal-3, decreasing microglia activation and the
production of proinflammatory cytokines [90]. Nevertheless, at the
same time, Gal-3 upregulation is necessary for NFκB abnormal
activation and subsequent inflammatory response in HD micro-
glia, indicating a positive feedback loop between NFκB-Gal-3 in
microglia. This regulation of the inflammatory response by Gal-3
could be through an intracellular site, without compromising TLR4
[62], being irrelevant the level of extracellular Gal-3 to the status of
microglia activation [90]. Interestingly, the same study suggested
that Gal-3 could promote the assembly of the NLRP3 inflamma-
some triggering neuroinflammation [90].
Similarly to what is observed in PD, mHTT has been shown to

induce vesicle rupture in SH-SY5Y cells, as observed by the

formation of Gal-3 puncta [82]. Moreover, upregulated Gal-3 has
been found to form puncta in damaged lysosomes of HD
microglia, interfering with clearance and contributing to over-
activation of the neuroinflammatory response [90].
To dig into the role of Gal-3, Siew et al. also used a knockdown

strategy. The results obtained in HD mice showed that Gal-3
suppression improves microglia-mediated pathogenesis [90]. All
these results suggest Gal-3 as a novel target for the development
of therapeutic treatments for HD.

Amyotrophic lateral sclerosis (ALS)
Neuroinflammation has been described in motor neuron disease,
including ALS and spinal muscular atrophy (SMA) diseases in
murine models (for a review, see [91, 92]). Galectin 3 has been
mainly described in ALS. In fact, an increase in Gal-3 expression
has been observed in motor neurons and muscle cells [93, 94],
proposing Gal-3 as a candidate biomarker for ALS [95], which
correlates preferentially with microglial activation in the region
where motor neurons degenerate [96, 97]. Interestingly, DAM
microglia have also been described in the spinal cord of ALS mice
models [7], including an important upregulation of Gal-3.
Furthermore, Lerman et al. observed an increase in Gal-3
expression in the spinal cord of sporadic ALS patients, specifically
in microglia [98]. In the same study, the authors observed that,
unlike what was observed with other models of neurodegenera-
tion (for example, in AD), the elimination of Gal-3 expression in
SOD1G93A ALS mice made the disease progress faster. In addition,
although the onset was similar, mice died on average 25 days
earlier than SOD1 G93A/Gal-3+/+. Therefore, the presence of Gal-3
in the regions of the spinal cord where motor neuron death occurs
could be protective as the disease progresses worse by eliminat-
ing Gal-3. ALS undetermined pathogenesis makes it difficult to
explain the reported protective effect of Gal-3 in this disease
compared with other neurodegenerative diseases. However, the
reason could be due to distinct roles of Gal-3 beyond microglia
activation like differentiation of oligodendrocytes (see Multiple
Sclerosis section), Schwan cells [99] or neuronal lysosomal repair
[100] that could overall counteract the deleterious inflammatory
effect. A similar experimental approach should be carried out in
alternative models of ALS to confirm this deleterious effect when
Gal-3 is eliminated.

Multiple sclerosis
Multiple sclerosis (MS) is an autoimmune disease characterised by
the loss of myelin in the nerves, which leads to poor conduction of
action potentials and, therefore, synaptic dysfunction [101].
Oligodendrocytes are responsible for wrapping nerves with
myelin and supporting the axon. They are generated from
oligodendrocyte progenitor cells that arise from the subventricular
zone (SVZ) [102]. In fact, oligodendroglial injury triggers demye-
lination, which is followed by a remyelination process that forms a
new myelin sheet [103, 104]. The roles of Gal-3 in CNS
myelinisation and remyelination have been deeply described
(for a review, see [2]), including its key role in oligodendrocyte
differentiation [105, 106] and proliferation [107]. In addition, the
involvement of Gal-3 in demyelinating diseases was established
when an increase in its expression was observed in active injured
regions in MS patients [108]. Furthermore, the presence of Gal-3
autoantibodies in serum from MS patients [109] and Gal-3
upregulation in postmortem MS human brain tissues has been
described [110].
The most widely used animal model that mimics CNS

demyelination is experimental autoimmune encephalomyelitis
(EAE), which comprises immunised mice with myelin oligoden-
droglial glycoprotein. The lack of Gal-3 in the EAE model reduced
the severity of the pathology and macrophage infiltration [111].
This study suggested a fundamental role for Gal-3 in the
recruitment of leukocytes during the inflammatory process. In
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fact, Itabashi et al. showed that Gal-3 expression changed during
the progression and recovery of EAE, suggesting a neuroprotec-
tive role in EAE mice [112]. Supporting the beneficial role of Gal-3
in EAE, the absence of Gal-3 in a virus-induced demyelination
model decreased the number of immune cells in the SVZ and
restored proliferation [113].
The cuprizone-induced demyelinating model (CPZ) has also

been used for the study of MS. This model leads to intense
demyelination of the corpus callosum and activates progenitor
cells in the adjacent SVZ. It is characterised by microglial
recruitment in the damaged area, while the role of peripheral
macrophage infiltration remains limited [114, 115]. In 2016, Hoyos
et al. investigated the role of Gal-3 in this model and found that
Gal-3 played a key role in the control of the microglia response
[116]. Thus, the absence of Gal-3 expression impaired the ability of
remyelination. The authors described that Gal-3 expression
increased during CPZ-induced demyelination in microglia, and
when Gal-3 expression was abolished, microglia located in the
demyelination / redemyelination zone showed decreased levels of
activation markers such as Cd68 and Trem2. Therefore, these
results indicate that Gal-3 could have a potential role as a
modulator of microglial activation in the CPZ model
[106, 116, 117]. In contrast, Hillis et al. showed that Gal-3 normally
limited SVZ cell emigration following CPZ treatment but failed to
find any effect of Gal-3 deletion in myelin loss or remyelination in
the corpus callosum [118]. They attributed this discrepancy to
using different Gal-3 knockout mice that present different exons
deletion. For example, the mouse used by Hoyos et al. lacks exon
V, which encodes one crucial part of the CRD domain [119], but
the N-terminal domain of the protein could remain intact. This
highlights the possibility of CRD-dependent and independent
roles for Gal-3 in MS. Finally, because the function of Gal-3 differs
from cell to cell and plays a key role in the phagocytosis of myelin
debris and the differentiation and proliferation of OLG, it would be
interesting to know the exact mechanism and through which the
cell type Gal-3 exerts the neuroprotective or detrimental role.
Therefore, further experiments are required to gain deep insight
into this question.

Traumatic brain injury
Traumatic brain injury (TBI) is one of the leading causes of death
and disability in the western world. TBI pathology may result in a
complex set of symptoms that may lead to long-lasting impaired
cognitive function and dementia, PD, or ALS [120]. Rapid actions in
both the pre-hospital and early in-hospital stay are considered key
components to decrease mortality and improve the neurological
outcome of the patient [121].

It is known that under head trauma conditions, using different
trauma models, including spinal cord injury [122–124] and
experimental models of TBI [125, 126], there are striking early
increases in Gal-3 expression. In fact, there is not only an increase
in the expression of Gal-3 (mainly in microglia) but also an
increase in its release in CSF in vivo [14] and in plasma from
patients with TBI [127, 128]. Recently, it has been established a
positive correlation between Gal-3 levels in plasma and Glasgow
Coma Scale scores [127], suggesting that Gal-3 could be a
potential biomarker for TBI. To determine the role of Gal-3 in TBI,
we administered a neutralising antibody against Gal-3 one hour
after head injury. We observed that Gal-3 neutralisation conferred
neuroprotection in the cortex and hippocampal cell populations
(Fig. 3) and decreased expression of IL-1β, IL-6 and NOS2 [14]. Due
to the importance of TLR2 and TLR4 in TBI-associated neuroin-
flammation [129, 130], we studied the Gal-3/TLR4 interaction and
found that, after a head injury, Gal-3 was immunoprecipitated
with TLR4 [14]. The latest suggests that either blocking or
inhibiting released Gal-3 could be a possible therapeutic treat-
ment against TBI.

Stroke
Ischaemic stroke can be caused by vasoconstriction, embolism, or
thrombosis. In this situation, microglial cells become activated and
are recruited to the site of the injury leading to neuronal cell death
[131]. Therefore, strategies aimed at regulating the detrimental
inflammatory response could be an attractive alternative to treat
this condition.
Several experiments in animal models have studied the

potential role of Gal-3 in modulating glial responses after different
types of stroke models. For example, Gal-3 levels are known to
increase in the perihematomal brain region in an intracerebral
haemorrhage model (a devastating type of stroke) from day 3 to
day 7 after injury. In these conditions, Gal-3 is expressed primarily
in proinflammatory microglial cells [132]. Indeed, we and other
authors have demonstrated that Gal-3 is necessary for the
activation and proliferation of microglial cells after an ischaemic
injury [133]. This effect is related to the Gal-3/Igf-R1 interaction
following an ischaemic injury [46]. We demonstrate the crucial role
of Gal-3 and the Gal-3/TLR4 axis in the associated neuroinflam-
matory response and neurodegeneration. Genetic deletion of Gal-
3 leads to lower cytokine release and protection against
neurodegeneration 8 days after ischaemia. Importantly, we
confirmed this important axis in microglial cells from human
stroke brain samples [31]. However, some studies have shown
discrepancies about the role of Gal-3 in stroke. For instance, 24 h
after MCAO, intracerebroventricular injection of recombinant Gal-3
induces downregulation of proinflammatory cytokines and
upregulation of anti-inflammatory cytokines, thus leading to a
therapeutic shift in microglial polarisation that was associated with
a reduction in the infarct size [134]. As we discussed previously,
these seemingly contradictory roles may be due to differences in
the time of artery occlusion [31, 46, 134].
Interestingly, Gal-3 positive microglial cells emerge after the

onset of neuronal cell damage after transient ischaemia [135].
Similarly, we have previously demonstrated that Gal-3 is
upregulated after a mouse model of global brain ischaemia [31].
Chip et al. demonstrated that genetic deletion of Gal-3 enhances
neuroinflammation 72 h after a transient MCAO in postnatal mice
[136]. Furthermore, downregulation of Gal-3 using siRNA increases
neuronal viability while decreasing proinflammatory cytokine
expression levels in vitro [137]. Similar results were found in a
model of neonatal hypoxic-ischaemic brain injury, including a mild
reduction in neuroinflammation in Gal-3 knockout mice [138]. Gal-
3 is also known to be necessary for angiogenesis in stroke in a
manner dependent on vascular endothelial growth factor (VEGF)
[139]. The protective roles of Gal-3 against ischaemic stroke also
seem to be mediated via apoptosis inhibition through Akt/

Fig. 3 Illustration from Yip et al. 2017 [14]: effect of the lack of
galectin-3 on the neuronal survival in cortex and hippocampus
after TBI. Representative pictures of NeuN in different regions (left
panel). Representative image of toluidine blue staining in wild-type
and galectin-3 knockout mice (right panel). Note neuroprotection at
24 h and limited injury size 21 days after the TBI in Gal-3 KO mice.
Scale bars are 100 and 1000 µm respectively.
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Caspase regulation [140]. Finally, Gal-3 can activate Ca2+ signal-
ling, another important mediator in inflammation that follows a
stroke. The induction of Ca2+ influx activates protein kinase C and
subsequently induces IL-4 expression [141].
For all these reasons, it is not surprising that blocking Gal-3

using neutralising antibodies decreases angiogenesis and prolif-
eration of neuronal progenitors, suggesting that Gal-3 could play
an important role in postischemic tissue remodelling by enhan-
cing angiogenesis and neurogenesis [133] as well as inducing an
anti-inflammatory phenotype on microglial cells.
Several studies have proposed serum levels of Gal-3 as a

biomarker of the severity and prognosis of stroke in patients
[137, 142–146]. The most predictive value of serum Gal-3 levels
after a stroke occurs when this measurement is performed at the
time of admission [147] in particular in combination with the
measurement of N-terminal pro-brain natriuretic peptide levels (NT-
proBNP; [148]) and high-density lipoprotein (HDL) cholesterol [149].
Furthermore, some compounds with protective effects on

stroke, such as the Chinese medicine QiShenYiQi, melatonin,
and modified citrus pectin (MCP), exert their effects through
decreased expression of Gal-3 [149, 150] or its inhibition [151]. In
keeping with this view, in 2020, a preliminary study has
demonstrated that the administration of the Gal-3 inhibitor MCP
ameliorates brain oedema and neuronal score in an experimental
mouse model of subarachnoid haemorrhage [152].
All these data support the study of the role of Gal-3 in stroke

and the possible therapeutic strategies aimed at improving the
outcome of this severe disease based on the regulation of the
expression or release of Gal-3.

CONCLUDING REMARKS
Different activated microglia subtypes highly express Gal-3,
making this lectin an interesting candidate to drive microglia-
associated immune responses under disease conditions. The
pleiotropic roles of Gal-3 are inherently associated with its ability

to interact with different microglial receptors, including TLR4,
TREM2, MerTK, etc (Fig. 4). Each of these receptors is a key
component of the microglia response to DAMPS. Illustrative
examples include Aβ and SYN, which are believed to drive the
main activated microglia phenotypes under conditions of brain
disease. For instance, TLR4 drives a microglia proinflammatory
phenotype, while TREM2 is fundamental in driving either the
DAM/MGnD or WAM subtypes (Fig. 4).
The potential involvement of Gal-3 in the pathology associated

with aged-related, familial and acute neurodegenerative diseases
is exemplified by increased serum or CSF levels of this lectin in AD,
PD, ALS, TBI, and stroke, thus increasing its utility as a potential
biomarker in disease progression. Since the expression of Gal-3 in
the diseased brain occurs primarily in activated microglial cells, a
major challenge for the scientific community will be identifying
neurotoxic microglial cells in the different diseases and how Gal-3
contributes to the switch from homeostatic to neuroprotective/
deleterious phenotypes.
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