
Software Generation of Address-Event-Representation for
Interchip Images Communications

Alejandro Linares-Barranco, Gabriel JimBnez, A. Civit, J.L. Sevillano, R. Paz.
Arquitectura y Tecnologia de Computadores. Universidad de Sevilla.

AV. Reina Mercedes sin. ETS Ingenieria Informatica. 41012-Sevilla, SPAIN
{alinares. gaji, civil, sevi, rpaz}@atc.us.es

Absfracf: Address-Event-Representation (AER) is a
communications protocol for transferring images between
chips, originally developed for bio-inspired image processing
systems. Such systems may consist of a complicated
hierarchical structure with many chips that transmit images
among them in real time, while performing some processing
(for example, convolutions). In developing AER based
systems it is very convenient to have available some kind of
means of generating AER streams from on-computer stored
images. In this paper we present a method for generating
AER streams in real time from images stored in a
computer’s memory. The method exploits the concept of
linear feedback shift register random number generators.
This method has been tested by software and compared to
other possible algorithms for generating AER streams. It
has been found that the proposed method yields a minimum
error with respect to the ideal situation. A hardware
platform that exploits this technique is currently under
development.

I. INTROOUCTION
Address-Event-Representation (AER) was proposed in

1991 by Sivilotti [I] for transferring the state of an array
of analog time dependent values from one chip to
another. It uses mixed analog and digital principles and
exploits pulse density modulation for coding information.
Fig. 1 explains the principle behind the AER basics. The
Emitter chip contains an array of cells (like, for example,
a camera or artificial retina chip) where each pixel shows
a continuously varying time dependent state that changes
with a slow time constant (in the order of ms). Each cell
or pixel includes a local oscillator (VCO) that generates
digital pulses of minimum width (a few nano-secconds).
The density of pulses is proportional to the state of the
pixel (or pixel intensity). Each time a pixel generates a
pulse (which is called “Event”), it communicates to the
array periphery and a digital word representing a code or
address for that pixel is placed on the external inter-chip
digital bus (the AER bus). Additional handshaking lines
(Acknowledge and Request) are also used for completing
the asynchronous communication. The inter-chip AER
bus operates at the maximum possible speed. In the
receiver chip the pulses are directed to the pixels whose
code or address was on the bus. This way, pixels with the
same code or address in the emitter and receiver chips
will “see” the same pulse stream. The receiver pixel
integrates the pulses and reconstructs the original low
frequency continuous-time waveform. Pixels that are

more active access the bus more frequently than those
less active.

Fig. 1 : Illustration of AER inter-chip communication scheme

Transmitting the pixel addresses allows performing
extra operations on the images while they travel from one
chip to another. For example, inserting properly coded
EEPROMs allows shifting and rotation of images. Also,
the image transmitted by one chip can be received by
many receiver chips in parallel, by properly handling the
asynchronous communication protocol. The peculiar
nature of the AER protocol also allows for very efficient
convolution operations within a receiver chip [2].

There is a growing community of AER protocol users
for bio-inspired applications in vision and audition
systems, as demonstrated by the success in the last years
of the AER group at the Neuromorphic Engineering
Workshop series [3]. The goal of this community is to
build large multi-chip and multi-layer hierarchically
structured systems capable of performing complicated
array data processing in real time. The success of such
systems will strongly depend on the availability of robust
and efficient development and debugging AER-tools. One
such tool is a computer interface that allows not only
reading an AER stream into a computer and displaying it
on its screen in real-time, but also the opposite: from
images available in the computer’s memory, generate a
synthetic AER stream in a similar manner as would do a
dedicated VLSI AER emitter chip [4-61.

11. SYNTHETIC AER STREAM GENERATION

One can think of many software algorithms that would
transform a bitmap image into an AER stream of pixel
addresses. At the end, the frequency of appearance of the
address of a given pixel must be proportional to the
intensity of that pixel. Note that the precise location of the
address pulses is not critical. The pulses can be slightly
shifted from their nominal positions because the AER

0-7R03-7373-h!O?l$17.UO 020u2 ICtiE 1915

Authorized licensed use limited to: Universidad de Sevilla. Downloaded on March 30,2022 at 09:39:58 UTC from IEEE Xplore. Restrictions apply.

receivers will integrate them to recover the original pixel
waveform.
Whatever algorithm is used, it will generate a vector of
addresses that will be sent to an AER bus that connects to
the input of an AER receiver chip. Let us call this vector
of addresses the “period”. If we have an image (of NxM
pixels and each pixel can have up to k grey levi:ls, one
possibility would he to place each pixel address in the
“period” as many times as the value of its intensity (from
0 to k). In the worst case (all pixels with value k), the
“period” would be filled with N x M k addresses. Each
algorithm would implement a particular way of
distributing these addresses within the “period”. Let us
consider 3 different algorithms. The ‘hiform” method,
the “scan” method, and the “random-distribution” method
which we propose in this paper.

A . The “unijorm” method: in this method the image is
scanned pixel by pixel one time. For each pixel, its
intensity x,, E [O,k] is read and x,, pukes are

distributed over the “period at equal distances. As the
“period” is getting filled the algorithm may want to place
addresses in slots that are already occupied. In this case, it
will put the pulse in the nearest empty slot of the
“period”. This method will make more mistakes: at the
end of the process and the execution time grows
considerably at the end.

B. The “scon” method: in this method the image is
scanned many times. For each scan, every time a nonzero
pixel is reached its address is put on the “period” in the
first available slot, and the pixel value is decremented by
one. This method is very fast, because it does not need to
look for empty slots, although the image need:; to be
scanned many times (k times in the worst case). However,
with this method, the pixels with highest values will
appear very frequently at the end of the “period”.

C. The “random distribution” method: this method is
similar to the uniform method, but instead of having the
algorithm trying to place the addresses in equally distant
slots, it will take the slot number from a random number
generator. The generator is based on Linear Fe:edback
Shift Registers. Consequently, each slot number is
generated only once. If a pixel in the image has a value p ,
then the method will take p values from the random
number generator and place the pixel address in the
corresponding p slots of the “period”. They will not be
perfectly equidistant, but in average they will be
reasonably well spaced. This method is fast, because the
image is swept only once, and because the algorithm does
not need to perform searches for empty slots:. Next
Sections explains in more details the implemtmtation
issues for this method.

111. RANDOM DISTRIBUTION METHOD

This method is an implementation of Linear Feedback
Shift Register (LFSR) based random number generators
[7]. Linear feedback shift register random number
generators are based on a linear recurrence of the form:

x, = (a,x,_, +. ..+u,xn_,)mod2

1916

where k>l is the order of the recurrence, ak=l, and
a,€ (0,l) for each j. This recurrence is always purely
periodic and the period length of its longest cycle is 2’-1
if and only if its characteristic polynomial

is a primitive polynomial over the Galois field with 2
elements.

With these premises and limiting the length of the
“period” to the maximum number of address events
necessary t(3 transmit an image, we know the number of
bits needed for the LFSR and the primitive polynomial.

In the software program shown bellow, a maximum of
22 bits are used in the LFSR, although not all random
numbers are always used. Only those numbers that are
below a limit are used to generate the AER addresses.
This limit is different for each image and corresponds to
the following formulation:

Let us suppose that Im is a matrix that represents the
image, that N is the number of rows and M the number of
columns, and that I is the length of the “period”. Then

The characteristics polynomial P(z) used for 22 bits is:

P (z) = zZ0 + Z l 9 +1

which corresponds to the LFSR of Fig. 2

....-

Fig. 2: LeR ShiR Register far random distribution with a counter
for cnsurement ofthe separation

where bits 21, 16, 11 and 6 are set to 1 as a seed value.
The two most significant bits are obtained with a counter.
This way, the generated random numbers are distributed
along quarters of the “period. Consequently, strictly
speaking, it is a pseudo-random method.

IV. S O W A R E SlMULATlON RESULTS

Using pseudo-randomization to distribute the address
events in time, is at the end, a model of the behaviour
present in an AER emitter chip with an array of VCOs.
Let us check the error introduced by this model. In an
ideal AER stream all events for one pixel and image
would be esquidistant in time. We will now evaluate how
much a synthetically generated AER stream deviates from
the ideal stxeam. The three methods in Section 11 will be
compared.

Let us suppose that dij is the ideal distance between
events of a :pixel, and P is the matrix that represents the
image.

Authorized licensed use limited to: Universidad de Sevilla. Downloaded on March 30,2022 at 09:39:58 UTC from IEEE Xplore. Restrictions apply.

And that qj is the error transmission for a pixel, defined
as the difference between the ideal distance and the
average of real distances of events of a pixel. Where
pk(ij) is the position of the event k of the pixel (ij) in the
temporal array of the AER conversion, and Vij is the
value of the pixel (ij).

Then, the matrix NE is defined as the normalized error
for each pixel, respect to the ideal distance as:

=> ne; , , = e i d , j

Consider the example image in Figure 3. First, let us
compute for each pixel what would be the ideal spacing
of its address in the “period”. The result is shown in
Figure 4(a), normalized to ‘1 ’. For each of the synthetic
AER generation methods (“uniform”, “scan”, and
“random”), we generate by software the corresponding
“period” and compute for each pixel address the average
spacing of events. Then we obtain the difference with
respect to the ideal case of Figure 4(a). The resulting
relative error is shown in figures 4(b)-(d) for the methods
“scan”, “uniform”, and “random”, respectively. As can he
seen, the “random” method proposed in this paper yields
a significant improvement over the other methods. To our
knowledge, no other synthetic methods have been
reported so far.

(normalized to I)

Fig. 4b: Relative crror in mcan Evcnt Distances using
the ‘kcan” mcthod, rcspect to idcal distribution. Max

.-.AA ’ .
Fig. 4c: Rclalive mor in the mean Evcnt Distanecs
wine thc “uniform” method. rcsocct to idcal

Fig. 4 d Rclalive error in the mean Evcnt Distances
us& the “random” method, respect to ideal
distribution. Max crror of 0,1282

V. COMPUTER-AER INTERFACE

A complete computer-AER interface that exploits the
above principle is currently under development. It has
two components. One is the software that runs on a
standard PC system and manages the conversion of the
input image to AER format by generating the
corresponding “period”. This “period” is then fed to a
hardware interface that connects physically to AER chips.
The input image for the PC can be a file, a TV signal or a
WehCam signal. Let us explain in more detail the
hardware and the software interfaces.

A . Hardware Interface.
The hardware printed circuit board whose block

diagram is shown in Figure 5 is currently under
development. It can read AER streams into the computer
as well as generate AER streams from the computer to
feed AER receiver chips. It interfaces the computer
through its PCI bus. The PCI Switch Core is the interface
between the board and the PC, via the PCI bus. The SR
Register is a status register, which can be read under a

1917

Authorized licensed use limited to: Universidad de Sevilla. Downloaded on March 30,2022 at 09:39:58 UTC from IEEE Xplore. Restrictions apply.

read operation of its PCI address, and the SF. Read
Control Process will manage the processes.

The interface supports write operations into the AER
bus, and read operations from it. For a write opera1:ion the
OFIFO memory saves an amount of Address Events from
the PCI bus and takes control of the AER bus protocol
signals. For read operations a process is always waiting
for events in the AER input bus and puts them into the
IFIFO. When the IFIFO is filled, an interrupt is generated
in the PCI bus and the PCI bus reads the IFIFO. A read
operation from an AER bus has to have priority over the
write operation because data may be lost. This is ,assured
by using interruptions for reading the IFIFO.

%
ZCE

Fig. 5: Block diagram of the PCi-AER hardware bridge.

When AER data has to be written into the AER output
bus, the REQ signal has to be activated at the same time
the address is placed on the AER bus, and it has to be
active until the ACK signal is activated by the receiver
chip. Then both the REQ and Address will be cleared,
and the bus will be ready for a new address event c:ycle.

When AER data is waiting in the AER input IDUS the
process will be waiting until REQ is activated. T:hen the
address is given to the I F F 0 and the process activxtes the
ACK signal and waits for the REQ low edge to deactivate
the ACK signal. Figure 6 shows a typical AER cyde with
these 8 clock steps.

Fig. 6a: Typical PCI to AER cycle

Fig. 6b: Typical AER to PCI cycle

B. SofrWare Interface
The software interface is shown in Figure 7.

Input Image shows the image to be converted lo AER
format. In this case the image is read from a static file.
Consequently, the conversion of the image occurs only
one time. The image can be found selecting File fiom the
left Combo list. Parallel port was our first option, but the
300Kbps maximun rate is not enough, so a PCI dedicated

system is under constrution to reach the rate of an AER
bus.

The "Show A E R option is to activate the Chart at the
middle of the window, which represents all the AER bus
(or "period") content for the image. This information can
be zoomed with the 2 scroll bars under the chart. The
maximum address is 16383 for the 128x128 input image.

The "From A E R button is used to make the software
read an AER stream stored in memory from the parallel
port or PCI board and transform it into a bitmap image,
and place it in the "Output Image" square.

The right Combo list allows to make an AER
conversion using different methods: Random, Scan and
Uniform. There are also two option boxes to calculate
distances between the method selected and the ideal
distribution., and to write results in files.

When the "To A E R button is clicked the "Input
Image" is transformed into an AER stream in the
temporal "period, using the method selected. The
"period" content is then sent through the hardware board
to the AER bus, writing all the events from position 0 to
end of the "period". When a period position has no
information, a pause is reached for that absent address.

vi. CONCLUSIONS
A windows based application has been developed to

convert bitmaps to AER format using pseudo-random
number generators to distribute equal events over time,
and to compare this distribution with the scan and
uniform methods. A dedicated hardware is proposed to
write and read toifrom an AER bus. An FPGA and RAM
memories based implementation is currently under
development.

Fig. 7: Softwal-c interface.

REFERENCES

[11 M. Sivilotti, Wiring Considerations in analog VLSI
Sysiems with Application to Field-Programmable
Nehvorks, Ph.D. Thesis, California Institute of
Technology, Pasadena CA, 1991.

[2] Teresa Serrano-Gotarredona, Andreas G. Andreou,
Bemabe Linares-Barranco. "AER Image Filtering
Architwture for Vision-Processing Systems". IEEE
Transa(:tions on Circuits and Systems. Fundamental

1918

Authorized licensed use limited to: Universidad de Sevilla. Downloaded on March 30,2022 at 09:39:58 UTC from IEEE Xplore. Restrictions apply.

Theory and Applications, Vol. 46, NO. 9, September
1999.

[3] A. Cohen, R. Douglas, C. Koch, T. Sejnowski, S.
Shamma, T. Horiuchi, and G. Indiveri, Report fo the
National Science Foundation: Workshop on
Neuromorphic Engineering, Telluride, Colorado,
USA, June-July 200 1. [www.ini.unizh.ch/teIluride]

[4] Kwabena A. Boahen. “Communicating Neuronal
Ensembles between Neuromorphic Chips”.
Neuromorphic Systems. Kluwer Academic
Publishers, Boston 1998.

[5] Charles M. Higgins and Christof Koch. “Multi-Chip
Neuromorphic Motion Processing”. January 1999.

[6] VLSI Analogs of Neuronal Visual Processing: A
Synthesis of Form and Function. Thesis by Misha
Mahowald. California Institute of Technology
Pasadena, California 1992.

[7] Pierre L’Ecuyer, Franqois Panneton. “A New Class of
Linear Feedback Shift Register Generators”.
Proceedings of the 2000 Winter Simulation
Conference.

1919

Authorized licensed use limited to: Universidad de Sevilla. Downloaded on March 30,2022 at 09:39:58 UTC from IEEE Xplore. Restrictions apply.

