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Abstract—The human brain is the most powerful and efficient
machine in existence today, surpassing in many ways the ca-
pabilities of modern computers. Currently, lines of research in
neuromorphic engineering are trying to develop hardware that
mimics the functioning of the brain to acquire these superior
capabilities. One of the areas still under development is the
design of bio-inspired memories, where the hippocampus plays
an important role. This region of the brain acts as a short-term
memory with the ability to store associations of information from
different sensory streams in the brain and recall them later. This
is possible thanks to the recurrent collateral network architecture
that constitutes CA3, the main sub-region of the hippocampus. In
this work, we developed two spike-based computational models
of fully functional hippocampal bio-inspired memories for the
storage and recall of complex patterns implemented with spiking
neural networks on the SpiNNaker hardware platform. These
models present different levels of biological abstraction, with
the first model having a constant oscillatory activity closer to
the biological model, and the second one having an energy-
efficient regulated activity, which, although it is still bio-inspired,
opts for a more functional approach. Different experiments were
performed for each of the models, in order to test their learn-
ing/recalling capabilities. A comprehensive comparison between
the functionality and the biological plausibility of the presented
models was carried out, showing their strengths and weaknesses.
The two models, which are publicly available for researchers,
could pave the way for future spike-based implementations and
applications.

Index Terms—Hippocampus model, CA3, Neuromorphic engi-
neering, spiking neural networks, SpiNNaker, spike-based mem-
ory

I. INTRODUCTION

Neuromorphic engineering is a concept that was presented
by Carver Mead in [1], and it is a field that focuses on
studying, designing and implementing hardware and software
with the aim of mimicking the basic principles of biological
nervous systems. Its main inspiration comes from studying and
replicating how the brain efficiently solves complex problems
[2]. Based on this biological approach, the information in neu-
romorphic systems is represented with action potentials (i.e.,
asynchronous electric pulses, also called spikes) generated by
artificial neurons. Spikes are transmitted between different
processing layers, leading up to a higher-level functionality.

This approach has a clear advantage both in terms of power
consumption and real-time capabilities when compared to
traditional methods [3] [4].

In order to process the aforementioned spiking information,
a bio-inspired computational approach is also needed. A
specific type of biologically-plausible neural networks called
Spiking Neural Networks (SNNs) are commonly used for
this purpose. These are able to process asynchronous spikes
instead of floating point or integer numbers, as traditional
artificial neural networks would do. SNNs consists of bio-
inspired neuron models, which are interconnected by means
of synapses, and mimic the way in which the senses and the
brain process the information in living organisms [5]. In the
last years, SNNs have been used for many different tasks,
such as speech recognition [6], [7], image classification [8],
[9], sensory fusion [8], [10], motor control [11], [12] and bio-
inspired locomotion [13]–[15], among many others, proving
that they could be useful in a wide variety of fields and
allowing more efficient and lower power-consumption devices
to perform in the same manner as their traditional counterparts.

Among all the different regions within the brain, one of
the most interesting ones in terms of its biological behavior
is the hippocampus. This component functions primarily as a
short-term memory, storing rapid (on-the-fly) and unstructured
information coming from the different sensory streams of
the cerebral cortex. The hippocampal formation is composed
of three main parts: Dentate Gyrus (DG), the Hippocampus
proper (Cornu Ammonis (CA)) and the Subiculum. It is
in CA3, a subregion of CA, where the recurrent collateral
network structure capable of storing information is located
[16]. Making use of the mechanisms underlying this sector
of the brain to create an efficient and functional bio-inspired
memory with SNN technology could pave the way for future
low-power and low-latency applications.

Previous works that can be found in the literature already
proposed different bio-inspired hippocampus memory models.
In [17], a hybrid memory architecture is proposed, which
combines the structure of CA3 as an oscillating network to
repeat sequences of input patterns and the memory structure



of the neocortex to store them by modifying its synaptic
weights. However, it is only capable of storing simple pattern
sequences, and features a neuron model whose oscillation rate
is controlled by an external signal from outside the network. In
[18], a model of the hippocampus consisting of DG and CA3
is proposed. However, it is not purely spike-based, since the
equations that govern CA3 are modeled in digital logic and
DG is developed as a traditional Artificial Neural Network
(ANN). Other works regarding this topic can be found in the
literature, but some are approached from a purely theoretical
point of view, such as [19]; others only perform proofs of
concept, such as [20], where a spatial navigation mechanism
is evaluated using a static CA3 model with previously stored
information in which no learning is applied.

The lack of fully functional bio-inspired spike-based hip-
pocampal memory models that could be used for real-case
scenarios including robotics or many other applications was
the main motivation for this work. Therefore, two different bio-
inspired memory models are proposed: the first model has a
closer biological approach, whereas the second model follows
a more functional approach. The former is characterised by
a constant oscillatory activity in the CA3 attractor network,
while the latter adds additional mechanisms on top of the first
model to precisely control the network activity. These models
have been implemented on the SpiNNaker hardware platform
and tested in a series of experiments aimed at demonstrating
their performance. The results of the experiments will be used
as the basis for analyzing the advantages and disadvantages of
moving towards or away from biology in search of function-
ality.

The main contributions of this work include the following:
• Two fully-functional spike-based bio-inspired hippocam-

pal memory models are proposed. These are capable
of storing and retrieving complex patterns with certain
limitations.

• The proposed models were not simply simulated in soft-
ware, but implemented and emulated on the SpiNNaker
hardware platform.

• The source code of the proposed models is publicly
available, together with all the necessary details regarding
the SNN architectures.

II. BIOLOGICAL MODEL OF THE HIPPOCAMPUS AND ITS
FUNCTION AS SHORT-TERM MEMORY

The hippocampus belongs to the limbic system, the region
of the brain that controls emotional responses and is involved
in smell, appetite, eating habits, sleep and certain areas of the
memory [21]. Specifically, the hippocampus or hippocampal
system is a structure inside the brain that consists of the 3
following layers [22] [23], as can be seen in Fig. 1:

• Dentate Gyrus (DG): it is the input area for the infor-
mation coming from the Entorhinal Cortex (EC). It plays
an important role in the mechanism of pattern separation
of the input information; specifically, it is responsible for
dispersing the content of the information to achieve a
greater degree of orthogonalization, i.e., converting the

input information into a representation as different as
possible from any other input information. The purpose
of this mechanism is to improve both storage capacity
and memory access.

• Hippocampus (CA): it consists of Pyramidal Cells (PCs),
and is divided into CA1, CA2, CA3 and CA4, with CA1
and CA3 being the most relevant in terms of functionality.
This region is where the input information is stored and
the stored information is recalled and recoded, when
requested from the outside.

• Subiculum: it receives the output from the hippocampus
and redirects it back to the EC.

Fig. 1. Diagram of the different layers of the hippocampus and the main
connecting pathways between them.

The EC (Brodmann’s area 28) acts as the main information
input and output pathway of the hippocampal system. It has
as many input (forward) as output (backward) projections.
Through this cortex, the hippocampus receives information
from all the different sensory information streams in the brain
(including spatial) coming from the neocortex and sends the
processed information back to these sensory stream units.

CA3 acts as an autoassociative or attractor memory due
to its recurrent collateral network structure, as can be seen
in Fig. 1. This region also contains recurrent inhibitory in-
terneurons that regulate the global activity during periods of
network oscillation. By receiving all the information from the
brain’s sensory streams and having the ability to store them in
an associated and unstructured way, the hippocampus acts as
a short-term memory involved in episodic memory (memory
of specific autobiographical events of the past). Therefore, it
must be able to store this information (CA3) in a distinct
way (separating memories corresponding to different moments
thanks to DG) and retrieve this information later in order to
use it (via CA1 and the subiculum) [16].

III. MATERIALS AND METHODS

A. Spiking Neural Networks

In order to implement bio-inspired memory models based
on the hippocampus, third-generation of neural networks, i.e.,
SNNs, were used. This kind of networks consists of intercon-
nected neuron models that are not only inspired by biology, but
also attempt to mimic their biological counterparts, in order



Fig. 2. Internal structure of CA3. It consists of a recurrent collateral network
of PCs with external inputs from the DG (ext) and internal inputs from
the collateral connections (int), as well as collateral inhibitory inputs from
a population of interneurons (INT) that regulate the rate of activity of the
network. All the connections are excitatory (lines ending with an arrowhead)
except for the projections between the interneurons back to the input of the
PCs, which are inhibitory (lines ending with a circle).

to incorporate the neurocomputational capabilities found in
nature [5].

As was introduced in section I, SNNs present an asyn-
chronous event-based functioning and communication thanks
to the use of spikes. With the spiking activity, they incorporate
the concept of space and time into the neural networks through
connectivity and plasticity. It is possible to interpret SNN
models, i.e., to extract the set of rules that govern them and
to understand the learning mechanism [24]. These event-based
networks only have to compute the information when an event
occurs (a spike is generated and/or received). This aspect
makes SNNs very efficient from a computational point of view.
Moreover, SNNs present a distributed learning process thanks
to the use of Spike-timing-dependent plasticity (STDP) [25],
which obtains the necessary information from the electrical
impulses encoded between local neurons to define the weight
of the synapses, i.e., to regulate the learning of the network
[5].

SNNs present key features for being implemented in hard-
ware compared to traditional ANNs, allowing for higher
efficiency and lower power consumption: multiplications are
replaced with adders and shifts, the information that is trans-
mitted between neurons is only 1-bit in size instead of integer
or floating point numbers, etc. [24].

Different hardware platforms particularly designed for im-
plementing and simulating SNNs can be found in the literature.
Some of the most well-known ones are SpiNNaker [26], Loihi
[27] and TrueNorth [28]. In this work, we used SpiNNaker
as the hardware platform in which the different SNN models
presented were implemented and emulated.

B. SpiNNaker

SpiNNaker [26] is a massively-parallel multi-core comput-
ing system, which was designed for being able to model very
large SNNs in real time. Each SpiNNaker chip consists of 18
general-purpose ARM968 cores, running at 200 MHz, which
communicate the information by means of packets carried by

a custom interconnect fabric [29]. In this work, a SpiNN-5
machine was used. SpiNN-5 is a 48-node circuit board and,
thus, has 864 ARM processor cores, which are commonly
deployed as 768 application cores, 48 Monitor Processors
and 48 spare cores. A 100 Mbps Ethernet connection is used
as an I/O interface and for sending scripts and commands
to the board. A custom software package called sPyNNaker
[30] allows running PyNN [31] simulations directly on the
SpiNNaker board. This makes the platform very straight-
forward to work with, since all the codes regarding the design
and implementation of SNNs can be done using high-level
functions described in Python programming language.

IV. HIPPOCAMPUS-BASED COMPUTATIONAL MODELS OF
MEMORY

This paper presents two bio-inspired computational memory
models of the hippocampus with different degrees of closeness
to the theoretical bases. Before describing all the implemen-
tation details of these models, it is necessary to define the
neuron models, synapses and learning rules used first.

Starting with neurons, many different models can be found
in the literature, each of them with specific characteristics
depending on the level of abstraction. Among them, the most
widely-used in the field of SNNs, and the one that has
been used for the proposed model implementations is the
standard Leaky Integrate-and-Fire (LIF). This model describes
the behavior of a neuron as an RC electrical circuit whose
potential value is either increased or decreased with the
arrival of input spikes and, after reaching a threshold value,
generates output spikes. For both of the implemented spike-
based memory models, the parameters of the LIF neurons used
are: cm: 0.27 nF, τm: 10.0 ms, τsynExc: 0.3 ms, τsynInh:
0.3 ms, vreset: -60.0 mV, vrest: -60.0 mV, vthresh: -55.0
mV, where cm is the capacitance, τm is the time-constant
of the RC circuit, τsynExc and τsynInh are the excitatory
and inhibitory input current decay time-constants, respectively,
vreset, vrest and vthresh are the membrane potentials at which
the neuron is set immediately after generating a spike, during
the inactivity period and the threshold at which the neuron
spikes, respectively. The value of the τrefrac parameter, which
refers to the refractory period of the neuron (the time that
the neuron is disabled after generating a spike and stops
integrating any input spike) is set different for the two SNN
models proposed.

Synapses can be modelled as a weighted edge in a graph
connecting a source (pre-synaptic) neuron to a target (post-
synaptic) neuron. The learning mechanism of SNNs focuses
on the plasticity of the synapses, i.e., the ability to create,
remove or modify the weight of the synapses. This weight
represents an increase or a decrease in the action potential
that will be applied to the postsynaptic neuron when a spike
is received. Therefore, a modification of the weight would pose
an influential change.

Among all the different learning mechanisms where the
concept of synapse plasticity is considered, the most widely-
known and the one that was used in this work is STDP.



It is based on a Hebbian learning mechanism in which the
weights of synapses are modified in proportion to the temporal
correlation between pre- and post-synaptic neuronal activity
[32]. The weight of a synapse will increase whenever a
presynaptic spike is received before the postsynaptic spike,
and will decrease otherwise, by an amount proportional to the
time difference between the two spikes (the closer in time,
the greater). STDP is implemented in SpiNNaker, although
it presents some particularities: the evaluation of the weight
change (sum of cumulative increments and decrements) in a
synapse is produced only on presynaptic spikes [33].

Based on the materials and methods described, two different
CA3 models were proposed and implemented: an oscillatory
CA3 model (Section IV-A), and a regulated CA3 model
(Section IV-B).

A. CA3 memory model with oscillatory activity

The first of the two models implemented (see Fig. 3) is the
closest to the biological behavior, as described in the literature,
i.e., an attractor network that maintains an internal state and
is constantly oscillating. The design consists of a layer of DG
neurons that act as input to the system and a layer of PCs
that form CA3. DG has one-to-one excitatory connections with
PC neurons, and PC neurons are interconnected between them
by means of one-to-all recurrent collateral connections, both
excitatory and inhibitory. The excitatory collateral synapses
between PC neurons are where STDP is applied, and they are
responsible for the storage of patterns in the network. The rest
of the synapses are static.

Fig. 3. Diagram of the DG-CA3 network with oscillatory activity in the
recurrent collateral connections of CA3. Excitatory synapses are shown in
green and inhibitory synapses in red. The excitatory synapses where STDP is
applied are PCi − PCj .

The static synapses of the network are set with a delay
of 1 ms. Regarding the weights, the recurrent inhibitory
connections (PCi − PCj) are set with a weight of 1.5 nA,
and the connections between DG and PC neurons are set to
a value that is high enough for a presynaptic spike to always
generate a postsynaptic spike. As for the STDP learning rule,
the parameters used were: τplus = 3.0 ms, τminus = 2.0
ms, Aplus = 6.0, Aminus = 3.0, maximum weight = 12.0
nA, minimum weight = 0.0 nA, initial weight = 0.0 nA and
delay = 1.0 ms, where τplus and τminus are the decay
time-constants that control the amount of weight increase or
decrease, respectively, and Aplus and Aminus define the

maximum weight to respectively add during potentiation or
subtract during depression.

This network has two main phases: a learning phase and
a recall phase. In the former, the patterns to be learned are
introduced to the network. The STDP rule changes the weights
of the synapses and, thus, the internal state of the attractor. In
the second phase, a part of the pattern to be recalled (cue) is
introduced as input. After a few oscillation cycles, the network
returns the rest of the pattern. Once the first cue arrives at
the network, it starts oscillating and it is the passing of the
cue that makes it oscillate from one state to another, with the
help of the lateral inhibitions, where the state is the pattern
to be remembered. For this to happen, the neurons need to be
configured with a refractory period of 0, so that they will be
constantly oscillating between states.

B. CA3 memory model with regulated periods of activity

The second model implemented (see Fig. 4) is an extension
of the previous model, where an activity inhibition mechanism
is added, changing the refractory period from 0 to 2 ms
and using stronger lateral inhibitions that will depend on
the number of PC neurons. These changes aim to precisely
regulate and control the internal activity of the CA3 recurrent
collateral network, reducing power consumption and achieving
greater stability.

Fig. 4. Diagram of the DG-CA3 network with regulated activity to avoid
constant oscillation. Excitatory synapses are shown in green and inhibitory
synapses in red. The excitatory synapses where STDP is applied are PCi −
PCj . It has an additional mechanism with inhibitory interneurons (INH) to
regulate the activity in the learning phase.

The inhibition mechanism consists of a layer of inhibitory
interneurons (INH) of the same size as the DG and the PC
layer, and receives two inputs: an excitatory signal indicating
whether the network is in the learning phase (LEARNING),
and an inhibitory input with one-to-one connectivity from
the DG (DG-INH). The output of the network is sent to
PC neurons via inhibitory one-to-one synapses (INH-PC).
The neuron models and static synapses are identical to those
used for the DG-PC connections. This inhibitory mechanism
mimics the inhibitory interneurons that are present in some
biological models of the hippocampus in order to regulate the
oscillation rate of the network only while learning, but not
during the recall phase. This approach is also bio-inspired,



but it is not as close to biology as the previous model, mainly
due to the introduction of the LEARNING signal.

The modifications performed in this model with respect to
the first model allow having a precise event-based activity
network, rather than a constant oscillation, with the consequent
advantages and disadvantages that are detailed and discussed
in section V. It also has a learning phase and a recall phase in
which the STDP remains static. This means that the weights
obtained after the learning phase are used in the same network
but with static synapses to perform the recall without the
problem of forgetting data due to it.

V. EXPERIMENTATION AND RESULTS

In order to test the behavior of the models implemented in
SpiNNaker, different experiments were performed. The first
set of experiments were focused on verifying the performance
of the proposed models using completely orthogonal patterns
(patterns that are completely different from each other and
have nothing in common) as input, which is the minimum
requirement for the memory to be functional. Then, the second
set of experiments were focused on testing the models when
using non-orthogonal patterns (patterns that have some parts
in common) as input. For all the experiments that were
performed, networks with 15 PC neurons were used.

A. CA3 memory model with oscillatory activity

In the first set of experiments, the oscillatory network was
able to learn and correctly recall different combinations of
2-4 fully orthogonal patterns. In the top plot of Fig. 5, the
results for the case with 3 orthogonal patterns can be observed.
In the first 6 milliseconds (milliseconds 1-6) the pattern 0-
1-2-3-4 was used as input to the network, simulating the
arrival of those 5 spikes coming from the first 5 DG neurons.
The input was introduced to the network up to 5 consecutive
times (milliseconds 1-5), where, thanks to STDP, the synaptic
weights are modified to learn the spike pattern, also producing
an output in the PC neurons corresponding to the stored
pattern. The same process is done for patterns 10-11-12-13-14
and 5-6-7-8-9 at milliseconds 15-20 and 29-34, respectively.
After learning the patterns during the learning phase, the 1-2-
3-4 cue (milliseconds 43-47) is introduced through DG, and
the recurrent collateral network of PCs starts to oscillate until
the rest of the first pattern (0) is recalled (millisecond 49)
reliably (it also appears at milliseconds 45 and 47 while the
input sample is being given; therefore, it is not reliable). The
oscillatory activity recalling the first pattern is maintained until
the arrival of the cue corresponding to the second pattern (10-
11-12-13) in milliseconds 57-61, which later allows obtaining
the rest of it (14) in millisecond 63. The network continues
oscillating after that, but this time recalling the second pattern,
and the same process is repeated for the third pattern with cue
5-6-7-8 in milliseconds 71-75, obtaining in millisecond 77 the
rest of it (9). As can be seen, once it starts oscillating in a state,
it stays in that state until another cue is given. The recalling
process has been illustrated with a cue of 4 components of
the pattern to recall the fifth component; however, the same

behavior would happen when using any combination of any
size of the pattern as a cue.

Although the experiments were performed storing up to 4
patterns, the storage capacity of the network is determined
by the number of PC neurons and the size of the patterns.
Thus, a network with 20 PCs and input patterns of size 4
would be able to store up to 5 orthogonal patterns. For this to
work, it is necessary that the learning and recalling phases are
separated, since once the first recall cue is used as input, the
network starts to oscillate continuously. Therefore, if learning
takes place during oscillation, the network will learn the sum
of the input patterns together with the current state of the
network instead of the original input patterns. Furthermore,
for the STDP-based learning process to work correctly, it is
necessary to present the pattern several times and achieve
constant positive reinforcement on the appropriate connections
and negative reinforcement on the others. In this model, it is
necessary to only present each of the input patterns 5 times
in a row for it to be learned correctly.

Given the architecture of the network, the oscillation be-
tween states causes the new state to be reinforced and the
previous one to be forgotten when changing from one state to
another. Therefore, each pattern can only be remembered once,
i.e., the model is a volatile memory. This makes sense from
a biological point of view: the hippocampus is a short-term
memory, and thus, information is learned and forgotten fairly
quickly, being retained longer as long as the network keeps
recalling it, or forgotten if the network changes to a different
state because the information is no longer useful or simply
stored in another memory region after being processed.

Regarding experimentation with non-orthogonal patterns
(bottom plot of Fig. 5), the network is able to learn them
correctly. However, when it comes to recalling them, due to
the oscillatory nature of the network, it will start remembering
the pattern correctly, but then the common part with other
patterns will be used as a cue of the other patterns that
have it. Then, the network will oscillate to a new state of
addition of all these patterns, with the consequent learning of
this association of patterns and the forgetting of the patterns
individually. From a biological point of view, it makes sense in
some way, since anterior regions of the hippocampus have the
goal of separating patterns through a dispersion of information
(increasing the degree of orthogonality), meaning that CA3
also has problems working with non-orthogonal patterns.

B. CA3 memory model with regulated periods of activity

A set of experiments for learning and recalling different
combinations between 2 and up to 4 fully orthogonal patterns
were carried out on the network. In the upper plot of Fig. 6,
the result of the network regarding the recall phase of 3
orthogonal patterns can be observed. For the sake of clarity,
the learning process of the patterns in this model has not been
included, since it is also similar to the one that can be seen
in the experiments that were performed for the oscillatory
model. In the recall phase, the weights were fixed to a weight
value obtained from the result of the previous training phase



Fig. 5. Results of the experiments performed using the oscillatory network for the learning and recall of 3 orthogonal patterns (top) and 2 non-orthogonal
patterns (bottom). During the first half of both simulations, the learning phase of the patterns can be observed, while the second half corresponds to the recall
phase of the different patterns.

TABLE I
COMPARISON IN TERMS OF RESOURCES, PERFORMANCE AND FUNCTIONALITY OF BOTH MEMORY MODELS.

Network Neurons Static synapses STDP synapses Learning (ms) Recall (ms) Operations phases Patterns Energy consumption Stability and Reliability
Oscillatory DG-CA3 2*n n n*(n-1) 14 14 Both in same simulation Only orthogonal High Low
Regulated DG-CA3 3*n + 1 4*n n*(n-1) 50 14 One simulation per phase Both Low High

(using STDP). In this case, each pattern only needed to be
given to the network a total of 4 times in order to learn
it appropriately. The learned patterns were 0-1-2-3, 4-5-6-7
and 8-9-10-11, and the cues provided were 0-1-2, 4-5-6 and
8-9-10. The patterns were recalled correctly (the remaining
part of the pattern was obtained for each cue: 3, 7 and 11,
respectively) by only giving each cue once to the network.
The network did not need any kind of oscillation to be able to
return the remaining part of each pattern, but directly recalled
the appropriate result, thus, achieving optimum performance
in terms of power consumption.

As with the previous model, up to 4 patterns were tested,
but the storage capacity of the network depends on the number
of PC neurons and the size of the orthogonal patterns.

Regarding the experiments with non-orthogonal patterns,

the network was able to learn and recall them correctly. In
the learning phase of the bottom part of Fig. 6, which is
not represented in the figure, 2 non-orthogonal patterns were
shown 4 times: 1-2-3-4-5-6-7-8-9-10-11-12-14 (all but 0 and
13) and 0-1-2-3-4-5-6-7-8-9-10-11-12-13 (all but 14). After
learning, the recall of both patterns was performed using
the following cues: 1-2-3-4-5-6-7-8 and 0-1-2-3-4-4-5-6-7-8.
After providing the cue containing common parts to both
patterns two times, the network was able to correctly recall
the remaining part of each of them: 9-10-11-12-14 and 9-10-
11-12-13.

Despite working correctly with non-orthogonal patterns,
the main problem of this network is that it needs a very
precise configuration of the recurrent lateral inhibition weights
to perform correctly. This configuration is complex to tune



Fig. 6. Results of the experiments performed using the network with regulation of activity periods for the learning and recalling of 3 orthogonal patterns
(top) and 2 non-orthogonal patterns (bottom). During the first half of both simulations, the learning phase of the patterns can be observed, while the second
half corresponds to the recall phase of the different patterns.

automatically, since it depends not only on the size of the
network, the number of patterns to store and their percentage
of non-orthogonality, but also on other internal factors of
the network such as the resulting weights of the STDP
connections, among others, which are difficult to model with
an equation. Therefore, the proper use of this model requires a
prior configuration step to ensure that it works correctly under
the desired conditions.

Thanks to the regulated behavior of the network, which
allows having only the necessary activity over time, this
model is not only more energy efficient (it only processes
the information when there is a new input) but also capable of
recalling any internally stored pattern as many times as desired
without forgetting it over time or after recalls (which happened
in the first model), regardless of whether it is orthogonal or
not.

VI. DISCUSSION AND COMPARISON OF THE MODELS

In terms of the architecture and resources, the model with
controlled activity is an extension of the first model; therefore,
it needs more resources, although both scale linearly as a

function of n (the size of the memory), thus the differences
are not substantial between both models, as can be seen in
Table I.

In terms of functionality and performance, based on the
results of the experiments, the oscillatory model is more
bio-inspired due to its constant activity within the attractor
network once it starts to recall. However, this also makes it
more energetically expensive and unstable as it is constantly
generating spikes, even when there is no operation in progress.
The second model has additional regulation mechanisms that
allow it to maintain minimal activity (only when performing an
operation), which makes it more efficient, stable and reliable,
since the same patterns can be recalled several times without
being erased from memory. On the other hand, these mecha-
nisms make this model have a higher latency in the learning
process, as it requires a certain temporal separation between
pattern samples. A comprehensive comparison between both
models is presented in Table I, where learning and recalling
times refer to the time it takes from the start of the operation
until the timestep when the next operation can be performed



(not the time that these operations need, which is shorter).
Finally, the first model does not require a prior configuration

and it is able to recall any learned pattern immediately after
learning it. However, it does not perform well with non-
orthogonal patterns, unlike the second model, which is able to
work with both kinds of patterns but requires a prior complex
parameter setting.

VII. CONCLUSIONS

In this paper, two bio-inspired memory models of the
hippocampus with different levels of abstraction have been
proposed, implemented and tested. The difference between
the models and their biological counterparts allowed exploring
alternative ways of storing the information and illustrate the
relationship between plausibility and functionality. To the best
of the authors’ knowledge, the CA3 models presented in this
work are the first to be designed and implemented using SNNs
on the SpiNNaker hardware platform, not simply simulated in
software. Moreover, these models, particularly the second one,
are fully functional and completely feasible for their use in real
applications based on this spiking paradigm, as they are able
to learn and recall patterns of different sizes.

The design of the models and the experiments that were
performed illustrate an inverse relationship between plausi-
bility and functionality. Although both are fully functional,
the first model is more bio-inspired but is less suitable for a
general-purpose domain as it has greater instability, reliability
and power consumption, as well as the inability to work with
non-orthogonal patterns. Certain changes were needed to make
it somewhat less bio-inspired in order to achieve a more
functional and useful model for its use in real applications,
although this involved having greater learning times.

The strengths and the weaknesses of both models were
demonstrated, opening future lines of research in order to
study possible improvements. As an example for the first
model, the use of collateral recurrent inhibitory interneurons
that reduce or even remove the oscillatory activity could
be studied, so that it will only remain active for a specific
time period when operations are being performed. For the
second model, eliminating the need for prior adjustment of the
network by modifying or adding connections or populations
of neurons could be beneficial, even if the model moves away
from plausibility.

The source code regarding the implementation of both
hippocampal bio-inspired memories with SNNs on SpiNNaker
is available on GitHub1.
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[32] J. Sjöström, W. Gerstner et al., “Spike-timing dependent plasticity,”
Spike-timing dependent plasticity, vol. 35, no. 0, pp. 0–0, 2010.

[33] X. Jin, A. Rast, F. Galluppi, S. Davies, and S. Furber, “Implement-
ing spike-timing-dependent plasticity on spinnaker neuromorphic hard-
ware,” in The 2010 International Joint Conference on Neural Networks
(IJCNN). IEEE, 2010, pp. 1–8.


