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Abstract: In this paper, a modified exponentiated family of distributions is introduced. The new
model was built from a continuous parent cumulative distribution function and depends on a shape
parameter. Its most relevant characteristics have been obtained: the probability density function,
quantile function, moments, stochastic ordering, Poisson mixture with our proposal as the mixing
distribution, order statistics, tail behavior and estimates of parameters. We highlight the particular
model based on the classical exponential distribution, which is an alternative to the exponentiated
exponential, gamma and Weibull. A simulation study and a real application are presented. It is
shown that the proposed family of distributions is of interest to applied areas, such as economics,
reliability and finances.

Keywords: exponentiated distributions; generalized exponential; stochastic orders; likelihood

1. Introduction

When the aim is to make inferences about a given real dataset, it is usually with statis-
tics that the analyst starts the process of modeling, using classical distributions. Frequently,
although a family of distributions seems appropriate, they do not provide a completely
satisfactory description of the dataset, and there is a necessity to improve the model under
consideration. In these cases, the chosen family of distributions can be considered as a
starting point—it will be called the parent distribution—and the introduction of parameters
may improve the statistical modeling process. It is well known that the incorporation of a
new parameter into a baseline parametric model provides a new and more flexible one.
For instance, it can be seen in [1] that the introduction of a scale parameter in the baseline
hazard function resulted in accelerated failure time models, whereas taking powers of
a baseline survival function yielded a proportional hazard model. The exponentiation
method is quite general. Besides the previously mentioned hazard models, it is worth
noting the max-stable family of distributions, whose cumulative distribution function (cdf)
is obtained from a parent continuous cdf G(x) as

F(x) = [G(x)]β, β > 0 . (1)

Equation (1) also present what is called the Lehmann alternatives; see [2,3]. An excel-
lent review of the max-stable family of distributions along with a number of applications,
mainly in the field of economics, can be found in [1]. It is also worth mentioning that, in
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reliability theory, the model given in (1) has been used used to describe random failure
times. In this context, (1) is known as a proportional reversed hazard rate model. Relevant
results on this topic, along with applications in reliability theory, can be seen in [4–6], and
references therein. Other relevant papers related to (1) are: [7], where this model was used
to provide a generalization of the classical logit and probit models; [8], wherein the authors
related (1) to distributions of order statistics; and [9], wherein the authors introduced the
generalized exponential distribution, which can be seen as a special case of the distribution
introduced by Mudholkar et al. [10], and can be used as an alternative lifetime model to
Gamma and Weibull distributions [11]. Estimation and other statistical inference issues in
the generalized exponential distributions can be seen in [11–16]. We also wish to highlight
the more recent paper by Jamal et al. [17], where a truncated general-G class of distributions
is introduced, with emphasis on the truncated Burr-G family of distributions. The aim of
our paper is to study and extend the family of distributions proposed in [17], which can also
be considered as modified version of the family given in (1). We focus on properties which
were not given by [17] and study in depth the special case of the sub-model exponential.

As for the merits of the max-stable distributions introduced in (1), which we aimed to
keep in our proposal, we highlight

1. A variety of shapes can be obtained due to the introduction of parameter β > 0 .
2. The random variable (rv) X with cdf F given in (1) can be obtained by applying a kind

of inverse probability integral transformation (or alternatively G−1) to a Beta(1/β, 1)
distribution.

The class of distributions introduced in [17] also verifies these properties, with the
difference that the truncated Burr-G family of distributions arises as a result of applying
the inverse probability integral transformation to a truncated (0, 1) Burr distribution [17].
It will be shown that our proposal verifies a similar result and also allows us to obtain
a variety of shapes in a continuous model, based on a modified exponentiation of the
parent cdf.

The paper is organized as follows. In Section 2, the probability density function
(pdf) for the new family of distributions is introduced, along with its genesis. The main
properties of the family are given in Section 3. These are: the quantile function, random
number generation, moments, ordering in terms of the shape parameter, Poisson mixture
with our proposal as the mixing distribution (which can also be ordered), order statistics
and tail behavior, with emphasis on cases in which heavy-tailed distributions are obtained.
Section 4 is devoted to estimation methods: moment methods and maximum likelihood.
The special case when the parent distribution is the classical exponential distribution is
studied in Section 5. This model is referred to as the modified exponentiated exponential
(MEE) distribution, and it is illustrated that can be used in reliability as an alternative to
other lifetime models, in particular to the generalized exponential distribution proposed
by Gupta and Kundu [9]. A simulation study is presented in Section 6. An application of
the MEE model to a real dataset is provided in Section 7. To conclude, a brief discussion is
given in Section 8. Throughout the paper, applications to economics, reliability and finance
are included, which illustrate the potential uses of modified exponentiated distributions.

2. Materials and Methods

The next definition provides the cdf and the pdf of our proposal.

Definition 1. Let Z be a continuous rv with cdf G(z; η) and pdf g(z; η), where η ∈ Rk, k ≥ 1,
is a vector of unknown parameters. It is said that the rv Y is distributed according to a modified
exponentiated family of distributions with parent cdf G, denoted as Y ∼ ME G(η, β), with β > 0,
if its cdf and pdf are given by

F(y; η, β) =
ϕ(β)

β

{
[1 + G(y; η)]β − 1

}
, (2)

f (y; η, β) = ϕ(β)g(y; η)[ 1 + G(y; η) ]β−1, (3)



Mathematics 2021, 9, 3069 3 of 18

respectively, and ϕ(β) = β(2β − 1)−1.

Note that the support of Y ∼ ME G(η, β) agrees with the support of the parent
distribution—that is, support(Y) = {y ∈ R : g(y; η) > 0}.

If β = 1, then the parent distribution, G(z; η), is obtained.
For nonnegative rvs, from (2), the survival function is

S(y; η, β) =
ϕ(β)

β

{
2β − [ 1 + G(y; η) ]β

}
, (4)

from which we get the hazard rate function (hrf)

h(y; η, β) = βg(y; η)
[ 1 + G(y; η) ]β−1

2β − [ 1 + G(y; η) ]β
, (5)

and the reversed hazard rate function is given by

τ(y; η, β) = βg(y; η)
[ 1 + G(y; η) ]β−1

[ 1 + G(y; η) ]β − 1
. (6)

Genesis of the Family

The family introduced in (2) can be related to the truncated Burr distribution and the
general family of distributions proposed by [8], as we shall next see. Let

r(z) =
ckzc−1

(1− 2−k)(1 + zc)k+1 , 0 < z < 1,

be the truncated in the (0, 1) pdf of a Burr (Type XII) or Singh–Maddala distribution
(see [18]) with parameters c > 0 and k ∈ R \ {0}. It is well-known (see, for instance, [8])
that if G(z) is a continuous cdf with pdf g(x) = dG(z)/dz, then we have that

rG(z) =
ckg(z)G(z)c−1

(1− 2−k)(1 + G(z)c)k+1 , (7)

is also the pdf of a continuous rv. Note that expression (3) can be obtained as a particular
case of (7) by taking c = 1. Therefore, as is also the case with the max-stable distributions
introduced in (1), the family (3) can be considered as the result of applying the inverse
probability integral transformation to the one-parameter truncated on a (0, 1) Burr distri-
bution, instead of a beta distribution. This property is of interest to get other properties,
which involve the cdf, and generate random numbers in these models.

3. Results

The main results for this new family of distributions are given in this section.

3.1. Quantile Function and Random Number Generation

Proposition 1. Let Y ∼ ME G(η, β). Then the quantile function of Y is given by

Q(u; η, β) = QG

({(
2β − 1

)
u + 1

}1/β
− 1; η

)
, 0 < u < 1 , (8)

where QG denotes the quantile function of the parent distribution G.

Proof. Recall that the quantile function of Y is defined as

Q(u; η, β) such that F(Q(u; η, β)) = u, 0 < u < 1 .
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By applying (2), and taking into account that the quantile function of G is the inverse
function of the parent cdf, (8) is obtained.

Expression (8) allows us to generate random numbers for the modified exponentiated
family of distributions ME G(η, β) by using the following algorithm:

1. Generate u ∼ Uniform(0, 1).

2. Compute y = QG

({(
2β − 1

)
u + 1

}1/β − 1; η
)

.

3.2. Moments

Proposition 2. Let Y ∼ ME G(η, β). Then the moment of order r is given by

µr = E(Yr) = ϕ(β)ar(η, β), (9)

where ar is

ar(η, β) =

1∫
0

( QG(u; η) )r(1 + u)β−1 du, (10)

QG being the quantile function associated with the parent distribution.

Proof. Recall that

µr = E(Yr) =

∞∫
0

yr ϕ(β)g(y; η)[1 + G(y; η)]β−1 dy.

By making the change of variable u = G(y; η), the result given in (9) is obtained.

3.3. Stochastic Interpretation of the Parameters

Many parametric families of distributions can be ordered by using stochastic orders
according to the values of their parameters. In this subsection we prove that the modified
exponentiated family of distributions can be ordered with respect to the parameter β in
terms of the likelihood ratio, hazard rate and stochastic order, whose definitions can be
seen, for example, in [19]. We highlight that this property can be of interest in applications
of this model in disciplines such as insurance and reliability.

Definition 2. Let X1 and X2 be continuous rvs with pdfs f1 and f2, respectively, such that

f2(x)
f1(x)

is non-decreasing over the union of the supports of X1 and X2.

Then X1 is said to be smaller than X2 in the likelihood ratio (LR) order, denoted by X1 ≤LR X2.

Proposition 3. Let X ∼ ME G(η, β1) and Y ∼ ME G(η, β2). If β2 > β1, then X ≤LR Y.

Proof. Let X ∼ ME G(η, β1) and Y ∼ ME G(η, β2). We have that

fX(y; η, β1)

fY(y; η, β2)
=

β1
(
2β2 − 1

)
β2
(
2β1 − 1

) [1 + G(y; η)]β1−β2 .

For β1 < β2,

d
dy

(
fX(y; η, β1)

fY(y; η, β2)

)
=

β1(β1 − β2)
(
2β2 − 1

)
β2
(
2β1 − 1

) g(y; η)[1 + G(y; η)]β1−β2−1 < 0,

which implies that fX(y; η, β2))/( fY(y; η, β2) is decreasing on y. By applying Definition 2,
Proposition 3 follows.
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It can be seen in [20] that the LR order is stronger than the hazard rate (HR) order, and
in turn, this is stronger than stochastic (ST) order; that is,

X ≤LR Y =⇒ X ≤HR Y =⇒ X ≤ST Y. (11)

Next we recall their definitions and some implications of this fact.

Definition 3. Let X1 and X2 be two continuous rvs with hrfs h1 and h2 and cdfs F1 and F2,
respectively. Then

1. X1 is said to be smaller than X2 in the hazard rate order, denoted by X1 ≤HR X2, if h1(x) ≥
h2(x) for all x.

2. X1 is said to be stochastically smaller than X2, denoted by X1 ≤ST X2, if F1(x) ≥ F2(x) for
all x.

Corollary 1. Let X ∼ ME G(η, β1) and Y ∼ ME G(η, β2). If β2 > β1, then

1. X ≤HR Y and X ≤ST Y.
2. E(Xk) ≤ E(Yk) ∀k ∈ Z+.

Proof. It is straightforward.

Note that Corollary 1 implies that, for fixed values of η, the mean of the parametric
family of distributions increases with the values of the parameter β.

3.4. Poisson-Modified Exponentiated Mixture

Mixtures of distributions constitute an interesting topic in applied statistics, especially
in actuarial statistics. In the sequel we consider the mixture of a Poisson distribution with
mean λ > 0, denoted as X|λ ∼ Po(λ), with a MEG distribution with positive support

X|Λ = λ ∼ Po(λ) and Λ ∼ ME G(η, β) where Λ > 0, (fixed η) . (12)

Next it will be proven that (12) can be ordered. To reach this end, let H(x; β) be the
cdf of the mixture Poisson–MEG distribution introduced in (12). The following result,
analogous to Proposition 3, is established.

Proposition 4. Let X1 and X2 be two Poisson–MEG mixtures with cdfs H1(x; β1) and H2(x; β2),
respectively. If β2 > β1, then X1 ≤LR X2.

Proof. Let Λ1 > 0 and Λ2 > 0 be two MEG rvs with pdfs f (λ1; β1) and f (λ2; β2), respec-
tively. The cdf of the Poisson–MEG mixture with parameter βi, i = 1, 2, is given by

Hi(x; βi) =
∫ ∞

0
M(x; λi) f (λi; βi) dλi, i = 1, 2,

where M(x; λi) is the cdf of the Poisson rv with parameter λi, X|Λ = λi ∼ Po(λi), λi > 0.
Now, if β2 > β1, then, by applying Proposition 3, we have that

Λ1 ≤LR Λ2 .

On the other hand, it is well-known (see, for example, Table 3.1 in [21]) that the Poisson
model can also be ordered in terms of the likelihood ratio order

Po(λ1) ≤LR Po(λ2) whenever λ1 ≤ λ2,

which is equivalent to say that the Poisson distribution of parameter λ is totally positive of
order two (or TP2). Now Proposition 4 follows by applying Theorem 1.C.17 given in [20]
(or alternatively, see Proposition 3.3.54 in [21]).
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Analogously to Corollary 1, the next result follows for the Poisson–MEG mixture,
whose proof is omitted.

Corollary 2. Let X1 and X2 be two Poisson–MEG mixtures with cdfs H1(x; β1) and H2(x; β2)
and hrfs h1 and h2, respectively. If β2 > β1 then

1. X1 ≤HR X2 and X1 ≤ST X2.
2. E(Xk

1) ≤ E(Xk
2), for k ∈ Z+.

3.5. Order Statistics

Let Y1, . . . , Yn be a random sample from a rv Y. If the rvs in the sample are arranged
in increasing order of magnitude then the order statistics are obtained

Y1:n ≤ . . . ≤ Yj:n ≤ . . . ≤ Yn:n .

In this series Yj:n is the jth order statistic. Important cases of interest are the maximum,
Y(n) = Yn:n; the minimum, Y(1) = Y1:n; and functions which involve the order statistics,
such as the range, Wn = Yn:n −Y1:n, the median and trimmed means, to name only a few.

The interest in order statistics to statistical inferences is twofold. On the one hand,
they are building-block tools in nonparametric inference. On the other hand, they (and
their functions) have relevant practical applications. They are used in the analysis of floods
and droughts, reliability and fatigue failure, quality control, environmental and financial
studies, among other fields. For all these reasons, some results are next given for the order
statistics when sampling from a MEG(η, β) distribution.

First, recall that given a random sample Y1, Y2, . . . , Yn from a continuous population,
with cdf FY(y) and pdf fY(y), the pdf of the jth order statistic, Yj:n, is given by

fYj:n(y) =
n!

(j− 1)!(n− j)!
f (y)[F(y)]j−1[1− F(y)]n−j,

for j = 1, 2, . . . , n; see [22]. Therefore, the pdf of the jth order statistics for a modified
exponentiated distribution is

fYj:n(y) =
n!β

(j− 1)!(n− j)!(2β − 1)j+β−1 g(y; η) [1 + G(y; η)]β−1

× {[1 + G(y; η)]β − 1}j−1{2β − [1 + G(y; η)]β}β−1.

(13)

In particular, the pdf of the maximum Yn:n is

fYn:n(y) =
nβ

(2β − 1)n+β−1 g(y; η)[1 + G(y; η)]β−1{[1 + G(y; η)]β − 1}n−1

× {2β − [1 + G(y; η)]β}β−1.

and the pdf of the minimum, Y1:n, is

fY1:n(y) =
nβ

(2β − 1)β
g(y; η)[1 + G(y; η)]β−1{2β − [1 + G(y; η)]β}β−1.

A number of results related to order statistics can be deduced from previous pdfs.
Other ones can be obtained from the properties of the ME G(η, β) family. As an illustration
we give the next one, which establishes that the order statistics, and their expected values
are also ordered in terms of the shape parameter β.

Corollary 3. Let X ∼ ME G(η, β1) and Y ∼ ME G(η, β2). If β2 > β1, then

1. Xr:n ≤ST Yr:n for r = 1, . . . , n.
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2. E(Xr:n) ≤ E(Yr:n) , provided the expectations exist.

Proof. By applying Corollary 1, if β2 > β1, then X ≤ST Y. It can be seen in [22], Theorem
4.4.1, that X ≤ST Y implies the results given in 1 and 2.

3.6. Right Tail Behavior

Important issues in distribution theory deal with long-tailed and heavy-right-tailed
properties. These points are next studied. Their applications, mainly in financial and
actuarial statistics, are also pointed out. Additional details can be seen in [23] and references
therein. First, we recall that for a continuous rv X its cdf is F(x) = P[X ≤ x], and the
complementary event is

P[X > x] = 1− F(x) . (14)

In survival and reliability analysis, (14) is referred to as the survival function, and
it is usually denoted as S(x). Contrarily, in economics, financial and actuarial statistics,
(14) is usually denoted as F̄(x) and it is called the right tail of the cdf F; see [24]. Both
nomenclatures are used throughout this paper, depending on the context.

The study of F̄(x) is related to the right tail behavior of the distribution: long tails,
heavy tails and regular tails are analytical properties of interest, which we next study.

Lemma 1. Let F be a continuous cdf. If

lim sup
y→∞

−1
y

log F̄(y) = 0, as y→ ∞, (15)

then F is long-tailed, and therefore F is also heavy-right-tailed; see [25].

Recall that if a distribution is heavy-right tailed, then its right tail is heavier than the
exponential distribution. In the next proposition, conditions are given, in terms of the pdf
of the parent distribution g, so that the distribution obtained as a result of applying (2) has
a heavy right tail.

Proposition 5. Let G be a continuous distribution such that its pdf g verifies that g(y; η) and
g′(y; η)/g(y; η) tend to zero as y→ ∞. Then the ME G(η, β) family obtained by applying (2) is
heavy-right-tailed.

Proof. Let us consider limy→∞
1
y log F̄(y; η, β). By applying the L’Hospital rule twice, and

since it is supposed that g(y) and g′(y)/g(y) tend to zero as y→ ∞, we have that

lim
y→∞

1
y

log F̄(y) = lim
y→∞

1
y

{
− log(2β − 1) + log

[
2β − (1 + G(y))β

]}
= lim

y→∞

β[1 + G(y)]β−1g(y)

2β − [1 + G(y)]β

= − lim
y→∞

{
β− 1

1 + G(y)
g(y) +

g′(y)
g(y)

}
= 0.

From Lemma 1, the proposed result is obtained.

An immediate consequence of Proposition 5 is given in the next corollary. This is,
for a parent distribution verifying the conditions given in Proposition 5, the ME G(η, β)
distribution has tails which are not exponentially bounded.

Corollary 4. Under the conditions given in Proposition 5, it is verified that

lim sup
y→∞

esy F̄(y) = ∞, ∀s > 0 .
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Proof. That is a direct consequence of Proposition 5; see [23] or [25].

Corollary 5. Examples of heavy-right-tailed ME G(η, β) models.

1. Take G(y) = (θ/y)λ, y ≥ θ, the cdf of a Pareto distribution with shape parameter λ > 0
and scale parameter θ > 0. Then the ME G(θ, λ, β) model is heavy-right-tailed.

2. Take G(y) = Φθ,λ(log y), y > 0; the cdf of a lognormal distribution with parameters
θ ∈ R and λ > 0; and Φ to denote the cdf of the standard normal distribution. Then the
ME G(θ, λ, β) model is heavy-right-tailed.

Proof. Both results follow from the application of Proposition 5. Since

1. In this case g(y) = λθλy−1−λ and g′(y)/g(y) = −(1 + λ)/y. Both functions tend to
zero as y→ ∞, ∀λ > 0.

2. In this case g(y) = 1/(λy
√

2π) exp
[
−(log y− θ)2/(2λ2)

]
and g′(y)/g(y) = (θ −

λ2 − log y)/(yλ2), which tend to zero as y→ ∞.

An important issue in extreme value theory is the regular variation; see [26] or [27].
This property provides a flexible description of the variation of a given function according
to a polynomial form of type y−δ + o(y−δ), with δ > 0. This idea is next formalized to
study the right tail of a distribution.

Definition 4. A cdf F is said to be regularly varying at infinity if there exits δ > 0 such that

lim
y→∞

F̄(ty)
F̄(y)

= t−δ, ∀t > 0 .

δ is called the tail index.

The next theorem gives conditions on the parent distribution so that the cdf introduced
in (2) has regular variation at ∞.

Proposition 6. Let G be a continuous parent cdf such that its pdf verifies that g(ty)/g(y) = t−(1+δ),
∀t > 0 and δ > 0. Then, the cdf introduced in (2) is regularly varying at ∞ with tail index δ.

Proof. Let us consider the cdf given in (2). After applying the L’Hospital rule we get

lim
y→∞

F̄(ty)
F̄(y)

= lim
y→∞

[1 + G(ty)]β−1tg(ty)

[1 + G(y)]β−1g(y)
= t−δ.

Hence, the proposed result follows.

An immediate consequence of Proposition 6 is given in Corollary 6. There, the notation
f (t) ∼ g(t) as t→ ∞ is used, which means that f (t)

g(t) → 1 as t→ ∞; see [24].

Corollary 6. Let Y1, . . . , Yn be independent and identically distributed as a nonnegative rv Y with
the cdf given in (2) and Sn = ∑n

i=1 Yi, n ≥ 1. Then

Pr(Sn > y) ∼ n Pr(Y > y) as y→ ∞.

Moreover, if Y(n) = max{Yi, i = 1, . . . , n}, n ≥ 1 then

Pr(Sn > y) ∼ n Pr(Y > y) ∼ Pr(Y(n) > y) as y→ ∞.

Corollary 6 states that for a large y the event {Sn > y} is due to the event {Y(n) > y}.
Therefore, exceedances of a high threshold by the sum Sn are due to the exceedance of this
threshold by the largest value in the sample.
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Corollary 7. If the parent distribution is a Pareto model with shape parameter λ > 0 and scale
parameter θ > 0, i.e., G(y) = (θ/y)λ, y ≥ θ, then the MEG(θ, λ, β) model obtained has regular
variation at ∞.

Proof. The result follows, since in this case g(ty)/g(y) = t−(1+λ).

4. Inference

Let Y1, . . . , Yn be a random sample from Y ∼ MEG(η, β), where η denotes the k× 1
vector of unknown parameters associated with the parent distribution G(·). Moment and
maximum likelihood (ML) estimators for η = (η1, . . . , ηk) and β are studied in this section.

4.1. Moment Estimators

By applying the method of moments,

E(Y j) = mj, j = 1, . . . , k + 1 ,

with mj =
1
n ∑n

i=1 yj
i the sample moment of order j. From results given in Proposition 2, the

moment estimator of θ = (η, β), θ̂M = (η̂M, β̂M), is given as the solution of the system of
k + 1 equations

ϕ(β̂M) aj(η̂M, β̂M) = mj, j = 1, 2, . . . , k + 1 ,

where aj(η, β) was given in (10).

4.2. Maximum Likelihood Estimation

Given a random sample Y1, . . . , Yn from the distribution ME G(η, β), the log likelihood
function is

l(η, β) = n log(β)− n log(2β − 1) +
n

∑
i=1

log[g(yi)] + (β− 1)
n

∑
i=1

log[1 + G(yi)], (16)

where g(yi) = g(yi; η) and G(yi) = G(yi; η) are the pdf and cdf of the parent distribution
with vector of unknown parameters η = (η1, η2, . . . , ηk). By taking the first partial deriva-
tives in (16) with respect to ηj for j = 1, . . . , k and β, and setting them equal to zero, the
log-likelihood equations are

n

∑
i=1

gj(yi)

g(yi)
+ (β− 1)

n

∑
i=1

Gj(yi)

1 + G(yi)
= 0, j = 1, . . . , k, (17)

n
β
− n2β log(β)

2β − 1
+

n

∑
i=1

log[1 + G(yi)] = 0, (18)

where

gj(yi) =
∂g(yi; η)

∂ηj
and Gj(yi) =

∂G(yi; η)

∂ηj
j = 1, . . . , k.

In order to apply an iterative method of optimization, one of the equations given in (17)
can be solved in β, and we obtain

β̃ = 1−
(

n

∑
i=1

gj(yi)

g(yi)

)(
n

∑
i=1

Gj(yi)

1 + G(yi)

)−1

.

Now, by replacing β̃ in the remaining k equations, the ML estimates of the parameter
η can be obtained. The optim function available in the R package can be used in the
maximization process. As initial values to start the process of estimation, the moment
estimates can be used. Another option is to start with the MLEs of parameters in the parent
distribution [28], η̂0, and to propose an initial β̂0 from one of the equations in (17).
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Under suitable conditions (regularity conditions) it is verified that the ML estimators
of the parameters, properly normalized, converge in law to the standard normal distribu-
tion, N(0, 1), as n tends to infinity, which means that the asymptotic distribution of ML
estimators can be approached for a normal distribution as n is large.

5. A Relevant Sub-Model: The Exponential Case

In this section, we consider the particular case in which the parent distribution G
corresponds to an exponential model with rate parameter α > 0, Exp(α). First, the
submodel is defined; later, new and relevant properties are listed.

Definition 5. An rv Y follows a modified exponentiated exponential (MEE) distribution,
Y ∼ ME E(α, β), if its pdf is given by

f (y; α, β) = αϕ(β)e−αy(2− e−αy)β−1, y > 0, α > 0, β > 0 . (19)

Here, α > 0 and β > 0 are the rate and shape parameters, respectively. Obviously, if
β = 1, then the ME E(α, 1) reduces to the classical exponential distribution, Exp(α).

Proposition 7. Let Y ∼ ME E(α, β). Then

1. The hazard function is

h(y; α, β) =
αβe−αy(2− e−αy)

β−1

2β − (2− e−αy)β
, y > 0, α > 0, β > 0 . (20)

2. The moment generating function of Y is

MY(t) = 2β−t/α ϕ(β)B1/2(1− t/α, β), t < α, (21)

where Bz(a, b) denotes the incomplete beta function; Bz(a, b) =
∫ z

0 ua−1 (1− u)b−1du is
defined for 0 < z < 1, a > 0; and b > 0.

3. The expected value of Y can be obtained as

E(Y) =
2β−1 ϕ(β)

α
3F2({1, 1, 1− β}; {2, 2}; 1/2), (22)

where

pFq({a1, . . . , ap}; {b1, . . . , bq}; z) =
∞

∑
k=0

(a1)k . . . (ap)k

(b1)k . . . (bq)k

zk

k!

is the generalized hypergeometric function.

Proof. 1. It is immediate as result of applying (5).
2. From (19)

MY(t) = E[exp(tY)] = αϕ(β)
∫ ∞

0
etye−αy(2− e−αy)β−1dy . (23)

By making the change of variable u = e−αy

2 in (23) and taking into account the definition
of the incomplete beta function, (21) is obtained.
3. From (21), E(Y) is obtained as the first derivative with respect to t of MY(t) and by
setting t = 0, which, in turn, can be written in terms of the generalized hypergeometric
function. To get (22), we need the derivative of the incomplete beta function (see The
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Wolfram functions site https://functions.wolfram.com (accessed on 25 September 2021)),
which is given by

∂Bz(a, b)
∂a

= Bz(a, b) log z− za

a 3F2({a, a, 1− b}; {a + 1, a + 1}; z).

Furthermore, the following relationship is used:

∫ 1/2

0
(1− u)β−1 du =

2−β

ϕ(β)
.

Shape of ME E(α, β) Distribution
Since α > 0 is a rate parameter, without loss of generality it can be α = 1, and the

shape of the ME E(α, β) distribution can be studied in terms of β. Figures 1 and 2 show
some plots of the pdf and hrf for different values of the shape parameter. The cases β < 1
(red color), β = 1 (black color) and β > 1 (green, blue and yellow colors) are considered.
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1.
5

Y ~ MEE(α = 1, β)
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1
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4
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Figure 1. Plots of the MEE distribution pdf for different values of parameter β.
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Figure 2. Plots of the hrf of MEE for different values of parameter β.

In these figures we can observe that for β < 1, the pdf is monotically decreasing, and
the hazard rate too. Moreover, for β < 1, the hazard rate approaches one when y tends
to +∞. For β = 1, recall that the classical exponential distribution is obtained; its pdf is

 https://functions.wolfram.com
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plotted in black in Figure 1, and its hazard rate is the constant one (black) in Figure 2. On
the other hand, for β > 2, it can be seen in Figure 1 that the pdf is strongly unimodal and
the hazard rate function is monotically increasing, approaching one when y tends to +∞.
As was proven in Section 3.3, these families of distributions are ordered in terms of hazard
rate. This fact is clearly appreciated in Figure 2. These comments are formalized next.

Remark 1. In this context, the term strongly unimodal means that the pdf f reaches its maximum
at m, an interior point in the support of the distribution, and there are no other local maxima.

Proposition 8 (Shape of the pdf and hrf in the ME E(α, β) distribution).

1. For any α > 0, it is verified that if β ≤ 2, then f (y; α, β) is monotically decreasing and its
mode is at zero. On the other hand, if β > 2, then f (y; α, β) is strongly unimodal and the

mode is at
1
α

log
(

β

2

)
, where log(·) denotes natural logarithm.

2. For any α > 0, it is verified that if β < 1, then the hrf, h(y; α, β), is monotically decreasing;
if β = 1, then the hrf is constant, h(y; α, β) = α ∀y > 0; and if β > 1, then h(y; α, β) is
monotically increasing.
Moreover,

lim
y→∞

h(y; α, β) = α . (24)

Proof. These results follow from the study of maxima of (19) and (20).

As for (24), it follows by taking the limit in (20) when y→ ∞.

Recall that a function f is log-concave if and only if

log f (tx + (1− t)y) ≥ t log f (x) + (1− t)log f (y) ∀t ∈ (0, 1) and ∀x, y . (25)

A number of properties can be deduced in the ME E(α, β) distribution from (25).

Proposition 9. If β > 1, then the pdf of the ME E(α, β) distribution is log-concave, and if β < 1,
then it is log-convex.

Proof. Recall that if (− log f )′′(y) > 0 for all y, then f is log-concave. Analogously, if it is
< 0, then f is log-convex.

Since in this case

(− log f )′′(y) = (β− 1)
2α2 exp(αy)

(1− 2 exp(αy))2 ,

the result proposed follows.

Immediate consequences are listed in the following corollary.

Corollary 8. Let Y ∼ ME E(α, β). Then

1. If β > 1 (β < 1), then the cdf and survival functions are log-concave (log-convex).
2. If β > 1, then the truncated distribution at c ∈ support(Y), f c(y) = f (y)/F̄(y)1{y≥c}, is

also log-concave.

Proof. These properties follow from the log-concavity (log-convexity) of the pdf; see, for
instance, [29].

Other properties, such as the hazard rate function monotonically increasing for β > 1
and monotonically decreasing for β < 1, can also be deduced from Proposition 9. They are
omitted in Corollary 8 because they were previously proven in Proposition 8.
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Remark 2 (Application of (24) of interest in reliability). As interesting applications of properties
given in this subsection, we highlight the result given in (24) for β > 1. In this case we have a
lifetime model whose hazard function increases from zero to a finite constant, α > 0. Gupta and
Kundu [12] pointed out that this kind of model can be appropriate for describing a population of
items which are in a regular maintenance program. That is, the hazard rate increases initially, but
after some time the system reaches a stable situation due to maintenance.

Next, the quantile function of ME E(α, β) distribution is given along with a simulation
study, which illustrates the use of this function. Applications of interest in reliability and
finance are also listed.

Corollary 9. Let Y ∼ ME E(α, β). Then the quantile function obtained from (8) is

Q(u; α, β) = − 1
α

log
(

2−
{(

2β − 1
)

u + 1
}1/β

)
, 0 < u < 1 . (26)

The algorithm proposed in Section 3.1 along with (26) can be applied to obtain simu-
lated values of the ME E(α, β) distribution. Figure 3 shows the histogram for a simulated
dataset of size n = 1000 by using that algorithm with α = 2 and β = 4. We highlight the
good agreement between the histogram and the pdf of this model.

Y ~ MEE(α = 2, β = 4)

y

D
en

si
ty

 fu
nc

tio
n

0 1 2 3

0.
0

0.
4

0.
8

Figure 3. Histogram for the simulated study with size n = 1000 for MEE distribution.

Remark 3 (Practical applications of quantiles). We can cite

1. In reliability and survival analysis, models such as the MEE(α, β) distribution are of interest.
In this context, quantiles are used to establish warranty periods of products, for modeling
lifetime data, and to estimate features in the model not affected by the presence of outliers. The
parametric estimation of quantiles tends to be more efficient than nonparametric estimation,
as can be seen in [30].

2. In financial and actuarial theory, the quantile function is also known as the value at risk,
(denoted as VaR), which is interpreted as the amount of capital required to ensure that the
insurer (or the economic agent) does not become insolvent with a high degree of certainty.
Therefore, it is of interest to have an explicit expression for this function, such as the one given
in (26). This measure is also of great importance in scenarios where outliers corresponding
to large empirical data may appear, which is quite common in risk theory. In this sense, we
highlight that the MEE distribution seems appropriate for modeling this kind of empirical
data, as can be seen in Figure 3.

To conclude this section, expressions for the moments are given.

Corollary 10. Let Y ∼ ME E(α, β). Then the moment of order r is given by

µr = E(Yr) = ϕ(β) br(α) cr(β), r = 1, 2 . . . ,

where br(α) = α−r and cr(β) =
∫ 1

0
[− log(1− u)]r(1 + u)β−1 du.
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Proof. That is obvious from (9) and (26).

6. Simulation Study

In order to study the performance of the estimators obtained by the ML method, a
simulation study was carried out. We focused on the relevant model introduced in Section 5
with only two parameters, α and β. One thousand samples of sizes n = 50, 100, 200 were
generated from the MEE model for several values of the parameters. The random numbers
were generated by using the algorithm introduced in the Section 3.1.

Summaries of these simulations are given: the means of the estimates and their
standard errors (s.e.) in parentheses.

Results in Table 1 suggest that

1. The ML estimators were biased, but the bias tended to zero when n increased.
2. The standard deviation of the estimates decreased when the sample size n increased.
3. Since the previous summaries tended to zero if n increased, both estimators seem to

have been consistent. That is, if n→ ∞, then closer estimates to the true values of the
parameters were obtained.

4. It can be appreciated that, for the values of the parameters and the sample sizes under
consideration, the bias and standard deviation of α̂ are greater than the bias and
standard deviation of β̂, but in any case, both estimators exhibited good behavior,
since if n increased, then both summaries decreased.

Table 1. Means and standard errors (s.e.) for the estimates obtained by ML in the MEE distribution.

MEE
n = 50 n = 100 n = 200

α β α̂ (s.e.) β̂ (s.e.) α̂ (s.e.) β̂ (s.e.) α̂ (s.e.) β̂ (s.e.)

3 2 3.150 (1.120) 2.038 (0.363) 3.084 (0.845) 2.036 (0.257) 3.070 (0.627) 2.022 (0.191)
4 4.154 (1.205) 2.046 (0.325) 4.117 (0.895) 2.027 (0.245) 4.050 (0.650) 2.013 (0.163)
5 5.204 (1.230) 2.043 (0.296) 5.152 (0.963) 2.026 (0.206) 5.056 (0.696) 2.010 (0.155)

10 5 10.743 (2.697) 5.123 (0.668) 10.426 (1.851) 5.087 (0.455) 10.163 (1.214) 5.023 (0.316)
10 10.627 (2.589) 10.207 (1.248) 10.346 (1.751) 10.109 (0.864) 10.136 (1.133) 10.058 (0.624)
15 10.674 (2.449) 15.350 (1.851) 10.366 (1.824) 15.225 (1.368) 10.270 (1.218) 15.146 (0.933)

3 3 3.255 (1.305) 3.123 (0.580) 3.137 (0.895) 3.071 (0.398) 3.071 (0.604) 3.023 (0.271)
4 4 4.241 (1.366) 4.129 (0.695) 4.107 (0.942) 4.043 (0.490) 4.065 (0.640) 4.041 (0.342)
5 5 5.291 (1.538) 5.132 (0.791) 5.138 (0.972) 5.085 (0.544) 5.019 (0.707) 5.005 (0.389)

7. Application

An application with a real dataset was carried out. We proved that our proposal
outperforms other common two-parameter lifetime distributions that can appropriately fit
reliability data.

Modeling of a Fatigue Fracture in Kevlar 373/Epoxy Data

In this application a set of data were fitted by using the MEE(λ, β) distribution. We
proved that this model can be considered as an alternative to the Weibull and generalized
exponential distributions introduced by Gupta and Kundu [9]. All these models had the
same number of parameters and contained, in one particular case, the one-parameter
exponential distribution. Recall that the Weibull and generalized exponential pdfs are
given by

1. Weibull, W(β, λ), distribution:

f (x; λ, β) =
β

λβ
xβ−1e−(

x
λ )

β

, x > 0, λ > 0, β > 0.
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2. Generalized exponential, GE(β, λ), distribution:

f (x; λ, β) = βλe−λx
(

1− e−λx
)β−1

, x > 0, λ > 0, β > 0.

In this application we compared the performances of the MEE, Weibull, generalized
exponential and exponential distributions.

The dataset consisted of the lifetimes of fatigue fractures of Kevlar 373/epoxy, which
were subject to constant pressure at the 90% stress level until all of them failed. Thus, we
had complete data with the exact times of failure. This dataset can be seen in Table 2.

Table 2. Data corresponding to the real application.

0.0251 0.0886 0.0891 0.2501 0.3113 0.3451 0.4763 0.5650
0.5671 0.6566 0.6748 0.6751 0.6753 0.7696 0.8375 0.8391
0.8425 0.8645 0.8851 0.9113 0.9120 0.9836 1.0483 1.0596
1.0773 1.1733 1.2570 1.2766 1.2985 1.3211 1.3503 1.3551
1.4595 1.4880 1.5728 1.5733 1.7083 1.7263 1.7460 1.7630
1.7746 1.8275 1.8375 1.8503 1.8808 1.8878 1.8881 1.9316
1.9558 2.0048 2.0408 2.0903 2.1093 2.1330 2.2100 2.2460
2.2878 2.3203 2.3470 2.3513 2.4951 2.5260 2.9911 3.0256
3.2678 3.4045 3.4846 3.7433 3.7455 3.9143 4.8073 5.4005
5.4435 5.5295 6.5541 9.0960

This dataset has been analyzed by a number of authors; see, for instance, [31,32]. The
descriptive summaries are given in Table 3: sample mean, sample standard deviation, b1
and b2 (the latter are the sample asymmetry and kurtosis coefficients, respectively).

Table 3. Statistical summaries for fatigue data of Kevlar 373/epoxy.

n ȳ s b1 b2

76 1.959 1.574 1.979 8.161

By using the results given in Section 4.1, moment estimators were computed, leading
to the following estimates: β̂M = 0.7329 and λ̂M = 3.6316, which were used as initial
estimates for the ML approach. Table 4 shows the parameter estimates (with their standard
errors in parenthesis) for MEE, GE, W and exponential (E) distributions obtained by using
the ML method.

In order to compare the distributions, the Akaike information criterion (AIC) intro-
duced by Akaike [33] and the Bayesian information criterion (BIC) proposed by Schwarz
[34] were used. It is well known that AIC = 2k− 2 log(lik) and BIC = k log(n)− 2 log(lik),
where k is the number of parameters in the model, n is the sample size and log(lik) is the
maximized value of the log-likelihood function. Table 5 shows the corresponding AIC and
BIC for each model. From these criteria, the better fit was provided by the MEE model.
Figure 4 gives the histogram for the data along with the fitted densities, where the good fit
provided by the MEE distribution can be seen.

Table 4. ML estimates of the fitted models with their respective standard errors (s.e.).

Parameters Estimated MEE (s.e.) GE (s.e.) W (s.e.) E (s.e.)

β̂ 4.807 (1.120) 1.709 (0.282) 1.325 (0.113) -
λ̂ 0.831 (0.106) 0.702 (0.092) 2.132 (0.194) 0.510 (0.058)
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Table 5. Akaike information criterion and Bayes information criterion for every model.

Criterion MEE GE W E

AIC 246.3844 248.4872 249.0494 256.2286
BIC 251.0459 253.1487 253.7109 258.5593
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Figure 4. Models fitted by the ML approach to the Kevlar 373/epoxy dataset.

8. Discussion

In this paper, a general class of modified exponentiated distributions has been intro-
duced. The building-block is the modified exponentiation of the cdf of a parent distribution
denoted by G. Properties of this new family of distributions were obtained in terms of G
and the exponent, which acts as a shape parameter on the parent distribution. First, the
general properties were obtained. These are: the cdf, pdf, quantile function, moments,
order statistics and heavy tail properties, among others. It was shown that the family
exhibits more flexible behavior than the parent distribution, and therefore it is suitable for
fitting data of diverse nature. In order to interpret the shape parameter, stochastic orders
are considered. We highlighted that some of these properties, such as the Poisson-modified
exponentiated mixture and heavy tail behavior, are important due to their involvement in
actuarial statistics. Other properties, such as those related to quantiles, hazard and survival
function, are of interest in reliability and survival analysis. As estimation methods, moment
and maximum likelihood methods have been proposed. As a particular case of interest, we
used as the parent distribution the classical exponential distribution and obtained the MEE
model. For this submodel, new properties were obtained, which show that MEE model can
be an efficient alternative to Weibull and generalized exponential distributions for analyz-
ing lifetime data. A simulation study was included, which illustrated the performance of
ML estimators. Finally, a real application was presented, which shows that the new family
can be a competitor of two-parameter distributions that receive common use in statistics
and reliability. Immediate extensions of this work would allow one to obtain the modified
exponentiated Pareto distribution, which should be of interest for economic and actuarial
problems, and their multivariate generalizations. Some of the merits of this future research
have been pointed out in the particular cases of parent distributions studied in Section 3.6.
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