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Abstract

This paper presents an economic model predictive controller, under the assumption that the only measurable
signal of the plant is the economic cost to be minimized. In order to forecast the evolution of this economic
cost for a given input trajectory, a prediction model with a NARX structure, the so-called oracle, is proposed.
Sufficient conditions to ensure the existence of such oracle are studied, proving that it can be derived for a
general nonlinear system if the economic cost function is a Morse function. Based on this oracle, economic
model predictive controllers are proposed, and their stability is demonstrated in nominal conditions under a
standard dissipativity assumption. The viability of these controllers in practical settings (where the oracle
may provide imperfect predictions for generic inputs) is proven by means of input-to-state stability. These
properties have been illustrated in a case study based on a continuously stirred tank reactor.

1. Introduction

Often, control systems have to simultaneously
consider both performance and safety requirements.
This double objective has been typically addressed
by means of a hierarchical structure, where a real
time optimization layer calculates the equilibrium
point that minimizes the operation cost, while a
lower control layer regulates the system to this equi-
librium point. Recently, in the model predictive
control (MPC) framework, this hierarchical control
structure has been united in a single layer [1], aimed
to minimize the operation cost during the tran-
sient, instead of a tracking cost, often designed to
provide robustness and stability properties. This
is the so-called economic MPC, whose properties
have been studied in several works [2, 3]. The main
difference between economic MPC and regulation
MPC is that the former relaxes the architecture of
the optimization problem, in order to minimize any
economic cost function, which may not be positive
definite. Two recent overviews on EMPC can be
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found in [4, 5]. Further, extensions to robust and
multistage or output-feedback EMPC can be found
in [6, 7, 8], among others.

Predictive controllers are based on the availabil-
ity of a model of the plant, in order to predict the
evolution of the states of the system, and based
on these predictions, the cost to be minimized is
calculated. Recently, data-based MPCs have been
proposed to address applications in which an ap-
propriate model of the plant is not available, and
hence the predictions have to be obtained from his-
torical data sets, as reviewed in [9]. Accordingly,
this data-based approach is also being applied to
economic MPCs. For example, in [10], a Lyapunov-
based economic MPC (LB-EMPC) that integrates
a linear prediction model is presented, updated on-
line from the measurements of the plant. In [11],
a LB-EMPC for nonlinear systems aimed to main-
tain excitation on the system in order to obtain an
state-space model from the measured inputs was
presented. In [12], the authors propose a recur-
rent neural network to learn the model of the plant
that is controlled by an LB-EMPC, and they ex-
tend this approach to take into account constraints
by means of barrier functions in [13]. In [14], a
data-driven EMPC based on reinforcement learn-

Preprint submitted to Computers & Chemical Engineering April 20, 2021

ar
X

iv
:2

10
4.

09
49

0v
1 

 [
ee

ss
.S

Y
] 

 1
9 

A
pr

 2
02

1



ing in which the EMPC is used as approximator of
the value function of the reinforced learning policy
is proposed.

These data-based approaches are based on both
inputs and outputs historical data sets. However,
there may exist situations in which no measure-
ments of any inner variable of the plant are avail-
able, for example, to maintain privacy of operation,
or due to security reasons. Consider for instance a
data center in which the operation cost accounts for
the cost of the electric consumption of the refriger-
ation system and the consumption of the servers.
In order to design a controller to optimize the op-
eration cost, sharing inner information of the state
of the servers could be limited due to security rea-
sons, while sharing only the operation cost may not
jeopardize the security of the system.

In this paper, we study the case in which the
only available measurement from the plant is the
value of the economic cost to be optimized. The
prediction of the behaviour of the plant is carried
out by an oracle that forecasts the economic per-
formance of the plant, from a historical data set of
the tuple inputs-economic costs, using a nonlinear
autoregressive exogenous model (NARX) structure,
which is obtained using nonlinear identification or
machine learning methods [15]. The existence of
this class of oracles for the prediction of the eco-
nomic cost is studied, proving that they can be
derived for general nonlinear plants under mild as-
sumptions on the economic cost function. Based on
this oracle, several economic model predictive con-
trollers are proposed, proving that in the case of
exact predictions, they inherit the properties of the
economic MPC based on the process model. In ad-
dition, in the practical case of an imperfect oracle,
it is proven that the oracle-based economic MPC
with terminal cost function is input-to-state stable
with respect to the estimation error of the oracle.

To the best of the authors’ knowledge, this is the
first work in which an economic MPC based only on
the measure of the economic cost is studied, prov-
ing that for a general nonlinear system and under
mild assumptions on the economic cost function, it
suffices to measure the economic cost function to
design a stabilizing economic predictive controller
using a data-based oracle. The proposed controller
has been applied in simulation to the economic op-
eration of a continuously stirred tank reactor, using
kinky inference processes [16] to learn the oracle.
A preliminary version of this work was presented
in [17].

The rest of the paper is structured as follows:
Section 2 presents the problem formulation and the
standard economic MPC. Section 3 states the con-
ditions under which it is possible to define an oracle
to predict the future evolution of the economic cost.
Section 4 describes the proposed oracle-based eco-
nomic predictive controllers and Section 5 addresses
practical aspects of the problem. Finally, Section 6
presents the case study.

Notation

Given two column vectors v and w, (v, w) stands
for [vT , wT ]T . The set Iba stands for the set of in-
tegers from a to b. A function α : R≥0 → R≥0 is
a K-function if it is strictly increasing and α(0) = 0.
Besides, if a K-function is such that lim

s→∞
α(s) =∞,

then it is called a K∞-function. Given a set X ⊆
Rn, XM denotes the cartesian product of the set M
times, i.e. XM = XM−1 ×X with X 1 = X .

2. Problem formulation

In this paper, we consider that the system to be
controlled is a sampled continuous-time system de-
scribed by an unknown discrete time model

x(k + 1) = f(x(k), u(k)), (1)

where x(k) ∈ Rn is the state of the plant and u(k) ∈
Rm is the control input. It is assumed that the
inputs are subject to (hard) constraints u(k) ∈ U ,
where U ⊂ Rm is a compact set.

The objective of the control strategy to be de-
signed is to guarantee that the closed-loop system
is stable, while a cost function is minimized during
the transient. This cost function is said to be eco-
nomic because it measures the performance of the
evolution of the system according to a generic func-
tion, that does not necessarily penalize the tracking
error w.r.t. a given target.

The economic cost function to be considered
in this paper is defined by a function of the
form `(x, u). The model f and the economic cost
function ` must satisfy the following condition:

Assumption 1. The function f(x, u) is smooth
and state invertible, i.e., for a given u, f defines a
diffeomorphism in x. The function `(·, ·) : Rn×U 7→
L is smooth and its image L ⊂ R is a compact set.

Note that as stated in [18], in the general case
in which the model function (1) is derived from

2



sampling a continuous-time system controlled us-
ing a zero-order holder, such that it is described
by a finite-dimensional differential equation with an
unique solution, the resulting model function f is
state invertible. Moreover, since the value of the
cost function `(x, u) is assumed to be measured,
the assumption that its image is bounded is not
limiting.

Remark 1 (Soft constraints). There may exist a
collection of variables of the system yc(k) ∈ Rny

which are subject to (soft) constraints yc(k) ∈ Yc,
being Yc a closed set. To cope with this case, the
stage cost function `(x, u) can be used to take into
account these constraints by adding a term that pe-
nalizes their violation. This term can be thought of
as the economic cost of not fulfilling them.

2.1. Stabilizing economic MPC

According to the given economic cost function,
the optimal equilibrium point is obtained from the
solution of the following optimization problem:

(xs, us) = arg min
x,u∈U,

`(x, u) (2a)

s.t. x = f(x, u). (2b)

The economic optimal operation of a system by
means of a model predictive control law is a very
complex problem that has been thoroughly stud-
ied recently. See for instance the excellent sur-
vey papers [2, 5] and the references therein. For
the asymptotic stabilization of economic optimal
controllers, the dissipativity property plays an im-
portant role. This property has been related to
the turnpike property, see [19] for their relation
within continuous-time models in optimal control,
and [20, 21] for discrete-time models. In this work,
this condition is stated in the following assumption:

Assumption 2. The system f is strictly dissi-
pative with respect to the supply rate s(x, u) =
`(x, u) − `(xs, us), i.e. there exists a storage func-
tion λ : Rn → R such that

λ(f(x, u))− λ(x) ≤− ρ(‖x− xs‖)− ρ(‖u− us‖)
+ `(x, u)− `(xs, us), (3)

for certain K function ρ(·). It is also assumed that
the storage function is locally Lipschitz continuous
and bounded below for any admissible trajectory of
the system and that us lies in the relative interior
of U .

Notice that if this assumption holds, then the
optimization problem (2) has an unique solution.

Two different stabilizing economic model pre-
dictive control formulations are considered in this
paper: with and without terminal equality con-
straint. An economic MPC with terminal equality
constraint is derived from the solution of the fol-
lowing optimization problem P eN (x(k)) [22]:

min
û

VN,e(x(k), û) =

N−1∑
j=0

`(x̂(j|k), û(j)) (4a)

s.t. x̂(0|k) = x(k) (4b)

x̂(j + 1|k) = f(x̂(j|k), û(j)), j ∈ IN0 (4c)

û(j) ∈ U (4d)

x̂(N |k) = xs. (4e)

The optimum of this problem is denoted V ∗N,e(x(k)).
A more general formulation of the economic MPC

without terminal equality constraint can be ob-
tained adding a relaxed terminal constraint and
a terminal cost function, leading to the following
problem P tN (x(k)) [2]:

min
û

VN,t(x(k), û) (5a)

=

N−1∑
j=0

`(x̂(j|k), û(j)) + Vf (x(N |k))(5b)

s.t. (4b)− (4d)

x̂(N |k) ∈ Xf . (5c)

The optimum is denoted V ∗N,t(x(k)).
In both cases, a state feedback control law (ei-

ther u(k) = κeeco(x(k)) or κteco(·)) is obtained ap-
plying the solution of the corresponding optimiza-
tion problem in a receding horizon manner, i.e.
u(k) = u∗(0;x(k)).

In this paper, it is assumed that the economic
MPC optimization problems satisfy the following
condition:

Assumption 3. The optimal solution of the prob-
lem P eN (x(k)) ( or P tN (x(k))) is unique, and the
optimal cost function V ∗N,e(·) (or V ∗N,t(·)) is contin-
uous at the reference x = xs.

The asymptotic stability of the closed-loop sys-
tem, controlled by the EMPC law with terminal
equality constraint, κeeco(x), was proven in [23]. In
the case of the EMPC with a relaxed terminal con-
straint, under a suitable design of the terminal in-
gredients Vf (·) and Xf , the resulting control law
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also stabilizes the system to the optimal equilibrium
point. Following [24], these conditions are catego-
rized in three different cases as follows:

TC1 Terminal inequality constraint [22]. Consider-
ing a locally stabilizing control law, a suitable
function Vf (·) and an invariant set Xf satisfy-
ing a set of conditions. These ingredients can
be determined from the linearized model of the
plant at the optimal equilibrium point.

TC2 Terminal cost function and no terminal con-
straint [19]. Taking Xf = Rn, a linear ter-
minal cost function Vf (x) = ηTf x, where ηf is
the Lagrange multiplier corresponding to con-
straint (2b) in optimization problem (2), and
a sufficiently long prediction horizon N .

TC3 No terminal ingredients [25]. Taking Xf =
Rn, Vf (x) = 0 and a sufficiently long predic-
tion horizon, the resulting controller is practi-
cally asymptotically stable and the ultimately
bound depends inversely on the prediction
horizon.

For the cases TC2 and TC3, additional techni-
cal assumptions are necessary, such as exponen-
tial reachability of the equilibrium point, regularity
of the steady-state optimization problem and some
controllability conditions of the linearized model at
the equilibrium point [26].

All these controllers are recursively feasible and
stabilize the closed-loop system providing an eco-
nomically optimal closed-loop trajectory, such that

lim
T→∞

1

T

T−1∑
k=0

`(x(k), κeco(x(k))) ≤ `(xs, us). (6)

Note that in addition to the averaged perfor-
mance defined here, the literature also contains es-
timates for transient or non-averaged optimality of
economic MPC schemes (see, e.g., [25]), which may
be interesting to consider in the oracle-based ap-
proach proposed in this paper.

2.2. Oracle-based economic MPC

The standard economic MPC formulations pre-
sented in this section require knowledge of the pre-
diction model of the plant and the measurement or
estimation of the current state. However, there may
exists scenarios in which this information is not ac-
cessible, due e.g. to privacy or security conditions
of the plant.

The main objective of this work is to design an
economic predictive controller that stabilizes the
plant and minimizes its economic performance sat-
isfying (6), under the assumption that the model of
the plant is not known and that the only measure-
ment of the plant is the value of the economic cost
at each sampling time.

Using a database of past inputs and economic
cost trajectories, a function used to predict the evo-
lution of the cost will be obtained. This function
is called an oracle, since it allows us to forecast the
economic performance of the plant. Once that this
oracle is obtained, a suitable predictive controller
will be designed based only in the available mea-
surement of the current economic cost function.

In the following section, the existence of an oracle
is studied. Then, oracle-based economic predictive
controllers will be presented, and their properties
analyzed.

3. The oracle

In this section, the procedure to obtain an oracle
from past input and performance trajectories, and
the conditions under which such an oracle exists
are presented. The oracle proposed has the form of
a nonlinear auto-regressive model with exogenous
signals (NARX), which has been extensively used
in nonlinear systems identification [27], defined by
the following nonlinear difference equation 2

ˆ̀(k) = O(z(k), u(k)), (7)

where ˆ̀(k) is the estimated cost at sampling time k,
and z(k) is a vector given by the following collection
of past inputs and costs:

z(k) = (`(k − 1), · · · , `(k − na),

u(k − 1), · · · , u(k − nb)), (8)

for some memory horizons na, nb ∈ N. The vector
z(k) can be regarded as the state of the oracle, and
its dimension is nz = na + m · nb. It follows that
the oracle is a function O : Rnz × Rm → R, since
the economic cost is a real number.

Notice that the value of the economic cost func-
tion at time instant k, `(k), depends in general
on the value of the input at the same time in-
stant, u(k), leading to an inner feed-forward struc-
ture. This implies that the state vector z(k) can

2 We may sometimes aggregate the notation of the cost
as `(k) = `(x(k), u(k)).

4



only depend on the sequence of past costs up to
k − 1, that is, `(k − 1), · · · , `(k − na). Then, the
state feedback controller to be designed with the
form u(k) = κMPC(z(k)) is such that the current
control action u(k) depends on the information of
the plant available up to k − 1, given the set-up
defined by (7) and (8).

The conditions under which a system can be de-
scribed as a NARX have been widely studied dur-
ing the last 30 years. One of the first results on
this topic was given by Sontag [28], relating the ex-
istence of this model to the observability property
of the system. Later, Chen and Billings [29] proved
that local NARX models can be obtained if the sys-
tem is locally observable. A comprehensive study
of this problem, for local and global estimators, was
presented by Levin and Narendra [30].

In [30, Theorem 3] it was proven that if the lin-
earised model at the equilibrium point (xs, us) is
observable, then the dynamics of the system can be
locally described by a NARX model. When a global
NARX model is required, the strong observability
property must be ensured, from the linearised sys-
tem, for instance. However, in [30, Theorem 6],
the authors proved that only generic observability
is necessary, which is a much weaker property. Since
these results are a keystone of this paper, the main
results used in [30] have been summarized in the
appendix, including an extra corollary to relate the
approach to the case presented in this paper.

Next, for the sake of clarity, we introduce the
definition of Morse functions.

Definition 1 (Morse function). A function m(x, u)
is said to be Morse in x if for all (x̃, ũ) where
the gradient ∇xm(x̃, ũ) = 0, the Hessian matrix
∇xxm(x̃, ũ) is non-singular [31].

In order to derive the existence of an oracle of
the economic cost, the following assumption must
be fulfilled.

Assumption 4. The economic cost function
`(x, u) is a Morse function in x.

In virtue of Corollary 2 (presented in the ap-
pendix), the conditions required to ensure the exis-
tence of the oracle can be derived:

Theorem 1 (Existence of the oracle). Consider
that Assumptions 1 and 4 hold and that the hori-
zons na and nb are larger than or equal to 2n. Let
uz(k) ∈ Unb+1 be the sequence of nb + 1 last in-
puts applied to the system (1) up to sample time k.

Then, for every ε > 0 there exists a set of sequences
of nb+1 inputs Uno ⊆ Unb+1 of measure µ(Uno) < ε
such that:

1. There exists a continuous oracle function (7)
that describes the system (1), i.e.

`(k) = O(z(k), u(k)),

for any uz(k) ∈ Uo = Unb+1 \ Uno.
2. There exists a continuous oracle function (7)

such that for any admissible state z(k) and any
admissible inputs u(k) ∈ U ,

|`(k)−O(z(k), u(k))| ≤ ε

From this theorem it follows that under mild con-
ditions on the measured economic cost, an oracle
can be constructed to precisely predict the expected
evolution of the cost for almost every sequence of
control inputs. Besides, it is also proved that as-
suming certain (arbitrarily small) description error,
an oracle can be found for any admissible input.

The procedure to derive the oracle can be ob-
tained using estimation and learning theory meth-
ods. There exists a number of methods capable
of approximating the real function (the so-called
ground truth function) from possibly noisy sam-
pled data, such as support vector machines, neural
networks or direct weight optimization [32]. Re-
cently, other non-parametric methods such as Gaus-
sian processes [33] or kinky inference [16, 34] have
gained a lot of attention, thanks to their capability
to provide estimations of the prediction error.

As the model order n may not be known a pri-
ori, the parameters of the chosen estimator, includ-
ing the memory horizons na and nb, can be calcu-
lated from a database of historical inputs and costs,
namely the training data set. In addition, a differ-
ent collection of data points is used for validation
of the proposed estimator. This cross-validation
methodology allows one to derive the best struc-
ture of the estimator, as well as the best horizons
na and nb, from the real data.

Notice that the requirement for the hori-
zons na, nb to be lager than 2n can be theoretically
addressed by considering that the oracle function
depends on a sequence of at least 2n past inputs
and outputs, where some of its components may
not affect to the output of the oracle.

4. Oracle-based economic predictive control

In this section, the proposed oracle-based predic-
tive controller is presented, and its stability and op-
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timality properties are studied, under the assump-
tion of perfect estimation.

Assuming that an oracle is available, the system
can be described by an state-space prediction model
as follows:

ẑ(j + 1|k) = F̂ (ẑ(j|k), û(j)), (9a)

ˆ̀(j|k) = O(ẑ(j|k), û(j)), (9b)

where the predicted state ẑ(j|k) ∈ Rnz is given by

ẑ(j|k) =
(
ˆ̀(j − 1|k), · · · , ˆ̀(k), · · · ,
`(k + j − na), û(j − 1), · · · ,
û(0), · · · , u(j − nb)

)
, (10)

for j ≥ 1. This state includes measured costs ` and
inputs u if na ≥ j or nb ≥ j respectively, and only
estimated values ˆ̀ or û otherwise.

Thus, the prediction model is

F̂ (ẑ(j|k), û(j)) =
(
O(ẑ(j|k), û(j)), ˆ̀(j − 1|k),

· · · , ˆ̀(1|k), `(k), · · · ,
`(k + j − na + 1), û(j),

· · · , û(j − nb + 1)
)
.

Using this oracle-based prediction model, eco-
nomic predictive controllers will be presented,
based on both terminal equality constraint and re-
laxed terminal inequality constraint designs. The
stability of the proposed controllers will be ana-
lyzed in two steps, as it is customary in the predic-
tive control field. First, nominal stability is stud-
ied, assuming that the predictions (provided by the
oracle) are exact. Next, in the following section,
stability under prediction mismatches is analyzed.

Assumption 5 (Exact oracle). The sequence of
the last nb + 1 inputs applied to the system at every
sample time k, uz(k), is contained in the set Uo de-
fined in Theorem 1 and the oracle exactly forecasts
the cost, i.e. O(z(k), u(k)) = `(k).

From Theorem 1, we have that in practice this
hypothesis could hold true for any sequence of in-
puts with probability practically equal to 1, since
the set of non-observable sequence of inputs is of
measure zero.

In order to derive the economic MPC based on
the oracle, the economically optimal equilibrium
point (also based on the oracle) must be calculated

first. To this end, the following optimization prob-
lem, similar to (2), has to be solved:

(us, `s) = arg min
u∈U,`

` (11a)

s.t. ` = O(z, u) (11b)

z = (`, . . . , `, u, . . . , u). (11c)

In the following theorem, it is proven that the op-
timal equilibrium point derived from this optimiza-
tion problem is equivalent to the solution of (2).

Theorem 2. If Assumptions 1-5 hold, then the
optimal equilibrium point derived from the solution
of (11), based on the oracle, is equal to the optimal
equilibrium point of the plant, derived from (2).

Proof. Since the state z(k) contains the last 2n
measures of the measured input and output, from
statement 2 of Theorem 6 and Corollary 2 (both
presented in the appendix), there exists a continu-
ous bijective function Φz(·) such that

(x(k − 2n),uz(k)) = Φz(z(k)), (12)

where uz(k) denotes the sequence of past inputs
contained in z(k), such that uz(k) = (u(k −
1), · · · , u(k − 2n)). Let denote Φ(·) the continu-
ous function x(k−2n) = Φ(z(k)), given by the first
n components of the map Φz(·).

Let (x̄s, ūs) be the optimizer of (2), and ¯̀
s its

optimal economic cost function. Let (`s, us) be
the optimizer of (11) and let zs be the optimal
steady state of the oracle-based model given by
(11c). Since (x̄s, ūs) is an equilibrium point of (1),
then defining

z̄s = (¯̀
s, . . . , ¯̀

s, ūs, . . . , ūs),

we have that (z̄s, ūs) is an equilibrium point of (9).
Thus, (¯̀

s, ūs) is a feasible solution of (11), which
means that ¯̀

s ≥ `s.
Since the map Φ(·) is continuous, the condition

z(k) = z(k+1) implies that x(k−2n) = x(k−2n+
1). That is, an equilibrium point of (9) corresponds
to an equilibrium of (1), and vice versa. Indeed, for
a given us, both equilibrium points are related by
the continuous map xs = Φ(zs).

Therefore, the pair (Φ(zs), us) is a feasible solu-
tion of (2), and its optimal cost function is `s, which
leads to `s ≥ ¯̀

s, and consequently, `s = ¯̀
s.

From Assumption 2, we derive that the solution
of (2) is also unique, which means that ūs = us,
and x̄s = Φ(zs) = xs.

6



In what follows, the economic model predictive
controllers based on the proposed oracle are pre-
sented.

4.1. Oracle-based economic MPC with terminal
equality constraint

This formulation is one of the simplest stabilizing
designs of the economic MPC. If the state-space sys-
tem model were available, the control law could be
derived from the optimization problem P eN (x(k)).
In case that the oracle is used as prediction model,
we present a formulation based uniquely in the
available information, whose control law is proven
to be equivalent to the control law derived from the
state-space prediction model.

The proposed oracle-based economic MPC with
terminal equality constraint is derived from the
solution of the following optimization problem
P eO(z(k)):

min
û

VO,e(z(k), û) =

N−1∑
j=0

ˆ̀(j|k) (13a)

s.t. ẑ(0|k) = z(k) (13b)

ẑ(j + 1|k) = F̂ (ẑ(j|k), û(j)), j ∈ INp−1
0 (13c)

ˆ̀(j|k) = O(z(j|k), u(j)) (13d)

û(j) ∈ U (13e)

û(j) = us, ∀j ∈ INp−2
N (13f)

ˆ̀(j|k) = `s, ∀j ∈ INp−1
N , (13g)

where Np = N + max(na, nb) and (`s, us) is the
optimal solution of (11).

Note that the terminal constraint, defined
by (13f) and (13g), requires that both the input
and the cost maintain certain constant value for a
given period of time, defined by the memory hori-
zons of the NARX model. The control law is then
given by

u(k) = κeO(z(k)) = û∗(0; z(k)).

In order to compare the oracle-based controller
and its state-space model counterpart, we include
the following definition.

Definition 2 (Consistent states). For a given tra-
jectory of the system, we say that the state z(k) of
the model (9) is consistent with the state x(k) of
the model (1) if (8) holds, i.e., if

z(k) =
(
`(x(k − 1), u(k − 1)), · · · , `(x(k − na),

u(k − na)), u(k − 1), · · · , u(k − nb)
)
.

In the following theorem, it is stated that the
oracle-based economic MPC is equivalent to the
model-based economic MPC under nominal condi-
tions, and hence it renders the controlled system
asymptotically stable and minimizes the economic
performance.

Theorem 3. Consider that Assumptions 1-4 hold
and assume that the initial state x(0) is such that
P eN (x(0)) is feasible. Then, under Assumption
5 the optimization problem P eO(z(0)) is feasible,
where z(0) is the state of the oracle consistent with
x(0), and the evolution of the system controlled
by the economic control law κeO(z(k)) is equal to
the one resulting from the control law derived from
P eN (x(k)), that is, κeO(z(k)) = κeeco(x(k)).

Proof. First, take into account that in virtue of
Theorem 1 and Assumption 5, if x(k) and z(k) are
consistent, then for a certain sequence of future con-
trol inputs u = (u(0), · · · , u(N − 1)), the predicted
trajectories using the plant model (1) and the oracle
(9) are such that

`(x(j|k), u(j)) = ˆ̀(j|k) = O(z(j|k), u(j)). (14)

Assume that x(k) is such that P eN (x(k)) is feasi-
ble, then there exists a sequence of N inputs ũ that
steers the system to the equilibrium point (xs, us).
From Theorem 2, we have that the optimal solution
of (11), `s, is equal to `(xs, us). From the consis-
tency between the models (14), it is inferred that
ˆ̀(N |k) = `s. Since x(N |k) = xs, applying subse-
quently us, the system remains in the equilibrium
point (xs, us) and then ˆ̀(j|k) = `(xs, us) = `s for

j ∈ INp

N . Therefore, P eO(z(k)) is feasible.
From this, we can infer that P eO(z(0)) is feasible

given that P eN (x(0)) is assumed to be feasible.
In order to prove the equivalence between the

control laws, it is demonstrated that (i) the optimal
solution of P eN (x(k)) is a solution of P eO(z(k)) and
(ii) the opposite.

(i) It was proven that if P eN (x(k)) is feasible,
then the optimal solution of P eN (x(k)), u∗x, is a
feasible solution of P eO(z(k)), and then the costs
are such that VO,e(z(k),u∗x) ≥ V ∗O,e(z(k)). Taking
into account (14), we have that VO,e(z(k),u∗x) =
V ∗N,e(x(k)), and then V ∗N,e(x(k)) ≥ V ∗O,e(z(k)).

(ii) On the other hand, in order to prove the op-
posite, notice that the set of constraints (13f) and
(13g) is equivalent to force that z(Np|k) = zs.

Hence, as the optimal solution of P eO(z(k)), u∗z
leads to z(Np|k) = zs, recalling function Φ(·) de-
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fined in the proof of Theorem 2, we have that

x(N |k) = x(Np−2n|k) = Φ(z(Np|k)) = Φ(zs) = xs,

and therefore u∗z is a suboptimal solu-
tion of P eN (x(k)). From (14), we have
that VN,e(x(k),u∗z) = V ∗O,e(z(k)), so
V ∗O,e(z(k)) = VN,e(x(k),u∗z) ≥ V ∗N,e(x(k)).

Then, it is straightforward that V ∗N,e(x(k)) =
V ∗O,e(z(k)), so the solution is the same for both
problems, i.e. u∗x = u∗z, provided that Assump-
tion 3 holds.

From this theorem we conclude that the proposed
oracle-based economic control law κO,e(z(k)) pro-
vides the same domain of attraction, the same op-
timality properties and the same evolution that the
state-space law κN,e(x(k)). This demonstrates that
an oracle of the economic cost function suffices to
derive economic predictive controllers under nomi-
nal conditions.

4.2. Oracle-based economic MPC without terminal
equality constraint

A stabilizing economic model predictive control
design resorting on terminal equality constraint is
simple and direct, but the resulting controller might
exhibit a small domain of attraction and lack of in-
herent robustness [35]. In this section, stabilizing
oracle-based economic predictive control laws are
derived extending the existing terminal conditions
design summarized in Section 2.1 to the oracle-
based framework. This design is only based on the
input-measured cost available information, and the
stability of the resulting controller is proven.

Taking a stabilizing design based on terminal in-
gredients (cf. TC1 in Section 2.1), the optimization
control problem P tO(z(k)) is formulated as follows,
where a prediction horizon Np larger than the con-
trol horizon Nc can be considered:

min
û

VO,t(z(k), û) =

Np−1∑
j=0

ˆ̀(j|k) + VO,f (ẑ(Np|k)) (15a)

s.t. ẑ(0|k) = z(k) (15b)

ẑ(j + 1|k) = F̂ (ẑ(j|k), û(j)), j ∈ INp−1
0 (15c)

ˆ̀(j|k) = O(z(j|k), û(j)) (15d)

u(j) ∈ U (15e)

ẑ(i+ 1|k) = F̂ (ẑ(i|k), κf (z(i|k))),

i ∈ INp−1
Nc

(15f)

ˆ̀(i|k) = O(z(i|k), κt(z(i|k))) (15g)

κf (z(i|k)) ∈ U (15h)

z(Np|k) ∈ Zf . (15i)

The control law is implicitly obtained applying
the optimal sequence of control inputs in a receding
horizon manner u(k) = κtO(z(k)) = û∗(0|k).

In order to derive asymptotic stability of the eco-
nomic MPC, the following assumption is made [22],
in which the terminal cost function VO,f and the
terminal set Zf must satisfy the following condi-
tions:

Assumption 6. VO,f is continuous at z = zs and
there exists a terminal control law u = κf (z) such

that for all z ∈ Zf , κf (z) ∈ U , z+ = F̂ (z, κf (z)) ∈
Zf and

VO,f (z+)− VO,f (z) ≤ −O(z, κf (z)) + `(xs, us).

If the linearization of the oracle-based autore-
gressive model (7) at the equilibrium point given
by (11) is stabilizable, then the terminal ingredi-
ents can be calculated from the linearization, as
proposed in [22], yielding a linear terminal control
law κf (z) = K(z − zs) + us, a quadratic terminal
cost VO,f (z) = 1

2z
TQfz + qTf z, and a terminal con-

straint Zf = {z̄ : (̄z − zs)TP (̄z − zs) ≤ α}.
We are now in position to study the stability of

the proposed control law.

Theorem 4. Consider that Assumptions 1-6 hold.
If the initial state z(0) is such that P tO(z(0)) is fea-
sible, then the equilibrium point given by (11) is
asymptotically stable for the system (1) controlled
by the economic control law κtO(z(k)) and its tra-
jectory satisfies the constraints.

Proof. First, we show that there exists a map that
relates the real state of the system x(k) and the
state of the oracle-based model z(k). From As-
sumption 1 we have that the model function x 7→
f(x, u) defines a diffeomorphism in x for a given u.
Therefore, there exists a continuous and bijective
map F such that

(x(k),uz(k)) = F(x(k − 2n),uz(k)). (16)

Taking into account that z(k) contains the se-
quence uz(k) and the maps (12) and (16), we can
state that G = F ◦Φz is a continuous and bijective
map such that

(x(k),uz(k)) = G(z(k)). (17)
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Based on this map, it is shown that the sys-
tem (7) is dissipative with respect to the output
of the oracle. Consider the continuous function
x(k) = Gx(z(k)) given by the first n components
of map G(·) introduced in (17), and define the stor-
age function λz(z) = λ(Gx(z)).

Then, from Assumptions 2 and 5 and Theorem 2,
we have that

λz(z(k + 1))− λz(z(k)) = λ(x(k + 1))− λ(x(k))

≤ `(x(k), u(k))− `(xs, us)
+ ρ(‖x(k)− xs‖) + ρ(‖u(k)− us‖)

=O(z(k), u(k))− `s
+ ρ(‖x(k)− xs‖) + ρ(‖u(k)− us‖).

Stability of the proposed controller can be stated
using the rotated stage cost function and terminal
cost function, as proposed in [22]:

Lr(z, u) = O(z, u) + λz(z)− λz(F̂ (z, u))− `s,
VO,fr(z) = VO,f (z) + λz(z)− VO,f (zs)− λz(zs).

Notice that the rotated stage cost Lr satisfies the
following condition:

Lr(z, u) ≥ ρ(‖x− xs‖) + ρ(‖u− us‖),

where x = Gx(z).
Now, we define the optimization problem

PO,tr(z(k)) based on the rotated ingredients as:

min
û

VO,tr(z(k), û) =

Np−1∑
j=0

Lr(j|k) + VO,fr(ẑ(Np|k)) (18a)

s.t. (15b)− (15i) (18b)

Lr(j|k) = ˆ̀(j|k) + λz(ẑ(j|k))

−λz(ẑ(j + 1|k))− `s. (18c)

Following [22], it can be proven that

VO,tr(z(k), û) =

Np−1∑
j=0

Lr(j|k) + VO,fr(ẑ(Np|k))

= VO,t(z(k), û) + λz(z(k))−Np`s
−VO,f (zs)− λz(zs),

and then the optimal solution of PO,tr(z(k)) is equal
to the optimal solution of PO,t(z(k)). Therefore,
the receding horizon control laws derived from these
two optimization problems are identical.

Next, asymptotic stability of the proposed eco-
nomic MPC is addressed. First,it can be shown
that the optimal cost function V ∗O,tr(z) is such that

V ∗O,tr(z(k)) ≥ Lr(z(k), û∗(0|k))

≥ ρ(‖x(k)− xs‖) + ρ(‖u(k)− us‖),
(19)

for all feasible z(k).
In order to prove asymptotic stability, we intro-

duce the following Lyapunov function candidate:

W (z(k)) =

k∑
j=k−2n

V ∗O,tr(z(j)), (20)

and next we will prove that it satisfies the sufficient
conditions to derive asymptotic stability of the con-
trolled system.

From (19), we have that

W (z(k)) =

k∑
j=k−2n

V ∗O,tr(z(j))

≥
k∑

j=k−2n

ρ(‖x(j)− xs‖) + ρ(‖u(j)− us‖).

(21)

Denoting the sequences x2n(k − 2n) =
(x(k), · · · , x(k − 2n)), and u2n(k − 2n) =
(u(k), · · · , u(k− 2n)) and xs2n and us2n their steady
values counterparts at (xs, us), we can see that the
right hand side of (21) is a K-function of the se-
quence of x2n(k−2n)−xs2n and u2n(k−2n)−us2n.
From similar arguments to the derivation of map
F previously presented in (16), there exists a
bijective map F2n such that

(x2n(k − 2n),u2n(k − 2n)) =

F2n(x(k − 2n),u2n(k − 2n)). (22)

Taking into account (12), and denotingH2n = F2n◦
Φz, we have that H2n is a bijective map such that

(x2n(k − 2n),u2n(k − 2n)) = H2n(z(k)), (23)

and then (x2n(k − 2n),u2n(k − 2n)) = (xs2n,u
s
2n)

if and only if z(k) = zs. Therefore, there exists a
K-function β1 such that

W (z(k)) ≥
k∑

j=k−2n

ρ(‖x(j)− xs‖) + ρ(‖u(j)− us‖)

≥β1(‖z(k)− zs‖). (24)
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On the other hand, we have that V ∗O,tr(z) ≤
VO,fr(z) for all z − zs ∈ Zf (see Proposition 2.18
in [36]), which means that the optimal cost function
V ∗O,tr(z) is continuous at zs and locally bounded for
all z such that z − zs ∈ Zf . Consequently W (z)
is also continuos at zs and locally bounded and in
virtue of Proposition B.25 in [37], there exists a K-
function β2(·) such that for all z − zs ∈ Zf

W (z) ≤ β2(‖z − zs‖).

Finally, following [22] we have that

V ∗O,tr(z(k + 1))− V ∗O,tr(z(k)) ≤ −Lr(z(k), û∗(0|k))

≤ −ρ(‖x(k)− xs‖)− ρ(‖u(k)− xs‖).
(25)

Then, we can state that

W (z(k + 1))−W (z(k)) ≤
k∑

j=k−2n

−ρ(‖x(j)− xs‖)− ρ(‖u(j)− xs‖).

(26)

From (24), we get the last sufficient condition in
order to derive asymptotic stability

W (z(k + 1))−W (z(k)) ≤ −β1(‖z(k)− zs‖). (27)

Consequently, the system controlled by the con-
trol law derived from (13) is stable, and it asymp-
totically steers the state z(k) to the equilibrium
point zs. From (12), this implies that the state
of system, x(k), is equivalently steered to the eco-
nomically optimal steady state xs.

Remark 2. (Economic optimality) From equa-
tion (25) we can derive that

V ∗O,t(z(k+1))−V ∗O,t(z(k)) ≤ −`(z(k), κtO(z(k)))−`s.
(28)

and therefore, equation (6) also holds for the pro-
posed controller.

Based on the previous stability proof of the
oracle-based economic MPC, the stabilizing designs
without terminal constraint proposed by [19] and
[25] (cf. TC2 and TC3 in Section 2.1) can also be
extended to the oracle-based case, provided that
some additional technical conditions are fulfilled.
In this case, the control law is derived from the fol-
lowing optimization problem.

min
û

VO,tc(z(k), û) =

N−1∑
j=0

ˆ̀(j|k) + ηT ẑ(N |k)

(29a)

s.t. ẑ(0|k) = z(k) (29b)

ẑ(j + 1|k) = F̂ (ẑ(j|k), û(j)), j ∈ IN−10 (29c)

ˆ̀(j|k) = O(z(j|k), û(j)) (29d)

u(j) ∈ U . (29e)

Thus, taking a sufficiently large prediction hori-
zon N and an appropriate Lagrange multiplier η,
the resulting control law asymptotically stabilizes
the system [19]. Taking η = 0, then only practical
stability can be achieved [25].

5. Practical viability of the oracle-based eco-
nomic MPC

In the previous section, asymptotic stability of
the oracle-based economic MPC was proven un-
der the nominal conditions stated in Assumption 5.
The exact prediction considered in this hypothesis
may hold if every applied sequence of inputs ren-
dered the system observable, and if the available
oracle NARX model were exact.

In this section we study the case in which the
available oracle is inexact, providing approximate
predictions with a bounded estimation error. We
consider that the two previous assumptions may
not hold, which is likely in practice, either due to
non-observable input sequences or because of ora-
cles with estimation errors.

In practice, the oracle is determined from input-
output historical data, generated with an appropri-
ate sequence of inputs, for which a bound on the
estimation error signal

|w(k)| = |`(x(k), u(k))−O(z(k), u(k))| (30)

may be estimated. There exists machine learning
methods that provide either guaranteed bounds,
such as kinky inference [34, 38], or probabilistic
bounds, such as Gaussian processes [33]. We as-
sume that we are in the (worst-case) scenario that
the obtained bound is only valid for every sequence
of inputs that makes the system observable.

In the following proposition, it is proven that
an inexact oracle obtained from input-output data,
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possibly derived using observable sequences of in-
puts, with a bounded estimation error, also pro-
vides estimations with a bounded error for any se-
quence of inputs, even if they are not observable.

Proposition 1. Consider that Assumptions 1 and
4 hold and that the oracle function O(·, ·) is a con-
tinuous function such that the estimation error (30)
is bounded by µ̃ for every sequence of inputs for
which the system is observable. Then, for every ad-
missible sequence of inputs, the estimation error is
bounded by µ > µ̃.

Proof. From Theorem 6, derived in the appendix
from [30, Theorem 6], we have that for any (arbi-
trarily small) constant ε > 0, the set of sequence of
inputs for which the system is not observable, Uno,
is of measure ε, i.e. arbitrarily small. Let assume
that the state of the system is x(k − 2n) and a se-
quence of 2n inputs u = (u(k−1), · · · , u(k−2n)) ∈
Uno is applied, evolving the system with a sequence
of outputs l = (`(k − 1), · · · , `(k − 2n)).

Since u ∈ Uno, there exists a sequence ũ 6∈ Uno
such that ‖ũ − u‖ ≤ θu(ε), being θu a K-function.
Let l̃, x̃(k) be the corresponding sequence of out-
puts and the state derived from the application of ũ
at x(k−2n). From the smoothness of the transition
map f and of the output map `, we can derive that
there exists a couple of K-functions θy and θx such

that ‖x̃(k)− x(k)‖ ≤ θx(ε) and ‖̃l− l‖ ≤ θy(ε). Let
define z(k) as the regressor state that is composed
of l and u, and z̃(k) as the one composed of l̃ and
ũ. Then, the estimation error can be bounded as
follows:

|w(k)| = |`(x(k), u(k))−O(z(k), u(k))|
≤ |`(x(k), u(k))− `(x̃(k), u(k))|

+|`(x̃(k), u(k))−O(z̃(k), u(k))|
+|O(z̃(k), u(k))−O(z(k), u(k))|.

From the smoothness of `(x, u), we have that
this function is locally bounded. Then, from [37,
Proposition B.25], we have that for all x(k) ∈ {x :
‖x− x̃(k)‖ ≤ θx(ε)} there exists a K-function θ`(·)
such that

|`(x(k), u(k))− `(x̃(k), u(k))| ≤ θ`(|x(k)− x̃(k)|)
≤ θ`(θx(ε)).

On the other hand, since ũ is a sequence of in-
puts that make the system observable, we have that
|`(x̃(k), u(k))−O(z̃(k), u(k))| ≤ µ̃.

By construction, ‖z(k)− z̃(k)‖ ≤ θz(ε), where θz
is a K-function.In addition, since the oracle func-
tion O(z, u) is assumed to be continuous in its ar-
guments and the domains of z and u are compact,
the oracle function is uniformly continuous in its
domain. Therefore, we can state that there exists
a K-function θO such that

O(z̃(k), u(k))−O(z(k), u(k))| ≤ θO(z(k)− z̃(k))

≤ θO(θz(ε)).

Recapping, we have demonstrated that

|w(k)| = |`(x(k), u(k))−O(z(k), u(k))| ≤ µ̃+ Θ(ε),

for a K-function Θ(·). Since ε can be taken arbi-
trarily small, for any µ > µ̃, there exists a suitable
ε > 0 for which the bound on the estimation error
holds.

Remark 3. Notice that the hypothesis that the or-
acle function is continuous is a mild assumption,
since the form of the oracle function is chosen by
the user, so it can be designed to satisfy this con-
dition. For instance, oracles derived from Lipschitz
interpolation methods, neural networks or Gaussian
processes can be chosen to guarantee the satisfac-
tion of this assumption.

Next, we will prove the practical viability of
the proposed controllers, demonstrating that the
closed-loop system is input-to-state stable (ISS)
w.r.t. the model mismatch signal w(k).

It is well known that a nominally stabilizing MPC
may exhibit zero-robustness due to the the discon-
tinuity of the optimal solution [35]. In [39, Theo-
rem 4], it is proven that if the ingredients of the
MPC are uniformly continuous and the constraints
on the state in the optimization problem are not
active, then the resulting control law is ISS in a
region where the constraints on the states are not
active.

Although the system to be controlled does not
have constraints on the states, the optimization
problems of the proposed oracle-based economic
predictive controllers (P eO and P tO) have constraints
on the states, arising from the terminal constraint.
.

In the case of P eO, the terminal equality con-
straint is instrumental for the stability and hence, it
cannot be removed without compromising the sta-
bility (although, as proven in [25], practical stabil-
ity can be achieved for a sufficiently large N).
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Stability of predictive controllers with terminal
cost but without terminal constraint has been ana-
lyzed in [40]. In that paper, it was proven that there
exists a level set of the optimal cost function where
the MPC without terminal constraint is stabilizing.
This level set can be enlarged if the prediction hori-
zon is increased, or if the terminal cost function is
weighted. This result was extended in [41] to the
tracking case, and a prediction horizon larger than
a control horizon. As analysed in [16], larger pre-
diction horizons increase the domain of attraction
while barely increasing computational complexity,
in contrast to choosing larger control horizons.

Taking these arguments into account, we can de-
rive robust stability of the proposed oracle-based
economic MPC. To this aim, we first need to
proof the following lemma, which is an extension
of [40, 41], tailored to this case.

Lemma 1. Consider that Assumptions 1-4 and 6
hold and let V ∗O,tr(·) be the optimal cost of the op-
timization problem PO,tr(·) given by (18). Then,
there exists certain positive constants d and α such
that for any z satisfying

V ∗O,tr(z) ≤ Npd+ α,

the terminal constraint (15i) in PO,tr(z) is not ac-
tive.

Proof. Let define the compact region Ωf = {z :
VO,fr(z) ≤ α} and let α be a positive constant such
that Ωf is contained in the interior of Zf . Notice
that this constant exists since the constraints are
not active at the equilibrium point, z = zs.

Then, for all z ∈ Ωf we have that

VO,fr(F̂ (z, κf (z)))− VO,fr(z) ≤ −Lr(z, κf (z)).
(31)

From this inequality we have that for any M ≥ 1

M−1∑
j=0

Lr(z(j), κf (z(j))) + VO,fr(z(M)) ≤ VO,fr(z),

(32)
where z(j) is the trajectory of the system beginning
at z, and controlled by the terminal control law
u = κf (z). Besides, from [36, Proposition 2.18] we
can infer that V ∗O,tr(z) ≤ VO,fr(z), for all z ∈ Ωf .

Define the positive constant d > 0 such that
Lr(z, u) > d for all z 6∈ Ωf , and for all u ∈ U .
This constant exists since Lr(·, ·) is a positive defi-
nite function of (z − zs), and Ωf is a neighborhood
of zs.

Let u∗ and z∗ be the optimal sequences of inputs
and states of PO,tr(z). We will prove that if the
terminal state z∗(Np) is not contained in Ωf , then
the whole predicted trajectory lies out of Ωf .

This will be proved by contradiction. Assume
that z∗(Np) 6∈ Ωf , but that there exists certain in-
stant i in which z∗(i) ∈ Ωf .

Define the trajectories ū and z̄ as follows: for
j ∈ Ii−10 , ū(j) = u∗(j) and z̄(j+1) = F̂ (z̄(j), u∗(j)),
with z(0) = z (which satisfies that z̄(j) = z∗(j));
and for j ≥ i, ū(j) = κf (z̄(j)) and z̄(j + 1) =

F̂ (z̄(j), κf (z̄(j))).

Define V̄O,tr(z) as the cost associated to the input
sequence ū. Then, since z∗(i) ∈ Ωf and taking into
account inequality (32), we have that

V̄O,tr(z) =

i−1∑
j=0

Lr(z
∗(j), u∗(j)))

+

Np∑
j=i

Lr(z̄(j), κf (z̄(j)))

+VO,fr(z̄(Np))

≤
i−1∑
j=0

Lr(z
∗(j), u∗(j))) + VO,fr(z

∗(i)).

On the other hand, taking into account that
z∗(Np) 6∈ Ωf

V ∗O,tr(z) =

i−1∑
j=0

Lr(z
∗(j), u∗(j)))

+

Np∑
j=i

Lr(z
∗(j), u∗(j))

+VO,fr(z
∗(Np))

>

i−1∑
j=0

Lr(z
∗(j), u∗(j))) + α.

Moreover, by optimality we have that V̄O,tr(z) ≥
V ∗O,tr(z), and then

i−1∑
j=0

Lr(z
∗(j), u∗(j))) + VO,fr(z

∗(i)) ≥ V̄O,tr(z)

≥ V ∗O,tr(z) >
i−1∑
j=0

Lr(z
∗(j), u∗(j))) + α.

From this, we can state that VO,fr(z
∗(i)) > α,

and hence z∗(i) 6∈ Ωf , which is a contradiction.
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Therefore, we have proved that if z∗(Np) 6∈ Ωf ,

then z∗(j) 6∈ Ωf for all j ∈ INp

0 , which implies that
Lr(z

∗(j), u∗(j)) > d. Then, the optimal cost func-
tion is such that

V ∗O,tr(z) > Npd+ α.

Consequently, it is proven that for any z such that
V ∗O,tr(z) ≤ Npd + α, then z∗(Np) ∈ Ωf ⊂ Zf , and
therefore the terminal constraint is satisfied.

At this point, we have demonstrated sufficient
conditions to derive the robust stability of the pro-
posed oracle-based predictive controller in pres-
ence of inexact oracles: (i) the control law ensures
asymptotic stability in nominal conditions, i.e. as-
suming that the oracle provides exact predictions;
(ii) the oracle provides predictions with bounded
errors for any input applied on the system and (iii)
the terminal constraint is not active which, as it
will be proven next, ensures uniform continuity of
the optimal cost function. This result is rigorously
stated in the following theorem.

Theorem 5. Consider that Assumptions 1-4 and
6 hold, then the system (1) controlled by the con-
trol law derived from PO,t(z) is input-to-state stable
w.r.t. the model mismatch signal w in a neighbor-
hood of the equilibrium point zs, Ωr, for a suffi-
ciently small model mismatch. Besides, the region
Ωr is enlarged if the prediction horizon increases,
i.e.,

Ωr(Np) ⊆ Ωr(Np + 1). (33)

Proof. From Lemma 1, we have that there exists
some positive constants d and α such that for all z
satisfying

V ∗O,tr(z) ≤ Npd+ α, (34)

the terminal constraint in PO,t(z) is not active.
Define Ωr(Np) = {z : W (z) ≤ Npd+α}, which is

a level set for the Lyapunov function, and hence it
is a positive invariant set of the controlled system.
Besides, since W (z) ≥ β1(|z − zs|), Ωr is compact.
From this definition we have that for all z(k) ∈ Ωr,
V ∗O,tr(z(k)) ≤ W (z(k)) ≤ Npd + α, and thus the
terminal constraint is not active.

Since Ωr is compact and u is bounded, the value
of O(z, u) is bounded for all (z, u) ∈ Ωr×U . There-
fore, as the function O(z, u) is continuous, it is also
uniformly continuous in Ωr×U , and then the model
function (7) is uniformly continuous. Hence, in
virtue of [39, Theorem 4], the system controlled by
κO,t(z) is ISS with respect to the model mismatch

signal w in Ωr, if the model mismatch is sufficiently
small.

Finally, from the definition of Ωr(Np) we have
that Ωr(Np) ⊆ Ωr(Np+ 1) since for any feasible z,
the optimal cost function decreases with Np.

Remark 4. In the previous section it was proven
that for a sufficiently large prediction horizon,
the control law without terminal constraint derived
from (29) is nominally stabilizing. Since this opti-
mization problem does not have constraints on the
states, following the arguments of Theorem 5, the
closed-loop system is ISS w.r.t. to the model mis-
match.

Remark 5 (Online learning). Input-to-state stabil-
ity of the oracle-based EMPC can be extended to the
case that the oracle is updated online with fresh data
collected during the closed-loop operation of the sys-
tem. Notice that occasionally, the update of the data
set might not lead to an enhancement of the estima-
tion error. Under the assumption that the effect of
the update policy on the predictions is bounded by
a sufficiently small value, the possible increment on
the predicted cost function is also bounded and suf-
ficiently small, and then, the optimal cost function
serves also as an ISS-Lyapunov function.
This condition can be relaxed if the update policy
filters those data points collected that worsen the
expected cost function, as proposed in [42].

6. Case study

This section presents a simulated case study in
which the system taken into consideration is the
continuously stirred tank reactor (CSTR) intro-
duced in [24].

6.1. The reactor

Two consecutive reactions take place: A→ B at
a rate k1 = 1 min−1, and B → C at a rate k2 =
0.05 min−1. The molar concentrations of A and B
are denoted cA and cB , and measured in kmol m−3.
They evolve according to the following set of ordi-
nary differential equations:

dcA(t)

dt
=

u(t)

V
(cA0 − cA(t))− k1cA(t), (35a)

dcB(t)

dt
=

u(t)

V
(−cA(t)) + k1cA(t)− k2cB(t),

(35b)
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Figure 1: Set of equilibrium costs.

where u (m3 min−1) is the manipulable input: the
feed flow rate (note that the same flow exits the
tank, so the volume remains constant, V = 1 m3),
and cA0 = 1 kmol m−3 is concentration of A in the
input flow. The system is discretized with sampling
time τs = 0.25 min.

The economic cost function accounts for the use
of reactant and the benefits of the product:

`(x(k), u(k)) = u(k)(cA0 − αcB(k)), (36)

where the weighting term is set to α = 4 (in
the appropriate dimensions). Existing noise in the
measurements follows a normal distribution of zero
mean and standard deviation of 2% of the measure-
ment. The system is subject to input constraints,
such that 0 < u ≤ 2 m3 min−1. The set of equi-
librium points is represented in Figure 1. Its mini-
mum is obtained for us = 1.043 m3 min−1, resulting
in `s = −0.957 $/min.

6.2. Ideal estimation

To replicate the nominal conditions studied in the
paper, we seek to obtain an oracle that provides an
exact estimation, in order to compare the control
actions that the standard EMPC and the oracle-
based EMPC yield, and to illustrate that they are
the same, as proven in Theorem 3.

To this end, consistent states (as introduced in
Definition 2) must be obtained, and applied to the
mentioned controllers. To do so we proceed as fol-
lows. An initial state is chosen randomly, follow-
ing an uniform distribution, within the workspace
(both concentrations among 0 and 1 kmol m−3).
A sequence of control actions of length Np =
max(na, nb), with na = 3, nb = 2 is chosen, each
element drawn randomly from U using an uniform
distribution. This sequence is applied to the real

Figure 2: One experiment of the procedure to compare
standard and oracle-based economic predictive controllers.
Blue values are initial conditions obtained randomly, which
yield the consistent states x0 (in yellow, fed to the standard
EMPC) and z0 (in green, fed to the oracle-based EMPC).
Building an exact oracle and applying P e

N (x0) and P e
O(z0)

yield the same control action.

system, which yields the initial state x0, consistent
with the initial regressor z0, given the measured
costs. This setup is represented in Figure 2.

Next, the standard EMPC with terminal equality
constraint given by the optimization problem (4) is
applied from x0, with prediction horizon N = 5 and
run for a single time step. Every time the solver in
the optimization problem (MATLAB®’s fmincon

function) obtains the predicted trajectory and cost
for a candidate sequence u, the resulting regressors
are stored in a data set D.

Once a data set is obtained, the kinky infer-
ence (KI) class of learning rules is applied to build
the oracle. Kinky inference [34] is a class of non-
parametric learning methods based on Lipschitz in-
terpolation, which have proven able to conform a
valid model for nonlinear learning-based predictive
controllers [43]. Further details of the functioning
of KI can be found in [16]. Given its non-parametric
nature, it is guaranteed that in the absence of noise
the prediction over a given query q already con-
tained in the data set is its corresponding real out-
put f(q), which is key for the exact estimation
sought in this paper. Besides, there is no tuning
process, apart from identifying the Lipschitz con-
stant of the ground truth function, which is over-
weighted to L = 100 in order to ensure sample con-
sistency.
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Figure 3: Training data set, obtained with a chirp input
signal.

Once the oracle (7) is built, the oracle-based
MPC problem (13) is applied from z0, again
with N = 5 and for a single simulation step. It
is important to remark that despite the way the
data set was obtained, the only information given
to the oracle (and to the optimization problem) is
measurements of past costs and input signals, as we
assumed in this paper. Hence, note that neither the
states nor the control law of the standard EMPC
have been accessible to the oracle, as represented in
Figure 2.

This setup is repeated a hundred times, with dif-
ferent initial random states and input sequences.
The resulting optimal control actions are the same
in all cases, as it was stated in Theorem 3,
κeO(z(k)) = κeeco(x(k)) for all k, proving the state-
ments of this paper.

6.3. Closed-loop example

The previous example illustrates that under per-
fect estimation, the control decision of the pro-
posed oracle-based EMPC is the same as the one
that would be obtained with a standard EMPC.
However, the conditions to obtain the data set are
artificial and not practical. Next, we practically
demonstrate that an oracle derived from realistic
input-output data sets can be obtained, and that
the proposed oracle-based economic MPC stabilizes
the real plant in presence of estimation errors.

To this end, a chirp signal is designed with initial
and final frequencies of 1× 10−6 and 0.3 min−1, re-
spectively; and amplitude and center of 1 m3 min−1,
of 40× 103 samples of length. This signal is applied
as control input to the plant, yielding the data set
of costs-inputs represented in Figure 3. The regres-
sion state is built with na = 3, nb = 2.

A kinky inference predictor is built with these
data. In order to asses its performance, another set
of experiments is carried out, applying a pseudoran-
dom signal to the plant that consists of a sequence
of steps of value 0 ≤ u ≤ 2 (m3 min−1) and length
among 30 s and 5 min. The validation test repre-
sented in Figure 4 shows the performance and the
prediction error.

Then, the oracle-based MPC (13) is applied, from
one hundred initial points consisting of the regres-
sor obtained applying a random input sequence to
the plant on a random state, and measuring costs.
The results are shown in Figure 5. Besides, in or-
der to compare the performance to the ideal case,
the standard EMPC (4) is applied to the same
100 initial states. Note that since the estimation
is not perfect, the response differ, although the
closed-loop performance is very similar. Such per-
formance, represented in Figure 5b, is assessed by
the index:

Φ =

tsim∑
i=1

`(i). (37)

6.4. Online learning

Using the same setup as in the previous case,
the system is disturbed with an impulse, period-
ically every 10 min, returning to the same initial
state. At that same time step, the data set D is
updated, including the set of regressors and costs
measured during the transient. The kinky infer-
ence technique employed to learn the oracle can be
updated recursively without a cumbersome tuning.
The recalculation of the Lipschitz constant can be
done recursively in O(nD) [44], being nD = 40 the
number of new data points.

The performance index (37) is computed for each
one of the iterations, that is, during the interval of
10 min after the impulse when the system is regu-
lated to the optimal equilibrium point rejecting its
effect. The value of this index for every iteration
is shown in Figure 6. Note that, in general, the
inclusion of past measurements in an online learn-
ing fashion enhances the performance, yielding bet-
ter closed-loop responses, closer to the ideal state-
feedback ones.

7. Conclusion

The objective of this paper was to prove that an
economic predictive controller can be designed for
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Figure 4: Validation of the predictor

a system whose model is unknown, under the as-
sumption that only the economic cost of the plant is
observed. This set-up can be encountered in many
situations in which the client is not willing to pro-
vide further details of the intern operation of his
plant, or when the system is too complex to be
modeled.

The evolution of the economic cost is predicted
using an oracle, i.e., a data-based prediction model
of the cost that is learnt from a set of historical
input-cost measurements of past trajectories. The
structure of the oracle is a NARX model, and the
prediction is done with a chosen machine learning
technique.

First, it is demonstrated that under mild assump-
tions on the economic cost function, an oracle can
be obtained for generic nonlinear plants. Then, it is
proven that in nominal conditions, an oracle-based
economic MPC with terminal equality constraint
provides the same control law as a state-space pre-
diction model. Besides, stabilizing design of oracle-
based economic MPC using terminal ingredients is
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(a) Closed-loop
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(b) Performance index

Figure 5: Closed-loop performance of the oracle-based
EMPC (blue solid lines) and the standard ideal state-
feedback EMPC (orange dashed lines), for 100 initial random
states.

presented. Finally, it has been formally proven that
the resulting control law can stabilize the plant in
a real setting, where the oracle may exhibit estima-
tion error.

These results demonstrate that under mild as-
sumptions on the model of the plant and on the eco-
nomic cost function, an oracle of the economic cost
suffices to design economic predictive controllers
with the same good properties of the one based on
state-space.

These properties have been demonstrated in an
realistic illustrative case study where a CSTR is reg-
ulated with an economic predictive control based
on first principle model and on an appropriate ora-
cle derived using kinky inference from input-output
data of the plant.
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regulation between disturbing the system, including past
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Appendix A. Existence of a NARX model

Consider a discrete-time system described by

x(k + 1) = f(x(k), u(k)) (A.1)

y(k) = h(x(k)), (A.2)

where x ∈ X ⊂ Rn, u ∈ U ⊂ Rm and y ∈ Y ⊂ Rp,
being X , U and Y compact sets. The functions
f(·, ·) and h(·) that define the model are consid-
ered to be unknown, and the state not measurable.
The only measures available for this system are the
input u(k) and the output y(k).

In this section we summarize the results pre-
sented by Levin and Narendra 3 in [30], on the exis-
tence of an input-output description of the system
by means of a nonlinear autoregresive with exoge-
nous signal (NARX) model, of the form

y(k + 1) = F(yM (k),uM (k)), (A.3)

where

yM (k) = (y(k), y(k − 1), · · · , y(k −M)) ⊂ YM+1

(A.4)

uM (k) = (u(k), u(k − 1), · · · , u(k −M)) ⊂ UM+1.
(A.5)

3In order to present the Levin and Narendra’s results in
a form closer to the notation used in this paper, we present
them taking the sequence of inputs and outputs as a collec-
tion of past measurements, contrary to the original paper
where these were defined as sequence of future values.

The existence of the NARX model is closely re-
lated with the notion of global observability of the
system. Levin and Narendra define the observabil-
ity map as4

yM (k) = HM (x(k −M),uM (k)) (A.6)

Then, a system is said to be observable if for any
two distinct states x1 and x2, there exists an in-
put sequence uM such that the corresponding out-
put sequences are distinct, i.e. HM (x1,uM ) 6=
HM (x2,uM ). This can be read as the map
HM (x,uM ) being injective in x.

If this property holds for any input sequence uM ,
then the system is said to be strongly observable,
and if it holds for almost every input sequence uM ,
then the system is called generically observable. In
this case, the set of input sequences for which this
property does not hold Uno is of measure zero.

Assumption 7. The system given by (A.1) and
(A.2) satisfies the following conditions:

1. The model functions f and h are smooth.

2. The system (A.1) is state invertible, i.e. for
a given u, f(x, u) defines a diffeomorphism on
x.

3. The function h is a Morse function, i.e. its
critical points are non-degenerate (see Defini-
tion 1 on page 5).

The second condition is naturally met by
continuous-time sampled systems controlled by a
discrete-time measurable control law function and
a zero-order holder.

Under this assumption, Levin and Narendra de-
rived Theorem 6 in [30], on the existence of an
input-output model. This Theorem is rewritten
here as follows:

Theorem 6. Let a system be defined by (A.1) and
(A.2) satisfying Assumption 7. Then, for M ≥ 2n
and for any ε > 0, there exists a set of sequences
of inputs UεM ⊆ UM+1 of measure µ(UεM ) < ε, such
that

1. The system defined by (A.1) and (A.2) is ob-
servable for any sequence uM 6∈ UεM .

4Formally, the sequence yM (k) depends on uM−1(k −
1), but this is extended by Levin and Narendra w.l.o.g. to
uM (k), for the sake of simplicity of the presented results.
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2. There exists a continuous and bijective map Φ
such that for all x(k −M) ∈ X and uM (k) ∈
UM+1 \ UεM we have

(x(k −M),uM (k)) = Φ(yM (k),uM (k)).
(A.7)

3. There exists a continuous function F(·, ·) such
that for all input sequences uM (k) ∈ UM+1 \
UεM we have

y(k + 1) = F(yM (k),uM (k)). (A.8)

4. There exists a continuous function F̃ such that
for all input sequences uM (k) ∈ UM+1 we
have

‖F(yM (k),uM (k))− F̃(yM (k),uM (k))‖ < ε.

Proof. First of all, notice that from [30, Theo-
rems 4], it is derived that the generic observabil-
ity property holds for almost all systems satisfying
Assumption 7.

The first statement is proven in the first line of
the proof of [30, Theorem 6]. The existence of the
map Φ in the second statement is demonstrated
in [30, Theorem 5]. The existence of F in the third
statement corresponds to statement 1 of [30, Theo-
rem 6]. The last statement is derived from the proof
of the second part of [30, Theorem 6], for the case in
which the continuous function F̃ is given by a mul-
tilayer feedforward neural network with a sigmoidal
function as activation function of each neuron.

The following corollary proves that there exists
an input-output system such that its estimation er-
ror w.r.t. the real output signal is arbitrarily small
for any sequence of inputs, irrespective if they are
observable or not.

Corollary 1. Under the assumptions of Theorem
6, there exists a continuous function F̃ such that
for all input sequences uM (k) ∈ UM+1,

‖y(k + 1)− F̃(yM (k),uM (k))‖ < Θ(ε),

for a K-function Θ(·).

Proof. This can be proven as a consequence of
Proposition 1 (on page 11), taking F(YM , UM ) as
a continuous oracle function which provides a null
estimation error (i.e. µ = 0). Therefore, from this
Proposition we infer that

|y(k + 1)−F(yM (k),uM (k)| ≤ Θ(ε).

Last, the following corollary extends the formula-
tion of Theorem 6 to feed-through systems, as they
are considered in this paper.

Corollary 2. Assume that the output of the system
y(k) depends explicitly on u(k), i.e.

y(k) = h(x(k), u(k)), (A.9)

such that h is Morse in its first argument, i.e., for
any critic point (xa, ua) of h its Hessian in x is
nonsingular. Then, Theorem 6 holds considering
in the third claim the following NARX model:

y(k + 1) = F(yM (k),uM+1(k + 1)). (A.10)

Proof. Notice that in this case, the considered ob-
servability map is valid, making most of the results
immediate. In the proof of Lemma 1 in [30], equa-
tion (30) should be modified accordingly, but the
subsequent equation (31) holds true in virtue of the
chain rule, and therefore, the proof of the lemma
follows. The NARX model is derived taking into
account that y(k + 1) can be written as a continu-
ous function of the state x(k−M) and the sequence
uM+1(k + 1).
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