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Abstract
Device and semi-device-independent private quantum randomness generators are cru-
cial for applications requiring private randomness. However, they are vulnerable to
detection inefficiency attacks and this limits severely their usage for practical pur-
poses. Here, we present a method for protecting semi-device-independent private
quantum randomness generators in prepare-and-measure scenarios against detection
inefficiency attacks. The key idea is the introduction of a blocking device that adds
failures in the communication between the preparation and measurement devices. We
prove that, for any detection efficiency, there is a blocking rate that provides protec-
tion against these attacks. We experimentally demonstrate the generation of private
randomness using weak coherent states and standard avalanche photo-detectors.
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1 Introduction

Private random numbers are essential for multiple applications, including, but not
limited to, cryptography and digital rights management. Private random numbers are
those the user is sure no one else had access to. However, random numbers produced
from classical processes may be predictable and therefore not private. One solution
is using quantum random number generators (QRNGs) based on the intrinsic uncer-
tainty of quantum measurement outcomes [1]. Unfortunately, imperfections in their
components can make generated numbers predictable to some extent. This may be
undetected by standard randomness tests [2], and therefore exploited by an adversary
[3]. The privacy of numbers obtained in QRNGs has to be proved separately [4].

Amajor breakthroughwas the discovery of device-independent (DI)QRNGs,which
permit to certify private randomness without making assumptions about the internal
functioning of the devices [3]. The problem is that current DI-QRNGs require very
high detection efficiencies and produce private random numbers at low rate [5].

Another approach is the semi-device-independent (SDI) QRNGs [6–8], in which
no assumptions about the internal functioning of the QRNG are made, except that
the dimension of the quantum system used is below a certain upper-bound. A typical
SDI-QRNG consists of a device with two parts, P and M , where P prepares some
quantum states that are then transmitted to M , where some quantum operations are
performed producing outcomes which, after post-processing, are used as random bits.
Previous works [9–13] consider SDI-QRNG protocols with the extra assumption that
P andM are not correlated, which implies that P andM do not use shared randomness
during the whole process of generation of random numbers. It has been shown that
the presence of correlations between P and M makes DI-QRNG and SDI-QRNG
protocols vulnerable to detection inefficiency attacks [14,15].

There are three possible cases in which there is shared randomness between P and
M :

(i) When correlations between P andM exist before the device is used. For example,
if a common seed is stored by the adversary when the devices are built. Another
example is when the same environment is shared by P and M and fluctuations in
electrical power or local temperature affects them equally. This problem can be
avoided by employing several Ps and Ms paired randomly. Since the adversary
cannot know in advance how they will be paired, then the adversary must resort
to using common seed to all the parts, e.g., a synchronized timer. In this case,
correlations between inputs and outputs will be observed, as discussed in [16].

(ii) When a signal sent from an external synchronizer causes correlations between
P and M . This case can be avoided by invoking a standard assumption in all
cryptographic schemes, namely, that P and M are inside a shielded laboratory,
and thus a shared seed cannot be sent from the outside.

(iii) When P and M correlate themselves during the execution of the protocol using
communication. This can occur, e.g., in the following way. If M is able to detect
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Fig. 1 (Color online) Prepare-and-measure scenario of SDI protocols with a blocker for private randomness
generation. It illustrates case with x ∈ X = {00, 01, 10, 11}, y ∈ [0, 1], z ∈ Z = {0, 1}, and B = {0, 1},
the values of b = 0, 1 are represented by means of a top (green) or bottom (red) light, respectively, at the
final stage

all photons sent from P , then, if P decides not to send a photon for a certain
round, this would be an indication for both P and M to reset their counters. In a
more realistic case,whenM workswith imperfect detectors, this synchronization
attack strategy is still possible using a longer sequence of roundswithout photons
to reset their counters.

In this work, we propose a private SDI-QRNG protocol which offers a protection
against these last attacks and can be implemented with a very low detection efficiency.
Its novelty is the introduction of a “blocker” that randomly stops the communication
between the QRNG preparation and measurement stages with the purpose of destroy-
ing the correlations that may exist between them. Its relevance lies in the following
features: (I) It works with inefficient detectors, as required for real-world applications.
(II)No detailed knowledge of the internal functioning of theQRNG is needed. (III) The
protocol works even if the adversary has introduced shared randomness between P and
M . In addition, to demonstrate the practicability of the protocol, we present an exper-
imental realization of the protocol using weak coherent states and standard avalanche
photo-detectors (APDs) providing an overall detection efficiency of 6%.

2 Protocol description

Here, we overview the idea of the proposed protocol. Figure 1 shows the general
scheme of SDI protocols and an extra blocker. It consists of three stages: the state
preparation stage (P), the blocking stage and the measurement stage (M).

In P , a quantum system ρx is prepared depending on the input data x ∈ X . In the
blocking stage, a blocker halts the transmitted system or allows it to go to the stage
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M , depending on another random input y ∈ [0, 1]. The system is stopped if and only
if y ≤ R, where R ∈ [0, 1] is a parameter of the blocker. In M , a random input z ∈ Z
is used to select a measurement which is then performed on the transmitted system.
The outcome of the selected measurement is b ∈ B ∪ {∅}, where b = ∅ corresponds
to the non-detecting events.

The SDI scheme considers P and M to be black boxes possibly built by an adver-
sary. Their internal functioning is unknown to the user and they may even contain
a malevolent agent. Still, the SDI approach assumes the following properties of the
device:

1. The dimension of the transmitted system is known.
2. P and M do not receive any external signal from the adversary (i.e., the laboratory

is shielded).
3. x, y, z are numbers independently produced that pass standard tests of randomness

[2], but are not private. They may be produced by imperfect QRNGs or taken from
a public source of random bits.

Each round of the protocol represents an event denoted by (b|x, y, z). We take only
the rounds with y > R for our random string. We denote

P(b|x, z) ≡ P(b|x, y > R, z)

1 − P(∅|x, y > R, z)
, b ∈ B. (1)

To certify that the generated sequence of outputs is private and random, the user
estimates the overall detection efficiency η defined as

η ≡ 1 −
∑

x∈X

∑

y∈Y
PXZ (x, z)P(∅|x, y > R, z), (2)

and the value of the so-called certificate:

W [P] ≡
∑

x∈X

∑

y∈Y

∑

b∈B
βb,x,zP(b|x, z), (3)

with PXZ (x, z) being the probability distribution of settings in the considered case
and the numbers βb,x,z ∈ R, defining a particular protocol. If W [P] is above a certain
threshold that depends on R and η, then the random sequence generated is considered
as private. Otherwise the user aborts.

In order to prove the security of the proposed solution, we consider the following
characterization of the blocking and synchronization mechanism:

I. The detection efficiency does not depend on the measurement setting used by M .
II. Synchronization takes one round of communication and in this round no other

information (e.g., about x) is transferred.
III. P sends synchronization signals with the same probability α ∈ [0, 1] in each

round, i.e., the synchronization algorithm is memoryless.
IV. After blocking, P and M become uncorrelated until the next synchronization.
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We thus consider three separate cases of runs: runs not synchronized (i.e., ones in that
P and M are not correlated), runs used for synchronization and runs synchronized
(and not containing the synchronization signal). In practice, it is probable that any
form of synchronization will require more than, e.g., a single qubit, so the second
assumption favors the adversary.

These assumptions significantly simplify the calculation of the amount of certified
randomness. In a more general approach, one may consider sophisticated synchro-
nization strategies, in which synchronization signals are being sent according to some
patterns or take into account correlations which remains to some extent even after the
blocking.1

Let cL be the maximal value of the certificate (3) if the transmitted system is
classical, and cQ if it is quantum, for some fixed dimension. We assume cL < cQ .
As mentioned above, if the detection efficiency (2) is less than 1 and the parts are
synchronized, then there are strategies able tomimic higher values of the certificate (3)
than allowed by quantummechanics. Let cS(η) be the maximal value of the certificate
(3) for a given detection efficiency η. Similarly, let cR be the maximal value of (3)
when no information is transmitted and M calculates the outcome b depending on
the input z. This is the case when the transmitted system contains a synchronization
signal, cf. the assumption II. We have

∀0<η≤10 ≤ cR ≤ cL < cQ ≤ cS(η) ≤ 1. (4)

3 Main result: Blocking protocol theorem

A common measure of randomness generated by QRNGs is the guessing probability
and, closely related, min-entropy [17,18]. For a discrete probability distribution P,
these two quantities are defined as

Pguess[P] ≡ max
x∈supp(P)

P(x), and (5a)

H∞[P] ≡ − log2 Pguess[P], (5b)

respectively. For a conditional distribution PΦ|Ψ , ψ distributed with PΨ one [8]
defines:

Pguess[PΦ|Ψ ] = max
g:Ψ →Φ

{∑

ψ∈Ψ

PΨ (ψ)P(g(ψ)|ψ)

}
, (6)

where ψ denotes all knowledge a guesser posses, possibly including, e.g., preparation
and measurement settings or access to a quantum system entangled with the quantum
systems used to generatePΦ|Ψ . Furtherwe refer to (6) as themaximal average guessing
probability.

1 For example, the internal counters of P and M differ by n rounds with some probability, depending on
n and the blocking rate.
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We note here that since Theorem 1 assumes that the certificate (3) constitutes
a private-SDI-QRNG protocol, meaning that if no detection loophole attack occurs,
then observing an experimental value pasyn > cL certifies some amount of randomness
greater than 0, or, in other words, the maximal average guessing probability is less
than 1. The problem of construction of such protocols is beyond the scope of this
papers, see e.g., [36] which deals with this topic. Here we only enumerate the required
properties.

Both the sending part P and the receiving part M of the cryptographic device
may be constructed by a malevolent party and no assumption regarding their internal
working is made. In each run, P emits to M a particle of dimension at most d prepared
using arbitrary quantum operations on a quantum system that is possibly entangled
with an arbitrary large quantum state on a Hilbert spaceHE , with the latter accessible
directly by the eavesdropper at any stage of the protocol. The random numbers x , y
and z provided as settings to the parts of the device are assumed to be random, not
known to the devices prior to the moment they are used, and the action of each of
the parts in the setup is assumed not to depend on the inputs provided to other parts.
For instance, it is assumed that the inputs x (provided to P) are not known to M etc.
On the other hand, the inputs are all accessible to the eavesdropper. The SDI-QRNG
protocol is private if under these assumption it guaranties that the output b is private,
i.e., its guessing probability by the eavesdropper is less than 1.

To be more specific, a certificate W : Q → R, see (3), constitutes a private SDI-
QRNG protocol in dimension d if and only if

W [PB|X ,Z ] ∈ (cL , cQ] 
⇒ Pguess[PB|X ,Z ,E ] < 1 (7)

for all {ρx }x∈X ⊂ P (HA ⊗ HE ), where P(·) is the set of all normalized states on
given Hilbert space, dimensions of Hilbert spacesHA andHE are d and some D ∈ N,
respectively; E is an arbitrary finite set of size at most D; for all

{
Mb

z

}
b∈B,z∈Z , where

each {Mb
z }b is a POVM acting onHA; for all

{
Ne
x,z

}
e∈E,x∈X ,z∈Z , where each

{
Ne
x,z

}
e

is a POVM acting onHE , and

PB|XZ (b|x, z) ≡ Tr
(
ρx M

b
z ⊗ IHE

)
, (8a)

PB|XZE (b|x, z, e) ≡ PBE |XZ (b, e|x, z)
PE |XZ (e|x, z) , (8b)

where

PBE |XZ (b, e|x, z) ≡ Tr
(
ρx M

b
z ⊗ Ne

x,z

)
, (9a)

PE |XZ (e|x, z) ≡ Tr
(
ρx IHA ⊗ Ne

x,z

)
, (9b)

and I· is the identity on the relevant space.
We denote the maximal possible average guessing probability and certified ran-

domness in an experiment with the detection efficiency η, the blocking rate R and the
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observed certificate value p by Pguess(R, η, p) and

H∞(R, η, p) ≡ −(1 − R) × η × log2 Pguess(R, η, p). (10)

We provide details of these functions in“ Appendix A”. The main result of this work
is the following:

Theorem 1 If for a private-SDI-QRNG protocol we obtain in an experiment a value
p > cL , then for any detection efficiency η > 0 there exists a blocking rate R providing
protection against detection loophole attacks, i.e.,

∀p>cL∀η > 0∃R∈[0,1)H∞(R, η, p) > 0. (11)

We present the proof in “Appendix B”.

4 Experiment

Our experimental implementation of the protocol with a blocker is shown schemati-
cally in Fig. 2. As the sources of x , y and z, we use three commercial QRNGs (IDQ
Quantis). They passed standard tests of randomness, but no assumptions about their
privacy is made.

A field programmable gate array (FPGA) in P produces an electrical synchro-
nization signal, which also drives an acousto-optical modulator (AOM) producing
attenuated optical pulses (weak coherent states) from a continuous laser operating
with a center wavelength of 690 nm. These optical pulses are then sent through a
sequence of four spatial light modulators (SLMs) [19]. Sets of lenses are employed to
project the image of one SLM onto the next one.

The assumption that the quantum system prepared in P and measured in M is
two dimensional is addressed in our experiment in the following way. The employed
average photon number per optical pulse was set to μ = 0.66 such that approximately
71% of the non-null pulses contain only one photon. To define the two-dimensional
quantum systems, we use the linear transverse momentum degree of freedom of the
photons transmitted by the SLMs [20]. This is done by projecting masks with only
two paths available for the photon transmission in the liquid crystal displays of the
SLMs [21–27].

The qubit state preparation in P (and the projections in M) is implemented using
SLM 1 and SLM 2 [SLM 3, SLM 4 (and an APD)] working with amplitude-only
and phase-only modulation, respectively [28–30]. The real and imaginary parts of
the generated and measured states are set by adjusting the grey level of the pixels on
the SLMs. In our demonstration, we set these states to maximize the value of W [P]
(described in “Appendix C”).

The repetition rate of the attenuated optical pulses is set to 30 Hz, which is the limit
of the employed SLMs. The applied modulation in each SLM is triggered by the sync
signal. An internal delay in respect to the AOM in the FPGAs is used to ensure that the
SLMs in P andM are properly set by the time each optical pulse is sent. In each round,
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Fig. 2 (Color online) Experimental setup (see text for details)

pre-determined modulations are applied to the SLMs by their corresponding FPGAs
based on the numbers produced by each QRNG. The optical blocker placed between
them is a commercial shutter and is controlled by a third FPGA unit, fed by another
QRNG. The blocker’s electronics also receive the sync signal from P . For each round
of the experiment, the blocker’s FPGA unit randomly blocks the optical pulse, with
an adjustable probability. The overall detection efficiency η (including losses at the
measurement stage and detection probability of the single-photon detector) is 6%.

Note that the stages P , B and M rely on the sync signal, which represents the action
of choosing a random input x in P , y in B and z in M . If synchronization between
P and M is achieved, then an adversary’s agent in M could use the sync signal to
count rounds and prevent the loss of synchronization. However, this attack can easily
be counteracted by the user: If he randomly sends fake signals to M between the sync
signals, then synchronization will be again required for the adversary, which can be
detected by the protocol.

In our implementation, a blocking rate R = 0.99 was employed. We obtained
W [P] = 0.8425 ± 0.0086 with data shown in Table 1 in “Appendix C”. A direct
calculation using a relaxed formula for H∞(R, η, p), see (50), for the considered
setup shows that the key generation rate is at least 0.012 bits of min-entropy per
photon passing the blocker mechanism (or 0.00012 bits per emitted photon), see
“Appendix D”.

5 Conclusions

Wehave introduced and experimentally implemented a SDI-QRNGprotocol protected
against attacks based on the detection loophole. In the experimental implementation,
we have reported a private random bit rate generation of 0.00012 per emitted photon
with a detection efficiency of 6%.

Unlike previous protocols which make the assumption that the measuring [10] or
the preparing parts [11,12] are trustworthy or that there are not correlations between
them [13], our protocol does not need to make any of these assumptions.
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Unlike a recent protocol [31] that does not make these assumptions but requires
detection efficiencies above 78%andproduces relatively low randomness, our protocol
works with much lower detection efficiencies and produces more randomness. For
example, while the protocol in [31] produces 0.00114 bits per round, our protocol
certifies 0.085 bits per emitted photon with η = 0.78 and R = 0.3, see “Appendix D”.

We believe that our results pave the way toward a new generation of practical and
secure SDI-QRNGs.
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the Foundation for Polish Science through IRAP project co-financed by the EU within the Smart Growth
Operational Programme (Contract No. 2018/MAB/5) is acknowledged. P.M. thanks Krystyna Witalewska
for help during the time of writing the manuscript. The optimizations have been performed using OCTAVE
[32] with SeDuMi solver [33] and YALMIP toolbox [34].

Appendix A: Guessing probability, min-entropy and randomness
certification

The distribution of lengths of series of systems sent and not blocked by the blocking
mechanism at a rate R is given by

P(R, k) = (1 − R)k−1R, (12)

where k ≥ 1 is the number of systems in a series.
Let us denote byα the ratio between the number of systems containing synchroniza-

tion signal sent by P and the total number of systems sent by P , cf. the assumption III.
In a given series of transmitted systems of length k, the average number of photons

before the first synchronizing system within that series is

Fasyn(α, k) =
[

k∑

i=0

i(1 − α)iα

]
+ k(1 − α)k

= 1 − α

α

(
1 − (1 − α)k

)
.

(13)
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Using (13), we get that the probability that a particular photon received by M is not
synchronized is

Pasyn(R, α) =
∞∑

k=1

P(R, k)
Fasyn(α, k)

k

= 1 − α

α

R

1 − R
ln

(
α + R − αR

R

)
,

(14)

for α > 0 and Pasyn(R, 0) = 1. Directly from the definition of α, the probability that
the received system is a synchronization signal is

Psig(R, α) = α. (15)

The probability that a received system is synchronized and not carrying a synchro-
nization signal is

Psyn(R, α) = 1 − Pasyn(R, α) − Psig(R, α), (16)

forα > 0 and Psyn(R, 0) = 0. One can easily calculate that∀α∈[0,1] limR→1− Psyn(R,

α) = 0. Let us define Fsyn(R) ≡ maxα∈[0,1] Psyn(R, α). Then,

lim
R→1− Fsyn(R) = 0. (17)

If P is a mixture of distributions Pi with frequencies {ωi },∑i ωi = 1, and an eaves-
dropper is aware which distribution i occurs, we have Pguess[P] ≡ ∑

i ωi Pguess[Pi ].
Let us consider separately runs of the protocol without synchronization (abbre-

viated as “asyn”), runs containing synchronization signal (abbreviated as “sig”) and
synchronized runs without the signal (abbreviated as “syn”).

Let Pasyn
guess(p, η), Psig

guess(p, η), Psyn
guess(p, η) be functions providing upper bounds

on the maximal average guessing probabilities, pasyn, psig, psyn be the average val-
ues of the certificate (3), and ηasyn, ηsig, ηsyn be the detection efficiencies (2), in the
respective runs. These values cannot be observed individually by a user, but each of
them has impact on the observed values of (3) and (2).

Let p ≡ (pasyn, psig, psyn) and ≡ (ηasyn, ηsig, ηsyn). Note that pasyn ≤ cQ , psig ≤
cR and psyn ≤ cS(ηsyn). Let M ≡ {asyn, sig, syn}, η̄ ≡ ∑

i∈M ηi Pi (R, α), and

ωi ≡ ηi Pi (R,α)
η̄

for i ∈ M , thus
∑

i∈M ωi = 1.
Let us also define

P fun
guess (R, α,p, ) ≡

∑

i∈M
ωi P

i
guess(pi , ηi ), (18a)

pfun (R, α,p, ) ≡
∑

i∈M
ωi pi , (18b)

ηfun (R, α, ) ≡ η̄. (18c)
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Using the above expression,we can give the following upper bounds on themaximal
average guessing probability for the blocking parameter R, the observed value p of
the certificate (3) and the observed value η of the detection efficiency (2):

Pguess(R, η, p) ≡ maximize
α∈[0,1]

ηasyn,ηsig,ηsyn∈[0,1]
pasyn∈[0,cQ ]
psig∈[0,cR ]

psyn∈[0,cS(ηsyn)]

P fun
guess (R, α,p, )

subject to pfun (R, α,p, ) = p,

ηfun (R, α, ) = η.

(19)

Note that the constraints can be equivalently rewritten as
∑

i∈M ηi Pguess(R, α) = ηp
and η̄ = η, and these forms are used in “Appendix B”.

Since (19) involves (18a) to perform maximization, we need explicit formulae for
Pi
guess(pi , ηi ), i ∈ M . Since “sig” runs are deterministic,we have Psig

guess(psig, ηsig) ≡
1. Pasyn

guess(pasyn, ηasyn) is a guessing probability of an eavesdropper not exploiting
the detection loophole, thus it doesn’t depend on ηasyn. We provide analysis for this
function in this section below. The function Psyn

guess(psyn, ηsyn) has to be developed
independently for different formulae for the certificate (3), as this depends on a par-
ticular form of detection loophole attack.

Let us now consider a private SDI-QRNG protocol given by some certificate of
a form (3) in some fixed dimension. For some p ∈ (cL , cQ], we have the following
formula for Pasyn

guess(p, η):

maximize
{ρx },{Mb

z },{Ne
x,z},g

Pguess[PB|XZE ]

subject to W [PB|XZ ] = p.
(20)

Without restricting the power of an eavesdropper, we may assume that

PE |XZ (e|x, z) = PE (e), (21)

i.e., the probability of the result e does not depend on x and z. This can be obtained
using proper extension ofHE , or providing some additional “idle” information to an
extended set E .

From (6), it follows that when {ρx }, {Mb
z } and

{
Ne
x,z

}
are fixed, then for an eaves-

dropper having access to HE the optimal guessing function g : X × Z × E → B
is

g(x, z, e) = argmaxbP(b|x, z, e), (22)

i.e., a function returning a most probable result b for each x , z and e.
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Using no-signaling PB|XZ (b|x, z) = ∑
e∈E PBE |XZ (b, e|x, z) and (21), we get

PB|XZ (b|x, z) =
∑

e

PBE |XZ (b, e|x, z) =
∑

e

PE (e)PB|XZE (b|x, z, e). (23)

Thus, we can rewrite (20) as

maximize
{ρx },{Mb

z },{Ne
x,z},g

∑

e

PE (e)
∑

x,z

PXZ (x, z)PB|XZE (g(x, z, e)|x, z, e)

subject to
∑

e

PE (e)
∑

b,x,z

βb,x,zPB|XZE (b|x, z, e) = p.
(24)

Obviously,
∑

e PE (e) = 1 and the probability distribution is obtained by quantum
measurements, see (9b). We can relax the latter constraint and replace PE (e) with
nonnegative coefficients ce, with

∑
e ce = 1. Then (20) can be relaxed as

G(p) ≡ maximize{ce},{pe}
ceg(pe, e)

subject to ce ≥ 0,
∑

e

ce = 1,

pe ∈ [cL , cQ],
∑

e

ce pe = p,

(25)

where cf. (8),

g(pe, e) ≡ maximize
{ρx |e},{Mb

z|e},
g(·,·,e):X×Z→B

∑

x,z

PXZ (x, z)PB|XZe(g(x, z, e)|x, z)

subject to PB|XZe(b|x, z) ≡ Tr
[
ρx |eMb

z|e
]

∑

b,x,z

βb,x,zPB|XZe(b|x, z) = pe.

(26)

Appendix B: Proof of the blocking protocol theorem

From (19), it follows that to have Pguess(R, η, p) = 1 we need

Pasyn
guess(pasyn, ηasyn) = 1, or (27a)

ωasyn = 0. (27b)

For (27a) to hold, we need pasyn ≤ cL .
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Now, assuming pasyn ≤ cL , and using psig ≤ cL , we relax the constraints in the
optimization problem (19):

cL × (ωasyn + ωsig) + Psyn(R, α) ≥ ηp, (28a)

ωasyn + ωsig ≤ η. (28b)

Using (28) and the theorem’s assumption p > cL , we get

Psyn(R, α) ≥ η × (p − cL) ≡ ε > 0. (29)

From (17), we know there exists R < 1 such that Psyn(R, α) < ε. The contradiction
with pasyn ≤ cL shows that (27a) cannot be satisfied for all R.

What remains for the proof is to show that also (27b) is not true. To show this
considers the following relaxation of constraints in (19):

cQωasyn + cRωsig + Fsyn(R) ≥ ηp, (30)

and (28b). Substituting the latter into (30), we get

ωasyn ≥ η × (p − cR) − Fsyn(R)

cQ − cR
. (31)

Since, for some blocking rate R < 1, the value of Fsyn(R) is arbitrary small and
p − cR > 0, we see that also (27b) is not satisfied. Therefore, there exists a blocking
rate R such that Pguess(R, η, p) < 1.

Appendix C: Randomness of 2 → 1 quantum random access code

A common example [6,35,36] of a certificate (3) is based on the so-called 2 → 1
quantum random access code [37,38] in dimension 2:

W 2→1 [
PB|XZ

] ≡ 1

8

∑

x∈X

∑

z∈Z
PB|XZ (b = xz |x, z), (32)

with X = {00, 01, 10, 11}, Z = {0, 1}, B = {0, 1}. Results of our experimental
implementation of this QRAC are shown in Table 1.

To calculate the maximal average guessing probability and min-entropy in the pro-
posed protocol, we performed optimization over the set of all probability distributions
allowed by quantum mechanics using the see-saw technique [39,40] of semi-definite
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Table 1 Observed experimental
probabilities P(b|x, z) with error
bars

z = 0 b = 0 b = 1

x = 00 0.850016 ± 0.026011 0.149984 ± 0.007815

x = 01 0.858255 ± 0.029392 0.141745 ± 0.008488

x = 10 0.145144 ± 0.007938 0.854856 ± 0.027039

x = 11 0.146975 ± 0.007632 0.853025 ± 0.025767

z = 1 b = 0 b = 1

x = 00 0.813494 ± 0.020024 0.186506 ± 0.007073

x = 01 0.148772 ± 0.006703 0.851228 ± 0.022439

x = 10 0.820518 ± 0.020665 0.179482 ± 0.007086

x = 11 0.161361 ± 0.006431 0.838639 ± 0.020305

The bold values refer toQRAC successes (their maximal possible aver-

age value is 0.5 +
√
2
4 ≈ 0.85355). Please note that experimental

losses, together with the average photon number per pulse μ, do affect
the observed success probabilities reported here. However, as we have
demonstrated recently [24], in a QRAC the decrease in the average
success probability is only linear in the term μ (where represents the
losses). Thus, the effect of multiphoton events while using μ = 0.66,
and an overall detection efficiency of 6% is minimal. This can be cor-
roborated by noting that the obtained results are close to the ideal one

programming [41] and computed g(pe, e) from (26) with:

maximize
{ρx },{Mb

z }, g̃:X×Z→B

1

8

∑

x,z

P( g̃(x, z)|x, z)

subject to
1

8

∑

x,z

P(xz |x, z) = pe,

P(b|x, z) = Tr
(
ρx M

z
b

)
,

(33)

where {ρx } = {ρ00, ρ01, ρ10, ρ11} are states, {Mb
z } = {{M0

0 , M0
1 }, {M1

0 , M
1
1 }} are

measurements on a Hilbert space of dimension 2, and g̃ is a possible guessing strategy
when x and z are known. We took PXZ (x, z) = 1

|X ||Z | = 1
8 . In this case, cL = 3

4 and

cQ = 1
2 +

√
2
4 ≈ 0.8536. The result of the optimization as a function of pe is shown

in Fig. 3. From (25), we conclude the following formula for G(p):

G(p) =
1
2 +

√
2
4 − 1

1
2 +

√
2
4 − 3

4

×
(
p − 3

4

)
+ 1 = −√

2 ×
(
p − 3

4

)
+ 1. (34)

Now,we give the explicit formula for Psyn
guess(psyn, ηsyn) for the considered protocol.

M is allowed not to click in 1−η part of rounds, and using detection efficiency loophole
it can mimic a higher value of the certificate (32). The method is the following.

If η ≤ 1
2 , then the malevolent vendor can use the following strategy for all inputs.

P is encoding one bit from the input, x0 or x1 with equal ratio. The choice which bit
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Fig. 3 (Color online) Maximal average guessing probability for a certificate (32) based on 2 → 1 quan-
tum random access code obtained using see-saw technique with the formula (33). The function is not
differentiable at points relating to changes of the optimal guessing function g : X × Z → B, which are
g1(x0, x1, z) = x0, g2(x0, x1, z) = x0 · x1 ∨ x1 · z and g3(x0, x1, z) = xz (reading from the left of the
plot)

to encode is guided by shared randomness. If the input z matches the encoded bit, M
measures the qubit and satisfies the certificate (32) with probability 1. Otherwise M
outputs ∅. An upper bound on the maximal average guessing probability is given by:

P2→1
guess

(
R, η, α, pasyn, q, ηasyn, ηsyn

) ≡[ηsyn≤ 1
2 ] ωasynG(pasyn) + ωsig + ωsyn

= 1 − ωasyn
√
2

(
pasyn − 3

4

)
= 1 −

√
2

η
ηasynPasyn(R, α) ×

(
pasyn − 3

4

)
.

(35)

If η > 1
2 then in 2(1 − η) part of rounds P uses the above encoding strategy and

the device attains W 2→1 [P] = 1. In the remaining 2η − 1 part of rounds, P and M
use the states and measurements referring to the value of the certificate (32) equal to
some q ∈ [cL , cQ]. The observed average value of the certificate in such a strategy is

psyn = 1

ηsyn

[
(2ηsyn − 1)q + (1 − ηsyn)

] = 2q − 1 + 1 − q

ηsyn
. (36)

The detection loophole allows to achieve the value of (36) up to 2η+√
2−1

2
√
2η

≤ 1 with

q = cQ . Thus,

cS(η) = min

(
2η + √

2 − 1

2
√
2η

, 1

)
. (37)
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The value of (36) equals psyn ≤ cS(ηsyn) if and only if q = ηsyn(1+psyn)−1
2ηsyn−1 . The

maximal average guessing probability is then upper bounded by

G̃(psyn, ηsyn) ≡ 2ηsyn − 1

ηsyn
× G

(
ηsyn(1 + psyn) − 1

2ηsyn − 1

)
+ 1 − ηsyn

ηsyn

= −√
2psyn + 1 +

√
2

2
+

√
2

4ηsyn
,

(38)

or, equivalently,

Ḡ(q, ηsyn) ≡ 2ηsyn − 1

ηsyn
× G(q) + 1 − ηsyn

ηsyn

= 1

ηsyn
×

[
−√

2q × (2ηsyn − 1) − 3
√
2

4

]
+ 3

√
2

2
+ 1,

(39)

and is lower than 1 if and only if psyn > 1
2 + 1

4ηsyn
or, equivalently, q > 3

4 . Using this,
we get that an upper bound on the maximal average guessing probability is in this case
given by

P2→1
guess

(
R, η, α, pasyn, q, ηasyn, ηsyn

) ≡[ηsyn> 1
2 ] ωasynG(pasyn) + ωsig

+ ωsynḠ(q, ηsyn)

= 1 − √
2 ×

[
ωasyn ×

(
pasyn − 3

4

)
+ 2ηsyn − 1

ηsyn
× ωsyn ×

(
q − 3

4

)]

= 1 −
√
2

η
×

[
ηasynPasyn(R, α)

(
pasyn − 3

4

)
+ (2ηsyn − 1)Psyn(R, α)

(
q − 3

4

)]
.

(40)

Let us now give an explicit formula for an upper bound on the maximal average
guessing probability, see (19), in this scenario. Let us define, cf. (36),

(36), pfunsyn(q, ηsyn) ≡
{
2q − 1 + 1−q

ηsyn
for ηsyn > 1

2 ,

1 for ηsyn ≤ 1
2 .

(41)

We have

Pguess(R, η, p) ≤ maximize
α∈[0,1]

ηasyn,ηsig,ηsyn∈[0,1]
pasyn,q∈[ 34 ,cQ ]

P2→1
guess

(
R, η, α, pasyn, q, ηasyn, ηsyn

)

subject to qfun
(
R, α, pasyn, q,

) ≥ p,

ηfun (R, α, ) = η,

(42)
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where qfun, cf. (18b) is given by

qfun
(
R, α, pasyn, q,

) ≡ pasynωasyn + 1

2
ωsig + pfunsyn(q, ηsyn)ωsyn

= pasynηasyn
Pasyn(R, α)

η
+ 1

2
ηsig

Psig(R, α)

η
+ ηsyn p

fun
syn(q, ηsyn)

Psyn(R, α)

η

(43)

Let us denote

x ≡ ηωasyn = ηasynPasyn(R, α),

y ≡ ηωsyn = ηsynPsyn(R, α).
(44)

Now, use the constraint ηfun (R, α, ) = η, or, equivalently, ηsigPsig(R, α) = η−x− y,
to eliminate ηsig. We separate further analysis in two cases.

In the case with ηsyn ∈ [0, 1
2 ], we have y ≤ 1

2η Psyn(R, α). Let us denote for this

case z− ≡ x × (
pasyn − 3

4

)
. Then, (42) transforms to

P−
guess(R, η, p) ≤ maximize

α∈[0,1]
(x,y,z−)∈A−(R,η,p,α)

1 −
√
2

η
z−, (45)

where A−(R, η, p, α) ⊆ R3 is defined by the following linear constraints:

0 ≤ x ≤ Pasyn(R, α),

0 ≤ y ≤ 1

2
Psyn(R, α),

0 ≤ z− ≤
(
cq − 3

4

)
× x,

η − Psig(R, α) ≤ x + y ≤ η,

η ×
(
p − 1

2

)
− 1

4
x − 1

2
y ≤ z−.

(46)

In the case with η > 1
2 , we have y ≥ 1

2 Psyn(R, α). Let us now denote

z+ ≡ x ×
(
pasyn − 3

4

)
+ (2y − Psyn(R, α)) ×

(
q − 3

4

)
. (47)

As in the previous case, (42) transforms to

P+
guess(R, η, p) ≤ maximize

α∈[0,1]
(x,y,z+)∈A+(R,η,p,α)

1 −
√
2

η
z+, (48)

123



39 Page 18 of 20 P. Mironowicz et al.

where A+(R, η, p, α) ⊆ R3 is defined by the following linear constraints:

0 ≤ x ≤ Pasyn(R, α),

1

2
Psyn(R, α) ≤ y ≤ Psyn(R, α),

0 ≤ z+ ≤
(
cQ − 3

4

)
× [

x + 2y − Psyn(R, α)
]
,

η − Psig(R, α) ≤ x + y ≤ η,

η ×
(
p − 1

2

)
− 1

4
x − 1

4
Psyn(R, α) ≤ z+.

(49)

It is easy to see that, for fixed α ∈ [0, 1], the internal optimization in (45) and (48)
is a linear program. Thus, we derive the following formula for Pguess(R, η, p) for this
scenario:

Pguess(R, η, p) ≤ max
(
P−
guess(R, η, p), P+

guess(R, η, p)
)

, (50)

with P±
guess(R, η, p) ≡ 0 if A± = ∅.

Appendix D: Direct calculations of the experimental randomness

We take the experimental value p = 0.8425 and η = 0.06 for R = 0.99, as used
in the setup. From our calculations of (45) and (48), it follows that the maximal
average guessing probability is obtained for α = 0.499. In that case, ηasyn = 0.11880,
ηsig = 0 and ηsyn = 0.5.We haveωasyn = 0.98951,ωsig = 0 andωsyn = 0.01049with
pasyn = 0.84083 and psyn = 1. This gives G(0.84083) = 0.87155. Direct calculation
of (35) gives

0.98951 × 0.87155 + 0 + 0.01049 ≈ 0.87289, (51)

and thus − log2(0.87289) ≈ 0.19612. Since only (1 − R) × η = 0.0006 emitted
photons are detected, the generation ratio of min-entropy is

H∞(0.99, 0.06, 0.8425) ≈ 0.00012. (52)

Analogous calculations for R = 0.3, η = 0.78, and optimal α = 0.157. This gives
Pasyn(R, α) = 0.71827, Psig(R, α) = 0.157, Psyn = 0.12473 with ηasyn = 0.99912,
ηsig = 0, ηsyn = 0.5. Here pasyn = 0.82881 and psyn = 1, giving G(0.82881) =
0.88854. From this, it follows that ωasyn = 0.92004, ωsig = 0, and ωsyn = 0.07996.
Direct calculation gives

0.92004 × 0.88854 + 0 + 0.07996 = 0.89745, (53)
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and

H∞(0.3, 0.78, 0.8425) ≈ −0.7 × 0.78 × log2(0.89745) ≈ 0.08523. (54)
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