
Contract-based Diagnosis for Business Process Instances
using Business Compliance Rules

D. Borrego, R. M. Gasca, M. T. Gómez-López, L. Parody

Departamento de Lenguajes y Sistemas Informáticos, Universidad de Sevilla, Sevilla, Spain
{dianabn, gasca, maytegomez, lparody}@us.es

ABSTRACT

In order to increase the quality of business pro-
cesses when they are automated, the correctness
of the activities can be checked by means of an
analysis of the corresponding business compli-
ance rules. By analyzing the trace of an instance
of a business process, it is possible to detect the
correctness of the process and to determine which
activity is faulty. Each activity or set of activities
is related to a set of business compliance rules,
which work as contracts that the activities must
satisfy throughout the dataflow.
In order to diagnose a business process instance,
not all the activities participate in every single
execution, since there are control flows that per-
mit the execution of several branches for a varied
number of times. We propose to automate the di-
agnosis of these executions of a business process
taking into account the involved activities and
their business compliance rules. Our main contri-
butions are related to the construction of the cor-
responding framework using several techniques
related to the constraint programming paradigm
to obtain the incorrect activities. The two differ-
ent proposals consider the tradeoff between the
obtaining of the minimal diagnosis and the per-
formance.
Key words: Model-based diagnosis, Constraint
programming, Business rules, Minimal unsatis-
fiable subset

1 INTRODUCTION
A business process consists of a set of activities that
are performed in coordination in an organizational and
technical environment (Weske, 2007). Business Pro-
cess Management (BPM) includes concepts, methods,
and techniques to support the design, administration,
configuration, enactment, and analysis of a business
process. The base of BPM is the explicit representa-
tion of business processes with their activities and the
contract between them. In order to describe the work-
flow of a process, it is possible to use control flow

operators, such as and, xor, or, loops... The execu-
tion of these operators can be determined by logical
conditions of data which define the instance executed
for each example. Likewise, it is also possible to de-
scribe the behavior/semantics of the data managed in
the business process by using compliance rules. Busi-
ness rules can also be used to describe the contract that
each activity has to satisfy for a whole process. The
rules that describe the company policies associated to
an activity or set of activities are called Business com-
pliance rules. Since each organization defines its own
policies about things such as prices, costs, employee
numbers, deadlines of tasks and so on, it is possible to
specify a different set of rules for each business pro-
cess, even for different activities in the same business
process.

We consider that the business process contract con-
sists of the following:

• The organizational model which consists of orga-
nizational units and associated roles;

• The data model that includes the business com-
pliance rules for these data;

• A business process model which in our case is
a BPMN diagram. BPMN is a modelling lan-
guage, chosen for the following reasons: (a) it is
the emerging standard for business modelling and
(b) it has a transformation into executable code
and platforms, which can then be used for auto-
matic processing of compliance rules.

The activities transform the data of the business ob-
jects, therefore it is necessary to check whether the
compliance rules are satisfiable after data transforma-
tion. In the negative case, those activities responsible
for the non-compliance are identified. A declarative
perspective of the objectives of processes, which indi-
cates what needs to be done in order to comply with
the constraints, is available.

In the previous work (Guillou et al., 2009), it is pro-
posed a diagnosis based on the propagation between
different local diagnoses. This is an interesting pro-
posal but it is not always possible to equip each service
with a local diagnosis and to work with chronicles. For

1

21st International Workshop on Principles of Diagnosis

these reasons, we propose a solution based on to de-
scribe the tasks’ behaviour with a contract represented
by constraints.

Extensive literature research regarding business pro-
cess compliance has been presented (Sadiq et al.,
2007) (Namiri and Stojanovic, 2007) (Ghose and Ko-
liadis, 2007). However, the main question arising in
this article is whether it is possible to infer what or
where a failure has occurred with respect to the busi-
ness policies and procedures in terms of the dataflow
values. This suggests an adaptation of the typical fault
model-based diagnosis approach to business process
diagnosis, which is what is pursued in this work. For
the contract/compliance management domain, compli-
ance auditors are necessary. For the BPM we propose
a framework that detects, in a run-time way, the non-
compliance of the rules, performing an automatic com-
pliance diagnosis.

In order to automate the diagnosis process, we will
represent as constraints the business compliance rules
associated to the different activities. These constraints
are linear or polynomial equations or inequations over
dataflow variables, related by a boolean combination
(and/or), whose float or integer variables are defined
in a domain.

Current business rules could be integrity rules,
derivation rules, reaction rules, production rules and
transformation rules. This work focuses on the pro-
duction rules, whose representation is the if Condi-
tion then Consequence format, and are used to validate
the contract of the business process, where Condition
represents the constraint to validate and Consequence
the evaluation of the compliance rule. By using Con-
straints the information is represented at a more ab-
stract level, since languages based on constraints in-
clude and improve all the capacity of representation of
current rules engines, such us Drools, Fair Isaac Blaze
Advisor, ILOG JRules and Jess. Likewise, represent-
ing the business compliance rules as constraints we can
get the automatization of the contract-based diagnosis
process.

By using business compliance rules and artificial in-
telligence techniques oriented towards diagnosis, it is
possible to describe the contract of the process to vali-
date the correctness and determine any incorrect activ-
ities. In the business process area, the diagnosis pro-
cess has two condition that render the task of diagno-
sis more complicated: (a) Depending on the process
instance and the input data, certain activities will work
towards obtaining the objective of the process. This
implies that in the diagnosis process, it is necessary to
know which activities have participated. (b) A branch
loop is a possible scenario, where a set of activities
are executed several times, thereby the different exe-
cutions of the loop have to be taken into account.

For solving the previous problems, two different
strategies are proposed. In order to present them, the
structure of the paper is as follows. Section 2 contains
the notation and formal definitions necessary to clarify
our proposal. In Section 3 we present the specifica-
tion of a motivating example of business processes and
business compliance rules that is used in a diagnosis
process. A framework to automate the fault diagnosis
is presented in Section 4. Section 5 contains the main
contribution of the work, an improved algorithm based

on minimal unsatisfiable subsets to find any incorrect
activities by taking into account the executed activities
and the possible loops. Section 6 presents the exper-
imental results, and Section 7 concludes the paper by
discussing related works and pointing out future lines
of research.

2 NOTATION AND FORMAL DEFINITIONS

The purpose of this section is to give a concise formal
development of the basic notions of business process
theory in order to clarify the concepts necessary in the
later sections.

Definition 1. Business compliance constraint. A
representation of a business compliance rule as a con-
straint. There are two kinds:

• Global compliance constraints: constraints that
involve all the activities of the business process.

• Activity compliance constraints: constraints that
involve only some activities of the business pro-
cess.

A Constraint Satisfaction Problem CSP is built from
the business compliance constraints and the variables
involved on them, for two main reasons: (i) the im-
portant number of efficient solvers for CSPs that exist,
and (ii) in order to automate the diagnosis process.

A CSP represents a reasoning framework consist-
ing of variables, domains and constraints. Formally,
it is defined as a triple <X, D, C> where X = {x1,
x2, . . ., xn} is a finite set of variables, D = {d(x1),
d(x2), . . ., d(xn)} is a set of domains of the values of
the variables, and C = {C1, C2, . . ., Cm} is a set of
constraints. A constraint Ci = (Vi,Ri) specifies the
possible values of the variables in V simultaneously
in order to satisfy R.

In the built CSP, the variables’ domains depend on
either the defined contract or the specification provided
by the role of the pool.

The different business compliance constraints are
related to the different activities of the business pro-
cess. That relation can be performed in an automatic
way, since the data, transformed by the activities, par-
ticipate in the constraints as variables.

The Compliance Constraint/Activity Mapping is an
association such that any business compliance con-
straint is related to a set of activities of a business pro-
cess.

In order to automate the computation of the mini-
mal diagnosis, it is necessary to define the following
concepts:

A Reified Constraint is a business compliance con-
straint that is associated to truth values which represent
the associated activities according to the above map-
ping.

Definition 2. Minimal Unsatisfiable Subset
(MUS). Given a set of business compliance constraints
C, a MUS of C is a subset of C that is (1) unsatisfi-
able and (2) minimal, in the sense that removing any
one of its elements makes the rest of the MUS satis-
fiable. That is, m is a MUS of C iif m ⊆ C : m is
unsatisfiable, and ∀c ∈ m,m\{c} is satisfiable.

2

21st International Workshop on Principles of Diagnosis

Establish
Conference
Rate (ECR)

Registration
(R)

Dinner
(D)

Lunch
(L)Accepted

Paper Request
(APR)

International
Invited Talk (IIT)

Other +
visit (OV)

Other
(O)

National Invited
Talk (NIT)

Legend :

Parallel - And

Inclusive - Or

Sequence Flow

Start Event

End Event

Activity

Sequence Flow Looping

Figure 1: Motivating Example

3 MOTIVATING EXAMPLE

In the following, a partial example of a business pro-
cess for the handling of a conference for an organi-
zation is described. The process starts with the Call
for Papers. The technical secretary receives the in-
scriptions of the participants. The various components
of the organizing committee then decide on the meals
and material cost in order to obtain the final approval,
which is carried out by the organizing committee pres-
ident. Upon all approvals the conference begins.

Figure 1 depicts an example process graph in stan-
dard BPMN notation. In fact, this example is based on
a BPMN diagram example from the BPMN 1.1 speci-
fication (OMG 2008).

The process of Figure 1 has three types of con-
trol flow operators (or split/join, and split/join and se-
quence flow looping). These control flow operators en-
able several activities to be performed in terms of the
number of accepted papers, the quantity of money of-
fered by the partners, the capacity of the restaurants
and the number of participants.

The variables with their respective domains and the
business compliance constraints that will be used to
validate and diagnose each instance of the process are
shown in Figure 2.

The variables are: totalG as the total cost of the
conference; totalI as the total income; NumPT as
the number of assistants; PartC as the registration
fee; NumAccPaper as the number of accepted pa-
pers; partnerPart as the income on behalf of the
partners; oParC as other costs; lunchC as the cost
of each lunch; dinnerC as the cost of the gala dinner;
gastosP as the total expenses for each participant; and
invitedTalk as the expenses incurred by the invited
speakers.

In order to organize the conference some activities
are executed, but some of them may be incorrect ac-
cording to the main goals of the conference committee:
”Do not spend more money than obtained with regis-
trations and partner incomes; and a high participant
satisfaction degree with the conference organization”.

It is possible that, after an execution of the process,
and due to the values assigned to some variables of the
CSP (decisions taken by the organizing committee),
the business compliance constraints are not satisfiable.
In this case a diagnosis process must be executed to
find out which activity or activities are not correct.

Variables:
totalG, D : {25000..70000}
totalI, D : {25000..70000}
NumPT, D : {75..170}
PartC, D : {200..390}
NumAccPaper, D : {50..80}
partnerPart, D : {4000..15000}
oParC, D : {30..185}
 lunchC, D : {10..30}
dinnerC, D : {60..100}
gastosP, D : {0..70000}
invitedTalk, D : {0..10000}

Compliance Constraints:
 totalG <= totalI
 totalG >= totalI*0.8
 totalG==NumPT*gastosP+ InvitedTalk
 totalI==NumPT*PartC+partnerPart

 PartC*0.10<=dinnerC
 dinnerC <= PartC*0.35
 PartC*0.10 <= 3*lunchC
 3*lunchC<=PartC*0.35
 NumPT.getMin()<=75 => oParC <=

0.20*PartC + 0.05*partnerPart
 NumPT.getMin()<=75 => oParC >=

0.05*PartC + 0.05*partnerPart
 NumPT.getMin()>75 =>

oParC<=0.25*PartC
 NumPT.getMin()>75 =>

oParC>=0.05*PartC
 gastosP == 3*lunchC + dinnerC + oParC
 NumAccPaper*1.8 >= NumPT
 NumAccPaper*0.5 <= NumPT
 partnerPart<=2000 => InvitedTalk >=

0.2*partnerPart
 partnerPart<=2000 => InvitedTalk<=

partnerPart+0.10*PartC*NumPT
 partnerPart>2000 => InvitedTalk >=

0.4*partnerPart
 partnerPart>2000 => InvitedTalk <=

partnerPart

Figure 2: Example of business compliance constraints

4 FRAMEWORK FOR THE
CONTRACT-BASED DIAGNOSIS OF
BUSINESS PROCESSES

In classic model-based diagnosis, in order to determine
which component is working incorrectly, it is neces-

3

21st International Workshop on Principles of Diagnosis

Process Layer

Presentation Layer

Application Layer

Persistence Layer

Diagnosis Layer
Constraints:distance <=100 => dist == 0.1 * distancedistance >100 => dist == 0.05 * distancedays <=7 => t == 20 * daysdays <7 && days <= 15 => t == 18 * daysdays >15 => t == 20 * daysres == dist + towr => tot = res * 2 * 0.8!owr => tot = res…Co nstra ints :dista nce <=10 0 => dist == 0.1 * d istan cedista nce > 100 => d ist = = 0.0 5 * d istan cedays <=7 => t == 2 0 * d aysdays <7 && da ys <= 15 = > t = = 1 8 * d aysdays >15 => t == 2 0 * da ysres == d ist + towr = > to t = res * 2 * 0 .8!owr => tot = res… CDB

Figure 3: Proposed Framework

sary to compare the model of the system with the ob-
servable variables. In the business process area, de-
tails of the model may be unavailable due to com-
pany privacy, but the policy of the companies and what
constraints have to be satisfied by the dataflow must
be known. This allows the user to diagnose possible
faulty activities and to understand why a particular in-
stance of the business process is not working. How-
ever, determining the root cause of a failure is an even
greater challenge, since the topology of the business
process and the involved activities for each instance
must all be taken into account.

Along these lines, we propose a framework based on
the analysis of business output data and business com-
pliance rules to diagnose a business process instance.
The model of the business process and the diagnosis is
based on the business compliance constraints.

The proposed framework is an extension of the clas-
sic Process Aware Information System (PAIS) frame-
work. In general, PAIS architecture can be viewed as
the 4-tier system as presented in (Weber et al., 2009),
where from top to bottom the layers are: Presentation
Layer, Process Layer, Application Layer and Persis-
tency Layer. As a fundamental characteristic, PAIS
provides the means to separate process logic from ap-
plication code. At runtime the PAIS then orchestrates
the processes according to the defined logic and co-
ordinates the processing of relevant applications and
other resources. The new framework, shown in Fig-
ure 3, presents a new layer where the diagnosis of the
business process is performed. Likewise, the Presen-
tation Layer counts on a Workflow Dashboard in order
to permit the participation of the role of the pool at
runtime in an equivalent manner to the way that the
classic model-based diagnosis uses the observational
model for the sensors.

The Diagnosis Layer for the business processes is
a parallel and ”independent” system from the process
layer. They are independent since it can be executed in
different machines, by different actors, and at the same
time.

Figure 3 gives an overview of our framework. Pro-
cesses are modelled in terms of a typical workflow

language, featuring task nodes (the activities carried
out inside the process) as well as parallel splits/joins
and xor splits/joins to model the control flow. Such
a model specifies only which sequences of activities,
i.e. which execution paths, may occur; it cannot model
more subtle or indirect dependencies between the ac-
tivities, due to a compliance rule which expresses an
obligation in that, activity A must always be checked
for compliance with the process iff B’s precondition is
always guaranteed to be true.

The business compliance rules are checked against
the logical states that can be traversed by the process.
A naive way of checking compliance is hence to enu-
merate all those states. Clearly, given that the number
of states is (in general) exponential to the size of the
process, such an approach is undesirable. A human
modeller will not tolerate long waiting times during
process modelling, and checking the compliance of a
whole process repository against an altered constraints
base may become completely infeasible if every sin-
gle process involves a state enumeration. The question
hence is: do restricted cases exist where we can check
compliance efficiently? And can we devise approxi-
mation techniques for more general cases? Regarding
loops, as stated, the original definition of basic pro-
cesses (Weber et al., 2009) disallows them.

The new layer added to the framework is detailed
below.

4.1 Diagnosis Layer
When a business process model using business com-
pliance constraints is analyzed, some inconsistencies
can be identified. In order to determine these inconsis-
tencies, three types of information about the business
process instance are necessary:

• Business compliance rules related to the business
process instance.

• The activities that have participated in the pro-
cess instance obtained from a log file, since the
various conditions associated to the control flow
operators can determine separate execution paths.

4

21st International Workshop on Principles of Diagnosis

• The values of the variables of dataflow that partic-
ipate in the business compliance rules. The vari-
ables of dataflow are those which can be instanti-
ated during the execution of the process.

With this information, the diagnosis layer has to ex-
ecute three steps:

1. Select which business compliance constraints are
related to the business process in accordance
with the log file (Compliance Constraint/Activity
Mapping).

2. Detect whether the business process has worked
correctly in this instance. This step is carried
out by building a Constraint Satisfaction Prob-
lem (CSP) with the involved business compliance
constraints and the dataflow instance.

3. If an inconsistency is detected, the diagnosis pro-
cess is used to determine the activity or activities
which are responsible of the non-compliance.

In order to perform the aforementioned determina-
tion of inconsistences and the later diagnosis, the busi-
ness compliance rules and the dataflow are mapped
into a CSP. This way, the diagnosis task can be per-
formed by using two proposals of diagnosis tech-
niques, as explained in Section 5.

The Diagnosis Layer has to store all the business
compliance rules and to obtain them in an efficient way
to determine which business compliance rules are in-
volved in the diagnosis process. As the business com-
pliance rules are represented by constraints, Constraint
Databases (CDBs) can be used to support and handle
these rules.

When dealing with a great quantity of data, the use
of a database is a mandatory decision. The storage of
business rules also implies storing all the details re-
lated to their variables, the domain of variables and
data persistence relationships. These types of informa-
tion and business rules expressed by Constraints are
supported by Constraint Database Management Sys-
tems (CDBMS).

CDBs were initially developed in 1992 (Kanellakis
et al., 1992). The basic idea behind the CDB model
is to generalize the notion of a tuple in a relational
database to a conjunction of constraints, since a tuple
in relational algebra can be represented as an equality
constraint between an attribute of the database and a
constant. In a real business process, great quantity of
compliance rules must be defined, hence a repository
is required in order to evaluate these rules as soon as
possible. The CDB used in this paper is based on La-
belled Object-Relational Constraint Database Archi-
tecture (LORCDB Architecture) (Gómez-López et al.,
2009).

5 CONTRACT-BASED DIAGNOSIS OF
BUSINESS PROCESSES

The previous section presents a proposed framework
composed of several layers. The Diagnosis Layer,
added to attain the objective of this paper, deploys two
strategies in order to provide two different diagnosis
solutions, both of which are based on the Constraint
Programming paradigm. Due to the different control
flow patterns that form the structure of a business pro-
cess, it is necessary to take the instance that has been

executed into account in order to determine the con-
straints that will compose the final CSP to be solved,
in the same way as for the input data introduced during
the execution of the process. That is, the information
about the input data and the activities that have been
executed are of interest since they will define which
business compliance constraints are related to that in-
stance and whether these constraints are satisfiable for
the input data in that instance of the process.

Therefore, the Diagnosis Layer of the framework re-
ceives the activities that have been executed in order to
build the correct CSP. The control flow patterns that
influence that execution trace are:
• Parallel Split (AND). This is a single thread of

execution that splits into two or more parallel
branches which execute activities concurrently.
Since all branches are executed, if the execu-
tion of the business process reaches this structure,
then all the activities, and consequently all their
related business compliance constraints, will be
taken into account in the diagnosis process.

• Multi-choice (OR/XOR). This is a single branch
that diverges into two or more branches. When
the execution of the single branch has finished,
the thread of control is passed to one or more
branches depending on the evaluation of a logi-
cal expression. Therefore, the CSP to solve will
be composed of only those business compliance
constraints associated to the activities in the exe-
cuted branches.

• Loop. This structure enables a group of activi-
ties of the business process to be executed at least
once depending on a logical condition. With re-
gard to the incorporation of business compliance
constraints into our CSP, and depending on the
kind of tasks performed by the activities within
the loop, two different cases can come up: (1)
when only the most recent execution of the activ-
ities in the loop must be considered, since previ-
ous executions only performed tasks that are can-
celled or deleted by the final execution; (2) when
all the executions of the loop must be taken into
account in the building of the CSP, since all the
executions of the activities perform relevant ac-
tions with the input data.
In the first case, the business compliance con-
straints and input data incorporated to the CSP
are those related to the activities executed in the
last iteration of the loop.
In the second case, the constraints derived from
the business compliance rules of the activities in
the loop must be repeated in the CSP as many
times as they are executed. In order to differenti-
ate between the input data introduced in each iter-
ation of the loop, the variables instantiated though
the input data are renamed so that they have dif-
ferent names for each iteration of the loop, both
as variables in the CSP and as variables in the dif-
ferent repeated constraints.

Once the constraints of the CSP are determined,
based on the execution trace of the business process,
then the diagnosis can be performed with either of
these two proposed solutions:

5

21st International Workshop on Principles of Diagnosis

• Diagnosis using reified constraints and
MaxCSP. This proposal takes the relation be-
tween each business compliance constraint and
one or more activities of the business process into
account. Each business compliance constraint
is transformed into a reified constraint, giving
rise to an overconstrained Constraint Satisfaction
Problem. Due to not existing any solution, there
is an error. Using the reified constraints to build
a MaxCSP, we try to minimize the number of
unsatisfied constraints, finding the minimal sets
of faulty activities by means of the calculation of
the minimal hitting sets.

• Diagnosis based on the attainment of the
MUSes. The idea of this proposal is to find
the Minimal Unsatisfiable Subsets of constraints
(MUSes, (de la Banda et al., 2003)) in order to
find what is wrong in an overconstrained CSP in-
stance. By finding these subsets, and calculating
their minimal hitting sets, the activities respon-
sible for rendering the business compliance con-
straints of the business process inconsistent can
be identified (Reiter, 1987). This proposal obtains
the minimal diagnosis.

Both proposals for diagnosis are given in greater de-
tail in the following subsections.

5.1 Diagnosis Using Reified Constraints and
MaxCSP

As mentioned above, each business compliance con-
straint is associated to the activities related to the par-
ticipating variables. This association is performed in
an automatic way, since it is only necessary to deter-
mine the variables related to each activity in order to
be able to relate business compliance constraints and
activities.

This proposal builds reified constraints based on
each business compliance constraint. It is necessary
to add new variables to our CSP to be solved. They are
boolean variables, one for each business compliance
constraint, which are used to build reified constraints,
associating each constraint to a boolean through an
equality.

Applying this idea to the example in Figure 1 gives
rise to 19 new boolean variables, one for each con-
straint (C1, C2, C3, . . .). The compliance constraints
are related to these boolean variables, forming reified
constraints as, for example:

C1 == (totalG <= totalI)
C2 == (totalG >= totalI ∗ 0.8)

Finally, the objective function is added to the
MaxCSP to solve. Its aim is to maximize the number
of activities which are not responsible of the unsatis-
factibility of the CSP. That is, the objective function
maximizes the number of boolean variables instanti-
ated to true.

Once this maximization is performed, it is necessary
to know the activities responsible for the inconsistency.
In order to do that, we take the sets of activities related
to the constraints whose associated boolean has been
instantiated to false, and find out the minimal collec-
tion of activities which cover all those sets. According
to diagnosis theory, the best way to find that activity or

activities is by calculating the hitting sets and minimal
hitting sets, whose definition is as follows:

Definition 3. Hitting Set (HS) for a collection of
sets of components C is a set of components H ⊆⋃
S∈C S such that H contains at least one element for

each S ∈ C.
Definition 4. Minimal HS. An HS of C is minimal

iff no proper subset of H is an HS of C. The minimal
HSs for a set of sets are formed by {H1,H2, . . . Hn},
where Hi is a minimal HS of components. The car-
dinality of Hi (|Hi|) is the number of components of
Hi.

The calculation of these minimal hitting sets of ac-
tivities provides us with the minimal diagnosis for a
business process instance.

As an example, for the reified constraints of the mo-
tivating example in Section 3, if the organizing com-
mittee of the conference receives less money that ex-
pected from the partners, and the CSP is solved, the ac-
tivities instantiated to false are ECR and IIT. It means
that the lack of money must be solved increasing the
conference rate, or decreasing the expenses of the in-
ternational invited talk.

5.2 Determination of MUSes for Contract-based
Diagnosis

This implementation is based on the attainment of all
the MUSes, which represent the most succinct expla-
nations, in terms of the number of involved constraints,
of infeasibility. Indeed, when we check the consis-
tency of a CSP, it is preferable to know which con-
straints are contradicting one another rather than only
knowing that the CSP as a whole is inconsistent.

Due to the computational complexity of the attain-
ment of all MUSes, some existing approaches were de-
signed to derive only some of the MUSes and not all of
the MUSes of an overconstrained CSP. Our proposal
is based on an improvement in (Gasca et al., 2007),
which is grounded in structural analysis in order to de-
termine all the MUSes efficiently. In that paper, several
techniques are presented, which improve the complete
technique in several ways depending on the structure
of the constraint network. These techniques make use
of the powerful concept of the structural lattice of the
constraints and neighbourhood-based structural analy-
sis to boost the efficiency of the exhaustive algorithms.
Since systematic methods for solving hard combinato-
rial problems are too computational expensive, struc-
tural analysis offers an alternative approach for fast
generation of all MUSes. Accordingly, experimental
studies of these new techniques outperform the best
exhaustive techniques since they avoid the necessity of
solving a high number of CSPs with exponential com-
plexity. However they do add certain new procedures
with polynomial complexity.

In the case of this paper, two techniques are applied
so that their computational complexity can be com-
pared:
• Exhaustive technique. It attains the MUSes by

means of a queue and a list to store the subsets
of satisfied and unsatisfied business compliance
constraints, respectively (Algorithm 1).

• Variable-Based Neighbourhood technique. It
uses the knowledge about the Variable-Based

6

21st International Workshop on Principles of Diagnosis

Algorithm 1 Algorithm to Obtain the MUSes (I)
//Being C the compliance constraints that presents
the inconsistency:
Q := Queue initialized with each constraint in C
MUS := List that will contain the MUSes, initial-
ized to empty
while Q is not empty do
{ci . . . cj} := Q.poll() //retry and remove the
head of Q
for ck ∈ {cj+1tocn} do

if NOT ∃SubSet1...n−1
{ci...cj} ∪ ck ∈ MUS //n is

cardinality of {ci . . . cj} then
if {ci . . . cj} ∪ ck is satisfiable then

Q.add({ci . . . cj} ∪ ck)
else

MUS.add({ci . . . cj} ∪ ck)
end if

end if
end for

end while

Neighbourhood explained in (Gasca et al., 2007).
To this end, this technique relates business com-
pliance constraints as neighbours if they share
certain Non-Observable Variables, which are
those variables whose values remain unknown
until the end of the execution of the process since
they are not determined by the role of the pool.
Algorithm 2 shows the details of this process.

Algorithm 2 Algorithm to Obtain the MUSes (II)
//Being C the compliance constraints that presents
the inconsistency:
Q := Queue/Stack initialized with each constraint
in C. //The data structure selected determines the
search strategy.
MUS := List that will contain the MUSes, initial-
ized to empty
while Q is not empty do
{ci . . . cj} := Q.poll() //choose an element of Q
neighbours := expand({ci . . . cj}) //gener-
ate neighbours according to the Variable-Based
Neighbourhood
for all ck ∈ neighbours do

if {ci . . . cj} ∪ ck is satisfiable then
Q.add({ci . . . cj} ∪ ck)

else
MUS.add({ci . . . cj} ∪ ck)

end if
end for

end while

As an improvement upon the technique presented
in (Gasca et al., 2007) when it comes to calculate
the neighbours of a set of business compliance
constraints, not all the neighbours are generated:
an order is established between the constraints, so
that only those neighbours that are subsequent to
all the constraints in the set are generated. In this
way we succeed in generating only new neigh-
bours, thereby avoiding the repeated study of the

satisfiability of the same collection of constraints.

Once all MUSes have been obtained, each MUS is
then associated to the activities related to the con-
straints that it contains. That is, for every MUS ob-
tained, we count on a set of activities related to that
MUS, in such a way that the activity or activities re-
sponsible for the unexpected behaviour is contained in
those groups. As in the technique based on reified con-
straints, the minimal hitting sets (Definition 4) are used
to find out that activities.

The calculation of these minimal hitting sets of ac-
tivities provides us with the minimal diagnosis for a
business process instance.

6 EXPERIMENTAL RESULTS
In this section, the results obtained in both proposals
are presented. In order to do that, and due to the tem-
poral complexity of the diagnosis using reified con-
straints is negligible (always lower than 1 millisec-
ond), only the temporal complexity of both algorithms
for obtaining the MUSes in Subsection 5.2 are com-
pared. Moreover, the minimal diagnosis results ob-
tained by the two techniques are presented.

Both techniques to calculate the MUSes obtain the
same diagnosis results, and do not present any false
positive. Therefore, Table 1 presents only the com-
putational complexity comparison. The tests have
been performed using different test cases with differ-
ent number of constraints. The table shows the aver-
age time spent by each technique for each test case
and the iterations performed (that is, the number of
subsets whose satisfactibility is checked). It is pos-
sible to notice that the exhaustive technique spends
rather more time than the Variable-Based Neighbour-
hood technique. The reason for this is that the ex-
haustive technique tries to find the MUSes by check-
ing all the possible subsets of constraints, whereas the
Variable-Based Neighbourhood technique is confined
to the subsets formed by neighbours.

Table 1: Comparison between MUSes algorithms

#business Exhaustive Variable-Based
compliance technique Neighbourhood
constraints technique

time (ms) iter. time (ms) iter.
9 2,588,891 502 12,547 15
9 1,031,110 256 15,437 24
9 1,004,750 256 12,953 15
9 336,000 129 63,844 16
9 114,265 67 48,235 16
9 114,703 67 46,531 12
11 3,354,115 951 32,313 37
11 426,234 131 10,109 16
11 742,188 157 17,438 22
13 2,326,453 514 15,156 21
13 3,004,571 725 21,063 31

Table 2 shows the different diagnoses obtained from
the different techniques, using different test cases for
the example of business process shown in Figure 1.
Those tests are developed from a satisfiable solution,

7

21st International Workshop on Principles of Diagnosis

changing some input data in order to cause inconsis-
tencies:

• Test case 1: Establishing a very low quantity of
accepted papers (NumAccPaper = 10).

• Test case 2: With only 60 participants (NumPT
= 60).

• Test case 3: Not receiving much money from the
partners, and spending too much money in invit-
ing an international speaker (partnerPart = 2001,
invitedTalk = 4250).

Table 2: Diagnosis results

test case Minimal Diagnosis
1 Accepted Paper Request
2 Registration
3 International Invited Talk

As mentioned above, both techniques find out the
minimal diagnosis. Regarding the diferencies in the
temporal complexities, it is due to the search strategy
followed by each technique. On the one hand, the
technique based on reified constraints is better when
it comes to find single faults. On the other hand, the
technique based on the attaintment of the MUSes per-
forms a search tree that first reaches the solutions with
multiple faults. Therefore, the technique to use must
be selected depending on the kinds of faults (single or
multiple) that use to appear in the process to diagnose.

7 CONCLUSIONS AND FUTURE WORK

In this work, a new framework for the diagnosis of
business processes is presented. This framework per-
mits to diagnose a business process instance in func-
tion of a set of business compliance rules and for input
and output data. The business compliance rules are
described by constraints and are stored in a Constraint
Database. Two types of techniques based on constraint
programming are herein defined for the attainment of
the minimal diagnosis in an efficient way, and consid-
ering the activities depending on the trace of the busi-
ness process instance.

In this paper, only one checkpoint of the business
process has been proposed, performing the diagnosis
for only an instance. For future work, it may be pos-
sible to locate alternative check points, in accordance
with the demand by companies, obtaining a run-time
diagnosis of the business process, and inferring more
information using several instances.

ACKNOWLEDGMENTS

This work has been partially funded by the Junta de
Andalucı́a by means of la Consejerı́a de Innovación,
Ciencia y Empresa (P08-TIC-04095) and by the Min-
istry of Science and Technology of Spain (TIN2009-
13714) and the European Regional Development Fund
(ERDF/FEDER)

REFERENCES
(de la Banda et al., 2003) Maria J. Garcı́a de la

Banda, Peter J. Stuckey, and Jeremy Wazny. Find-
ing all minimal unsatisfiable subsets. In PPDP,
pages 32–43. ACM, 2003.

(Gasca et al., 2007) R. M. Gasca, C. Valle, M. T.
Gómez-López, and R. Ceballos. Nmus: Structural
analysis for improving the derivation of all muses
in overconstrained numeric csps. pages 160–169,
2007.

(Ghose and Koliadis, 2007) Aditya Ghose and
George Koliadis. Auditing business process
compliance. In ICSOC ’07: Proceedings of the
5th international conference on Service-Oriented
Computing, pages 169–180, Berlin, Heidelberg,
2007. Springer-Verlag.

(Gómez-López et al., 2009) Marı́a Teresa Gómez-
López, Rafael Ceballos, Rafael M. Gasca, and
Carmelo Del Valle. Developing a labelled
object-relational constraint database architecture
for the projection operator. Data Knowl. Eng.,
68(1):146–172, 2009.

(Guillou et al., 2009) Xavier Le Guillou, Marie-Odile
Cordier, Sophie Robin, and Laurence Roze. Mon-
itoring ws-cdl-based choreographies of web ser-
vices. In Proceedings of the 20th International
Workshop on Principles of Diagnosis, pages 43–50,
June 2009.

(Kanellakis et al., 1992) Paris C. Kanellakis,
Gabriel M. Kuper, and Peter Z. Revesz. Con-
straint query languages, 1992.

(Namiri and Stojanovic, 2007) Kioumars Namiri and
Nenad Stojanovic. A semantic-based approach
for compliance management of internal controls
in business processes. In Johann Eder, Stein L.
Tomassen, Andreas L. Opdahl, and Guttorm Sin-
dre, editors, CAiSE Forum, volume 247 of CEUR
Workshop Proceedings. CEUR-WS.org, 2007.

(Reiter, 1987) R Reiter. A theory of diagnosis from
first principles. Artif. Intell., 32(1):57–95, 1987.

(Sadiq et al., 2007) Shazia Wasim Sadiq, Guido Gov-
ernatori, and Kioumars Namiri. Modeling control
objectives for business process compliance. In Gus-
tavo Alonso, Peter Dadam, and Michael Rosemann,
editors, BPM, volume 4714 of Lecture Notes in
Computer Science, pages 149–164. Springer, 2007.

(Weber et al., 2009) Barbara Weber, Shazia Wasim
Sadiq, and Manfred Reichert. Beyond rigidity - dy-
namic process lifecycle support. Computer Science
- R&D, 23(2):47–65, 2009.

(Weske, 2007) M. Weske. Business Process Man-
agement: Concepts, Languages, Architectures.
Springer-Verlag, 2007.

8

