
Guiding the Creation of Choreographed
Processes with Multiple Instances Based

on Data Models

Maŕıa Teresa Gómez-López, José Miguel Pérez-Álvarez,
Angel Jesús Varela-Vaca, and Rafael M. Gasca

Departamento de Lenguajes y Sistemas Informáticos,
Universidad de Sevilla, Seville, Spain

{maytegomez,josemi,ajvarela,gasca}@us.es
http://www.idea.us.es/

Abstract. Choreography in business processes is used as a mechanism
to communicate various organizations, by providing a method to isolate
the behaviour of each part and keeping the privacy of their data. Nev-
ertheless, choreography diagrams can also be necessary inside an orga-
nization when a single instance of a process needs to interact and be
synchronized with multiple instances of another process simultaneously.
The description, by business experts, and the implementation, by devel-
opers, of these choreographed models are highly complex, especially when
the activities involved in the processes exchange various data objects and
with different cardinalities. We propose the automatic detection of the
synchronization points, when a choreographed process model is needed.
The choreography will be derived from the analysis of the process model,
data objects consumed and generated through the process, and the data
conceptual model that relates the data objects. A graphical tool has been
developed to support where the synchronization points must be included,
helping to decide about the patterns that describe how a single model
can be transformed into a choreographed model.

Keywords: Business process choreography · Multiple instances ·
Conceptual model · Data model relation

1 Introduction

Process choreography is frequently related to a business contract between two 
or more organizations, used as a mechanism to communicate various entities, 
by providing a method to isolate the behaviour of each part and keeping the 
privacy of their data. Nevertheless, choreography diagrams can also be necessary 
within an organization when the relation of single and multiple instances need 
to be synchronized simultaneously. Unfortunately, one aspect that remains a 
challenge is the description and development of these choreographed business 
processes. The challenges that choreography establishes, such as correlation and



the inclusion of heterogeneous data, once the process is choreographed, have
been studied in [1,2]. However, the creation of the choreographed model remains
highly complex, specially when the data objects involved have an N:M cardinality
relation. Also, the choreography diagrams are typically too low-level, and the
terms of the interactions between the two parties are not always clear.

Regarding our proposal, in an activity-centric paradigm, such as BPMN [3],
where the process is described by an explicit order between the activities, the
choreography between processes becomes difficult to model and implement in a
Business Process Management System (BPMS). One example, where difficulty
in choreographing a model can be observed is given by the process that manages
the Calls for Residence to help University students that want to apply for an
assignment of a room in a residence. Figure 1 depicts a reduced example that is
enlarged in the next sections: (1) the call for residences is created; (2) students
apply by filling out a form; (3) administrative staff of the University evaluate
the proposals; (4) the administrative staff notify each student; and, finally, (5)
the accepted students can formalize documents and make payments. Although
the process is easy to model and understand, it is totally incorrect and incom-
plete, since the activities cannot be executed in the same and single instance.
For example, the activity Fill out the form can be executed several times for
each Publish Residence Call, and not only once per call as the model describes.
Something similar occurs between Evaluate the Proposals and Publish a list with
the resolution, since they are not executed the same number of times. The prob-
lem of the different number of executions of the activities cannot be solved with
a loop activity, since there exists a correlation between each execution of Fill
out the form and Formalize documents and make payments depending on the
student. This problem can be solved by using event handlers, however how to
create the pools, the activities for the synchronization and the exchanged data
is a hard problem that we want to reduce in this paper.

Sometimes inconsistencies in business processes are derived from the activi-
ties that consume and produce different data objects. For the example, Fill out
the form generates a data object Residence Call, but Fill our the form generates
only one Student Form per instance, and since it is a competitive process Eval-
uate the proposal uses a set of Student Forms. Therefore, in order to discover
the inconsistencies related to the data object evolutions and to help in the cre-
ation of a correct choreography, it is necessary to include the data objects in the
process model. In order to ascertain the points where choreography is required,
both an analysis of the expected relation between the objects described in the
Data Model, and the data evolution during the process model are needed. The
importance of the data perspective and its verification in business process mod-
els has been studied in previous work [4]; the challenge now is to ascertain how
it can affect the choreography.

In this paper, we propose the combination of various modelling paradigms:
business process models described by using BPMN, the data object evolution also
included in the BPMN model, and the Data Model that supports the managed
data. With these three models combined, it is possible to analyse the process



Fig. 1. Example of business process which needs to be choreographed.

Fig. 2. A piece of the conceptual model.

correctness according to the exchanged data. If any inconsistency is found, the
necessary modifications are proposed. The main advantages of our proposal are:
(1) we define a model that combines various and different paradigms that are
easy to describe independently, but difficult to choreograph; (2) the relations
between the objects to generate a correct choreographed model are analysed
providing the mechanisms to create a correct model; and, (3) the warnings and
the transformation patterns have been implemented on a graphical tool as an
extension of ActivitiTM .

The remainder of this paper is organized as follows. Section 2 presents the
formalization of the concepts and the defined model, including a motivating
example. Section 3 presents the suggested approach for the automatic detection
of synchronization points and how they can be implemented. Section 4 discusses
related work. Finally, Sect. 5 concludes and presents lines for further research.

2 Formalization of Concepts

The modelling paradigms that are combined and included in the formaliza-
tion are:

– Conceptual Model for Data Modelling. The data management used in a
process is crucial in achieving the established objectives. Various models can
be used to describe the data relation, but we propose the use of a Conceptual
Model (cf. Fig. 2) for a higher level of abstraction managed by using Object-
Relational Mapping [5].

– BPMN for Business Process Modelling. The main goal of BPMN [3] is
to provide a standard notation which is readily understandable by all business
users, from the business analysts that create the initial drafts of the processes,
to the technical developers responsible for implementing the technology, and
finally, to the business people who will manage and monitor those processes.



Fig. 3. Example of data object relations.

Thus, BPMN creates a standardized bridge for the gap between the business
process design and process implementation.

– Data Object Life-cycle Modelling. Although BPMN is not primarily
designed for data modelling, there exists a set of notations that enables the
designer to model the data involved in a business process. The primary con-
struct of BPMN for modelling data within the process flow is the Data Object
element. The Data Objects can include the State of Data Objects at various
points in a process [3]. An activity in a process can Consume a Data Object,
which implies that the Data Object is in a particular state. When the activity
is executed, the object may transit to a new state (an object in a new state is
Produced). Figure 3 represents an example of accessing the data objects related
to Activity A. A data flow edge from a data object to an activity describes a
read access to an instance of the data object (cf. Data object X), which has
to be in this state to execute the activity. Likewise, a data flow edge from an
activity to a data object describes a write access (cf. Data object W), which
either creates a data object instance if it does not already exist (labelled with
[new] as proposed in [6]), or updates the instance if it already exists. A data
flow edge connecting a data object with a sequence flow indicates the data
object is flowing through that connection, and the state of the flowing data
object (cf. in Fig. 3, Data Object W in State U). Data objects can be modelled
as a single object or as a collection of objects (marked by three parallel bars,
|||). Only the execution of an activity can imply the creation of a new object,
although it is possible to represent different states of an object depending on
the executed branch, for example, after the execution of activity A, an XOR-
split is executed, where the data object W in state U flows through the upper
branch, or in state K for the lower branch.

2.1 Model Formalization

The model applied in the formalization and automatic choreography of our prob-
lem is composed of two sub-models: (1) one model to describe the Conceptual
Model (CMGraph); and (2) one model to describe the components related to the
business process model (BPGraph).



Fig. 4. Labelled directed graph to formalize the BPGraph.

Formalization of the Conceptual Model. A conceptual model is described
as a connected labelled graph (CMGraph) composed of nodes (EN) and edges
(AS), CMGraph = 〈EN, AS〉, where:

– EN is the disjoint union of the entities of the conceptual model (e1 . . . en),
– AS is the set of edges that represent the association between two entities (ei,

ej). Each edge can be labelled with two values that represent the cardinality
(cardi, cardj), and each one can represent simple (1 or 0..1) or multiple (0..N
or 1..N) cardinality.

Formalization of the Enriched Process Model. The enriched business
process is modelled as a directed labelled connected graph (BPGraph), based on
the annotated graph presented in [7,8], composed of nodes (C) and edges (F ),
BPGraph = 〈C, F〉 whose equivalences are shown in Fig. 4, where:

– C is the disjoint sets of components formed of activities A, events E, and
gateways G:

• A is the set of activities.
• E is the set of events, that can be partitioned into disjoint sets of one

start event Es, intermediate events Ei and end events Ee. Just one start
event is allowed in the model, and therefore there is one and only one
node whose input degree is equal to 0.

• G can be partitioned into disjoint sets of parallel-fork gateways GF ,
parallel-join gateways GJ , data-based XOR-decision gateways GD and
XOR-merge gateways GM .

– F is the set of edges that represent the association between the components,
such as activities. Each edge is labelled with two values (origin and destina-
tion of the arc) 〈di, do〉. From the point of view of the nodes (C components),
dConsumed and dProduced are the incoming and outgoing data objects respec-
tively. Each Data Object (DO), associated to the origin (di) or to the end
(do) of each directed edge, is described by the tuple 〈Entity, Cardinality, new〉,
where:

• Entity is one of the entities EN described in the CMGraph (∈ e1 . . . en),
• Cardinality : single or multiples (collection represented by |||) objects,
• new: a Boolean that represents whether the data object is [new].



Fig. 5. No choreographed process for the management of University Residences.

2.2 Application Case Study

The business process shown in Fig. 5 extends the previous example for the assign-
ment of rooms in the University Halls of Residences of Seville. Firstly, the call for
positions is published, and students can apply by filling out a request form. Once
the requests have been sent to the administration staff, a competitive analysis is
performed. According to the resolution, the students are notified. Each student
analyses whether the assigned residence is suitable and decides whether to claim.
If a student decides to claim, then the documentation is revised again. The final
decision is sent to each candidate, and the final list is published.

3 Guiding the Transformation to a Consistent
Choreographed Model

As explained in the introduction, a correct business process workflow can be
incorrect for the data object consumed and produced in the model. The necessity
or not to transform a BPMN model into another choreographed model can be
derived from the necessity to synchronize processes with multiple and different
number of instances.

3.1 Choreography Derived from Data Object Relation

As explained previously, incorrectness in business processes can be detected
through the data used in each activity, and therefore the choreography becomes
necessary. This analysis is based on allocating the activities involved with objects
with the same cardinality in the same pool, where a pool is the representa-
tion of a participant in a collaboration [3]. The cardinality and relation of the
objects are described in the conceptual model. For the fragment of the Con-
ceptual Model shown in Fig. 2, two activities that consume Residence Call and
Residence Request respectively, cannot be in the same pool, since both data
objects have a 1:N relation in the conceptual model. This incompatibility arises
due to the fact that both activities cannot be executed the same number of times
in the same instance, and for each evaluation of a Residence Call, several man-
agements of Residence Request can be performed. Otherwise, two activities that
consume Residence Call and a set of Residence Requests, respectively, can be



in the same pool, since both data objects have a 1:N relation in the conceptual
model. In an equivalent way, the activities that manage a Residence Request and
a Claim, can be in the same pool since there exists a 1:1 relation between them
in the conceptual model. The relations in the conceptual model are determined
by a direct association between two entities, such as between Residence Call and
Residence Request, or transitively, such as between Residence Call and Claim.
Derived from this idea, we include the following definitions:

Definition 1. Data Context. A Data Object D is in the same context as
a Data Object D’ iff:

– D and D’ are single objects and they have a 1:1 relation in the conceptual
model,

– D is a single object and D’ is a collection of objects, and they have a 1:N
relation in the conceptual model,

– D is a collection of objects and D’ is a single object, and they have an N:1
relation in the conceptual model,

– D and D’ are collections of objects, and they have a 1:1 or N:N relation in the
conceptual model.

Definition 2. Points of Choreography. Being fi an edge that connects two
C components (ci, cj) with the data object di and dj , if di and dj do not belong
to the same Data Context, then fi is a point of choreography. There are two
types of Points of Choreography:

– Many-to-one point: In BPGraph, it implies that cardi > cardj in CMGraph,
and the cardinality of di is ≤ to the cardinality of dj . This is, for example,
the relation between Residence Call and Residence Request.

– One-to-many point: It implies that cardi < cardj in CMGraph, and di≥ dj
in BPGraph. This is, for example, the relation between Residence Request and
Collection of Residence Request.

In order to model the Point of Choreography following BPMN 2.0 [3], it is
necessary to take into account that each interaction has an initiator or sender
(the party sending the message), and a recipient or receiver (the party receiving
the message, who may reply with a return message). In order to choreograph the
instances of two pools, multi-instance activities (≡) to send and receive messages
are used. They are divided into:

– Loop Activity (�) is a type of activity that acts as a wrapper for an inner
activity that can be executed multiple times in sequence. The Loop Activity
executes the inner Activity as long as the loop Condition evaluates to true.

– Parallel Activity (|||) is a type of activity that acts as a wrapper for an
activity that has multiple instances spawned in parallel, and can be used to
receive the messages of another process.



Fig. 6. Example of annotated process about University Residences.

3.2 Patterns for Synchronization Point Identification

Assuming that BPGraph must be correct according to the workflow [9–11], our
analysis about the data aspect correctness is centred in the existence of various
pools to support the components that manage different Data Contexts than
pools. In order to ascertain that a business process model formed by one or
more than one pool is correct related to exchanged data, two properties must be
satisfied:

1. Every dConsumed and dProduced by the components ci of a pool P , must belong
to the same Data Context of P (Definition 1).

2. For every point of synchronization (Definition 2) where (ci, cj) are involved,
ci and cj must belong to different pools.

If it is found an incorrect synchronization point that does not satisfy the first
property, or a dProduced that does not satisfy the second property, the following
warnings (in Fig. 6) will be annotated in the original model (Fig. 5):

1. Data Objects Consumed and Produced by an Activity (Fig. 7.a): If
dConsumed (di) and dProduced (dj) by a component Ci do not belong to the
same Data Context, two situations and labelled patterns can be found:
– If di is a new data object, such as the activity Fill out the form, then syn-

chronization is necessary. To synchronize the instance of di and dj , a new
activity to correlate the instances of different tasks must be located imme-
diately before the component Ci (Fig. 7.a.I), such as the activity Select the
Residence Call for the example of Fig. 6. This is necessary because for each
di, several dj can be created, and therefore when a dj is created, it is nec-
essary to determine the corresponding di.

– Else, two types of synchronization can be carried out:
• Many-to-One Relation (Fig. 7.a.II)) advises the creation of syn-

chronization by means of a Loop Activity that forms a wrapper around
for the inner activity Ci, which can be executed multiple times to send
messages, and a single activity that receives the messages. In Fig. 6,
an example is the activity Notify the resolution.



Fig. 7. Patterns of synchronization

• One-to-Many Relation (Fig. 7.a.III)) advises the creation of
synchronization by means of the single activity Ci that also sends
messages to synchronize with a Parallel Activity that receives these
messages.

2. Points of Synchronization between two Activities (Fig. 7.b): The syn-
chronization points involve components that must be in different pools. It
implies that a correct choreographed process must have, at least, one pool for
each Data Context. For the example, at least, two pools must be necessary
to cover the activities that manage the data objects {Residence Call, Collec-
tion of Residence Request} and {Residence Request, Claim}, respectively. In
order to highlight the components that can belong to the same pool, we have
coloured some activities of Fig. 6 to distinguish the tasks of both pools. There
exist two types of synchronization to satisfy the properties expressed before
when di and do are not in the same Data Context:
– Many-to-One Relation (Fig. 7.b.I) which synchronizes by means of two

extra activities: a Loop Activity, to send messages; and an activity to
receive the messages in the another pool, such as the activity Notify the
resolution.

– One-to-Many Relation (Fig. 7.b.II), which synchronizes by means of
two extra activities: a Parallel Activity, to receive messages; and a single
activity to send the messages, such as Send Residence Request.

3.3 Architecture of the Implementation

In order to evaluate our proposal, we have implemented a graphical tool that
enables the inclusion of a connection to a database to create the Conceptual
Model automatically using ORM (Hibernate in our case). It has been developed
as an extension of ActivitiTM [12] with additional components (cf. Fig. 8), since
this is an open-source distribution that offers the business expert a friendly



Fig. 8. Screenshot of the ActivitiTM process modeller plugin.

interface to model the process using BPMN elements and easy to extend with
new components and functionality.

ActivitiTM is a light-weight workflow and Business Process Management
Platform targeted at business people, developers and system administration.
Since neither the data state description nor warning patterns are included in
ActivitiTM , an extension of Eclipse-based ActivitiTM Designer has been devel-
oped to support the new graphical elements, and included in the graphical tool
(with a video available in: http://www.idea.us.es/condchoreography/).

4 Related Work

The complexity of managing the choreography of business processes is well-
known. Certain studies have been published describing the implementation of
business process choreographies [13,14]. However, these only take into account
the control flow, although the data flow across messages is also an impor-
tant aspect. In [15], the authors introduce a first proposal about data-aware
collaboration.

According to the data inclusion the process models, it is crucial to analyse
the evolution of the objects [16], and to determine whether there are data depen-
dencies and which these dependencies are [17] in order to define whose model
can be aligned in BPMN model [6,18].

The automating data exchange in a process choreography has been solved
in [1], where the choreography model is known. Nevertheless, we consider the
difficulty encountered when faced with how to create a correct choreography
model specially derived from the limitations of BPMN studied in [19], or how to
perform the choreography using technologies such as BPEL [20].

http://www.idea.us.es/condchoreography/


[21,22] propose extensions to choreography modelling by means of interaction
patterns between the involved participants. But these works do not study the
choreography problem derived from the synchronization of multiple instances
necessary for the data dependencies. They only face the choreography problem
when the activities must be executed by different organizations, but with a one-
to-one relation between the instances executed in the different pools that tend
to be produced in conversation environment. Khalaf et al. have introduced an
approach for the partitioning of single process models into multiple participants
[2,23] including the data aspect. However this partitioning cannot detect the
necessity to synchronize N instances of a process with another derived from the
data that manage.

5 Conclusions and Future Work

In this paper, we propose an automatic detection of the necessary and type of
synchronization points in a process models derived from the exchanged objects.
The detection of the synchronization points is based on the comparison between
the type and cardinality of the data objects consumed and produced by the com-
ponents of a business process, and on the relation in the conceptual model. We
have developed a graphical tool as an extension of Activiti, where the business
process, conceptual model and data object description can be included in the
same model, and the warnings related to synchronization correctness are located
in the process automatically. The result has been applied to a real example of
the University of Seville.

As future work, we propose an extension of the proposal to create a new
synchronized model automatically. Also we consider relevant the application
of user stories combined with business processes to facilitate the recovery of
requirements, and the automatic creation of lanes and pools during the process
of choreography.

Acknowledgement. This work has been partially funded by the Ministry of Sci-
ence and Technology of Spain (TIN2015-63502-C3-2-R) and the European Regional
Development Fund (ERDF/FEDER). We would like to thank SACU of the University
of Seville for the valuable information that has contributed towards the development
of the ideas in this paper.

References

1. Meyer, A., Pufahl, L., Batoulis, K., Fahland, D., Weske, M.: Automating data
exchange in process choreographies. Inf. Syst. 53, 296–329 (2015)

2. Khalaf, R., Kopp, O., Leymann, F.: Maintaining data dependencies across BPEL
process fragments. Int. J. Coop. Inf. Syst. 17(3), 259–282 (2008)

3. OMG: Object Management Group, Business Process Model and Notation (BPMN)
Version 2.0. OMG Standard (2011)

4. Borrego, D., Gasca, R.M., Gómez-López, M.: Automating correctness verification
of artifact-centric business process models. Inf. Softw. Technol. 62, 187–197 (2015)



5. Vennam, S., Dezhgosha, K.: Application development with object relational map-
ping framework - hibernate. In: Proceedings of the 2009 International Conference
on Internet Computing, ICOMP 2009, 13–16 July 2009, Las Vegas, Nevada, USA,
pp. 166–169 (2009)

6. Meyer, A., Pufahl, L., Fahland, D., Weske, M.: Modeling and enacting complex
data dependencies in business processes. In: Daniel, F., Wang, J., Weber, B. (eds.)
BPM 2013. LNCS, vol. 8094, pp. 171–186. Springer, Heidelberg (2013). doi:10.
1007/978-3-642-40176-3 14

7. Weber, I., Hoffmann, J., Mendling, J.: Semantic business process validation. In:
3rd International Workshop on Semantic Business Process Management at ESWC
2008, SBPM 2008, June 2008

8. Gómez-López, M.T., Gasca, R.M., Pérez-Álvarez, J.M.: Decision-making support
for the correctness of input data at runtime in business processes. Int. J. Coop.
Inf. Syst. 23(4), 1–29 (2014)

9. Dijkman, R.M., Dumas, M., Ouyang, C.: Semantics and analysis of business process
models in BPMN. Inf. Softw. Technol. 50(12), 1281–1294 (2008)

10. Borrego, D., Eshuis, R., López, M.T.G., Gasca, R.M.: Diagnosing correctness of
semantic workflow models. Data Knowl. Eng. 87, 167–184 (2013)

11. Kheldoun, A., Barkaoui, K., Ioualalen, M.: Specification and verification of complex
business processes - A high-level petri net-based approach. In: Motahari-Nezhad,
H.R., Recker, J., Weidlich, M. (eds.) BPM 2015. LNCS, vol. 9253, pp. 55–71.
Springer, Cham (2015). doi:10.1007/978-3-319-23063-4 4

12. Rademakers, T.: Activiti Documentation (2015)
13. Decker, G., Weske, M.: Interaction-centric modeling of process choreographies. Inf.

Syst. 36(2), 292–312 (2011)
14. van der Aalst, W.M.P., Lohmann, N., Massuthe, P., Stahl, C., Wolf, K.: Multiparty

contracts: Agreeing and implementing interorganizational processes. Comput. J.
53(1), 90–106 (2010)

15. Knuplesch, D., Pryss, R., Reichert, M.: Data-aware interaction in distributed
and collaborative workflows: Modeling, semantics, correctness. In: 2012 8th Inter-
national Conference on Collaborative Computing: Networking, Applications and
Worksharing, CollaborateCom 2012, Pittsburgh, PA, USA, October 14–17, pp.
223–232 (2012)

16. Herzberg, N., Meyer, A., Weske, M.: Improving business process intelligence by
observing object state transitions. Data Knowl. Eng. 98, 144–164 (2015)

17. Senderovich, A., Rogge-Solti, A., Gal, A., Mendling, J., Mandelbaum, A., Kadish,
S., Bunnell, C.A.: Data-driven performance analysis of scheduled processes. In:
Motahari-Nezhad, H.R., Recker, J., Weidlich, M. (eds.) BPM 2015. LNCS, vol.
9253, pp. 35–52. Springer, Cham (2015). doi:10.1007/978-3-319-23063-4 3

18. Gómez-López, M.T., Borrego, D., Gasca, R.M.: Data state description for the
migration to activity-centric business process model maintaining legacy databases.
In: Abramowicz, W., Kokkinaki, A. (eds.) BIS 2014. LNBIP, vol. 176, pp. 86–97.
Springer, Cham (2014). doi:10.1007/978-3-319-06695-0 8

19. Cornax, M.C., Dupuy-Chessa, S., Rieu, D., Mandran, N.: Evaluating the appro-
priateness of the BPMN 2.0 standard for modeling service choreographies: Using
an extended quality framework. Softw. Syst. Model. 15(1), 219–255 (2016)

20. Decker, G., Kopp, O., Leymann, F., Pfitzner, K., Weske, M.: Modeling service
choreographies using BPMN and BPEL4Chor. In: Bellahsène, Z., Léonard, M.
(eds.) CAiSE 2008. LNCS, vol. 5074, pp. 79–93. Springer, Heidelberg (2008). doi:10.
1007/978-3-540-69534-9 6

http://dx.doi.org/10.1007/978-3-642-40176-3_14
http://dx.doi.org/10.1007/978-3-642-40176-3_14
http://dx.doi.org/10.1007/978-3-319-23063-4_4
http://dx.doi.org/10.1007/978-3-319-23063-4_3
http://dx.doi.org/10.1007/978-3-319-06695-0_8
http://dx.doi.org/10.1007/978-3-540-69534-9_6
http://dx.doi.org/10.1007/978-3-540-69534-9_6


21. Barros, A., Dumas, M., Hofstede, A.H.M.: Service interaction patterns. In: Aalst,
W.M.P., Benatallah, B., Casati, F., Curbera, F. (eds.) BPM 2005. LNCS, vol. 3649,
pp. 302–318. Springer, Heidelberg (2005). doi:10.1007/11538394 20

22. Barros, A., Hettel, T., Flender, C.: Process choreography modeling. In: vom Brocke,
J., Rosemann, M. (eds.) Handbook on Business Process Management. International
Handbooks on Information Systems, pp. 257–277. Springer, Heidelberg (2010)

23. Khalaf, R., Leymann, F.: E role-based decomposition of business processes using
BPEL. In: 2006 IEEE International Conference on Web Services (ICWS 2006),
18–22 September 2006, Chicago, Illinois, USA, pp. 770–780 (2006)

http://dx.doi.org/10.1007/11538394_20
https://www.researchgate.net/publication/316743448

	Guiding the Creation of Choreographed Processes with Multiple Instances Based on Data Models
	1 Introduction
	2 Formalization of Concepts
	2.1 Model Formalization
	2.2 Application Case Study

	3 Guiding the Transformation to a Consistent Choreographed Model
	3.1 Choreography Derived from Data Object Relation
	3.2 Patterns for Synchronization Point Identification
	3.3 Architecture of the Implementation

	4 Related Work
	5 Conclusions and Future Work
	References


