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Abstract: Research in the field of social robotics is allowing service robots to operate in environments
with people. In the aim of realizing the vision of humans and robots coexisting in the same envi-
ronment, several solutions have been proposed to (1) perceive persons and objects in the immediate
environment; (2) predict the movements of humans; as well as (3) plan the navigation in agreement
with socially accepted rules. In this work, we discuss the different aspects related to social navigation
in the context of our experience in an indoor environment. We describe state-of-the-art approaches
and experiment with existing methods to analyze their performance in practice. From this study, we
gather first-hand insights into the limitations of current solutions and identify possible research direc-
tions to address the open challenges. In particular, this paper focuses on topics related to perception
at the hardware and application levels, including 2D and 3D sensors, geometric and mainly semantic
mapping, the prediction of people trajectories (physics-, pattern- and planning-based), and social
navigation (reactive and predictive) in indoor environments.

Keywords: motion prediction; social navigation; service robotics; path planning; sensors

1. Introduction

Unlike a few years ago, the presence of robots in social environments has become
commonplace. Nowadays, it is possible to find robots that assist elderly people [1], others
that help in teaching in educational institutions [2], robots that guide people at airports [3]
and museums [4], robots that perform mail delivery and basic tasks in offices [5], and robots
that perform cleaning tasks in homes such as the Roomba [6]. For this reason, the number
of research papers trying to address issues related to social robotics has been increasing
considerably. Of course, the number of subtopics within the field of social robotics can be
very broad and some papers address more specific topics than others. In this paper, we
aimed to present a qualitative and, in some cases, a quantitative analysis of the elements
involved in social navigation in indoor environments: from perception, through mapping,
the prediction of people trajectories and finally, the specific topic of social navigation, which
we consider to be part of the flow of elements that need to be addressed in order to develop
socially acceptable robots coexisting with people. We discuss each topic by presenting the
most prominent and recent related works.

Perception is the starting point to implement correct navigation. Nowadays, there is
a wide variety of sensors that allow robots to see what is happening around them. RGB-
D cameras are one of the most popular sensors, due to the richness of the information
provided and their reduced price in relation to other types of sensors. On the other side, it
is possible to find 2D and 3D LiDARs which can reach a longer sensing distance compared
to cameras. Applications can also be found using sonar and other less popular sensors.
Section 2 provides details on the characteristics and limitations of these sensors as well as
combined approaches such as data fusion.
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The second aspect that we consider in this work is mapping, since solutions in indoor
environments usually make use of a map that facilitates navigation. This is perhaps one of
the main differences between outdoor and indoor environments, since indoor environments
can be limited to a room, a floor, or an entire building. Outdoor environments, instead,
require more extensive plans where care for details is less important. In this field, there is a
great diversity of solutions, whose relevance and applicability depend on the application
and the specific robot that has to navigate in the target environment. The most relevant
types of mapping currently used are presented in Section 3, as well as their limitations
and applications.

The third issue that this paper addresses is the prediction of trajectories of individuals.
While social environments may have a variety of dynamic elements, such as doors and
chairs that continuously change their state, people are a crucial factor beyond any object.
This is because after correctly identifying an object and its current state, the robot can
execute certain behaviors such as evading the object without taking into account further
constraints. Instead, for the detection of people, it is not enough to know their current
state, but it is necessary to know their future one in the most accurate way, so that the robot
not only navigates around them without colliding, but also does it in a socially acceptable
manner. This topic will be expanded in Section 4. Moreover, in Section 5, we discuss the
corresponding navigation methods, where different possible classes of solutions exist. We
will focus on predictive and reactive navigation, their distinctive features, as well as their
advantages and disadvantages.

Section 6 surveys the most relevant datasets related to applications in the different
aspects of social navigation. Furthermore, finally, in Section 7, we present some conclusions
based on our study of the subject and future directions regarding the different aspects
discussed in this paper. In summary, the contributions of this work are as follows:

• We complete a list of commercial sensors with their characteristics and limitations
used in social navigation to ease their selection according to specific application re-
quirements;

• We present different methods for successful navigation, including mapping and
trajectory prediction, along with their advantages and limitations, to facilitate their
adoption depending on the target scenario;

• We list the available datasets and related work about perception and prediction, which
could support the evaluation of social robotics solutions.

2. Perception

As mentioned above, perception is the starting point for building a successful naviga-
tion system. However, the possibilities in the selection of one or several sensors are wide,
so this section aims to present the most used commercial sensors in service robots, as well
as their limitations. The list of sensors presented in this section is based on the product list
of some robotics stores such as ROS Components [7] and RobotShop [8]. It is also necessary
to clarify that we do not seek to highlight any particular sensor reference, but just show
that the selection of the sensors to be used will exclusively depend on the application and
its scope. In Figure 1, we present the type of data acquired by different sensors. Figure 1a–c
correspond to an RGB-D camera, where is possible to obtain color images, depth images,
point-clouds and in specific cases, infrared images. Figure 1d depicts the output obtained
with a 2D LiDAR, where a single layer is obtained, in comparison with the result obtained
with a conventional 3D LiDAR (Figure 1e), which contains multiple layers from different
angles. Finally, Figure 1f shows the data obtained with a solid-state 3D LiDAR.
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(a) (b)

(c) (d)

(e) (f)
Figure 1. Information given by different types of sensors: (a) color image given by the Xtion Pro Live
camera; (b) depth image given by the Xtion Pro Live camera; (c) point-cloud obtained from the color
and depth image given by the Xtion Pro Live camera; (d) information given by a 2D LiDAR (scan
topic from the Velodyne_pointcloud package using a Velodyne VLP-16); (e) information given by a
3D LiDAR (point-cloud topic from the Velodyne_pointcloud package using a Velodyne VLP-16); and
(f) information given by a solid-state LiDAR (Livox Horizon).

2.1. RGB-D Cameras

Cameras are perhaps the most widely used sensor in robotics regardless of whether it
is a social application or not, due to the large amount of information that can be extracted
from them. RGB-D cameras provide depth information in addition to color images, which
makes them suitable for 3D applications. Table 1 presents a list of RGB-D cameras that we
consider common in the social robotic field. Standard RGB cameras are not included in the
list due to the great variety of references for this kind of sensor.

Clearly, one of the most relevant features of RGB-D cameras is the color image that
other sensors such as LiDARs do not provide. This feature has been exploited in recent
years for applications that require the segmentation and detection of objects with high
precision, such as those that integrate Convolutional Neural Networks (CNNs) for the
detection of faces, human bodies and objects in indoor and outdoor environments such
as chairs, doors, walls, floors, cars and trees. Furthermore, for applications that require
point-cloud processing, the resolution and frequency that this type of sensor provides are
certainly better than those of other sensors. For example, cameras with 640 × 480 pixels of
depth resolution can provide up to 307,200 points per sample and 30 samples per second;
these numbers could even be improved if a camera with better depth resolution is used.
Another important advantage is their price range in relation to the amount of information
provided: their average price is lower than those for 2D or 3D LiDARs, and the color and
depth information can be obtained at high frequencies.

Conversely, the field of view (FoV) of cameras, although typically higher in the vertical
axis, is more limited in the horizontal axis than that of 2D or 3D LiDARs. Cameras cover
at best 110 degrees, while LiDARs can reach up to 360 degrees, covering completely the
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robot’s surroundings. Another aspect that was a problem until the appearance of references
such as ZED and ZED 2 [9] was the detection range, since before these, most cameras did
not reach ranges greater than 4 m. Now, products such as the ZED camera can reach ranges
of 25 m. Furthermore, depending on the application to be implemented, the FoV could be
reduced to a useful area. The restricted FoV, however, could result in issues. For example,
the authors in [10] reported distortion at the edge of the image when detecting human body
limbs (see Figure 2).

Figure 2. Distorted body detection using the Astra Body Tracker SDK.

Thanks to the characteristics of this sensor, multiple applications are possible, such
as the aforementioned segmentation and detection, which allow robots to have a better
understanding of their environment, as well as both geometric and semantic mapping
applications. Navigation applications are also possible, but with certain restrictions due to
their limited horizontal FoV. For this reason, a 2D or 3D LiDAR is often used in addition.
Finally, for robots in social environments, the ability to detect and recognize people using
cameras can improve human–robot interaction skills. Nonetheless, applications requiring a
high level of privacy may limit or even forbid the use of cameras.

Table 1. The relevant characteristics of cameras used in service robots. RGB and depth resolution
working at 30 fps. FoV values correspond to the depth image. The Intel D435i and D455 include an
IMU. Elements with (*) are currently discontinued.

Reference FoV Depth RGB Depth Price(H × V) Range (m) Resolution Resolution

Orbbec Astra Pro [11] 60◦ × 49.5◦ 0.4–8 1280 × 720 640 × 480 USD 149.99
Orbbec Persee [11] 60◦ × 49◦ 0.6–8 1280 × 720 640 × 480 USD 239.99

RealSense D435i [12] 87◦ × 58◦ 0.3–3 1920 × 1080 1280 × 720 USD 209
RealSense D455 [12] 87◦ × 58◦ 0.6–6 1280 × 800 1280 × 720 USD 249
×tion Pro Live [13] 58◦ × 45◦ 0.8–3.5 1280 × 1024 640 × 480 USD 300 *

×tion 2 [13] 74◦ × 52◦ 0.8–3.5 2592 × 1944 640 × 480 USD 430
Azure Kinect DK [14] 75◦ × 65◦ 0.5–3.86 3840 × 2160 640 × 576 USD 399

ZED [9] 90◦ × 60◦ 0.5–25 1920 × 1080 1920 × 1080 USD 349
ZED 2 [9] 110◦ × 70◦ 0.2–20 1920 × 1080 1920 × 1080 USD 449

2.2. 2D LiDARs

Unlike RGB-D cameras, 2D LiDARs have a wider price range, reaching prices up to
thousands of dollars (Table 2). This is due to three general aspects. First, their maximum
range, which can vary from 5 m (in the case of the Yujin YRL2-05 [15]) to 100 m or more (in
this section, we decided to include the most common references with a range no greater
than 25 m, which is enough for most applications in service robotics). The second factor
that affects the price is the resolution of the sensor: some of them can provide 1600 points
per sample with a separation angle of 0.225 degrees, such as the RPLiDAR A3; others can
provide only 360 points per sample with a separation angle of 1 degree, as is the case of the
RPLiDAR A1M8 and the Sick TIM551. The third important feature is the frequency of the
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sensor, which indicates how many samples per second are obtained. For example, in the
case of the Hokuyo UST-10LX and UST-20LX, samples are obtained every 0.025 s—while for
others such as the RPLiDAR A1M8, samples are obtained approximately every 0.18 s. These
three aforementioned characteristics should be considered before acquiring a LiDAR sensor.

One advantage of 2D LiDARs over cameras is their wide horizontal field of view.
However, being a 2D sensor with no vertical range, their applications are limited. The most
common uses for this type of sensor are mapping, localization and navigation. Nonetheless,
unlike 3D sensors such as RGB-D cameras and 3D LiDARs, the amount of information
is limited to the extraction of data at the height at which the sensor is located, so certain
objects relevant for a given task may not be sensed. Some works have opted for alternatives
to create 3D solutions based on 2D LiDARs, for example, by adding an additional degree
of freedom to the sensor using a servomotor [16], or by changing the sensor orientation to
obtain information on the cross-sectional area of the environment as the robot moves [17].
Additionally, the extraction of information beyond detecting an obstacle is really scarce.
An example of this can be the detection of legs with packages such as leg_detector [18],
but the accuracy is really low with a large number of false positives, as chair or table legs
may be mistakenly detected as human legs.

Due to the limitations of 2D LiDARs, many works have opted for fusing data from
different sensors—including by placing a camera in the front part of the robot for semantic
information processing in addition to a 2D sensor to consider possible obstacles in the
rear part of the robot. Moreover, this type of combination is used to improve the range
of camera-based applications. For example, many RGB-D cameras offer a depth range no
larger than 4 m, but they could be combined with 2D LiDARs to estimate the position of
the person at more than 4 m.

Table 2. Relevant characteristics of 2D LiDARs used for perception in service robots.

Reference FoV Range (m) Resolution Frecuency Price

Hokuyo UST-10LX [7] 270◦ 0.06–10 0.25◦ 40 Hz USD 1600
Hokuyo URG-04LX [7] 240◦ 0.06–4.095 0.36◦ 10 Hz USD 2100
Hokuyo UST-20LX [7] 270◦ 0.06–20 0.25◦ 40 Hz USD 2700

Sick TIM551 [7] 270◦ 0.05–10 1◦ 15 Hz USD 1880
Sick TIM571 [7] 270◦ 0.05–25 0.33◦ 15 Hz USD 1623

RPLIDAR A1M8 [8] 360◦ 0.15–12 1◦ 5.5 Hz USD 330
RPLIDAR A2M8 [7] 360◦ 0.15–6 0.9◦ 10 Hz USD 389
RPLIDAR A2M6 [7] 360◦ 0.2–18 0.45◦ 15 Hz USD 636

RPLIDAR A3 [7] 360◦ 0.2–25 0.225◦ 15 Hz USD 549
Yujin YRL2-05 [8] 270◦ 0.1–5 0.55◦ 20 Hz USD 650

2.3. 3D LiDARs

3D LiDARs can be considered intermediate sensors between RGB-D cameras and
2D LiDARs in terms of the information they provide. Unlike 2D LiDARs, they work
for applications that require 3D information, but the type of information they gather is
not sufficient for tasks such as person recognition. In Table 3, we list some of the 3D
LiDARs we consider to be common in robotics. These sensors have a horizontal FoV
of 360 degrees and a variable vertical FoV depending on the reference, which is usually
smaller than that provided by RGB-D cameras. Normally, this type of sensor reaches large
detection distances, so they are commonly used for outdoor applications, more specifically
for autonomous driving.

3D mechanical LiDARs have parts that are in motion, so they suffer some wear that
decreases their lifetime, unlike cameras. In addition, a distinctive aspect of these sensors
is their high price in comparison with others, since they can cost more than USD 1000.
However, these prices have been decreasing over time: e.g., the Velodyne LiDAR VLP-16
(now called Velodyne Puck) had a cost of USD 8000 when it was first released, but it can
currently be purchased for USD 4000.
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A slightly newer alternative to mechanical 3D LiDARs are solid-state LiDARs (Table 4),
which limit the use of mechanical parts, achieving greater durability. Additionally, these
sensors have better horizontal and vertical resolutions, without, however, reaching the
resolution of RGB-D cameras. Furthermore, their frequencies are the same or higher, since
they do not have to wait for the mechanism to rotate 360 degrees. Moreover, they have a
longer range. However, their FoV is more reduced in some models, e.g., until 81.7◦ (Livox
Horizon) compared to the mechanical LiDARs that can reach until 360◦. This characteristic
as well as the absence of mechanical parts make their price lower compared to mechanical
LiDARs, starting from a few hundred dollars.

Applications such as person recognition are impractical with 3D LiDARs, but it is still
possible to detect people as well as certain objects with well-defined physical properties.
Indeed, the information provided by these sensors has also been used to train CNNs to
improve the accuracy of object detection [19]. Moreover, as with 2D LiDARs, mapping,
localization and navigation applications are possible. For the mechanical version, it is
possible to perform these tasks without major limitations, while solid-state LiDARs can
impose limitations due to their horizontal FoV. Nonetheless, they can still be complemented
with other sensors (such as a 2D LiDAR) to offer a better understanding of the environment.

Table 3. Relevant characteristics of mechanical 3D LiDARs used for robot perception.

Reference FoV Range Resolution Frequency PriceH × V (m) H × V

RS-LiDAR-16 [8] 360◦ × 30◦ 150 0.2◦ × 2◦ 10 Hz USD 5312
OLEI LR-16F [8] 360◦ × 30◦ 100 0.18◦ × 2◦ 10 Hz USD 1750

LS 32 Channel [8] 360◦ × 30◦ 150 0.18◦ × 1◦ 10 Hz USD 5000
M8-1 Plus LIDAR [8] 360◦ × 20◦ 150 0.132◦ × 2.85◦ 10 Hz USD 5007

Velodyne Puck 360◦ × 30◦ 100 0.2◦ × 2◦ 10 Hz USD 4000

Table 4. Relevant characteristics of solid-state 3D LiDARs used for robot perception.

Reference FoV Range Resolution Frecuency PriceH × V (m) H × V

Livo × Mid-40 [20] 38.4◦ circular 260 0.03◦ × 0.28◦ N/A USD 599
Livo × Horizon [20] 81.7◦ × 25.1◦ 260 0.3◦ × 0.28◦ N/A USD 800
Livo × TELE-15 [20] 14.5◦ × 16.2◦ 500 0.02◦ × 0.12◦ 10 Hz USD 1200

CE30-D [8] 60◦ × 40◦ 150 N/A × 2◦ 30 Hz USD 1199
CE30-A [8] 132◦ × 9◦ 4 N/A 20 Hz USD 650

2.4. People Detection

In this section, we review the most relevant methods and software packages for people
detection using the different sensors presented before.

2D LiDARs: As we mentioned above, when this is the only sensor used for detection,
methods are constrained to leg or torso detection. In [21], a clustering technique is used to
detect pairs of legs with confidence levels to reduce false positives. An approach based on
the Fast Fourier Transform has also been presented for legs detection [22]. Moreover, legs
can be detected by comparing the sensed data with typical patterns [23], or using machine
learning techniques. The authors in [24] used the DROW Laser Dataset to train a CNN
with real information, including true and false positive annotations with a certain level of
confidence, to improve accuracy. In [25], they detected the torso of human bodies with a
Support Vector Data Description. Some software packages (compatible with ROS) available
for people detection using 2D LiDARs are the following: [18,26–28].

3D LiDARs: The authors in [29] detected people in the immediate environment using
Online Transfer Learning, by means of CNNs that were trained using information from
other sensors such as 2D LiDARs or RGB-D cameras. An online learning framework for
human classification using an efficient 3D cluster detector was presented in [30]. In [31], they
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used a model-based method for people detection, whereby the sensed data are associated
with pre-acquired geometrical models that integrate the entire LiDAR scans and model
detections using Gaussian shapes. The authors in [32] used segmentation to extract the legs
and trunk of human bodies; they matched the two types of detections in order to filter out
false positives.

RGB-D cameras: The authors in [33] proposed a framework that could detect and
track pedestrians in crowded environments. They used the Mask R-CNN, an extension of
the Faster R-CNN [34], for the detection step. In [35], they used an upper-body detector to
detect people through depth images of up to 5 m (maximal range for the Kinect camera),
and a histogram of oriented gradients in specific zones to detect people farther than 5 m.
A real-time depth-based template matching people detector was proposed in [36]. In that
work, they present different methods to train a depth based-template including multiple
upper-body orientations at different height levels, to improve the accuracy. The authors
in [37] presented an approach that detects multiple people poses. To correctly detect people,
they built a 3D point-cloud from the depth image, clustered all the objects including persons
and finally compared it with person and non-person clusters. Additionally, cameras allow
us not only to detect people in the environment but also to obtain extra information to
improve robot navigation. For example, in [38], they detected and recognized some human
activities through the detection of specific body poses, and in [39], they tried to detect some
basics emotions.

2.5. Summary

Taking into account the advantages and disadvantages of the different kinds of sensors
presented, we summarize in Table 5 our recommendation for their selection depending
on the application, where ++ shows the sensors that are most easily fit for methods, while
- - shows the sensors that are most difficult to fit. These recommendations are further
supported throughout the following sections. Regarding 2D mapping, all sensors provide
the information necessary to build maps; however, robots with solid-state LiDARs (SSLi)
and cameras need to rotate to cover the 360◦. To build 3D maps, 2D sensors could be used,
but it is necessary to use external hardware to obtain the third dimension; cameras and
3D LiDARs can directly obtain 3D maps. For this reason, we give them the same score:
mechanical LiDARs (MLi) can cover 360◦, while SSLi and camera reach in the best case
110◦; however, the vertical and horizontal resolution of the former could be better in some
of the references presented.

For semantic mapping, applications with 2D sensors are really complex because the
third dimension is needed. With 3D LiDARs, it is possible to recognize some objects,
in particular with SSLi, due to their resolution. However, cameras take the first place in
semantic mapping, because their resolution and color images allow robots to implement
multiple segmentation methods to recognize more objects in comparison to a LiDAR.
Finally, taking into account that the most used method for person recognition is through face
or body detection, cameras are the only sensors that can perform this task. However, if the
application does not require recognition and detection is enough, there are multiple ways
to obtain high accuracy with 3D LiDARs, also providing privacy to the humans involved.
Detection applications are also possible with 2D sensors, but with a lower accuracy.

Table 5. Recommendations for sensor selection.

Sensor 2D 3D Semantic People People
Mapping Mapping Mapping Detection Recognition

2D LiDARs + + - - - - - - -
3D MLi + + + + + + + - -
3D SSLi + + + + + + - -

RGB-D cameras + + + + + + + + +
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In this section, we presented some popular sensors in social robotics and their char-
acteristics as well as limitations. However, other sensors such as audio systems [40,41] or
ultrasonic devices [42] are also used in this field of research and specifically for navigation
purposes. Moreover, it is possible to use multiple sensors at the same time (sensor fusion),
leveraging the advantages of different devices to improve the results, at the cost of an
increase in the computational cost. Finally, we believe that sensors such as mechanical
and solid-state LiDARs will continue to reduce their prices, becoming more affordable
and more common in this type of applications. Moreover, RGB-D cameras with a better
field of view, resolution and depth range should appear in the coming years, allowing to
develop new mapping, prediction, and navigation methods in addition to improving the
existing ones.

3. Mapping

A second aspect to take into account to successfully navigate within an environment is
to have a map that contains the necessary information to perform this task. As mentioned in
the previous section, each of the techniques described here will have certain advantages and
disadvantages that should be taken into account depending on the application. We divided
this section in two parts: (1) geometric mapping, where 2D, 2.5D (i.e., 2D maps enhanced
with some additional 3D information) and 3D mapping techniques will be presented;
(2) semantic mapping, which includes additional information about the objects or people
present in the environment. We present geometric mapping as a basis for semantic mapping,
as the latter is usually based on 2D/3D standard mapping solutions in which a semantic
layer is added to improve the robot behavior. However, it is relevant to emphasize that
solutions only based on geometric maps (without semantic information) are insufficient for
socially acceptable navigation, which is the focus of this paper.

3.1. Geometric Mapping

In this section, we consider geometric maps as those that only include the position
of the obstacles in the environment, without differentiating between categories of objects,
in order to know whether a robot can or cannot navigate through a specific area. Robot
localization and mapping are two problems that are often treated together, as having good
localization is necessary to build an accurate map and vice versa [43]. Therefore, we cite
some of the main approaches for Simultaneous Localization and Mapping (SLAM).

SLAM algorithms are typically based on probabilistic models, using Bayesian inference
to solve the problem in two iterative phases: prediction and update. The current position
of the robot and the map features are first predicted with some motion model and then
updated with the given noisy observations from the available sensors. An option is using a
Kalman Filter (KF) or its linearized version for non-linear models, the Extended Kalman Filter
(EKF). Another well-known option is the Particle Filter (PF), which uses a set of samples to
obtain the distribution of some process giving different weights to each sample. The larger
is the weight, the higher the probability is that it is the right solution. There are multiple
techniques based on variants of the Particle Filter method, such as FastSlam [44].

3.1.1. 2D SLAM

Although there is a wide variety of 2D SLAM algorithms, we focus here on those
most used that offer integration in a robot operating system (ROS). In this list, we find
Gmapping [45], HectorSLAM [46], KartoSLAM [47], Google Cartographer [48] and Critical
Rays Scan Match (CRSM) SLAM [49]. Other alternative algorithms are CoreSLAM [50],
TinySLAM [51] and VinySLAM [52].

The Gmapping algorithm is one of the most frequently used in this field, and it is based
on the Rao-Blackwellized Particle Filter. This solution assumes that each particle provides
an individual map of the environment, and this number of particles is filtered by using the
position and movement of the robot as well as the most recent observations. This algorithm
is discussed in detail in [53].
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HectorSLAM is another approach for the fast online learning of occupancy grid maps,
combining robust laser matching with a system based on inertial sensing [54]. This could
be adapted to multiple challenging environments, for example, the authors tested their
solution on unmanned ground vehicles in simple environments, as well as environments
with complex structures, and it was also additionally tested on an unmanned surface vehicle
in a river. This approach works with high-frequency sensors, so if it is used with a sensor
whose sampling rate is low, some problems can arise, as shown in Figure 3c. This happens
because the approach seeks to match the different samples one behind another, but if the
time between samples is big and the robot moves or rotates too quickly, the algorithm
cannot match the samples. This method is based on the optimization of beam endpoint
alignment using the Gauss–Newton equation.

KartoSLAM is a solution based on positional graphs, which means that each node
represents the location of the robot along with its sensor data at that position. However,
since the processing time may non-linearly increase as the graph becomes larger, this
algorithm proposes a method called Sparse Pose Adjustment, which efficiently addresses
the problem by constructing linear matrices and exploiting their non-iterative Cholesky
decomposition [55].

Google Cartographer is an algorithm that provides a real-time solution for mapping
indoor environments [56]. Unlike most SLAM algorithms, it is not based on particle filters,
but it regularly executes a pose optimization to deal with the cumulative error. This
algorithm seeks to create sub-maps that are connected by the robot’s position and, when a
sub-map is considered complete, it stops processing new information. Its current version
performs 2D and 3D mapping, and it allows the configuration of a variety of sensors.

Finally, CRSM SLAM uses a scan-to-map matching via a Random Restart Hill Climbing
algorithm with the intention of reducing noise accumulation, where only critical rays are
taken into account for the map update. Moreover, the robot can add new information to
the map in the zones already visited, since no part of the map is “closed” until the mapping
task is finished by the user [57].

There are works that have sought to compare different SLAM methods, such as [44],
where they compare HectorSLAM, Gmapping, KartoSLAM, CoreSLAM and LagoSLAM
by presenting the error rate as well as the CPU load of each algorithm. The authors
in [58] compared the result of Gmapping, Google Cartographer and HectorSLAM with a
ground truth presenting an error table as well as the resulting occupancy grid, showing
major drawbacks for HectorSLAM. In [59], Gmapping, HectorSLAM and CRSM SLAM
are compared, showing the superiority of the first algorithm with respect to the others.
Another recent work [60] compares Gmapping, HectorSLAM, and Karto SLAM, obtaining
similar results under specific conditions. Finally, the work presented in [61] compares
Gmapping, Google Cartographer and TinySLAM, presenting the root-mean-square error
(RMSE) and the resulting map, showing some disadvantages for Cartographer.

We evaluated the five different 2D SLAM methods presented in this section using a
laptop with six cores at 2.2 GHz, an i7 processor, and 16 GB of RAM, running Ubuntu 20.04
and ROS Noetic on a Turtlebot 2 with a 2D LiDAR located at 60 cm of height. The sensor has
an FoV of 360◦ and a frequency of 10 Hz. To run the experiment under the same conditions,
we used a pre-recorded dataset [62], which contains approximately 380 s of information
from a 150 m2 indoor environment divided in seven rooms including corridors. The topic
used to evaluate this section was /scan_velodyne, which contains 3805 samples. All methods
were executed with default values.

Table 6 shows the comparison of the average processing time spent by the different
algorithms to process each sample given by the sensor in the dataset described above. Due
to the fact that the different methods update maps at different moments, we mark this
time in two different columns; for example, Gmapping updates the map every specific
time given by a variable, while CRSM SLAM updates the map every time it processes a
laser sample. Regarding the processing time, with the configuration used, we can conclude
that KartoSLAM, Google Cartographer and CRSM SLAM more efficiently process the
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information. Even including the update of the map, the total computation is less than
the time in which the sensor delivers a sample (100 ms). For Gmapping or HectorSLAM,
updating the map takes more than 100 ms, so it is possible to lose data measurements.

Table 6. The processing time of 2D SLAM algorithms on a pre-recorded dataset [62] and with the
default parameter values. Sensor height: 60 cm; resolution: 0.4◦; horizontal FoV: 360◦; and frequency:
10 Hz.

Method Processing Time Processing Time
(without Map Update) (with Map Update)

Gmapping 0.192 ms 2137.34 ms
HectorSLAM 79 ms 125.84 ms
KartoSLAM 0.387 ms 52.87 ms

Google Cartographer 0.231 ms 12.43 ms
CRSM SLAM 97 ms 97 ms

Figure 3 depicts the resulting maps. A great similarity can be observed in most of
them except for the one generated by HectorSLAM. This is due to the low frequency of the
sensor. Methods such as Google Cartographer and CRSM SLAM, unlike Gmapping and
KartoSLAM, do not only use binary values to indicate whether an area is traversable or
not, but discrete values between −1 and 100 to create these maps. Thus, it is necessary to
consider in more detail the ranges in which an area is or is not traversable when navigating.

(a) Real map (b) Gmapping

(c) HectorSLAM (d) KartoSLAM

(e) Google Cartographer (f) CRSM SLAM

Figure 3. Resulting maps with 2D SLAM algorithms from a pre-recorded dataset [63]. The parameter
values are the default ones. The sensor is located at 60 cm of height, has a resolution of 0.4◦,
a horizontal FoV of 360◦ and a frequency of 10 Hz.
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3.1.2. 3D SLAM

In terms of 3D SLAM methods, there is a wider variety of approaches. As mentioned
above, Google Cartographer is one of the solutions that can also perform 3D mapping
with the proper configuration. It is possible to differentiate between solutions specifically
developed for RGB-D cameras and others that work with generic point-clouds regardless
of the particular sensor.

In the category of SLAM for cameras, also called visual SLAM, ORB-SLAM [64] is a
method based on monocular visual features that includes tracking, mapping, relocation
and loop closing. Additionally, there exists ORB-SALM2 [65] which is an extended version
that works with stereo and RGB-D cameras in a similar way to the first version. However,
this work implements a lighter localization method that reduces the error when closing
loops. RTAB-MAP [66] is considered a solution similar to Google Cartographer, since it also
allows 2D and 3D SLAM through a variety of sensors. It also performs close-loop detection
by comparing the current image with those previously stored in the same graph. Each
graph is stored in memory and each node is linked to an RGB and depth image. When a
loop is closed (i.e., a place that is revisited, closing a part of the map as completed), a graph
optimization is executed to correct the poses in the graph. Figure 4 shows a resulting RGB-D
map for ORB-SLAM2 in comparison with RTAB-MAP, using a pre-recorded dataset [63] that
contains the RGB-D information from an Orbbec Astra Pro camera. The data correspond to
an office of approximately 30 m2 with the sensor mounted on a Turtlebot 2 at a height of
70 cm; it contains approximately 4400 samples in 150 s. The two images present the same
scenario, but it can be seen that the second option presents better results in terms of a more
complete view of the environment. This big difference is caused by the fact that ORB-SLAM
matches points, while RTAB-MAP matches images. Regarding the processing time, using
the same machine of the experiments described in Section 3.1.1, ORB-SLAM2 spends an
average time of 0.851 s to update the map, while the RTAB-MAP spends 1.31 s for the
complete dataset presented above. A big disadvantage of these methods in comparison
with 2D SLAM approaches is that the robot needs to move slowly in order to be able to
close the loop timely.

(a) ORB-SLAM 2 (b) RTAB-MAP

Figure 4. Resulting map for 3D SLAM algorithms using Orbbec Astra Pro camera data from a
pre-recorded dataset [63] and the default parameter values (see Table 1 for the camera specifica-
tions). The camera was mounted on a Turtlebot 2 at 65 cm of height. The two figures have the
same orientation.

Regarding algorithms that work directly with point-clouds, there are other alternatives.
One of the most used SLAM methods with 3D LiDARs is LiDAR Odometry and Mapping
(LOAM) [16], which divides the problem into two main parts: the first one is to compute
the odometry at high frequency to estimate the LiDAR velocity; the second one is in
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charge of the matching and registration of points at a lower frequency. The authors in [67]
proposed a self-supervised LiDAR odometry estimation method in order to improve the
final result provided by LOAM. This method applies geometric losses during training by
processing the active and previous point nodes. The work in [68] proposes a Lightweight and
Ground-Optimized (LeGO) LOAM that performs the estimation of the position in real time,
as it assumes that the robot moves through a flat ground environment, thus facilitating
processing. Segmentation was carried out to find the planar and edge features, and then the
algorithm performs an optimization with the Levenberg–Marquardt method. Both works
present a comparison between their methods and the original LOAM.

Figure 5 presents the resulting maps for LOAM and LeGO LOAM. We used the same
dataset introduced in 2D SLAM [62], but in this case, the topic used was /velodyne_pointcloud.
In the case of Figure 5a, this method adds all relevant points into the map. However, it can
be seen that the map is partially less clear. Figure 5b shows clearer and more ordered map,
thanks to the planar and edge detector module. For example, it is possible to distinguish
better walls, floors, and roof, and the probability of obtaining a deformed map is lower
than with the basic LOAM.

(a) LOAM (b) LeGO LOAM

Figure 5. Resulting maps for 3D SLAM algorithms using Velodyne VLP-16 data from a pre-recorded
dataset [62] and default parameter values (see Table 3 for LiDAR specifications). The LiDAR was
mounted on a Turtlebot 2 at 60 cm of height.

It should be noted that 2D SLAM algorithms are not limited to 2D sensors and 3D
SLAM algorithms are not limited to 3D sensors, because these methods are based on the
type of information they receive and not on the specific sensors. In this direction, there
are some alternatives, such as using a 2D laser including an additional degree of freedom
by driving a servo motor at high frequency in order to obtain information in three dimen-
sions [16]. Another alternative is just changing the default orientation of the sensor to
sense traversable sections of the environment to add to the map [17]. Alternatively, 3D
sensors can be used with 2D SLAM methods for the creation of 2D maps. For example,
the depthimage_to_laserscan package [69], which selects the points at a certain angle
to convert the 3D information into 2D; the work presented in [70] also selects the rele-
vant points of the 3D point-cloud and takes into account the height of the robot to build
traversable maps, also called 2.5 maps that improve robot 2D navigation. Figure 6 shows
a comparison between a pure 2D SLAM approach and a traversable map. It is possible
to observe in Figure 6b that certain areas mostly corresponding to tables and chairs are
no longer shown as traversable areas for the robot if the robot height is greater than the
objects’ height.
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(a) (b)

Figure 6. Map comparison between a pure 2D method and a traversable map where the height of the
robot restricts the movement in certain areas such as under the tables. The results were obtained from
a pre-recorded dataset [63] and default parameter values. The sensor is located at 60 cm of height,
the resolution is of 0.4◦ with an horizontal FoV of 360◦, the sensor frequency is 10 Hz and the robot
height is 1 m: (a) resulting map given by Gmapping with a 2D LiDAR; (b) traversable (2.5D) map
given by Gmapping using a 3D LiDAR and the Point-Cloud Fast Filter [70].

3.2. Semantic Mapping

When we talk about semantic maps, we refer to the idea of enhancing a geometric map
with additional information that may be helpful for robot behavior. For example, detecting
structural elements such as doors can help some robots enter or leave a room, or detecting
electrical outlets to establish a connection to recharge their own batteries [71]. Furthermore,
human detection becomes quite relevant for service robots in social environments, since the
way a robot should behave in front of an object is different from the way it should behave
in front of a person [72]. Thus, a robot is unable to perform socially acceptable navigation
if it does not have the ability to extract basic information from its environment, such as
people or special elements detection. This is the main reason to regard semantic mapping
as a relevant task in service robot navigation. In this section, we present works related to
semantic mapping in relation with social robot navigation.

Cameras are the most used sensors to build semantic maps in indoor environments,
as their color images allow them to distinguish between different types of objects and
their depth information to locate the elements in a 3-dimensional space. Works in this
direction are multiple. For example, the Astra Body Tracker (ABT) package [73] uses 2D
information from RGB-D cameras to find relevant points on a human body such as the
head, shoulders, hands, knees, and feet (Figure 7e). Moreover, CNN-based methods are
becoming increasingly popular and used for image segmentation and subsequent object
identification. In [74], the authors proposed combining RGB-D SLAM, image-based deep-
learning object detection and 3D unsupervised segmentation to create a map that includes
not only geometric but also semantic features. Moreover, there are approaches combining
CNNs and geometrical-based segmentation [75] or self-supervising training [76]. This
method allows users to train the CNN with hundreds or thousands of labeled images
that could contain a variety of elements (including humans) and make the detection
more accurate.

In [77], they used both a 2D LiDAR and an RGB-D camera to detect people in a crowded
environment. They combined an RGB-D upper-body detector, a full-body HOG detector,
and an RGB-D detector and the Point Cloud Library (i.e., a library for point cloud processing
allowing the accurate estimation of people 3D poses). Figure 7a shows detections in an
RGB image and Figure 7a shows detections in 3D. Another widespread library including
packages for semantic detection and with ROS compatibility is opencv_apps [78], which
provides functionalities such as people detection (Figure 7c) and face and eyes detection
(Figure 7d), among others. All images in Figure 7 were obtained by running the online
available versions of the corresponding software packages.
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Other proposals have taken sensing to another level to further improve the interaction
of humans and robots within the same environment. For example, by performing the
detection of certain human emotions such as happiness, sadness, anger or a neutral state,
the robot can behave appropriately to each of these emotions [39]. In Figure 8, we present
the result of the Semantic SLAM package [79] available online. These algorithms use a
pre-trained model to make a segmentation that identifies different types of elements in the
environment. They also integrate the previously mentioned ORB-SLAM2 [65] to create a
complete semantic 3D map using the colors obtained in the first segmentation and applying
them to the resulting 3D point-cloud map.

(a) Spencer people detector in 2D (b) Spencer people detector in 3D

(c) OpenCV people detector (d) OpenCV face and eyes detector

(e) Astra Body Tracker

Figure 7. Example of people detection with an RGB-D camera using different approaches.
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(a) (b)

(c)

Figure 8. Example of semantic mapping using an RGB-D camera and the Semantic SLAM pack-
age [79]: (a) camera image with feature extraction; (b) Segmented 2D image; (c) 3D semantic map.

Additionally, CNN-based techniques can be applied to 3D point-clouds, which enables
semantic mapping with 3D LiDARs data. The authors in [80] proposed an architecture
called PointNet. This method divides its structure into three main parts: the first is a
layer that aggregates information from all points; the second is a structure that combines
local and global information; finally, two alignment networks align the input data with
the characteristics of the points. In [81], VoxelNet is presented as a generic 3D detection
network that unifies in a single stage the feature extraction and the bounding box prediction.
BirdNet [82] is another 3D detection framework using LiDAR point-clouds. It is also divided
into three stages: the first one projects the information in a cell transforming the LiDAR
information into a Beam’s eye view image and normalizing the density of point-clouds in
the scene; the second estimates the location using a CNN; finally, a post-processing phase
improves the accuracy.

It is necessary to emphasize that although CNN-based methods can have good ac-
curacy, they require special hardware for training and detection in real time. Moreover,
significant effort is needed if there are no datasets for training available. For this reason,
applications where it is not necessary to distinguish between all objects in the environment
(e.g., the aforementioned ABT) could be used for person detection. Moreover, simple and
efficient segmentation methods such as those presented in [32] could be applied. This
approach detects objects of simple structures such as doors, chairs, and people (Figure 9),
by means of the detection of specific physical features.
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Figure 9. Semantic map obtained with a 3D LiDAR (Velodyne VLP-16) and the approach presented
in [32]. Chairs are depicted in green, doors in red and people’s tracked paths in blue. The robot
location is given by the black circle.

3.3. Summary

We present different mapping methods such as 2D, 2.5D, 3D and semantic mapping,
each with their own characteristics, advantages and disadvantages. All these methods can
be helpful depending on the application scenario and requirements. For example, all these
approaches could be used for 2D navigation maps, but 2D and 2.5D SLAM techniques
would involve less computational effort than the 3D methods. For 3D robot motion, 3D
maps (or at least 2.5D) are required. Moreover, in social scenarios, richer and more dynamic
maps are needed, which makes semantic mapping more helpful, with people and objects’
information available to improve the robot behavior. Nonetheless, it is necessary to take
into account that SLAM remains an open research problem, so we expect new and better
methods to appear in following years, improving the current results, and exploiting better
hardware to run more powerful methods in real time.

4. Human Motion Prediction

In order to apply any method for human trajectory prediction, we assume that fairly
robust person detection has been performed, either by means of leg detection, human
skeleton detection, CNNs, or another segmentation technique such as those presented in a
previous section. In addition, we assume that some method for trajectory tracking has been
implemented, since most prediction algorithms base their results on the most recent track
of the person, not just the last position.

The most popular method for tracking trajectories in indoor applications is probably
the Kalman Filter [21] (and its extended form for non-linear systems [77]) in combination
with a data association technique for track matching. Nonetheless, there are different
variants. The authors in [83] used another probabilistic method to track multiple persons.
Tracking is more stable, as they compute a Jacobian association and the effect of the robot
movement to improve its navigation. In [84], the MDL-tracker, is proposed, which is based
on a bidirectional EKF to compute a set of multiple track hypotheses. The authors in [35]
divided the tracking task into two steps: the first one generates candidate trajectories also
using a bidirectional EKF, and the second step starts new trajectories to recover possible
missing tracks. In general, it should be noted that the achieved accuracy for people detection
and tracking is the key to generating good trajectory predictions.

As for trajectory prediction methods, great diversity can be found, from simple algo-
rithms that linearly extend the trajectory of people taking into account the last sensed posi-
tions to the detection and learning of patterns using neural networks. Rudenko et al. [85]
presented extensive work on this subject, in which they make a classification of the different
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methods which we adopt in this section. In addition, we discuss in more depth some of the
proposals and add more recent publications.

4.1. Physics Based

Physics-based prediction methods use one or more physics-based dynamic equations
to predict the human motion, and usually use variables such as the person’s current position,
last sensed position, linear and angular velocities, and linear and angular accelerations.
A major limitation of this type of method is that they do not include information about the
environment such as walls or any other obstacles, so the predictions may not be completely
accurate. However, these methods are those with less computational requirements in
comparison with others.

An example is the Constant Turn Rate and Acceleration (CTRA) model [86] as shown
in Figure 10a, where the blue dots show the previously sensed positions and the red dots
show the prediction. However, due to the lack of precision in the last sensed position
and the angular and linear velocity and acceleration variables, the resulting prediction
describes a spiral that is not close to the real trajectory. Another simplified method is the
linearization of the trajectories, in order to extend the trajectory based on the last sensed
direction and speed of the person. While this approach can be useful in open environments
without obstacles or other people, the reality is that most environments are not of this kind.
Figure 10b shows the application of this method in a corridor, where the person turns right
but the prediction follows a straight line through the wall.

Multi-model solutions are also possible in which, depending on the situation, one or
several models are selected to perform the prediction. For example, the authors in [87]
formulated the prediction model based on the speed, direction, attraction, penalty, colli-
sion and group information of the person. Pellegrini et al. [88] considered a multi-target
prediction environment, in which people walk in crowded environments. This work ap-
plied a model similar to the previous one, but when two or more predictions cross each
other, it changes the model by applying an additional repulsion variable. In [89], a pre-
diction method called Vulnerable Road Users is presented. The authors used a Switching
Linear Dynamical System that integrates multiple motion descriptions into a single model
and, depending on the state, it switches to a specific representation. Shi et al. [90] and
Huang et al. [91] added a spatial-temporal variable into the model to aggregate information
about the social interaction with other persons and capture the multi-modality of motion.

(a) (b)

Figure 10. Physics-based methods for human motion prediction: (a) trajectory prediction using
a CTRA model: sensed positions in blue and predicted positions in red; and (b) linearization of
trajectory.
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4.2. Pattern Based

In the case of pattern-based solutions, dynamic functions learned through training
are applied in order to detect patterns that help predict the trajectories of people. Within
this type of method, some approaches are based on a single function with no temporal
effect, while the so-called sequential methods learn multiple functions to apply depending
on the situation and switch between them by using transition functions. In short, these
methods use datasets of trajectories to learn patterns, such as those shown in Figure 11a.
In the prediction step, once a person is detected, one or multiple dynamical functions are
assigned to predict their future path. Another option is to extract the nodes (Figure 11b)
that help create patterns, which are then used to predict motion trajectories.

There are multiple examples of sequential methods. Alahi et al. [92] used a Long-Short
Term Memory Network (LSTM) to learn human motion and predict the future trajectories.
This work was applied to crowded scenes in which they take into account a large number
of neighbors to estimate trajectories. Xue et al. [93] presented Social-Scene LSTM, which
also includes the effect of social neighborhood and scene layouts in comparison with the
basic LSTM. The method uses three different LSTMs to process person, social, and scene
information. Goodhammer et al. [94] proposed a self-learning approach using CNNs with
a polynomial approximation. The authors trained a multi-layer perceptron to work with
pre-processed trajectories as an input pattern and estimate the future points of the trajectory.
The experiments were focused on predictions of up to 2.5 s in the future.

It is also possible to find non-sequential methods, such as that proposed by Xiao
et al. [95], in which the authors used a pre-trained Support Vector Machine to separate the
different tracks and use this information to build trajectory prototypes. These are then used
to predict trajectories and match the current stored ones with part of the prototypes, leaving
the rest as the predicted trajectory. Luber et al. [96] implemented the theory of learning
social-aware Relative Motion Prototypes. This method groups similar motion behaviors into
clusters that are used to train the network. Moreover, another step is added to include
the social context for the prediction by tracking multiple persons. In general, sequential
methods present more accurate results than non-sequential methods. This is due to the
bigger complexity of their patterns and their adaptability to select the best model to describe
the paths, which can cover more possible situations.

(a)

(b)

Figure 11. Trajectory patterns extracted in a corridor, taking into account possible destinations.
The sensor location is indicated in green: (a) Trajectories sensed in the environment; and (b) pattern
resulting from processing the information.

4.3. Planning Based

Planning-based methods generate hypothetical trajectories based on cost functions
that weight the different paths through which people can reach possible destinations
within the environment. These methods have been divided into two main approaches:
forward planning methods assume the existence of predefined reward functions to compute
future trajectories; inverse planning methods do not have predefined reward functions but
estimate them by observing datasets of trajectories or through statistical learning. Here,
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some of the most commons planning algorithms are applied, such as A* or Dijkstra, and
more variables could be added to improve the accuracy, such as the head orientation or the
tracked path.

Figure 12 shows the results of planning-based trajectory prediction using the A*
algorithm. The method begins with the possible destinations that people can reach in the
environment (Figure 12a). From this point, the approach tries to add multiple constraints
to improve the cost function and decide which is the most probable trajectory that the
person will follow. For example, if only the position of the person is known without
other parameters (Figure 12b, in which the person is in red and possible trajectories are
in blue), the cost function may assign similar weights to the different options. Another
possibility could be using the head orientation (if available) to penalize certain trajectories.
In Figure 12c, there are four options with higher probability (magenta) and another two
with less probability (blue). Finally, the tracked position of the person could also be used to
improve the cost function. In Figure 12c, the last tracked motion is given by the gray arrow.
Taking into account this information, only three of the predicted trajectories (magenta) will
have a higher probability than the others.

(a) (b)

(c) (d)

Figure 12. Results for a navigation-based trajectory prediction using the A* algorithm, where
the green squares show the possible goals in the environment a people can reach; the red squares show
the estimated position of the person sensed; the blue lines show the paths with less probability of being
followed; and the magenta lines show the paths with a greater probability of being followed. The gray
arrow is the tracked path and the purple arrow is the head orientation. (a) Empty environment with
possible destinations; (b) trajectory prediction using A* algorithm based on the pose estimation and
possible goals in the environment. With no variables other than position estimation, all destinations
have the same chance of being reached; (c) trajectory prediction using A* algorithm based on the
pose estimation, possible goals in the environment and head orientation. Taking into account the
estimation of the person’s position in the environment and the orientation of the head, it is possible
to reduce the destinations that can be reached; (d) trajectory prediction using the A* algorithm based
on the pose estimation, possible goals in the environment, head orientation and tracked path.

Forward planning methods include solutions such as the one in [97], which present
ways to obtain the predicted trajectories through the optimization of the timed elastic band,
considering other common factors such as proxemics, group motion and spatial separa-
tion between persons. They use local optimization schemes to compute the trajectories.
Vasquez [98] identified and addressed three main problems in planning-based methods:
their computational cost, their limited ability to model the temporal evolution of the path,
and their constant goal assumption. He applied a probabilistic model using parameters
such as the velocity, the goal, the velocity model consistency and the cost model consistency,
to obtain the predictions. Karasev et al. [99] tried to predict long-term human motion using
a jump-Markov process that includes the goal in the model and environmental constraints
and biases.

Regarding inverse planning methods, Shen et al. [100] developed transfer learning
algorithms that can be trained to estimate cost functions based on the observed trajec-
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tory. This work also infers the intentions of the persons that could affect the predictions.
Pfeiffer et al. [101] presented an approach based on a feature-based maximum entropy
model. They predicted the behavior of heterogeneous groups of people, and their model
was trained with human–human interaction information. Chung et al. [102] assumed a
social force or spatial effect that forces people to behave in a certain way. The proposed
method is based on the Spatial Behavior Cognition Model, which includes the feature-based
spatial effects.

4.4. Summary

In this section, we presented a classification of methods for predicting human trajec-
tories, mentioning some recent and representative works. Each of the explained methods
can become as complex as required, including more or less variables within the model.
For example, recent works have tried to detect the emotions of people expressed through
their facial features [103], so that the robot can behave in an appropriate way according
to the detected emotion. Some contributions focus on the prediction of individuals [104],
while others include information from groups of persons [105]. Moreover, it is possible
to find approaches for open- or close-space environments (a map may be known in the
future). However, creating a complete and perfect model for human motion is a tough task.
Nonetheless, current models and cost functions could be further improved. We also expect
more powerful and accessible processing units that enable human motion prediction in
real time.

5. Human-Aware Robot Navigation

Navigation is an essential issue in social robotics, since cohabiting with humans in
the same environment is not trivial. Robots should behave under certain criteria that
allow people to feel comfortable and not be distracted by unusual behaviors within the
environment. For this reason, based on semantic mapping and on the prediction of people’s
trajectories, valuable works have been published on this topic. Rios et al. [106] presented
the relationship and importance of the theory of proxemics in social navigation. Topics
such as the classification of the different spaces for individuals as well as for groups are
treated, as well as some important parameters related to the robot such as its speed and
appearance. This work, unlike the classification we made, classifies the navigation into
three groups: unfocused interaction, in which the robot is expected to negotiate its position
with the people present in the environment through different rules; focused interaction,
in which the robot is expected to naturally and dynamically adapt to changes; focused
and unfocused interaction, in which the two previous techniques are combined. Rios et al.
identified some challenges in this field, such as the complexity in the management of
the different regions addressed by the theory of proxemics and the different factors that
can affect these areas, for example, individuals or groups interacting with other people,
objects or robots. It also shows the need to extend the understanding and application of the
theory of proxemics based on parameters such as the speed and appearance of the robot,
among others, and thus dynamically adapt social spaces.

Charalampous et al. [107] also published a review on this topic. Unlike the previ-
ous work, this one does not start from the theory of proxemics, but from the mapping
stage. The authors divided this topic into three sections: metric mapping (traversable or
non-traversable areas); semantic mapping (detection of objects and people); and social map-
ping, giving more emphasis to the latter. This last type of mapping includes issues such
as proxemics and the deformation of social areas depending on certain parameters. It
briefly discusses prediction issues, the extraction of information about the human body
(speed, orientation, etc.) and from the people context (individuals, groups, interactions,
etc.). The authors of this paper recognized the limitations in formulating successful social
navigation, such as the modeling and monitoring of the environment and people, extracting
more information about human actions and intentions, and how to integrate this into the
different layers that contribute to robot control.
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Kruse et al. [108] talked about some of the most important challenges such as comfort
(not disturbing people), naturalness (moving in a person-like way) and sociability (interaction
and prioritization of people when performing actions). On the subject of navigation, the aim
is to generalize the steps that must be covered for its execution, which are: the selection
of the task (e.g., following a person); defining the target position; defining the path to
follow; and finally, adapting the path according to the information perceived by the robot.
It also discusses methods based on geometry and machine learning for trajectory prediction.
Additionally, the authors note that the accuracy of the prediction considerably decreases if
the prediction window is increased, so they consider it important to have a local planner
where more variables can be integrated to choose the appropriate behavior for the robot
over a shorter time period. An important point that stands out is that of experimentation,
since it has certain limitations. For example, in simulation, it is not possible to easily
evaluate issues such as comfort and therefore variables of this type cannot be included to
modify the path of the robot. Therefore, comfort models must be included in the simulation
or experiments must be conducted with real participants who are asked to answer a
questionnaire to qualify the robot skills.

Finally, one of the last reviews published on social navigation was by Möller et al. [109],
who considered that for a robot to behave in a socially acceptable way, it must have four
main features: active vision; navigation; robot-human interaction; and modeling of human
behavior. In the active vision section, the authors intend to show the need for mobile sensors
to acquire more information that can be useful for navigation, as opposed to passive vision
(static sensors). In the navigation aspect, they present map-based solutions (e.g., visiting a
specific point or area) and those that are not map-based (e.g., exploration). However, they
focus on the first type of solution. Being a research work that focuses on the visual part
and image-based solutions, a section is added to talk about common learning paradigms
for obtaining information that leads to improving the robot’s behavior. In the interaction
section, some generalities to take into account are mentioned, to later talk about interaction
in industrial contexts and healthcare and assistance at home. In the last section of this
work, aspects that must be taken into account to model human behavior such as position
estimation and action recognition and how they can be applied to social navigation are
presented. One of the major limitations mentioned in this paper is the ability to objectively
evaluate socially aware robot navigation.

In this work, we classified the contributions in the same way as Cheng et al. [110], who
divided these methods into reactive-based planning and predictive-based planning (see
Figure 13). Here, we want to mention the importance of the theory of proxemics, which
is used to determine which areas around the person are traversable by the robot without
causing discomfort. This theory was proposed by Hall [111] and defined four different
spaces around the person commonly used in social situations (see Figure 14). The intimate
space is usually for friends and family, and it is possible to enter this area by invitation.
The personal and social areas are used for common interaction and an “invitation” is not
needed. Finally, the public space is an impersonal area that does not affect the person.
Moreover, this theory could be useful to distinguish between people and groups of people
(the robot’s behavior should be adapted depending on that situation). However, proxemics
may also be relaxed to work with emotions and social interactions, e.g., a robot may want
to get closer to a happy person than to an angry person [39]. This theory has equally been
applied to reactive-based as well as predictive-based navigation.

Figure 13. Navigation methods for robot social behavior.
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Figure 14. Proxemics theory: different spaces and corresponding distances from a person (in black).

5.1. Reactive-Based Planning

In these methods, the robot changes its direction when a person appears to be blocking
its path (Figure 13, left). In short, if it is defined that the robot should move out of the
personal space according to the proxemics theory, the robot waits until the distance to the
person is approximately 1.2 m and then tries to avoid the person in the best way. In this
case, the predicted path of the person is not taken into account. Thus, depending on the
speed of the person and the robot, the minimum distance could be increased so that the
robot does not evade the person entering their intimate space.

A common approach used in reactive-based navigation is the Social Force Model.
Tai et al. [112] used this model to define the different forces that are present in the en-
vironment (attraction and repulsion) between humans, humans and objects and between
objects, and use it as a potential way to navigate the robot towards its goal. Gaussian
process regression can also be used to reduce the cost to reach a goal in a dynamic environ-
ment. Choi et al. [113] integrated a hierarchical and a non-hierarchical Gaussian process
motion controller to carry out collision avoidance, taking into account multiple persons in
the scene. Another reactive method successfully applied in the past is Reciprocal Velocity
Obstacle (RVO), which selects non-intersecting velocities for the persons, considering some
reciprocity rules. In [114], a multi-robot navigation approach was proposed, in which RVO
is used to model human behavior and replicate it with a robot.

Reactive methods are mostly used in unstructured environments, since the prediction
of people’s trajectories becomes more complicated when one does not know which possible
directions they may take. On the one hand, these methods do not consider people’s future
predictions, which could improve the robot behavior to make it more friendly. On the
other hand, they are computationally lighter compared to predictive-based methods. As an
example of this kind of method, we tested the Sarl* [115] algorithm presented by Li et al., in
which social navigation is performed based on a pre-trained model of people’s trajectories.
Figure 15 shows the social navigation results of two different experiments in the same
environment. The red circle is the starting position of the robot, the blue circle is the
detected person, the black circle is the robot current position, and the purple points define
the path followed by the robot. We ran this experiment using a Turtlebot 2 with a RPLiDar
A2, and the default parameter values for the reactive algorithm. In the first case (Figure 15a),
the robot left more free space around the person, trying to avoid them inside their personal
space (proxemics theory). In the second case (Figure 15b), the robot temporarily enters
the intimate space, due to the time that the controller takes to update the robot trajectory.
Moreover, we experienced some limitations in the approach using the default setup. One
of them is the people detection range. This is because the algorithm can detect a person
between 25 cm and 3 m from the robot position. However, the sensor used (RPLiDAR A2)
reaches a detection range of up to 16 m [116]. For this reason, if the robot and a person are
moving in opposite directions, they will collide as there is not enough space for stopping
or avoiding the person. The second limitation is the robot speed. We used a Turlebot 2
that reaches up to 0.7 m/s. Taking into account that the average human speed is 1 m/s,
the robot may not be able to avoid the person in certain situations. The use of a faster robot
could improve the performance of the approach.
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(a)

(b)

Figure 15. Social navigation examples for the reactive method Sarl* in a corridor scenario. Robot
position in black; person position in blue; starting robot position in red; and robot path in purple.
In the first situation (a) the person was static, while in the second one (b) he was walking slowly
towards the robot position. In this second case, the robot came closer to the person without respecting
the intimate space (Proxemics theory).

5.2. Predictive-Based Planning

In this type of method, the robot predicts the future states of the people around and
then computes its trajectory by taking into account that information to avoid collisions
in advance (Figure 13, right). The methods for human motion prediction explained in
Section 4 then need to be integrated with the robot navigation. We believe that this type
of navigation should take precedence over reaction-based navigation, because if the robot
can anticipate people’s behavior in advance, it could adapt its behavior to be more natural
and avoid bothering people, in addition to possibly better optimizing resources such as
battery and space to travel. Reactive methods should be left for situations in which the
robot cannot predict the intentions of surrounding people.

Aoude et al. [117] presented a solution that learns motion patterns by means of
Gaussian processes and the RRT-Reach algorithm. The former predicts the state of the
dynamic objects and the latter is used as a robust path planner given the uncertain human
motion. Lu et al. [118] introduced some social cues, improving the response of the robot
when avoiding a person, e.g., in a corridor. They implemented a flexible cost map that
re-computes the path every time the map is updated. Vemula et al. [119] presented a
framework that models the future trajectories of multiple persons in the environment. They
trained a CNN that uses the speed, orientation, and relation with other humans, in order to
predict their trajectories and finally used a joint density model that captures the cooperative
planning (used for groups) to recompute the trajectory of the robot. CNNs have gained
popularity in recent years, including in the robot navigation field. Chen et al. [120] tried
to model the human–human, human–robot and crowd–robot interactions to extract some
policies that help the robot navigate in crowds. The problem is addressed with one and
multiple persons at the scene. Bera et al. [121] presented SocioSense, an algorithm for social
navigation in real time. They trained a CNN using Bayesian learning and Personality Trait
theory, using psychological and social constraints for trajectory planning. This solution was
tested in low and medium density crowds. Truong et al. [122] proposed a Proactive Social
Motion Model (PSMM) that enables the robot to efficiently and safely navigate in crowded
environments. This model considers multiple variables of humans in relation to the robot,
e.g., position, orientation and speed. It also considers information about human–object and
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human–group interactions that improve the behavior of the robot. PSMM implements a
variant of the social force model and a hybrid Reciprocal Velocity Obstacle technique.

Predictive-based planning approaches depend on how robots predict the future states
of the people on the scene, and on how they plan their actions according to these predictions.
These navigation approaches could be simpler considering a single human or more complex
with multi-human scenarios, and even non-structured environments. The results found in
the literature for predictive approaches are generally better than reactive ones, especially in
large and cluttered environments, due to the additional information exploited in relation to
human motion prediction. However, these methods also need more computation resources
to be trained as well as to be executed in real time.

5.3. Summary

Both types of planning methods, reactive and predictive, have advantages and dis-
advantages. For example, reactive-based methods are usually easier and faster to imple-
ment due their complexity in relation to predictive-based methods. On the other hand,
the predictive-based methods have a more acceptable behavior in social environments,
and robots could avoid persons in a more comfortable way, without disturbing persons
by entering in their personal space. However, in a social environment, it is common to
find situations in which the robot cannot avoid a person using a predictive-based method,
e.g., in the case of a person coming out of a room that the robot is supposed to enter.
Moreover, we consider that the robot’s maximal speed is an important factor in social
navigation, because depending on this variable, the robot could or could not follow some
social rules. Another limitation that makes it difficult to compare the different approaches
is the lack of well-established benchmarks for social robot navigation.

6. Related Datasets

Table 7 lists some of the most relevant datasets to test different methods related to social
navigation. This table also includes the type of information provided by sensors, either
images or point-clouds (depending on the sensor). It is also indicated whether each dataset
includes pedestrian annotations. Further discussion of those datasets can be seen in [123].
The Newer College Dataset (NCD) contains information from an Intel Realsense D435i
(RGB-D camera) and an Ouster OS-1 64 (3D mechanical LiDAR) recorded in an outdoor
environment. The Kitti dataset is a popular set of information with camera and LiDAR
information, which is especially used to test self-driving car systems. The recently created
Stanford Drone Dataset (SDD) contains multiple image sequences including bicyclists,
skateboarders, cars, buses, and golf carts. Even though the dataset is related to drone
applications, it can also be useful for people detection systems with top-view cameras. In
addition, the ETH and UCY datasets contain multiple sequences of videos that are used for
person detection and tracking. These datasets are some of the most used ones to test and
compare results in person motion prediction. Finally, the recent JRBD dataset provides 2D
and 3D information with more than 2 million annotated boxes and trajectories that allow
training algorithms for human detection and motion prediction. The nuScene is another
outdoor dataset recorded for self-driving solutions, but it contains useful information for
object detection and tracking (including people). This dataset contains 1000 scenes with
camera, 3D LiDARs and sonar information.
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Table 7. Relevant datasets to test methods related to social navigation.

Name Data Related Work

Point-Cloud

R
G

B
Im

ag
es

C
am

er
a

2D
Li

D
A

R

3D
Li

D
A

R

A
nn
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NCD [124] X x x X x LiDAR-based SLAM: [125–130]

KITTI [131] X x x X X
LiDAR-based SLAM: [124,126,132–134]
Visual SLAM: [135–139]

SDD [105] X x x x X
People detection: [140–144]
Trajectory prediction: [145–156]

ETH [157] X x x x X
People detection: [36]
Trajectory prediction: [93,119,145,146,150,151,158–160]

UCY X x x x X Trajectory prediction: [93,145,146,150,151,158–160]

JRDB [105] X x x X X
People detection: [161–165]
Social navigation: [166]

nuScenes [167] X x x X X
People detection: [168–172]
Trajectory prediction: [173–175]

7. Conclusions and Future Work

We presented relevant topics in the field of social robotics, especially those involved
in social navigation for service robots. In this sense, we mentioned some representative
works in the different related sub-areas and their review.

Nowadays, we have a variety of sensors that allow robots to perceive their surround-
ings, and the related technologies are continuously advancing. We observed that RGB-D
cameras are the most popular sensors due the richer information they provide and their
fairly reasonable price. However, other sensors such as mechanical 3D LiDARs or solid
state LiDARs are also improving their performance and decreasing their prices. For this
reason, we believe that applications based on LiDARs will become quite popular in the
coming years. However, we also consider that applications related with the recognition of
people’s activities and intentions, which are clearly simpler using RGB-D cameras, will be
of interest in the near future, as they can allow social robots to adapt to a larger number
of settings.

Regarding the SLAM problem, we show the results of some common approaches and
describe their advantages and disadvantages, in order to facilitate the task of selecting
a proper solution for each application. In the results presented in the section related to
2D SLAM, we see that the maps built by the different algorithms are similar under the
situation described except for HectorSLAM. However, the issue with this approach can be
easily solved using a sensor with higher frequency. Moreover, we observed that almost
all methods build static maps. For this reason, if something changes in the environment,
the map needs to be built again. In this case, algorithms that can handle updates in the
environment could be useful. On the other side, due the complexity of the situations that
must be handled, semantic maps are really useful. However, almost all methods require
special hardware to be executed in real time without losing sensor information. For this
reason, it is necessary to develop more efficient ways to detect the different objects that
could affect the navigation of the robot in social environments. Moreover, approaches for
active robot vision [109] may lead to a better understanding of the scene, by using mobile
sensors instead of the traditional static views.

Human motion prediction is also a trending topic, as more and more robots are be-
ing deployed in environments with humans. There exist complex solutions that predict
trajectories for groups in crowded environments, and some of them even detect human
emotions and exploit their impact on human motion to improve the prediction. Further-
more, more complex models for predicting human trajectories have been developed to
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include more variables, not only focusing on individuals but also on groups of people,
activities, intentions, human–robot interaction, etc. However, this kind of solution becomes
more difficult to apply and requires more processing resources. Finally, it is necessary to
clarify that a degree of uncertainty in people’s decisions is always present and cannot be
accurately predicted, thus affecting the resulting accuracy.

Finally, social navigation is a topic that directly depends on how robots perceive
dynamic objects and estimate their future states. As we present in this work, both predictive-
and reactive-based methods have their own advantages and disadvantages. In terms of
efficiency, predictive-based methods are better due to their path optimization. However,
reactive-based methods are easier to apply given that it is not necessary to predict the
path of persons and recompute the robot path in advance. Moreover, we believe that
social environments present multiple and heterogeneous situations in which each of these
methods manifests specific trade-offs. For this reason, a solution that integrates the different
methods could provide more flexibility and offer better results in general. In addition,
one of the most important aspects to be defined in social navigation is objective metrics
to evaluate the different methods. Those typically used, such as comfort, naturalness
and sociability, present a high degree of complexity, since they are measured through
personal surveys that tend to be subjective.
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LOAM LiDAR Odometry and Mapping
CNN Convolutional Neural Networks
KF Kalman Filter
EKF Extended Kalman Filter
PF Particle Filter
ROS Robot Operating System
SLAM Simultaneous Localization and Mapping
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PSMM Proactive Social Motion Model
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