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Abstract
Human induced pluripotent stem cells (hiPSCs) are highly sensitive to extrinsic physical and biochemical signals from their 
extracellular microenvironments. In this study, we analyzed the effect of cyclic temperature changes on hiPSCs behaviors, 
especially by means of scanning force microscopy (BIO-AFM). The alternation in cellular mechanics, as well as the secre-
tion and pattern of deposition of extracellular matrix (ECM) protein in hiPSCs were evaluated. The arrangement of the actin 
cytoskeleton changed with the variation of the temperature. The rearranged cytoskeleton architecture led to the subsequent 
changes in cell mechanics (Young’s modulus of hiPSCs). With the exposure to the cyclic cold stimuli, an increase in the 
average surface roughness (Ra) and roughness mean square (RMS) was detected. This observation might be at least in part 
due to the upregulated secretion of Laminin α5 during repeated temporary cooling. The expression of pluripotent markers, 
NANOG and SOX2, was not impaired in hiPSCs, when exposed to the cyclic cold stimuli for 24 h. Our findings provide an 
insight into the effect of temperature on the hiPSC behaviors, which may contribute to a better understanding of the applica-
tion of locally controlled therapeutic hypothermia.

Introduction

Human induced pluripotent stem cells (hiPSCs)-based mod-
els are promising tools for the investigation of stem cell fate 
and the development of patient-specific diseases models [1, 
2]. In their extracellular environment, hiPSCs are exposed to 
multiple mechanical stimuli that regulate their fate [3–5]. As 
pluripotent cells, hiPSCs are able to adapt to those stresses 
and prevent themselves from damage [6, 7]. It showed that 

mechanosensitive ion channels were able to detect and chan-
nel the stresses [8], as the activated channels allowed the 
influx of cations and led to the cytoskeleton remodeling [9, 
10]. The downstream signaling crosstalk, such as the Hippo/
YAP pathway and Ras-activated signaling pathway, was then 
activated to counteract the stress [11–13].

Another important stress response of the cells is the 
thermal response [14, 15]. Cells have a variety of adaptive 
mechanisms to withstand temperature changes [16]. Heat 
stress is encountered in numerous medical conditions, such 
as inflammation [17], which led to the activation of heat 
shock proteins [18, 19]. Cold stress resulted in losing the 
cell membrane permeability, altering the enzyme activity, 
and modifying the cytoskeletons [20–23]. It should be noted 
that the temperature affects the supramolecular structures 
and conformations of extracellular matrix (ECM) proteins 
[24]. Temperature change (from 98 to 320 K) led to an 
expansion of total volume of protein (0.4% per 100 K) [25]. 
In the solution, the assembly of ECM protein was favored 
by increased temperature, as the attraction to the net force 
increases with temperature from 5 to 35 °C [26]. Conse-
quently, cellular behaviors were altered by changes in ECM 
[27]. It is intrigued that the cold responses was not the same 
among different animal species, and the molecular basis in 
cold adaption is remained to be elucidated [23, 28]. Here, we 
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examined the influence of cyclic temperature changes (ΔT) 
on the interaction between the cells and the ECM, includ-
ing the cell shape and mechanical properties as well as the 
ECM topography.

Method

Detailed information regarding the BIH-001A cell line, cell 
culture, and fluorescence staining appear in Supplementary 
Method S1. The topography of decellularized extracellu-
lar matrix (dECM) and the mechanics of the hiPSCs were 
determined using an atomic force microscope (NanoWiz-
ard 4, JPK BioAFM, Germany). Decellularization was using 
the following protocol [29]. Briefly, samples were washed 
with 0.1% (w/v) sodium dodecyl sulfate (Sigma-Aldrich, 
Germany) for 1 h at room temperature. DNA contents were 
removed using 10 U/ml DNAse (Sigma-Aldrich, Germany). 
The topography of the dECM was measured using AC Mode 
in PBS at room temperature. The experiments involving 
living cells were conducted at 37 ± 0.1 °C controlled by a 
petri dish heater (JPK BioAFM, Germany). A tetrahedral tip 
(240-AC-NG, NanoAndMore GmbH, Germany) was used 
to measure the topography of the dECM and a colloidal tip 
(CP-qp-CONT-Au-B-5, NanoAndMore GmBH, Germany) 
to measure Young’s modulus of a single living hiPSC (Fig. 
S1). Images and force curves were recorded by the JPK-
SPM software (JPK BioAFM, Germany) and were processed 
using JPKSPM Data Processing software (JPK BioAFM, 
Germany). Detailed descriptions appear in the supplemental 
information.

Statistical analysis

Data were expressed as mean ± standard deviation (SD). 
GraphPad Prism 8 (GraphPad Software, USA) was used for 
the statistical analysis using unpaired t-tests. p < 0.05 was 
considered statistically significant.

Results and discussion

Pluripotency of hiPSCs in response to cyclic 
temperature changes

The expression of NANOG and SOX2 was used to evaluate 
the pluripotency of hiPSCs (Fig. 1). A robust expression of 
the NANOG and SOX2 was observed, while an increase in 
SOX2 expression was detected in hiPSCs under the cyclic 
cold stress. As either higher or lower expression of SOX2 
would lead to the loss of pluripotency [30, 31], our result 
implied that the cyclic cold stress might favor the ectodermal 
lineage commitment in hiPSCs through upregulation SOX2 
[32–34]. In addition, the cell-intrinsic mechanics regulated 
the pluripotent state of the cells [35], this observation might 
also due to the changes in mechanical properties of hiPSCs.

Alterations in the rearrangement of cytoskeleton 
caused by cyclic temperature changes

The ability of a eukaryotic cell to maintain or change 
its shape depends on the cytoskeleton arrangement 

Fig. 1  Representative images of pluripotent markers expressed in hiPSCs with or without exposure to cyclic temperature changes for 24 h (scale 
bars are 50 μm)
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[36]. Actin filament (F-actin) is one of the main types 
of cytoskeletal polymers, which regulates cell shape, 
mechanical properties, and intracellular signaling trans-
duction [37]. Our result showed that, in both groups, thick 
F-actin fibers were displayed in parallel to the colony 
edge of hiPSCs, while a stronger fluorescence signal was 
detected in the hiPSC colony exposed to the cyclic tem-
perature changes (Fig. 2a). At the single-cell level, more 
filopodia that formed by the long tight bundles of F-actin 
were observed in hiPSCs treated with the repeated tem-
porary cooling. Without temperature change, the lamel-
lipodia and cortical actin meshwork became apparent.

Alterations in the mechanics of hiPSCs treated 
with the cold stimuli

The cellular mechanical properties are dependent on 
the integrity and organization of the cytoskeleton [38]. 
We have demonstrated that the temperature change was 
a potent regulator of the expression and architecture of 
cytoskeleton component in the adult cells [39]. The value 
of Young’s modulus in hiPSCs subjected to the cyclic 
temperature change was increased (Fig. 2b). The distri-
bution of Young’s modulus in hiPSCs at 37 °C was nar-
rower than those exposed to the cyclic cold stimuli. The 
temperature-induced stiffening of hiPSCs was a result of 
the altered cytoskeleton arrangement [40, 41].

ECM remodeled by hiPSCs in response to cold stress

Through regulating the synthesis and secretion, assembly 
and reassembly, chemical modification, and degradation, 
ECM is constantly modified by the cells [42]. As the ECM 
become more and more stable along with its maturation, 
the remodeling of matured ECM would require proteases 
[43]. In addition, temperature change could affect the ECM 
assembly in the absence of cells [26]. The ECM topography 
was measured to reflect thermal influence on the capacity of 
hiPSCs to remodel their ECM using AFM (Fig. 3a). More 
surface incongruity was detected in the dECM derived from 
the cyclic cold-stimulated hiPSCs, as irregular larger peaks 
(the bright regions) with approximately 2 µm in width and 
40 nm in height were observed.

The roughness average (Ra) and the root mean square 
(RMS) values were chosen to quantitatively characterize the 
surface roughness of the dECM (Table 1). In dECM derived 
from the hiPSCs exposed to the repeated temporary cooling, 
a significantly higher degree of roughness was exhibited. 
Previous studies demonstrated that cells could generate 
tractional forces through the cytoskeleton deformation to 
regulate the architecture of ECM. As the repeated temporary 
cooling altered the hiPSC cytoskeleton [44], it might thus 
cause changes in ECM arrangement.

Another possible reason for the altered ECM architecture 
is the production of ECM proteins by the cells. Laminin is 
one of the main components of ECM that involved in cell-
ECM interactions and ECM remodeling [45, 46]. A substan-
tial increase of Laminin α5 secretion was detected in hiPSCs 

Fig. 2  Effects of cyclic tem-
perature changes on hiPSC 
morphology and mechanical 
properties. a Representative 
images of F-actin organiza-
tion in the hiPSC colony or in 
a single hiPSC cultured under 
different conditions for 24 h 
(scale bars for the image of 
hiPSC colony are 100 μm, for 
the single hiPSC are 50 μm). b 
Young’s modulus of hiPSCs. 
Fifty-five single cells (biologi-
cal replicates) were measured, 
each cell was measured three 
times (technical replicates), 
together 165 force curves were 
acquired for calculating Young’s 
modulus of hiPSCs (n = 165; 
*p < 0.0001)
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exposed to the cyclic cold stimuli (Fig. 3b). The difference 
in the secretion mode of Laminin α5 might be a result of 
the altered the arrangement of the cytoskeleton, as the actin 
cytoskeleton could play a regulatory role in the ECM protein 
secretion [47].

Conclusion

In this study, we assessed the responses of hiPSCs to the 
cyclic temperature changes, including the pluripotency, the 
cytoskeleton arrangement, and Young’s modulus of the hiP-
SCs as well as their ability to remodel the ECM. Cyclic tem-
perature changes did not decrease the expression of pluri-
potent proteins in hiPSCs, while it caused alterations in the 
arrangement of the actin skeleton, which further altered the 
ability of hiPSCs to remodel the ECM. The dECM in the 
group with cyclic temperature change presented increased 
surface roughness. These results provide insight into how 
hiPSCs adapt to the signals in the ambient environment, 
which might deepen the understanding of the cold-adaptive 
behaviors in stem cells and uncover the potential of thera-
peutic hypothermia.

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1557/ s43580- 021- 00110-4.
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