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a b s t r a c t

For graphs G1, . . . , Gs, the multicolor Ramsey number R(G1, . . . , Gs) is the smallest integer r such that if we 
give any edge col-oring of the complete graph on r vertices with s colors then there exists a monochromatic 
copy of Gi colored with color i, for some 1 ≤ i ≤ s. In this work the multicolor Ramsey number
R(Kp1 , . . . , Kpm , K1,q1 , . . . , K1,qn ) is determined for any set of com-plete graphs and stars in terms of R(Kp1 , . . . , 
Kpm ).

1. Introduction

All graphs considered are undirected, finite and contain neither loops nor multiple edges. Unless
otherwise stated, we follow [2,5] for terminology and definitions.
Let V (G) and E(G) denote the set of vertices and the set of edges of the graph G, respectively. |V (G)|

is called the order of G, and |E(G)| is called the size of G. For a subset S ⊂ V (G), the neighborhood of
S, denoted by NG(S), is the set of vertices in V (G) \ S that are adjacent to some vertex of S. If S = {v}
we put simply NG(v). Let dG(v) be the degree of vertex v. The maximum degree and minimum degree
of G are denoted by 1(G) and δ(G), respectively. For any subset S ⊆ V (G) (resp. W ⊆ E(G)), the
induced subgraph of G by S (resp. by W ), denoted by G[S] (resp. G[W ]) is the graph with vertex
set S (resp. edge set W ) whose edges are the edges of G joining vertices of S (resp. whose vertices
are incident to some edge of W ). A subset S ⊆ V (G) is called independent if G[S] has no edges. The
independence number ofG, denoted byα(G), is the cardinality of the largest independent set. Formally,
α(G) = max{|S| : S ⊂ V (G) is independent}. The complete graph on p vertices is denoted by Kp,
whereas the complete bipartite graph with one vertex in the first class and q vertices in the second
class is denoted by K1,q and it is also called a star on q+ 1 vertices.
For graphs G1,G2, . . . ,Gs, a (G1,G2, . . . ,Gs)-coloring is a coloring of the edges of a complete graph

with s colors, such that it does not contain a subgraph isomorphic to Gi whose all edges are colored
with color i, for each 1 ≤ i ≤ s. Similarly, a (G1,G2, . . . ,Gs; r)-coloring is a (G1,G2, . . . ,Gs)-coloring
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of the complete graph Kr . on r vertices. The multicolor Ramsey number R(G1,G2, . . . ,Gs) is defined
to be the least positive integer r such that there exist no (G1,G2, . . . ,Gs; r)-coloring.
In this paper we focus on the multicolor Ramsey number for cliques and stars. Let p1, . . . , pm,

q1, . . . , qn be positive integers. Set P = {p1, . . . , pm} and Q = {q1, . . . , qn}. By R(P,Q ) = R(Kp1 , . . . ,
Kpm , K1,q1 , . . . , K1,qn) we denote the Ramsey number for cliques and stars and by (P,Q )-coloring a
(Kp1 , . . . , Kpm , K1,q1 , . . . , K1,qn)-coloring. Following this notation, R(∅,Q ) = R(K1,q1 , . . . , K1,qn) and
R(P,∅) = R(Kp1 , . . . , Kpm).
Some results concerning the classical multicolor Ramsey number R(Kp1 , . . . , Kpm) are known only

for a small number of cliques. Exact values for R(K3, K`), ` ∈ {3, . . . , 9}, can be found in [6–8,10,
12,14]. Moreover, R(K4, K`), ` ∈ {4, 5}, is determined in [7,11,15] and the only known value of
R(Kp1 , . . . , Kpm) for m ≥ 3 up to now is R(3, 3, 3) = 17, proved in [7]. Other structures involving
multicolor Ramsey number have been studied (see for instance [13,16–18]).
For stars the problem was solved in the following Theorem proved in [4].

Theorem 1.1 (See [4]). Let q1, . . . , qn be positive integers. Then

R(K1,q1 , . . . , K1,qn) =
n∑
j=1

qj − n+ εQ ,

where εQ = 1 if the number of even integers in the set {qj}nj=1 is even and positive, and εQ = 2 otherwise.

Regarding to the multicolor Ramsey number R(Kp1 , . . . , Kpm , K1,q1 , . . . , K1,qn), the exact value is
only known form = 1, that is, R(Kp, K1,q1 , . . . , K1,qn). This result was proved in [9].

Theorem 1.2 (See [9]). Let p, q1, . . . , qn be positive integers with p ≥ 2. Then

R(Kp, K1,q1 , . . . , K1,qn) = (p− 1)

(
n∑
j=1

qj − n+ εQ − 1

)
+ 1,

where εQ = 1 if the number of even integers in the set {qj}nj=1 is even and positive, and εQ = 2 otherwise.

In this workwe generalize Theorem 1.2 by determining themulticolor Ramsey number R(Kp1 , . . . ,
Kpm , K1,q1 , . . . , K1,qn) for any arbitrary numbersm and n of cliques and stars, respectively. Namely the
following result will be proved.

Theorem 1.3. Let p1, . . . , pm, q1, . . . , qn be positive integers, with pi, qj ≥ 2 for i = 1, . . . ,m and
j = 1, . . . , n. Then

R(Kp1 , . . . , Kpm , K1,q1 , . . . , K1,qn)− 1 =

(
n∑
j=1

qj − n+ εQ − 1

)
(R(Kp1 , . . . , Kpm)− 1),

where εQ = 1 if the number of even integers in the set {qj}nj=1 is even and positive, and εQ = 2 otherwise.

2. Definitions and previous results

In this sectionwe give some definitions and technical results thatwill be used in order to obtain the
main result. We start setting the notation for a suitable partition associated to a given set of vertices.

Notation 2.1. Given a graph G and a subset U = {u1, . . . , uk} ⊆ V (G) of vertices of G, P (U) =
{W1, . . . ,Wk}will denote a partition of the set NG(U)∪U, chosen in such a way that W1 = NG(u1)∪{u1}
and Wi = NG(ui) ∪ {ui} \

⋃i−1
j=1Wj, for i = 2, . . . , k.

Observe that ifU is a set of independent vertices ofGwith cardinality |U| = α(G), thenNG(U)∪U =
V (G) and hence, P (U) is a partition of V (G).
The following result of Brooks [3] proves that the chromatic number of a graph different from an

odd cycle and a complete graph is upper bounded by the maximum degree.



Theorem 2.1 (See [3]). If G is a connected graph that is neither an odd cycle nor a complete graph, then
χ(G) ≤ 1(G).

In the next lemma some relationships between the independence number and themaximal degree
of a graph are given.

Lemma 2.1. Let G be a graph and let G1, . . . ,Gs be its components. Then the next assertions hold:

(i) If there exists i ∈ {1, . . . , s} such that Gi is neither a complete graph nor a cycle of odd length, then
α(Gi) ≥

|V (Gi)|
1(Gi)

.

(ii) If Gi 6= K1(G)+1 for all i = 1, . . . , s, and1(G) ≥ 3 or Gi is not an odd cycle for all i = 1, . . . , s, then
α(G) ≥ |V (G)|

1(G) .

(iii) The inequality α(G) ≥ |V (G)|k holds for any integer k ≥ 1(G)+ 1.

Proof. (i) Suppose that Gi is different from a complete graph and an odd cycle, then by Theorem 2.1
we have χ(Gi) ≤ 1(Gi). Let γi : V (Gi) → {a1, . . . , aχ(Gi)} be a vertex coloring of G with χ(Gi)
colors. By the definition of a vertex coloring, the sets γ−1i (aj) ⊆ V (Gi), j = 1, . . . , χ(Gi) form
a partition of V (Gi) and γ−1i (aj) ∩ γ−1i (al) = ∅ for j 6= l, j, l = 1, . . . , χ(Gi). Furthermore,∣∣γ−1i (aj)

∣∣ ≤ α(Gi) for every j = 1, . . . , χ(Gi), which yields
|V (Gi)| =

χ(Gi)∑
j=1

∣∣γ−1i (aj)
∣∣ ≤ α(Gi)χ(Gi) ≤ α(Gi)1(Gi).

(ii) Suppose that Gi 6= K1(G)+1 for all i = 1, . . . , s. If there exists i ∈ {1, . . . , s} and j ∈ {1, . . . ,1(G)}
such that Gi = Kj, then α(Gi) = 1 ≥

j
1(G) ≥

|V (Gi)|
1(G) . On the other hand, if 1(G) ≥ 3 and

there exists i ∈ {1, . . . , s} such that Gi is an odd cycle C2j+1 of length 2j + 1, with j ≥ 1, then
α(Gi) = j ≥

2j+1
3 ≥

|V (Gi)|
1(G) . Finally, if Gi is neither a complete graph nor an odd cycle, then by

applying item (i) we have α(Gi) ≥
|V (Gi)|
1(Gi)

≥
|V (Gi)|
1(G) . Therefore,

α(G) =
s∑
i=1

α(Gj) ≥
s∑
i=1

|V (Gi)|
1(G)

=
|V (G)|
1(G)

.

(iii) If Gi = K1(G)+1, for some i ∈ {1, . . . , s}, then α(Gi) = 1 ≥ 1(G)+1
k =

|V (Gi)|
k . If Gi 6= K1(G)+1 for all

i = 1, . . . , s, and1(G) ≥ 3 or Gi is not an odd cycle for all i = 1, . . . , s, then reasoning as in item
(ii) we obtain α(Gi) ≥

|V (Gi)|
1(G) ≥

|V (Gi)|
k . Finally, if1(G) ≤ 2 and Gi is an odd cycle of length 2j+ 1

then1(G) = 2, k ≥ 3 and α(Gi) = j ≥
2j+1
3 ≥

|V (Gi)|
k . Hence,

α(G) =
s∑
i=1

α(Gi) ≥
s∑
i=1

|V (Gi)|
k
=
|V (G)|
k

,

and the result follows. �

3. Main results

In [1] a lower bound for themulticolor Ramsey number R(Kp1 , . . . , Kpm ,G1, . . . ,Gn) in terms of the
numbers R(Kp1 , . . . , Kpm) and R(G1, . . . ,Gn)was determined.

Theorem 3.1 (See [1]). Let p1, . . . , pm be integers, with pi ≥ 2 for i = 1, . . . ,m, and let G1, . . . ,Gn be
any arbitrary graphs. Then

R(Kp1 , . . . , Kpm ,G1, . . . ,Gn) ≥
(
R(Kp1 , . . . , Kpm)− 1

)
(R(G1, . . . ,Gn)− 1)+ 1.



Fig. 1. Definition of c ′ .

Combining Theorem 3.1 with Theorem 1.1 the following lower bound for the number R(Kp1 , . . . ,
Kpm , K1,q1 , . . . , K1,qn) is derived:

R(Kp1 , . . . , Kpm , K1,q1 , . . . , K1,qn)− 1 ≥

(
n∑
j=1

qj − n+ εQ − 1

) (
R(Kp1 , . . . , Kpm)− 1

)
(1)

where εQ = 1 if the number of even integers in the set {qj}nj=1 is even and positive, and εQ = 2
otherwise.
We will prove that inequality (1) is indeed an equality. Before, we need to prove some lemmas.

Lemma 3.1. Let p1, . . . , pm, q1, . . . , qn be positive integers, with pi, qj ≥ 2, for i = 1, . . . ,m and
j = 1, . . . , n, and denote by K the complete graph on R(P,Q )− 1 vertices. Let c : E(K)→ {a1, . . . , am,
b1, . . . , bn} be a (P,Q )-coloring of K . Then the graph G with vertex set V (G) = V (K) and edge set
E(G) = c−1({b1, . . . , bn}) has minimum degree δ(G) ≥ 1.

Proof. Let G be the graph under the hypothesis of the lemma, and we reason by way of contradiction
supposing that there exists v ∈ V (G) such that dG(v) = 0. Let K ′ be the complete graph obtained from
K by adding a new vertex w 6∈ V (K). We will arrive at a contradiction by proving the existence of a
(P,Q )-coloring of K ′. Let us consider the application c ′ : E(K ′)→ {a1, . . . , am, b1, . . . , bn} defined as
follows (see Fig. 1):

c ′(xy) =

{b1 if xy = vw
c(vy) if x = w and y ∈ V (K)
c(xy) otherwise.

Let us see that c ′ is a (P,Q )-coloring of the graph K ′. First assume that K ′ contains an ai-colored
copy of Kpi for some i ∈ {1, . . . ,m}, then w ∈ V (Kpi), since c

′(E(K)) = c(E(K)) and c is a (P,Q )-
coloring of K . Thus, v 6∈ V (Kpi), because c

′(vw) = b1 6= ai. Let us denote the set of vertices of Kpi by
V (Kpi) = {w, v1, . . . , vpi−1}. Since c

′(wvj) = ai and c ′(wvj) = c(vvj) for all j = 1, . . . , pi − 1, and
further ai = c ′(vjv`) = c(vjv`) for all j 6= `, j, ` = 1, . . . , pi−1 then c

(
E(K [{v, v1, . . . , vpi−1}])

)
= ai,

contradicting the fact that c is a (P,Q )-coloring of K . Second assume that K ′ contains a bj-colored copy
of K1,qj for some j ∈ {1, . . . , n}, then vw ∈ E(K1,q1), since c

′−1({b1, . . . , bn}) = c−1({b1, . . . , bn}) ∪
{vw} = E(G) ∪ {vw}, due to the fact that dG(v) = 0. Thus j = 1 and notice that there is no more
incident edges to edge vw with color b1, because dG(v) = 0 and c ′(wy) = c(vy) ∈ {a1, . . . , am}, for
every y ∈ V (K), y 6= v. Therefore, we arrive at a contradiction with the hypothesis q1 ≥ 2.
Hence, c ′ is a (P,Q )-coloring of the complete graph K ′ with R(P,Q ) vertices, which is a contradic-

tion. Then G has minimum degree δ(G) ≥ 1. �

Given a (P,Q ; R(P,Q ) − 1)-coloring and Q ′ ⊇ Q , the next result leads us to obtain a (P,Q ′)-
coloring of an appropriated complete graph, under certain restrictions.

Lemma 3.2. Let p1, . . . , pm, q1, . . . , qn be positive integers, with pi, qj ≥ 2, for i = 1, . . . ,m and
j = 1, . . . , n. Let K = KR(P,Q )−1 be the complete graph on R(P,Q ) − 1 vertices. Let c : E(K) →
{a1, . . . , am, b1, . . . , bn} be a (P,Q )-coloring of K . Set B = c−1({b1, . . . , bn}), U = {u1, . . . , uα(K [B])}
a set of independent vertices of K [B] and P (U) = {W1, . . . ,Wα(K [B])} the partition of V (K [B])
following Notation 2.1. Let k be a non negative integer and set Q ′ = {q1, . . . , qn, . . . , qn+k} such that
|Wi| ≤ R(∅,Q ′)− 1 for all i = 1, . . . , α(K [B]). We consider the complete graph K ∗i whose set of vertices



is obtained from Wi by adding new vertices not belonging to V (K) such that |V (K ∗i )| = R(∅,Q
′) − 1,

and V (K ∗i ) ∩ V (K
∗

j ) = ∅ for all 1 ≤ i 6= j ≤ α(K [B]). Let K ∗ be the complete graph with set of
vertices

⋃α(K [B])
i=1 V (K ∗i ) and let c

∗

i : E(K
∗

i ) → {b1, . . . , bn+k} be a (∅,Q ′)-coloring of K∗i . Let c
∗
:

E(K ∗)→ {a1, . . . , am, b1, . . . , bn+k} be an application define as follows:

c∗(vw) =
{
c∗i (vw) if vw ∈ E(K ∗i )
c(uiuj) if v ∈ V (K ∗i ) andw ∈ V (K

∗

j ) with i 6= j.

Then the next assertions hold:

(i) c∗ is a (P,Q ′)-coloring of K ∗.
(ii) |V (K ∗)| ≤ (R(P,∅)− 1)(R(∅,Q ′)− 1).

Proof. (i) First, suppose that there exists j ∈ {1, . . . , n + k} such that (c∗)−1({bj}) ⊇ E(K1,qj).
Since c∗(uiuj) = c(uiuj) ∈ {a1, . . . , am} for all 1 ≤ i 6= j ≤ α(K [B]), then there exists
h ∈ {1, . . . , α(K [B])} such that E(K1,qj) ⊆ E(K

∗

h ). Moreover, the definition of c
∗ implies that

c∗(E(K1,qj)) = c
∗

h (E(K1,qj)) = {bj} and this is not possible because c
∗

h is a (∅,Q
′)-coloring of K ∗h .

Second, suppose that there exists i ∈ {1, . . . ,m} such that (c∗)−1({ai}) ⊇ E(Kpi), and set
V (Kpi) = {v1, . . . , vpi}. Let us see that v` ∈ V (K

∗

j`
) for every ` = 1, . . . , pi and j` 6= j`′ if 1 ≤ ` 6=

`′ ≤ pi. Otherwise, there exist h ∈ {1, . . . , α(K [B])} and `, `′ ∈ {1, . . . , pi} such that v`, v`′ ∈
V (K ∗h ). Then c

∗(v`v`′) = c∗h (v`v`′) ∈ {b1, . . . , bn+k} and this not possible since c
∗(E(Kpi)) = {ai}.

We consider the set of vertices {uj1 , . . . , ujpi } ⊆ U . From the definition of c
∗, it follows that

c∗(uj`uj`′ ) = c(uj`uj`′ ) = c
∗(vj`vj`′ ) = ai for all 1 ≤ ` 6= `

′
≤ pi. Hence, c(E(K [{uj1 , . . . , ujpi }])) =

{ai} and therefore c−1({ai}) ⊇ E(Kpi). This is an contradiction since c is an (P,Q )-coloring of K ,
and the result follows.

(ii) From the definition of K ∗, we know that V (K ∗) =
⋃α(K [B])
i=1 V (K ∗i ) and K

∗

i ∩ K
∗

j = ∅ for 1 ≤
i 6= j ≤ α(K [B]). Thus, |V (K ∗)| =

∑α(K [B])
j=1 |V (K ∗j )| = α(K [B])

(
R(∅,Q ′)− 1

)
. Notice that

the restriction of c∗ to K ∗[{u1, . . . , uα(K [B])}] is a (P,∅)-coloring of K ∗[{u1, . . . , uα(K [B])}], because
c∗(uiuj) = c(uiuj) ∈ {a1, . . . , am}. Thus,

α(K [B]) = |V (K ∗[{u1, . . . , uα(K [B])}])| ≤ R(P,∅)− 1

and therefore, |V (K ∗)| ≤ (R(P,∅)− 1)
(
R(∅,Q ′)− 1

)
. �

The next result provides an upper bound on the Ramsey number R(P,Q ) when the number of
integers qj that are even is 0 or odd.

Proposition 3.1. Let p1, . . . , pm, q1, . . . , qn be positive integers, with pi, qj ≥ 2, for i = 1, . . . ,m and
j = 1, . . . , n. If the number of integers qj that are even is 0 or odd, then

R(Kp1 , . . . , Kpm , K1,q1 , . . . , K1,qn)− 1 ≤

(
n∑
j=1

qj − n+ 1

) (
R(Kp1 , . . . , Kpm)− 1

)
.

Proof. Set K = KR(P,Q )−1 and let c : E(K) → {a1, . . . , am, b1, . . . , bn} be a (P,Q )-coloring of
K . Set Q ′ = Q and let U = {u1, . . . , uα(K [B])} be a set of independent vertices of K [B], where
B = c−1({b1, . . . , bn}). LetW1, . . . ,Wα(K [B]) be the partition P (U) of K [B] according to Notation 2.1.
By the construction ofWi, we have |Wi| ≤ 1(K [B])+1 ≤

∑n
j=1(qj−1)+1 =

∑n
j=1 qj−n+1, for i =

1, . . . , α(K [B]). FromTheorem1.1, it follows that R(∅,Q ′)−1 =
∑n
j=1 qj−n+1,which implies |Wi| ≤

R(∅,Q ′) − 1 for all i = 1, . . . , α(K [B]). Then, by applying Lemma 3.2, we may construct a (P,Q ′)-
coloring of a complete graph K ∗ ⊇ K such that |V (K ∗)| ≤ (R(P,∅)− 1)

(
R(∅,Q ′)− 1

)
. Hence,

R(P,Q )− 1 = |V (K)| ≤ |V (K ∗)| ≤ (R(P,∅)− 1)
(
R(∅,Q ′)− 1

)
and the result follows. �



Fig. 2. Color assignment in Case 1.

To determine an upper bound for the multicolor Ramsey number R(P,Q ) when the number of
integers qj that are even is even and positive, we need to show this lemma.

Lemma 3.3. Let p1, . . . , pm, q1, . . . , qn be positive integers, with pi, qj ≥ 2, for i = 1, . . . ,m and
j = 1, . . . , n, and set K = KR(P,Q )−1. If the number of integers qj that are even is even and positive,
then there exists a (P,Q )-coloring c : E(K)→ {a1, . . . , am, b1, . . . , bn} such that 1(K [B]) ≥ 3 or K [B]
contains no an odd cycle, where B = c−1({b1, . . . , bn}).

Proof. Let c : E(K) → {a1, . . . , am, b1, . . . , bn} be a (P,Q )-coloring such that |B| = |c−1({b1,
. . . , bn})| is maximum.
Without lost of generality we may assume that |V (K)| ≥ 4. Otherwise, we are done unless

K = K [B] = C3. In this case, it is enough to replace the color bj of any edge of K [B] with any color ai,
and the result holds.
Byway of contradiction, suppose that1(K [B]) ≤ 2 and there exists an odd cycle C2k+1 inK [B]. First,

let us see that qj = 2 for all j = 1, . . . , n. Otherwise, there would exist j ∈ {1, . . . , n} such that qj ≥ 3.
Since |V (K)| ≥ 4 and 1(K [B]) ≤ 2, we can find an edge uv ∈ E(K) such that c(uv) ∈ {a1, . . . , am}.
Since the number of integers qj that are even is even and positive, then n ≥ 2. Given bi 6= bj, let
c ′ : E(K)→ {a1, . . . , am, b1, . . . , bn} be the application defined as follows:

c ′(xy) =

{bj if xy ∈ B
bi if xy = uv
c(xy) otherwise.

It is clear that c ′ is a (P,Q )-coloring of K and
∣∣(c ′)−1({b1, . . . , bn})∣∣ > |B|, which is not possible

since B has maximum cardinality. Hence, qj = 2 for all j = 1, . . . , n.
Two cases need to be distinguished according to the length of the cycle C2k+1 contained in K [B].

Case 1. Assume k ≥ 2 and denote by {v1, . . . , v2k+1} the set of vertices of C2k+1.
Assume k ≥ 2. Since C2k+1 has odd length and qj = 2 for all j = 1, . . . , n, then n ≥ 3, that is, the

cycle C2k+1 ⊆ K [B]must be colored with at least three different colors in order to avoid the existence
of two incident edgeswith the same color. Indeed, theremust exist a path of length threewhose edges
are coloredwith three different colors bi1 , bi2 , bi3 . Denote by {v1, . . . , v2k+1} the set of vertices of C2k+1
so that c(v1v2) = bi1 , c(v2v3) = bi2 and c(v3v4) = bi3 (see Fig. 2). Since the number of integers qj that
are even is even, then n ≥ 4, and therefore, there exists a color bi4 6∈ {bi1 , bi2 , bi3}.
If c(v1v2k+1) ∈ {bi2 , bi3} (see Fig. 2 [a]), we can define

c ′(xy) =
{
bi4 if xy = v1v3
c(xy) otherwise.

If c(v4v5) ∈ {bi1 , bi2} (see Fig. 2 [b]), we can define

c ′(xy) =
{
bi4 if xy = v2v4
c(xy) otherwise.

If c(v1v2k+1) = c(v4v5) = bi4 (see Fig. 2 [c]), we can define

c ′(xy) =
{
bi2 if xy = v1v4
c(xy) otherwise.



Fig. 3. Color assignment for Case 2.

In any case, c ′ is a (P,Q )-coloring of K such that
∣∣(c ′)−1({b1, . . . , bn})∣∣ > |B|, a contradiction.

Case 2. Assume k = 1. Let denote by {v1, v2, v3} the set of vertices of C3 ⊆ K [B]. Since c is a (P,Q )-
coloring of K and qj = 2 for all j = 1, . . . , n, we may assume that c(v1v2) = bi1 , c(v2v3) = bi2
and c(v1v3) = bi3 with bi1 6= bi2 6= bi3 (see Fig. 3). As |V (K)| ≥ 4 there exists v ∈ V (K) such that
v 6∈ V (C3). Observe that dK [B](v) ≤ 1(K [B]) ≤ 2, and so without lost of generality, we may suppose
that c ({vy | y ∈ V (K [B])}) ⊆ {bi1 , bi2}. Let c

′ be the following application:

c ′(xy) =
{
bi3 if xy = vv2
c(xy) otherwise.

It is easy to check that c ′ is a (P,Q )-coloring of K verifying
∣∣(c ′)−1({b1, . . . , bn})∣∣ > |B|, which is

again a contradiction. Then, the result follows. �

Proposition 3.2. Let p1, . . . , pm, q1, . . . , qn be positive integers, with pi, qj ≥ 2, for i = 1, . . . ,m and
j = 1, . . . , n. If the number of integers qj that are even is even and positive, then

R(Kp1 , . . . , Kpm , K1,q1 , . . . , K1,qn)− 1 ≤

(
n∑
j=1

qj − n

) (
R(Kp1 , . . . , Kpm)− 1

)
.

Proof. Set K = KR(P,Q )−1. By Lemma 3.3, there exists a (P,Q )-coloring c : E(K) → {a1, . . . , am,
b1, . . . , bn} of K such that the set B = c−1({b1, . . . , bn}) verifies1(K [B]) ≥ 3 or K [B] does not contain
an odd cycle. By Lemma 3.1, we know that |V (K [B])| = R(P,Q ) − 1 and V (K [B]) = V (K). From the
definition of K [B], it follows that dK [B](v) =

∑n
i=1 |{x | vx ∈ B, c(vx) = bi}| ≤

∑n
i=1(qi − 1), for any

vertex v ∈ V (K). Thus,1(K [B]) ≤
∑n
i=1(qi − 1) and by Theorem 1.1,

R(∅,Q ) =
n∑
i=1

qi − n+ 1 =
n∑
i=1

(qi − 1)+ 1 ≥ 1(K [B])+ 1.

Two cases need to be distinguished:
Case 1. Assume

∑n
i=1(qi − 1)+ 1 = 1(K [B])+ 1. That is,1(K [B]) =

∑n
i=1 qi − n = R(∅,Q )− 1.

If K1(K [B])+1 ⊆ K [B] then the restriction of the (P,Q )-coloring c on E(K1(K [B])+1)must be a (∅,Q )-
coloring of K1(K [B])+1, which is not possible because |V (K1(K [B])+1)| = 1(K [B])+1 = R(∅,Q ). Hence,
by applying Lemma 2.1 (item (ii)) we have

α(K [B]) ≥
|V (K [B])|
1(K [B])

=
R(P,Q )− 1
n∑
i=1
qi − n

.

Case 2. Assume
∑n
i=1(qi − 1) + 1 > 1(K [B]) + 1. That is, 1(K [B]) <

∑n
i=1 qi − n. Denoting by

k =
∑n
i=1 qi − n and applying Lemma 2.1 (item (iii)) we have

α(K [B]) ≥
|V (K [B])|
k

=
R(P,Q )− 1
n∑
i=1
qi − n

.



Hence, in any case it follows that

α(K [B]) ≥
R(P,Q )− 1
n∑
i=1
qi − n

. (2)

Let Q ′ = Q ∪ {2} = {q1, . . . , qn, qn+1 = 2}. By Theorem 1.1, we deduce that

R(∅,Q ′) =
n+1∑
i=1

qi − (n+ 1)+ 2 =
n∑
i=1

qi − n+ 3. (3)

Let U = {u1, . . . , uα(K [B])} be a set of independent vertices of K [B] and let us consider the partition
P (U) = {W1, . . . ,Wα(K [B])} of K [B] constructed following Notation 2.1. For every i = 1, . . . , α(K [B])
we know by (3) that

|Wi| ≤
∣∣NK [B](ui) ∪ {ui}∣∣ ≤ 1(K [B])+ 1 ≤ n∑

i=1

qi − n+ 1 ≤ R(∅,Q ′)− 1.

Then the hypothesis of Lemma 3.2 are satisfied, hence we consider the graphs K ∗i and K
∗

constructed following Lemma 3.2. Thus,

R(P,Q ′)− 1 ≥ |V (K ∗)| =
α(K [B])∑
i=1

∣∣V (K ∗i )∣∣ = α(K [B])∑
i=1

(
R(∅,Q ′)− 1

)
= α(K [B])

(
R(∅,Q ′)− 1

)
.

Combining (2) and (3), we have

R(P,Q ′)− 1 ≥
R(P,Q )− 1
n∑
i=1
qi − n

(
n∑
i=1

qi − n+ 2

)
,

yielding to

R(P,Q )− 1 ≤

(
R(P,Q ′)− 1

) ( n∑
i=1
qi − n

)
n∑
i=1
qi − n+ 2

. (4)

Since the number of integers qj ofQ ′ that are even is odd, by applying Theorem3.1 and by assuming
equality (3), it follows that

R(P,Q ′)− 1 ≤ (R(P,∅)− 1)
(
R(∅,Q ′)− 1

)
= (R(P,∅)− 1)

(
n∑
i=1

qi − n+ 2

)
. (5)

Finally, from inequalities (4) and (5), we have

R(P,Q )− 1 ≤

(
n∑
i=1
qi − n

)
n∑
i=1
qi − n+ 2

(R(P,∅)− 1)

(
n∑
i=1

qi − n+ 2

)

=

(
n∑
i=1

qi − n

)
(R(P,∅)− 1) ,

which proves the result. �



As a consequence of (1), Propositions 3.1 and 3.2, the following theorem determines themulticolor
Ramsey number R(Kp1 , . . . , Kpm , K1,q1 , . . . , K1,qn) for any set of complete graphs and stars in terms of
R(Kp1 , . . . , Kpm). This result generalizes Theorem 1.2 proved in [9].

Theorem 3.2. Let m, n be positive integers. Then

R(Kp1 , . . . , Kpm , K1,q1 , . . . , K1,qn)− 1 =

(
n∑
j=1

qj − n+ εQ − 1

) (
R(Kp1 , . . . , Kpm)− 1

)
,

where εQ = 1 if the number of even integers in the set {qj}n1 is even and positive, and εQ = 2 otherwise.
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