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A B S T R A C T

Transfer functions are constantly used in both Seismology and Geotechnical Earthquake Engineering to relate
seismic ground motion at different depths within strata. In the context of diffusive theory, they also appear
in the expression of the imaginary part of 1D Green’s functions. In spite of their remarkable importance, their
mathematical structure is not fully understood yet, except in the simplest cases of two or three layers at most.
This incomplete understanding, in particular as to the effect of increasing number of layers, hinders progress
in some areas, as researchers have to resort to expensive and less conclusive numerical parametric studies.
This text presents the general form of transfer functions for any number of layers, overcoming the above
issues. The mathematical structure of these transfer functions comes defined as a superposition of independent
harmonics, whose number, amplitudes and periods we fully characterize in terms of the properties of the layers
in closed-form. Owing to the formal connection between seismic wave propagation and other phenomena that,
in essence, represent different instances of wave propagation in a linear-elastic medium, we have extended the
results derived elsewhere, in the context of longitudinal wave propagation in modular rods, to seismic response
of stratified sites. The ability to express the reciprocal of transfer functions as a superposition of independent
harmonics enables new analytical approaches to assess the effect of each layer over the overall response. The
knowledge of the general closed-form expression of the transfer functions allows to analytically characterize
the long-wavelength asymptotics of the horizontal-to-vertical spectral ratio for any number of layers.
1. Introduction

The study of elastic-wave propagation phenomena is of utmost
interest to both the seismology and the geotechnical earthquake en-
gineering communities: the sudden release of energy created by a fault
rupturing generates a deformation field that propagates towards the
free surface and it is ultimately felt as an earthquake. This wavefield
is usually studied using the tools of linear elasticity [1], except when
the propagation takes place within soft soils, what requires considering
material non-linear response [2]. It is also the case that when the front
arrives to the shallow layers, assuming the earthquake source is located
deep enough, it does so almost-vertically (the decreasing stiffness bends
the rays towards the normal of the free surface) [1]. Moreover, for
the length-scales of interest in applications, the local curvature of the
wavefield is relatively small compared to the window of observation,
so the impinging excitation can be considered to be made up of plane
waves, ignoring the curvature of the fronts.

Under the assumptions of one-dimensional propagation perpendic-
ular to the free surface and linear response, the different components
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decouple and SH, SV and P waves can be studied separately and then
summed up, as there is no mode conversion.

A customary method to study the evolution of the wave fields
across the layers is the so-called ‘‘propagator matrix method’’, also
referred as ‘‘method of matrizants’’ in older texts [3]. An equivalent
matrix approach for the 1D case is presented in [2], and it is used
in geotechnical engineering often. The classic seismology texts [1,4]
present a general treatment for inclined SH waves and inclined P-SV
waves; however, in this work, following Ref. [5], we will consider no
inclination, thus the expressions that appear in the prior references can
be simplified.

These approaches based on propagator matrices assign a matrix to
every layer in the site, which depends on the mechanical properties
of the material the layer is made of as well as on the ratio between
the wavelength of the propagating plane wave to the thickness of the
layer. These matrices link stresses and displacements in one border of
the layer to the other one. Among other usages, this method allows
obtaining ‘‘transfer functions’’ to relate the displacement amplitude at
the free surface to either the displacement at a deeper stratum or to
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Fig. 1. Scheme of the layered system and local coordinates. 𝜇𝑖 , 𝜌𝑖 (𝑖 = 1, 2,… , 𝑁) represent respectively the shear modulus and the density of the 𝑖th layer, while those of the
half-space are termed 𝜇ℎ𝑎𝑙𝑓 , 𝜌ℎ𝑎𝑙𝑓 ; 𝑢𝑖 , ℎ𝑖 , 𝑧𝑖 (𝑖 = 1, 2,… , 𝑁 + 1) represent respectively the horizontal deformation induced by the shear wave, the thickness and the local vertical
coordinate (stretching from top to bottom) of the 𝑖th layer, the 𝑁 + 1 layer corresponds to the half-space (thus its thickness is assumed infinite).
the amplitude of the wave that impinges on the shallow layers coming
from an idealized half-space (typically referred to as the incident wave
at the top of the elastic bedrock).

Even though these transfer functions are usually obtained numeri-
cally, there is still room for closed-form analysis. The general expression
for transfer functions in sites with any number of layers is presented
and then verified against numerical evaluation following the usual
numerical matrix-multiplication procedure. Finally, a relevant applica-
tion of the new closed-form formulae is explored: obtaining analytical
expression for the ratio between horizontal and vertical spectral surface
amplitude components in the long-wavelength limit, following the
example of Kawase and colleagues [5].

Before concluding this introduction, let us mention that the elastic
wave propagation in layered media is of interest to the solid mechanics
community at large, in particular, also to researchers interested in
dispersion relations in periodic structures [6,7]. It is in this context
that the general form of the N-layer propagator has recently been intro-
duced [8]. The mathematical problem is the same in both cases, despite
its guise being different. Since the derivation of the general form of the
entries of the global propagator is presented in Ref. [8], it will not be
included in the text and the reader interested in such details is referred
to that publication. Beyond elasticity, electromagnetic waves [9] and
acoustic waves [10] propagating in layered media in 1D fashion also
adopt a similar mathematical form.

2. Closed-form expression of general transfer functions

2.1. Brief refresh of the mathematical modeling

A reader interested in thorough treatment of the subject is referred
to Aki and Richards’ book [1].

Let us illustrate the method using S waves at first, yet considering
P waves instead only requires swapping the medium shear modulus
with the corresponding modulus. We assume that the Fourier transform
has been applied to the equations of the problem, thus the results are
given in the frequency domain. The method considers balance of linear
momentum (equilibrium) and the constitutive relation (relation stress–
strain). Under the 1D assumption, frequency-domain, for S waves, these
equations in matrix form read as (see Section 5.4. in Ref. [1]):

𝑑𝒇
𝑑𝑧

= 𝑑
𝑑𝑧

[

𝑢̂
𝜏𝑥𝑧

]

=
[

0 1∕𝜇𝑘
−𝜌𝑘𝜔2 0

] [

𝑢̂
𝜏𝑥𝑧

]

= 𝑨𝑘𝒇 (𝑧), (1)

where 𝑧 is the vertical coordinate, see Fig. 1, 𝑢̂ represents the Fourier-
amplitude (frequency-domain amplitude) of the horizontal displace-
ment, 𝜏 is the amplitude of the shear stresses, 𝜇 and 𝜌 refer
2

𝑥𝑧 𝑘 𝑘
respectively to the shear modulus and the density of the soil, and 𝜔
is the circular frequency of the propagating wave. Later on, we will
include the effect of hysteretic damping in the soil, hence we will use
the symbol 𝛿𝑑,𝑘 to refer to the damping coefficient of the 𝑘th layer
(recall that, invoking the Equivalence Principle [4], introducing this
kind of dissipation mechanism in the frequency-domain response of
the material amounts to substituting the real shear modulus 𝜇𝑘 by a
complex one given by 𝜇𝑘(1 + i𝛿𝑑,𝑘)).

We assume that conditions at the surface of the site are given by
𝒇 (𝑧 = 0) = [𝑢̂𝑡𝑜𝑝 , 0]⊤, where 𝑢̂𝑡𝑜𝑝 is the unknown ground displacement
and the stress is zero as there are no forces imposed on this contour.
The vector 𝒇 is called the motion-stress vector, the matrix 𝑨𝑘 is referred
to as the 𝑘th layer matrix. For a given frequency, the matrix layer is
a constant within the layer as mechanical properties remain constant
themselves.

2.2. Transfer functions

To conclude with the review, we remind the reader of the two kinds
of transfer functions that appear profusely in the literature.

2.2.1. Surface-to-borehole ground motion
The stress-free surface translates into a zero entry of the motion-

stress vector at 𝑧 = 𝑧0 = 0:

𝒇 (0) = [𝑢̂𝑡𝑜𝑝 0]⊤. (2)

This means that the relation between the displacement at the free-
surface, 𝑢̂𝑡𝑜𝑝 and the displacement at the 𝑁 + 1 interface, assumed to
be the interface where the last layer meets the half-space, comes given
by

𝒇 (𝑧 = 𝑧𝑁+1) =
[

𝑢̂
𝜏𝑥𝑧

]

𝑧=𝑧𝑁+1

= 𝑷 (𝑧𝑁+1, 𝑧0)
[

𝑢̂𝑡𝑜𝑝
0

]

→ 𝑇𝐹𝑢−𝑢(𝜔) =
𝑢̂𝑡𝑜𝑝
𝑢̂𝑏

= 1
𝑃11(𝑧𝑁+1, 𝑧0)

, (3)

the displacement at the base (interface with the half-space) is 𝑢̂𝑏 = 𝑢̂(𝑧 =
𝑧𝑁+1).

2.2.2. Surface-to-incident ground motion
Let us focus on the last layer overlying the half-space. This expres-

sion has also been considered in the past [5,11]. The displacement at
the base of the last layer is equal to the one at the top of the half-
space, which in turn is given by the superposition of the impinging
wave and the transmitted back into the half-space after traversing the
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upper strata back and forth. Following the traditional seismological
notation, 𝑆́ represents the upward-going wave amplitude, while 𝑆̀, the
own-going one. Thus, we can write the base-to-top relation as

(𝑧 = 𝑧𝑁+1) =
[

𝑢̂
𝜏𝑥𝑧

]

𝑧=𝑧𝑁+1

=
[

𝑆̀ + 𝑆́
𝜇ℎ𝑎𝑙𝑓 ik(𝑆́ − 𝑆̀)

]

𝑧=𝑧𝑁+1

= 𝑷 (𝑧𝑁+1𝑥, 𝑧0)
[

𝑢̂𝑡𝑜𝑝
0

]

=
[

𝑃11𝑢̂𝑡𝑜𝑝
𝑃21𝑢̂𝑡𝑜𝑝

]

, (4)

hus the ratio 𝑢̂𝑡𝑜𝑝∕𝑆́ can be written as

F(𝜔) =
𝑢̂𝑡𝑜𝑝
𝑆́

= 2
𝑃11−i

𝑃21
𝜔√𝜌ℎ𝑎𝑙𝑓 𝜇ℎ𝑎𝑙𝑓

. (5)

Let us state the obvious relation between the two transfer functions:
2
TF

= 1
𝑇𝐹𝑢−𝑢

−i
𝑃21

𝜔
√

𝜌ℎ𝑎𝑙𝑓𝜇ℎ𝑎𝑙𝑓
. (6)

Notice that the subscript ‘‘𝑢 − 𝑢’’ and italic font are being used to
istinguish one transfer function from the other. Later in the text, the
ubscript ‘‘𝑝’’ and ‘‘𝑠’’ will be attached to TF to clarify if its refer to
ither pressure or shear wave propagation.

.3. General expression for surface-to-borehole transfer function

As mentioned above, the detailed derivation of the general form of
he global propagator can be consulted in Ref. [8]. Since the upcoming
esults make extensive use of multi-index notation, the Supplementary
aterial contains a brief review of the subject.

The general term for the displacement-to-displacement transfer
unction, in a site with 𝑁 layers, is [8]

𝐹𝑢−𝑢(𝜔)−1 =
2𝑁−1
∑

𝑘=1
2𝐴𝑘 cos

(

𝜏𝑘𝜔
)

, (7)

here the discrete spectrum of the inverse if the transfer function is
ully defined by the characteristic ‘‘spectral periods’’ of the N-layer site,
iven by

𝑗 =
[

ℎ1
𝑐1

, … ,
ℎ𝑁
𝑐𝑁

]⊤
⋅ 𝗲𝑗 , (8)

here the 𝑗th permutation vector 𝗲𝑗 ∈ {−1, 1}𝑁 can be any element
n the set satisfying 𝖾𝑗,1 = 1 (see that there are 2𝑁−1 elements in this
ubset and that 𝖾𝑗,1 refers to the first element of the 𝑗th permutation
ector), while the ‘‘spectral amplitude’’ corresponding to 𝗲𝑗 is

𝑗 =
1
2𝑁

⌊𝑁∕2⌋
∑

𝑘=0

∑

|𝖻|=2𝑘
(−1)𝑘+

𝖻⋅𝗲𝑗
2 (

√

𝜌𝜇)f (𝖻), (9)

ach binary multi-index [12] 𝖻 ∈ {0, 1}𝑁 codifies the effect of the imp-
dance contrast at the interfaces, and the map f ∶ {0, 1}𝑁 → {−1, 0, 1}𝑁

akes the multi-index 𝖻, entry-wise, to the multi-index f (𝖻) defined as:

• if 𝖻𝑖 = 0, then f (𝖻𝑖) = 0,
• if 𝖻𝑖 = 1 and it is the first instance of an entry being equal to 1,

then f (𝖻𝑖) = 1.
• if 𝖻𝑖 = 1 and the previous value assigned by f to the prior 1-entry

in 𝖻 was −1, then f (𝖻𝑖) = 1, else f (𝖻𝑖) = −1.

There is another form of writing Eq. (7) [8], one which is more
onvenient when it comes to study long-wavelength asymptotics (Sec-
ion 4)

𝐹𝑢−𝑢(𝜔)−1 =

( 𝑁
∏

𝑖=1
cos(𝑟𝑖)

)(

⌊𝑁∕2⌋
∑

𝛽=0

∑

|𝖻|=2𝛽
𝐶𝖻 tan(𝑟)𝖻

)

, (10)

where ⌊⋅⌋ is the floor function, 𝑟𝑖 = 𝜔ℎ𝑖∕
√

𝜇𝑖∕𝜌𝑖, the coefficients 𝐶𝖻

eing given by

= (−1)|𝖻|∕2(
√

𝜌𝜇)f (𝖻), (11)
3

𝖻

here f (𝖻) was introduced following Eq. (9). The total number of
addends in the sum Eq. (10) (each addend being a product of certain
number of tangents except for the first one that is simply 1) is equal to

𝑁𝑎𝑑𝑑𝑒𝑛𝑑𝑠 = 1+
(

𝑁
2

)

+
(

𝑁
4

)

+…+
(

𝑁
⌊𝑁∕2⌋

)

=

1
2 ⌊𝑁∕2⌋
∑

𝑘=1

(

𝑁
2𝑘

)

= 2𝑁−1. (12)

We must remark that one must proceed with caution when using
this transfer function to analyze seismic ground motion amplification.
The transfer function tends to infinity for those wavelengths for which
there is a node (a point in which the amplitude of the propagating wave
becomes zero due to its oscillations) at the depth of the borehole (what
gives way to spurious resonances), so it should only be used if a very
strong impedance contrast is known to exist at the borehole depth [2].

Expressions resembling Eq. (10) that do not employ compact nota-
tion were available in the literature [13,14]. However, the equivalent
harmonic decomposition of 𝑇𝐹−1

𝑢−𝑢, Eq. (7), and the one of TF, Eq. (20)
(to be introduced in the following), are novel and revealing, since they
suggest that concepts borrowed from Fourier Analysis can be used to
analyze transfer functions. In [8], as an example of the advantages
of employing this harmonic decomposition of entries of the transfer
matrix, the first author was able to identify and characterize the
‘‘building blocks’’ that define the dispersion relation of a modular rod
in which longitudinal waves propagate. The application we study in
this manuscript (HV ratios, Section 4) lends itself more naturally to
be analyzed using the form Eq. (10), but we foresee tackling other
problems in the future using the form in Eq. (7), see Section 5.

2.3.1. Example: 𝑁 = 2
Let us detail how the multi-index notation unfolds to yield the well-

known result [15] for the simplest possible size. For other examples
of how to build expressions directly from the harmonic decomposition
Eq. (7), see Ref [8]. Since 𝑁 = 2, there can only be two multi-indices
of even degree:

𝖻 = (0, 0) → f (𝖻) = (0, 0) → 𝐶(0,0) = (−1)0(
√

𝜌𝜇)𝖻 = 1, (13a)

𝖻 = (1, 1) → f (𝖻) = (1, −1) → 𝐶(1,1) = (−1)1(
√

𝜌𝜇)𝖻 = −

√

𝜌1𝜇1
√

𝜌2𝜇2
. (13b)

Thus:

𝐹𝑢−𝑢(𝜔)−1 =

( 𝑁
∏

𝑖=1
cos(𝑟𝑖)

)( 1
∑

𝛽=0

∑

|𝛽|=2𝛽
𝐶𝖻 tan(𝑟)𝖻

)

= cos(𝑟1) cos(𝑟2)
(

1 −
√

𝜌1𝜇1
𝜌2𝜇2

tan(𝑟1) tan(𝑟2)
)

, (14)

see also that the second term between parenthesis when equalized to
zero provides an equation for the natural frequencies of the system, for
this case and for every other number of layers greater than two.

2.3.2. Example: 𝑁 = 3
For three layers: we have the following possible 𝖻 values, which are

mapped by f as

𝖻 = (0, 0, 0) → f (𝖻) = (0, 0, 0) → (
√

𝜌𝜇)𝖻 = 1, (15a)

𝖻 = (1, 1, 0) → f (𝖻) = (1,−1, 0) → (
√

𝜌𝜇)𝖻 =

√

𝜌1𝑎1
√

𝜌2𝑎2
, (15b)

𝖻 = (1, 0, 1) → f (𝖻) = (1, 0,−1). → (
√

𝜌𝜇)𝖻 =

√

𝜌1𝑎1
√

𝜌3𝑎3
, (15c)

𝖻 = (0, 1, 1) → f (𝖻) = (0, 1,−1) → (
√

𝜌𝜇)𝖻 =

√

𝜌2𝑎2
√

𝜌2𝑎2
, (15d)

thus, from Eq. (10),

𝑇𝐹𝑢−𝑢(𝜔)−1 = cos(𝑟1) cos(𝑟2) cos(𝑟3)
(

1 −
√

𝜌1𝜇1 tan(𝑟1) tan(𝑟2) (16)

𝜌2𝜇2
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w
i

𝖻

−
√

𝜌1𝜇1
𝜌3𝜇3

tan(𝑟1) tan(𝑟3)

−
√

𝜌2𝜇2
𝜌3𝜇3

tan(𝑟2) tan(𝑟3)
)

.

2.4. Analytical expression for surface-to-incident-amplitude transfer func-
tion

Likewise, for 𝑃21 in Eq. (6) one has

𝜔
√

𝜌ℎ𝑎𝑙𝑓𝜇ℎ𝑎𝑙𝑓𝑃21 = 𝜔

( 𝑁
∏

𝑖=1
cos(𝑟𝑖)

)⎛

⎜

⎜

⎜

⎝

⌊

𝑁−1
2 ⌋

∑

𝛽=0

∑

|𝖻|=1+2𝛽
𝑆𝖻 tan(𝑟)𝖻

⎞

⎟

⎟

⎟

⎠

, (17)

the coefficients 𝑆𝖻 being given by

𝑆𝖻 = (−1)(|𝖻|+1)∕2(
√

𝜌𝜇)f (𝖻), (18)

since in this case the multi-index will always have degree odd, there
ill be an impedance that is left ‘‘hanging’’ (it will not enter into any

mpedance ratio), but it will be divided by √

𝜌ℎ𝑎𝑙𝑓𝜇ℎ𝑎𝑙𝑓 in the final
instance.

In this case, the number of addends, one can verify, is also 2𝑁−1.
Combining Eqs. (17) and (10) into Eq. (6) yields the expression of the
second transfer function (in similar fashion to Eq. (10)):

2(TF)−1 =

( 𝑁
∏

𝑖=1
cos(𝑟𝑖)

)(

⌊𝑁∕2⌋
∑

𝛽=0

∑

|𝖻|=2𝛽
𝐶𝖻 tan(𝑟)𝖻

−i
⌊

𝑁−1
2 ⌋

∑

𝛽=0

∑

|𝖻|=1+2𝛽

𝑆𝖻
√

𝜌ℎ𝑎𝑙𝑓𝜇ℎ𝑎𝑙𝑓
tan(𝑟)𝖻

)

.

(19)

Expressing this transfer function as a harmonic decomposition, sim-
ilarly to Eq. (7), is also possible:

TF(𝜔)−1 =
2𝑁−1
∑

𝑘=1

(

𝐴𝑘 cos
(

𝜏𝑘𝜔
)

+ i𝐵𝑘 sin
(

𝜏𝑘𝜔
))

, (20)

the spectral periods have already been introduced, Eq. (8), and the
spectral amplitudes associated to the sinusoidal terms are given by

𝐵𝑗 =
1

2𝑁√

𝜌ℎ𝑎𝑙𝑓𝜇ℎ𝑎𝑙𝑓

⌊

𝑁−1
2 ⌋

∑

𝑘=0

∑

|𝖻|=2𝑘+1
(−1)𝑘+

𝖻⋅𝗲𝑗−1
2 (

√

𝜌𝜇)f (𝖻). (21)

2.4.1. Example: N = 2
For two layers, there can only be two multi-indices of odd degree:

= (1, 0) → f (𝖻) = (1, 0) → (−1)1 tan(𝑟1)1 tan(𝑟2)0𝑆(1,0) = −
√

𝜌1𝜇1 tan(𝑟1),

(22a)
𝖻 = (0, 1) → f (𝖻) = (0, 1) → (−1)1 tan(𝑟1)0 tan(𝑟2)1𝑆(0,1) = −

√

𝜌2𝜇2 tan(𝑟2),

(22b)

thus, adding these terms to those obtained in Eq. (14)

2(TF(𝜔))−1 = cos(𝑟1) cos(𝑟2)
(

1 −
√

𝜌1𝜇1
𝜌2𝜇2

tan(𝑟1) tan(𝑟2) (23)

+i
√

𝜌1𝜇1
𝜌ℎ𝑎𝑙𝑓𝜇ℎ𝑎𝑙𝑓

tan(𝑟1)

+i
√

𝜌2𝜇2
𝜌ℎ𝑎𝑙𝑓𝜇ℎ𝑎𝑙𝑓

tan(𝑟2)
)

.

Unlike the displacement–displacement transfer function, which only
depends on the properties of the upper layers, in this expression the
properties of the half-space do appear explicitly.
4

2.4.2. Example: N = 3
Likewise,

𝖻 = (1, 0, 0) → f (𝖻) = (1, 0, 0) → −
√

𝜌1𝜇1 tan(𝑟1), (24a)

𝖻 = (0, 1, 0) → f (𝖻) = (0, 1, 0) → −
√

𝜌2𝜇2 tan(𝑟2), (24b)

𝖻 = (0, 0, 1) → f (𝖻) = (0, 0, 1) → −
√

𝜌3𝜇3 tan(𝑟3), (24c)

𝖻 = (1, 1, 1) → f (𝖻) = (1,−1, 1) → +
√

𝜌3𝜇3

√

𝜌1𝜇1
√

𝜌2𝜇2
tan(𝑟1) tan(𝑟2) tan(𝑟3),

(24d)

so adding these terms to Eq. (16)

𝑇𝐹𝑢−𝑢(𝜔)−1 = cos(𝑟1) cos(𝑟2) cos(𝑟3)
(

1 −
√

𝜌1𝜇1

𝜌2𝜇2
tan(𝑟1) tan(𝑟2) (25)

−
√

𝜌1𝜇1

𝜌3𝜇3
tan(𝑟1) tan(𝑟3)

−
√

𝜌2𝜇2

𝜌3𝜇3
tan(𝑟2) tan(𝑟3)

+i
√

𝜌1𝜇1

𝜌ℎ𝑎𝑙𝑓𝜇ℎ𝑎𝑙𝑓
tan(𝑟1)

+i
√

𝜌2𝜇2

𝜌ℎ𝑎𝑙𝑓𝜇ℎ𝑎𝑙𝑓
tan(𝑟2)

+i

√

𝜌3𝜇3

𝜌ℎ𝑎𝑙𝑓𝜇ℎ𝑎𝑙𝑓
tan(𝑟3)

−i

√

𝜌3𝜇3

𝜌ℎ𝑎𝑙𝑓𝜇ℎ𝑎𝑙𝑓

√

𝜌1𝜇1

𝜌2𝜇2
tan(𝑟1) tan(𝑟2) tan(𝑟3)

)

.

3. Verification

In order to verify the results we resort to computing numerical
transfer functions (using both the conventional propagator method as
outlined in Aki & Richards’ ‘‘Quantitative Seismology’’ [1] and the
method outlined in Kramer’s geotechnical engineering book [2]) and
comparing them to the direct evaluation of the formulas in Eqs. (3)
and (4).

A list of ten Kik-net site layerings [16] has been used, the sites being
those also studied in Ref. [17]. Only two examples are shown but the
other eight are provided as Supplementary Material. The information
about these sites, code called ‘‘TKCH08’’ and ‘‘NIGH11’’, is provided in
Tables 1 and 2. Since neither damping nor density are included in the
data, we choose to assign the same hysteretic damping coefficient and
density value to all layers, 𝛿𝑑 = 0.1 and 𝜌 = 1500 kg∕m3.

The numerical evaluation procedure is consigned into aMathematica
notebook [18] that is provided to the readers, see Supplementary
Material section at the end of this article. It takes advantage of the
combinatorial structure of the wave propagation problem to directly
generate the exact form of the transfer function in symbolic form, which
is then evaluated and compared to the results of traditional direct
matrix multiplication.

The comparison returns perfect agreement for both kinds of transfer
functions, see Figs. 2 to 5 (in the left panel of each figure, 𝑉𝑠 =
√

𝜇∕𝜌 represents the shear wave velocity in each layer). The numerical
evaluation procedure is consigned into a Mathematica notebook [18]
that is provided to the readers, see Supplementary Material section at
the end of this article.

Moreover, they allow to better understand the different shape of
each kind of function: the displacement-to-displacement transfer func-
tions do not contain odd powers of the tangents, see Eq. (10), while the
displacement-to-amplitude transfer function does, Eq. (19); the latter
also contains twice as many terms as the former, hence its greater
shape complexity and unintuitive evolution (compare Figs. 5 to 4 and
Figs. 3 to 2) should not come as a surprise.
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Fig. 2. Results for the surface-to-borehole transfer function between the bedrock interface and the ground surface for Kik-net station TKCH08.

Fig. 3. Results for the surface-to-incident transfer function between the bedrock interface and the ground surface for Kik-net station TKCH08.

Fig. 4. Results for the surface-to-borehole transfer function between the bedrock interface and the ground surface for Kik-net station NIGH11.

Fig. 5. Results for the surface-to-incident transfer function between the bedrock interface and the ground surface for Kik-net station NIGH11.
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Table 1
Kik-net information site TKCH08.

Layer # Thickness Depth S velocity P velocity Poisson’s ratio
[m] [m] [m/s] [m/s]

1 4.0 4.0 130.0 300.0 0.38
2 32.0 36.0 480.0 1850.0 0.46
3 42.0 78.0 590.0 1850.0 0.44
4 ∞ ∞ 2800.0 5000.0 0.27

Table 2
Kik-net information site NIGH11.

Layer # Thickness Depth S velocity P velocity Poisson’s ratio
[m] [m] [m/s] [m/s]

1 2.0 2.0 200.0 500.0 0.40
2 54.0 56.0 400.0 1830.0 0.47
3 7.0 63.0 700.0 1830.0 0.41
4 22.0 85.0 520.0 1830.0 0.46
5 100.0 185.0 650.0 1830.0 0.43
6 ∞ ∞ 850.0 2080.0 0.40

4. Application: long-wavelength asymptotics of averaged horiz-
ontal-to-vertical spectral ratios

The work by Kawase, Sanchez-Sesma and Matsushima [5] outlined
the relation between the surface-to-amplitude transfer functions and
the H/V spectral ratio (HVSR) in the context of diffusive-field theory.
The authors established a relation between the imaginary part of the
Green’s functions in a layered site, under the 1D linear-elastic propaga-
tion assumption, and the ratio of the horizontal spectral displacement
amplitude and the vertical one. They validated the results of their
development using both seismogram synthetics and real data, and
proved both the convergence to their average result and its robustness
(its ability to predict results also in scenarios that did not fit perfectly
the assumptions used during the derivations, e.g., inclined wave field
with mode conversion, a possibility that was not included in their
analysis, but it was shown that the effects of this wave inclination
is smoothed out by the intrinsic averaging after superimposing many
cases of different inclinations).

We refer the reader to the original appear for more information
concerning the limitations of the results in terms of number of records
to average over, earthquake magnitude and peak ground acceleration.
HVSRs are also of interest when it comes to perform inverse analysis
to infer information about a site layering (soil profile) from seismic
records [19,20]. Non-uniqueness of solutions is one of the fundamental
challenges when solving any inverse problems, while a possible way
to mitigate this issue is to enforce physics-based constraints (i.e., prior
information) that any feasible solution must verify [21]. Hence, having
the analytical formulae, we are now able to derive one such constraint,
namely, we are to derive the exact expression for the curvature at
the origin (low-frequency limit) of the averaged HVRS. In upcoming
inverse analyses as the ones described in the references above, the exact
expression of this parameter will provide an automatic way to discard
those profiles that come up as potential solutions but do not abide by
the curvature constraint.

Adopting the notation in Ref. [5], we will use TF𝑝 to refer to
-wave transfer function (vertical displacement) while TF𝑠 does to S-
ave transfer function (horizontal one). The following relation between

he ratio evaluated at the fee surface, rHV, and the displacement-to-
mplitude transfer function was found:

HV =
𝐻(0;𝜔)
𝑉 (0;𝜔)

= 4

√

8(1 − 𝜈ℎ𝑎𝑙𝑓 )
(1 − 2𝜈ℎ𝑎𝑙𝑓 )

|TF𝑠|
|TF𝑝|

, (26)

where 𝜈ℎ𝑎𝑙𝑓 represents the Poisson’s ratio of the half-space material.
The result Eq. (4) provides the horizontal displacement, the vertical,

invoking the 1D-propagation assumption, is obtained from the same
6

expression, simply substituting 𝜇 by 𝜆 + 2𝜇, to consider pressure wave
propagation instead of shear wave.

The transfer functions that appear in Ref. [5] represent the same
concepts that we have been handling in this manuscript, and hence we
are in a position to offer our contribution:

It is known that the low-frequency (long-wavelength) asymptote
goes to a constant value that only depends on the Poisson’s ratio of
the underlying half-space (in the case of it being a Poisson’s solid,
𝜈ℎ𝑎𝑙𝑓 = 0.25, then the asymptote is

√

2
√

3 ≈ 1.86), but, even though
the asymptotic value can be computed, a general approximation of
the ratio as it tends to that limit is not available and thus it must be
obtained numerically along with the rest of the ratio for larger values
of frequencies.

Having Eq. (19) ready, we aim to Taylor-expand it in the long-
wavelength limit (i.e., around 𝜔 = 0) to then use the expansion to
achieve the long-wavelength asymptotic approximation of Eq. (26). We
shall provide the first term of the Taylor expansion of rHV around

= 0, which happens to be the curvature at the origin (it will
e shown that the initial slope is exactly zero). This formula could
e used later to perform a preliminary profile inversion using aver-
ged horizontal-to-vertical ratios at different depths before resorting to
umerical computations.

First, see that in the low-frequency (long-wavelength) limit we can
tate that 𝜔ℎ𝑖∕

√

𝜇𝑖∕𝜌𝑖 ≪ 1 for any 𝑖 = 1…𝑁 . This means that all the
arguments of the tangents and cosines that appear in the analytical
expressions, 𝑟𝑖 for 𝑖 = 1…𝑁 , are very small, hence we consider the
long-wavelength regime to correspond to 𝑟𝑖 → 0. Therefore, Eq. (10)
yields

lim
𝑟1…𝑟𝑁→0

𝑇𝐹𝑢−𝑢 = 1, (27)

while

lim
𝑟1…𝑟𝑁→0

𝑃21

𝜔
√

𝜌ℎ𝑎𝑙𝑓𝜇ℎ𝑎𝑙𝑓
= 0, (28)

so it follows that

lim
𝑟1…𝑟𝑁→0

TF𝑝 = lim
𝑟1…𝑟𝑁→0

TF𝑠 = 1. (29)

Combining, the expression of the horizontal–vertical amplitude ra-
tio in the long-wavelength regime is finally obtained:

rHV ≈ 4

√

8(1 − 𝜈ℎ𝑎𝑙𝑓 )
(1 − 2𝜈ℎ𝑎𝑙𝑓 )

, (30)

for 𝜔 ≪ min𝑖=1,…,𝑁{𝑉𝑠,𝑖∕ℎ𝑖}. We use 𝑉𝑠 when stating the condition
because it always holds that 𝑉𝑠 =

√

𝜇∕𝜌 < 𝑉𝑝 =
√

𝜆 + 2𝜇∕𝜌.
Additionally, the analytical formulae can also be used to estimate

the gradient and the curvature of the ratio as a function of frequency
in this low-frequency regime. To do so, we need to remove higher-order
terms in the Taylor-expansion of the tangents and cosines around 𝑟𝑖 = 0.
Let us split the job and begin from Eq. (10):

𝑇𝐹 −1
𝑢−𝑢 =

( 𝑁
∏

𝑖=1
cos(𝑟𝑖)

)(

⌊𝑁∕2⌋
∑

𝛽=0

∑

|𝖻|=2𝛽
𝐶𝖻 tan(𝑟)𝖻

)

(31a)

=
⎛

⎜

⎜

⎝

1 − 1
2

𝑁
∑

𝑖=1

(

𝜔ℎ𝑖
√

𝜇𝑖∕𝜌𝑖

)2

+ (𝜔4)
⎞

⎟

⎟

⎠

(

1 +
∑

|𝖻|=2
𝐶𝖻(𝑟)𝖻 + (𝜔4)

)

(31b)

= 1 − 1
2

𝑁
∑

𝑖=1

(

𝜔ℎ𝑖
√

𝜇𝑖∕𝜌𝑖

)2

+
∑

|𝖻|=2
(−1)|𝖻|∕2(

√

𝜌𝜇)𝖻′
(

𝜔ℎ
√

𝜇∕𝜌

)𝖻

+ (𝜔4)

(31c)

= 1 − 𝜔2

2

𝑁
∑

𝑖=1

(

ℎ𝑖
√

𝜇𝑖∕𝜌𝑖

)2

− 𝜔2
𝑁−1
∑

𝑖=1

𝑁
∑

𝑗>𝑖

√

𝜌𝑖𝜇𝑖

𝜌𝑗𝜇𝑗

(

ℎ𝑖
√

𝜇𝑖∕𝜌𝑖

)(

ℎ𝑗
√

𝜇𝑗∕𝜌𝑗

)

+ (𝜔4)
(31d)
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Fig. 6. Results for the horizontal-to-vertical spectral ratio for Kik-net station TKCH08.
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= 1 − 𝜔2

2

( 𝑁
∑

𝑖=1
𝑡2𝑖 + 2

𝑁−1
∑

𝑖=1

𝑁
∑

𝑗>𝑖
𝑖,𝑗 𝑡𝑖𝑡𝑗

)

+ (𝜔4) (31e)

= 1 − 𝜅
2
𝜔2 + (𝜔4), (31f)

where 𝑡𝑖 = ℎ𝑖∕
√

𝜇𝑖∕𝜌𝑖 represents the (shear) wave travel time in the 𝑖th
layer, and thus

𝜅𝑠 =
𝑁
∑

𝑖=1
𝑡2𝑖 + 2

𝑁−1
∑

𝑖=1

𝑁
∑

𝑗>𝑖
𝑖,𝑗 𝑡𝑖𝑡𝑗 , (32)

represents the curvature of the transfer function in the low-freque-
ncy regime, while 𝑖,𝑗 represents a matrix whose entries are function
of the interface impedance contrasts:

𝑖,𝑗 =
𝑗

∏

𝑘=𝑖
𝑍𝑘, (33)

and where, to conclude, each interface impedance contrast itself is
given by

𝑍𝑘 =

√

𝜌𝑘𝜇𝑘
√

𝜌𝑘+1𝜇𝑘+1
. (34)

When it comes to deal with P waves, just substitute 𝜆 + 2𝜇 in lieu
f 𝜇. Following with the second part of Eq. (6), the one that depends
n 𝑃21:

𝑃21

𝜔
√

𝜌ℎ𝑎𝑙𝑓𝜇ℎ𝑎𝑙𝑓
=

( 𝑁
∏

𝑖=1
cos(𝑟𝑖)

)

⏟⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏟
1+(𝜔2)

⎛

⎜

⎜

⎜

⎝

⌊

𝑁−1
2 ⌋

∑

𝛽=0

∑

|𝖻|=1+2𝛽

𝑆𝖻
√

𝜌ℎ𝑎𝑙𝑓𝜇ℎ𝑎𝑙𝑓
tan(𝑟)𝖻

⎞

⎟

⎟

⎟

⎠

(35a)

=
(

1 + (𝜔2)
)

(

∑

|𝖻|=1

𝑆𝖻
√

𝜌ℎ𝑎𝑙𝑓𝜇ℎ𝑎𝑙𝑓
(𝑟)𝖻 + (𝜔3)

)

(35b)

= 𝜔
∑

|𝖻|=1

(−1)(|𝖻|+1)∕2(
√

𝜌𝜇)f (𝖻)
√

𝜌ℎ𝑎𝑙𝑓𝜇ℎ𝑎𝑙𝑓

(

𝜔ℎ
√

𝜌𝜇

)𝖻

+ (𝜔3) (35c)

= −𝜔
𝑁
∑

𝑖=1

√

𝜌𝑖𝜇𝑖
𝜌ℎ𝑎𝑙𝑓𝜇ℎ𝑎𝑙𝑓

(

ℎ𝑖
√

𝜌𝑖𝜇𝑖

)

+ (𝜔3) (35d)

= −𝛾𝑠𝜔 + (𝜔3), (35e)

where

𝛾 =
𝑁
∑

𝑖=1
𝑖,𝑁+1𝑡𝑖. (36)

Combining the two previous results into Eq. (6) yields, finally,

2(TF𝑠)−1 = 1 − i𝛾𝑠𝜔 −
𝜅𝑠
2
𝜔2 + (𝜔3). (37)
7

Using the latest expression, we can approximate rHV in the long-
wavelength regime. Let us work with Eq. (26) squared, to ease the
derivation, thus

rHV|2𝑙𝑤 =

√

8(1 − 𝜈ℎ𝑎𝑙𝑓 )
(1 − 2𝜈ℎ𝑎𝑙𝑓 )

|1 − 𝜅𝑝
2
𝜔2 − i𝛾𝑝𝜔 + (𝜔3)|

2

|1 − 𝜅𝑠
2
𝜔2 − i𝛾𝑠𝜔 + (𝜔3)|2

, (38a)

ompute the absolute value of the complex numbers by multiplying by

he conjugate

=

√

8(1 − 𝜈ℎ𝑎𝑙𝑓 )
(1 − 2𝜈ℎ𝑎𝑙𝑓 )

(1 − 𝜅𝑝
2
𝜔2)2 + 𝛾2𝑝𝜔

2 + (𝜔3)

(1 − 𝜅𝑠
2
𝜔2)2 + 𝛾2𝑠𝜔2 + (𝜔3)

, (38b)

expanding the square in the first addends,

=

√

8(1 − 𝜈ℎ𝑎𝑙𝑓 )
(1 − 2𝜈ℎ𝑎𝑙𝑓 )

(1 − 𝜅𝑝𝜔2 +
𝜅2𝑝
4
𝜔4) + 𝛾2𝑝𝜔

2 + (𝜔3)

(1 − 𝜅𝑠𝜔2 + 𝜅2𝑠
4
𝜔4) + 𝛾2𝑠𝜔2 + (𝜔3)

, (38c)

=

√

8(1 − 𝜈ℎ𝑎𝑙𝑓 )
(1 − 2𝜈ℎ𝑎𝑙𝑓 )

1 + (𝛾2𝑝 − 𝜅𝑝)𝜔2 + (𝜔3)

1 + (𝛾2𝑠 − 𝜅𝑠)𝜔2 + (𝜔3)
, (38d)

Taylor-expanding the denominator around 𝜔 = 0,

=

√

8(1 − 𝜈ℎ𝑎𝑙𝑓 )
(1 − 2𝜈ℎ𝑎𝑙𝑓 )

[

1 + (𝛾2𝑝 − 𝜅𝑝)𝜔2 + (𝜔3)
]

[

1 − (𝛾2𝑠 − 𝜅𝑠)𝜔2 + (𝜔3)
]

,

(38e)

=

√

8(1 − 𝜈ℎ𝑎𝑙𝑓 )
(1 − 2𝜈ℎ𝑎𝑙𝑓 )

{

1 +
[

(𝛾2𝑝 − 𝛾2𝑠 ) + (𝜅𝑠 − 𝜅𝑝)
]

𝜔2 + (𝜔3)
}

. (38f)

To conclude, remove higher-order terms, square-root the prior ex-
ression and approximate it assuming the second addend is smaller
han 1 to obtain:

HV|𝑙𝑤 = 4

√

8(1 − 𝜈ℎ𝑎𝑙𝑓 )
(1 − 2𝜈ℎ𝑎𝑙𝑓 )

⎧

⎪

⎨

⎪

⎩

1 +

[

(𝛾2𝑝 − 𝛾2𝑠 ) + (𝜅𝑠 − 𝜅𝑝)
]

2
𝜔2

⎫

⎪

⎬

⎪

⎭

. (39)

𝛾𝑝 and 𝛾𝑠 are the slopes of the transfer functions for P-waves and
S-waves, the only difference between them that one has to use 𝜆+2𝜇 in-
tead of 𝜇 when it comes to compute layer travel times and impedance
atios, and, likewise, 𝜅𝑝 and 𝜅𝑠 are the corresponding curvatures of the

transfer functions.
The previous result indicates that the frequency plot of horizontal-

to-vertical ratio should take off with zero slope but with a certain
curvature. The latter asseveration appears consistent with the results
in, e.g., Ref. [5] (see their images where they present HV ratios, in
particular, Figures 6, 7, 8, 10, 11 and 13 in their paper).

The formula reveals that the curvature at the origin of the averaged
horizontal-to-vertical ratio depends on the compressibility of the un-
derlying halfspace through the coefficients obtained from equipartition
of energy (first factor where 𝜈ℎ𝑎𝑙𝑓 appears), and through the slope
and curvature at the origin of the transfer functions, which depend

also on the mechanical properties of the layering up to the half-space
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Fig. 7. Results for the horizontal-to-vertical spectral ratio for Kik-net station NIGH11.
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via the inter-layer impedances that appear in the expressions) and on
he thickness of each layer (via the travel times, also present within
qs. (32) and (36)).

Figs. 6 and 7 display, firstly, comparisons between the analytical
rediction and the numerical result for the HVSR, which returns ex-
ellent agreement that does not come as a surprise since the transfer
unction themselves were matched perfectly in Figs. 3 and 5. Secondly
nd more interestingly, we can also acknowledge that the curvature is
lso predicted by Eq. (39): in both cases the dashed line follows the
ake-off of the other curves, but in one case, Fig. 6, scales slower than
he actual function while in the other one rises faster than the other
wo curves; this indicates that the higher-order terms being ignored
n Eq. (39) would be necessary to properly account for the behavior
round the first peak (fundamental resonance).

. Final remarks

The general closed-form expressions for the customary transfer
unctions in a 1D layered site, for any number of layers, have been
ntroduced in this text, Eqs. (10) and (19). It has been shown that they
dopt compact, manageable forms that can be expressed in terms of
ums of independent harmonics, Eqs. (7) and (20). This fact may pave
he way to tackle questions concerning seismic response of layered sites
sing an analytical approach.

These expressions allow to obtain useful information right away; in
articular, we have provided the long-wavelength asymptotics of the
ransfer functions, and used this result to particularize the expression
f the ratio of horizontal-to-vertical surface average spectral displace-
ents, as presented in Ref. [5]. Using the closed-form expression and

heir long-wavelength expansions, an approximate formula of the ratio
as been retrieved, see Eq. (39). The formula is valid as long as
avelengths in all layers are greater than their thickness, so it can
otentially capture the behavior up to the first resonance peak. One of
he interesting applications of Eq. (39) is inverse analysis: the curvature
t the origin can be thought as a constraint that the real layering
atisfies, so it could be used to guide the inversion of site profiles from
eismic records [20].

These analytical expressions can be further explored in order to
ssess, for instance

• The influence of the presence of velocity reversals in a site [11].
• The definition of equivalent-homogeneous properties of inhomo-

geneous sites [22–25].
• The harmonic decomposition can also tell what layerings are

conducive to intense ground motions, and this knowledge can in
turn lead to actuations to reduce the seismic susceptibility of a
site by engineering its near-surface velocity profile.

The 1D-propagation of decoupled waves is not the only wave phe-
omenon amenable to be treated via transfer matrices: surface waves
8

both Love’s and Rayleigh’s) and inclined bulk waves (both SH waves
nd P-SV waves) also lend themselves to this treatment (details on
his can be found in [1]). In particular, considering inclined SH waves
mounts to modifying one entry of the propagator matrix in order to
ntroduce the ray parameter 𝑝 [1], in such a case Eq. (1) would become

𝑑
𝑑𝑧

[

𝑢̂𝑦
𝜏𝑦𝑧

]

=
[

0 1∕𝜇
𝜔2(𝜇𝑝2 − 𝜌) 0

] [

𝑢̂𝑦
𝜏𝑦𝑧

]

= 𝑨𝒇 (𝑧), (40)

here 𝜌 and 𝜇 are the density and shear modulus of the layer material,
nd 𝑝 = sin(𝛾)∕

√

𝜇∕𝜌, where 𝛾 is the inclination angle with respect
to the normal at the interface. Considering Love surface waves also
amounts to a simple substitution in Eq. (1) [8]. This means that the
understanding of these other wave propagation problems could also
benefit from the knowledge of the exact form of the global propagator.

CRediT authorship contribution statement

Joaquin Garcia-Suarez: Conceptualization, Formal analysis, Writ-
ng – original draft, Validation. Javier González-Carbajal: Formal

analysis, Validation, Writing – review & editing. Domniki Asimaki:
Supervision, Writing – review & editing.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Data availability

The data and code necessary to reproduce the results is available
for download from GItHub (see Supplementary Material section of the
article)

Acknowledgments

The Authors are thankful to Prof. Elnaz E. Seylabi (University of
Nevada, Reno) for suggesting the application.

Appendix A. Supplementary data

Supplementary material related to this article can be found online at
https://doi.org/10.1016/j.soildyn.2022.107532. A Mathematica note-
book [18] containing the computations leading to results (including
figures) shown in the text can be found in the repository named lay-
ered_TFs in the first author’s GitHub page github.com/jgarci-
asuarez.

A Supplementary Material document, containing a brief review of
multi-index notation and results for eight more Kik-Net soil profiles,

can be downloaded from the web version of this article.
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