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a b s t r a c t

Monitoring and patrolling large water resources is a major challenge for nature conservation. The
problem of acquiring data of an underlying environment that usually changes within time involves
a proper formulation of the information. The use of Autonomous Surface Vehicles equipped with
water quality sensor modules can serve as an early-warning system for contamination peak-detection,
algae blooms monitoring, or oil-spill scenarios. In addition to information gathering, the vehicle must
plan routes that are free of obstacles on non-convex static and dynamics maps. This work proposes a
novel framework to obtain a collision-free policy using deterministic knowledge of the environment by
means of a censoring operator and noisy networks that addresses the informative path planning with
emphasis in temporal patrolling. Using information gain as a measure of the uncertainty reduction
over data, it is proposed a Deep Q-Learning algorithm improved by a Q-Censoring mechanism for
model-based obstacle avoidance. The obtained results demonstrate the effectiveness of the proposed
algorithm for both cases in the Ypacaraí monitorization task. Simulations showed that the use of
noisy-networks are a good choice for enhanced exploration, with 3 times less redundancy in the
paths with respect to — greedy policy. Previous coverage strategies are also outperformed both in
the accuracy of the obtained contamination model by a 13% on average and by a 37% in the detection
of dangerous contamination peaks. Finally, the achieved results indicate the appropriateness of the
proposed framework for monitoring scenarios with autonomous vehicles.
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. Introduction

Water resources are fundamental to both human life and the
conomic development of communities. Large water bodies, such
s rivers, reservoirs, and also lakes, are not only important for
irect consumption but are the core of agriculture. Therefore, the
onservation of these is vital for subsistence in many parts of
he world. However, despite their importance, 80% of wastewater
rom cities and industries is discharged untreated into sea and
ivers.1 This situation has dramatic consequences for ecosystems.

A very frequent problem in situations of uncontrolled dis-
harges of nutrients is the accelerated eutrophication of waters
nd the appearance of blue–green bacteria colonies. Whenever
he water is nourished with ammonium and nitrites from agricul-
ural fertilizers or human and animal fecal remains, large colonies
f cyanobacteria emerge and populate the surface with a greenish
antle. The thick blooms prevent the sun from hitting the under-
ater flora, which is responsible for oxygenating the waters. As
result, the fish die of anoxia. Thus, the waters become muddy,
ith pestilential odors and a very poor quality for bathing, fishing,
r human consumption. This is the situation in Lake Ypacaraí,
araguay’s largest water resource. The lake, once a tourist en-
lave, is now populated by colonies of blue–green algae with all
ts consequences. The situation is similar in places like Mar Menor
Spain) [1] or Lake Erie (USA) [2]. All these places have in common
hat they are very large extensions of water, and that it is difficult
o obtain their updated contamination status, in terms of the
elevant physico-chemical and water quality (WQ) variables (pH,
issolved oxygen, nitrites or ammonia concentration, etc.). Any
olution to this contamination problem requires a comprehensive
onitoring process. Monitoring is defined here as the sufficient
nd homogeneous collection of biological WQ data with which
o form a physico-chemical model to serve as an early warning
ystem for pollution peaks. However, this task is difficult due
o the large extension size of the ecosystems under monitoring.
onsequently, manual missions to measure the WQ are tedious
nd costly.
Moreover, installing a fixed sensor grid is a suboptimal so-

ution as sampling locations cannot be varied and multiple bat-
ery replacements could be even more expensive than human-
onducted missions. The use of Autonomous Surface Vehicles
ASVs) equipped with WQ sensor modules has been gaining mo-
entum lately for some similar applications (see Fig. 1) [3]. These

ow-cost electric vehicles allow continuous sampling with routes
hat can be adapted according to various optimality criteria [4].

However, these robotic systems require intelligent perception
nd decision modules to perform monitoring tasks efficiently.
hen using these robots, aspects beyond information gathering
ave to be considered, such as physical battery limitations and
onnavigable terrain constraints. This transforms the monitoring
roblem into an Informative Path Planning (IPP) problem, which
ombines the challenge of obtaining the most informative path,
nd the compliance of ground restrictions and obstacle avoidance.
his problem has been previously addressed for a wide range of
pplications: agricultural characterization [5], for the generation
f water quality models [6], the search for gas leaks [7], or
he location of contamination sources in radiological environ-
ents [8]. Thus, the problem under study has been treated from
ultiple perspectives in past works. Our approach intends to fill
ome research gaps present in these previous works or current
iterature, such as the dimensional complexity when monitoring
ig water resources, the formulation of the information gathering

∗ Corresponding author.
E-mail address: syanes@us.es (S. Yanes Luis).

1 https://www.un.org/en/global-issues/water
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in terms of the entropic uncertainty reduction or the need for
an enhanced learning process using deterministic information of
the non-convex scenario. Therefore, we present an algorithm that
can be used without loss of generalization to all these aforemen-
tioned particular objectives, as the algorithm is model-free and
the information formulation can be applied to the reality of these
parameters under surveillance apart from the WQ measurement
context.

We also present a novel approach to monitor dynamic scenar-
ios, which is a major gap that previous works have not addressed
after all. We present the problem called Informative Patrolling
Path Planning (IPPP), which is an extension of the former IPP
problem that addresses possible dynamics of the unknown en-
vironment. This situation gains importance when we want to
measure eventual risks such as spills, new blooms or the time
trend of certain pollution variables. This constitutes the base
problem of detection and early warning of contamination hazards
on long term missions.

To deal with the aforementioned monitoring scenarios, a
stochastic framework is defined to model the information col-
lected at each physical point by the ASV. Assuming that each
possible point eligible to be sampled behaves as a Gaussian
random variable p ∈ X ∼ N (µ, σ ), a spatial correlation matrix
[X, Xmeas] can be defined to model the statistic relationship

between samples. This matrix indicates the level of uncertainty of
each point, considering the locations where Xmeas has been sam-
pled. This approach makes use of a Radial Basis Function (RBF)
to spatially correlate samples as a function of their adjacency,
under the acceptable assumption that physically close samples
will be more closely related. Given that, the IPP will consist of
sequentially deciding the next physical point at which to take a
sample, following the information gain maximization criterion.
Following the Information Theory definition of information gain,
Σ[X, Xmeas] defines how informative a point is according to the
entropy decrease of the model formed by the set of points of the
lake X and the sample points Xmeas [9]. Finally, the IPP problem
to be solved here consists of minimizing the total entropy of the
scenario H [X |Xmeas].

The dimension of this sequential problem explodes when the
routes are large and movement restrictions are included. In the
case of Lake Ypacaraí, large distances must be covered for the
routes to decrease optimally the entropy, so the possibilities of
movement are almost infinite. In addition, it is necessary for the
vehicle to have a reactive policy, capable of adapting to differ-
ent boundary conditions, i.e., arbitrary route starting points and
temporal dependencies. This work proposes the use of Deep Re-
inforcement Learning (DRL) techniques to find an optimal policy,
based on convolutional neural networks (CNNs). This convolu-
tional network is able to interpret a graphical state of the problem
and choose the next sample point according to a tailored reward
function. This reward function should be designed to evaluate
every action in terms of the information gathered. DRL techniques
are useful because they do not require a prior model of the system
and are able to adapt to a scenario with arbitrary boundary fea-
tures through model-free interpretation of the state and reward
function. These characteristics make DRL a suitable approach to
solve the IPP and IPPP. Specifically, Deep Q-Learning (DQL) are
applied here because of their ability to estimate the future reward
given a state for each possible action in the possible set. To
enhance the capability of the classical DQL algorithm, this paper
further elaborates on the application of some useful techniques
for this IPP problem, that have been proven effective in previous
works of the DRL literature [10], but none in a path planning
application: the use of a Prioritized Experienced Replay [11], a
Dueling architecture in the Q neural network [12] and, finally, the
use of noisy neural networks [13] to intrinsically motivate the ex-
ploration of the state–action domain. These publications revealed

mailto:syanes@us.es
https://www.un.org/en/global-issues/water
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Fig. 1. ASV prototype for the monitorization of lake Ypacaraí (Paraguay). The ASV is equipped with water quality sensor modules, GPS and communications for
remote planning.
the high learning capacity of algorithms such as DQL. However,
in the application of them to complex problems, there are hard
constraints that are known a priori or can be computed in a
deterministic way. A difference between the proposed approach
and the previous ones is in using the deterministic knowledge
of the navigation map to increase the sampling efficiency. This is
effectively a slight departure from the initial model-free paradigm
of DQL. However, we propose the use of a censoring mechanism
that increases the sample efficiency because it provides accurate
information on illegal actions that would otherwise have to be
inferred by trial and error. This algorithm, the Censoring-DQL,
takes the deterministic information of the environment related
to the obstacle avoidance task, and provides a way to neglect
those actions that incurs in violations of the hard-constraints
in navigation. As far as we understand, there is no apparent
compromise on learning convergence when this mechanism is
used and, moreover, it results in improved training efficiency.

The novelty of this work also lies in the formulation of the WQ
onitoring problem as a sequential uncertainty minimization
rocess, using the principles of DRL: The problem is defined as
discrete Markov decision process (MDP) in which the objective

s to maximize information acquisition with a discounted finite
orizon. Thus, it is proposed to use the information gain as the
eward that reduces the total uncertainty under the assump-
ion that the water quality parameters behave smoothly and as
aussian random variables. As explained in [14], it is usually
hallenging to design the reward function to solve a real problem
ith as it must reflect the desires of the resulting behavior. In the
articular IPP/IPPP case, this tailored reward function serves as a
urrogate signal for a general objective: information acquisition,
ranslated into model error reduction, maximal search, etc. This
eward-engineering process contributes, to improve data collec-
ion systems and to obtain deep policies for decision making in
he face of information uncertainty. With an appropriate defini-
ion of these learning parameters, the DRL is able to outperform
reviously proposed algorithms and heuristics, with more effi-
ient and robust informative paths. In previous works, like in [15],
he patrolling follows a criterion based on covered discrete po-
itions and assuming no smooth useful property of the inner
bjective function under estimation. In addition, other similar
lgorithms, such as [4], use paths from side to side of the edges,
ithout considering interior paths that do not intersect. Another
isadvantage of these heuristics is the inability to act online, since
3

they base the optimization on a static criterion and, therefore, a
single solution rather than a policy is obtained.

In summary, the contributions of this work are:

• The formulation of the Patrolling Problem in terms of the
entropy information for water monitoring scenarios with a
constrained search space.
• A model-free Deep Reinforcement Learning framework to

solve the IPP and IPPP.
• The definition of a tailored reward function and a graphical

state formulation policy optimization that is effective in
both informative missions.
• The implementation of a Noisy + Censoring mechanism that

allows for a more efficient learning of the deep policy using
deterministic information from the environment map.

This article is organized as follows: in Section 2, there is a
brief survey of previous works and other techniques that address
similar problems. In Section 3, Materials and Method, the IPP
and IPPP problem is formally stated, the algorithm is presented,
and the Deep Reinforcement Learning framework described. In
Section 4, the results of the training are analyzed and discussed.
Finally, Section 5 closes with the conclusions of this work and
future lines of work.

2. Previous works

The utilization of ASVs is an increasingly common option
for autonomous operation in hydrological resources and har-
bors [6,16–21]. Applications range from bathymetry surveys [16],
pollutant modeling and monitoring [17], or patrolling for early
warning . In most applications, Artificial Intelligence or meta-
heuristic optimization techniques are usually applied to solve
complex NP-hard problems: Bayesian optimization [18], genetic
algorithms (GA) [19], Swarm Intelligence [20], or DRL [21].

One of the most common approaches to characterize the envi-
ronment is to use a surrogate model, such as Gaussian Processes
(GPs) like in [6,18]. These approaches have been proposed for the
monitorization of water quality variables in the Ypacaraí Lake
itself, by means of a policy based on an Acquisition Functions (AF)
using Bayesian Optimization classic theory. In [6], it is proposed
a modification of the classic Expected Improvement (EI) acquisi-
tion function that can balance the exploration/exploitation of the

uncertainty. This heuristic approach has been proven effective for
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odeling WQ scalar fields. This work is cornerstone in informa-
ive path planning with maritime vehicles, nonetheless neglects
ny dynamics in the WQ profile and is more oriented to have a
eneral model with low quantity of data. In the same line, in [18],
uthors proposed a multivariate extension for different objective
unctions to fit in a multivariate fashion. The same heuristics are
mplemented using the EI function as a policy for deciding the
ext point to sample. While efficient for low data regimes, au-
hors do not consider that WQ parameters can change within the
ime of a mission. It does also bring up the question whether the
se of the GP mean, used by the EI acquisition policy, really affects
n the error metric or in the sampling redundancy. Our proposal
ries to define an adaptive policy that is able to monitor efficiently
he same scenarios using a reward function motivated only by
he uncertainty perspective. This method is easily extended to the
emporal case, which was not addressed by the aforementioned
orks, and serves the purpose of patrolling dynamic scenarios.

n addition, our proposal’s application considers a more intensive
overage with a higher number of samples and is not subjected
o a particular regression method, like the EI is with the Gaussian
rocesses.
Another interesting example of IPP application can be found

n [5], where it is implemented a method to gather information
f a static scalar field using unmanned aerial vehicles with cam-
ra sensors. This method implements a Kalman Filter for data
usion while trying to minimize the information entropy of the
nvironment. The path is optimized using a Covariance Matrix
daptation Evolutionary Strategy (CMA-ES) with a receding op-
imization horizon. The algorithm decides every timestep a path
rom a limited number of global positions (up to 30 possible
aypoints as decision variables), resulting in a online strategy
hat is difficult to scale for bigger resolutions and longer paths.
his approach also proposes a definition of the uncertainty with
ones that has no-importance, therefore do not contribute to the
ncertainty reduction criterion. In terms of the informative path
lanning for WQ parameters, this cannot be applied, because
e consider every zone is subjected to the same importance
ecause of biological requirements for early-warning systems like
his. Our work, by means of the Deep Reinforcement Learning
lgorithms and the capacity of such algorithms to work with
igh dimensions, is able to work with much higher state–action
omplexity and could be extended easily to a multiagent case. The
ifference with our proposal also resides in the fact that the Q-
unction proposed here codifies the reward function through the
earning. Once an effective policy is learned, there is no need for
ong computation in the real mission beyond the pure inference of
he next action. This is an advantage in terms of a future real-time
pplication of the algorithm.
A similar design to [5] is proposed in [8]. This particular

pproach focus on modeling again static scalar fields of radiation
evels in hazard scenarios. This work introduces a novelty respect
o [5], which is the possibility of static obstacles that make the
ield non-convex respect to the vehicle’s movements. We con-
ider this aspect is important because in most IPP missions, there
re obstacles that cannot be neglected and that affects to the
omplexity of the task. The performance of the proposed algo-
ithm, nonetheless, is surpassed by other, simple but effective,
euristics like the lawn-mower algorithm or the random search.
he results of balancing the exploration and exploitation of the
cenario knowledge seems to be inconclusive when non-convex
bstacles are present. This approach does not consider any kind
f temporal dependency for the radiation scalar fields while using
Gaussian Process to conform the surrogate model for regres-

ion. No other regression methods were tested. Previous works
ike [22] have studied the use of the entropy for exploration

n RL tasks. This work proposes an entropy measurement (state

4

entropy) to represent the uncertainty of the agent to select an
action in a state. This way, the entropy is used for exploration
of the action-state domain as an effective way to enhance the
learning. While only validating the entropy effectiveness in a low
complex problems, this work addresses the utility of the entropy
and serves as a theoretical foundation for our work.

Reinforcement Learning, and more specifically, Deep Rein-
forcement Learning has been commonly used for exploration and
information gathering lately [7,15,23]. One important example
of use can be found in [15]. This work proposed the use of
an on-policy algorithm for the error minimization in modeling
of scalar fields using multiple vehicles. The work uses a vi-
sual representation of the state with recurrent networks, similar
to [23] or like our work, with a Convolutional Neural Network
to represent the policy. This work also proposed to use the Root
Mean Squared Error (RMSE) directly as a reward function for the
agents to learn how to maximize the accuracy of the estimation.
This aforementioned work demonstrates that it is possible to
train multiagent policies with DRL for this purpose. Nonetheless,
directly using the regression error respect to the real scalar field
under estimation undoubtedly implies knowing the exact ground
truth at the time of learning, which is not possible in many
cases nor in ours. To overcome this design problem, we propose
modeling the uncertainty in a smooth way using a Radial Basis
Function. This function not only allows a soft definition of the
information (in [15] the information is defined to be binary —
known or not known), but to have an estimation of the redun-
dancy of the sampling. This is possible assuming that, in most of
the estimation cases, it is not necessary to visit a place to estimate
efficiently the real value if there is sufficient information of the
surroundings. Our work also differs in the fact that we propose
a method to avoid collisions using obstacle domain knowledge
in a deterministic fashion. This censoring mechanism provides
an enhanced learning, as it can be seen in the Results Section.
Other similar approach using DRL for informative path planning
is proposed in [7] for gas leaks localization. This approach used a
differential model of the gases to provide a sufficiently accurate
model for the deep agent to learn. This approach is quite effective
when there is enough knowledge of the underlying dynamics to
compose a model. However, this is not suitable for the problem
we present as we do not have a mathematical model of the
WQ parameters, only enough information to choose the kernel
parameters based on the bandwidth of the benchmark function.
This way, our approach works in a full model-free fashion respect
to the information and do not rely on equations of the dynamic in
the static nor in the non-stationary case. In [24,25], there are two
similar examples of using the uncertainty as a robust measure-
ment of the information. The uncertainty serves as a surrogate
metric for the accuracy in localization tasks. The network that is
used for the policy representation, is designed as a Siamese actor–
critic network, in contrast to our work, where the Q-function is
represented by a single CNN head.

Other works put the attention solely on coverage like in [4]
which is a good example of the application of evolutionary al-
gorithms for water resource coverage. This approach is based on
solving a Travel Salesman Problem (TSP) using Eulerian cycles
to maximize the unvisited area using a single vehicle with GA.
This approach only uses edge-to-edge movements and is limited
by the formulation of visitable nodes. Our algorithm proposes
to overcome this method by allowing movements in different
directions at each instant. Moreover, the information coverage
is no longer based on an all-or-nothing basis, but follows the
information criterion imposed by the RBF function, like it was
aforementioned. Another example of full coverage algorithms
is in [26], where a DRL algorithm for a transformable mobile

robot with discrete actions is applied. In this work, the algorithm
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alled Actor–Critic with Experience Replay (ACER) and a visual
ormulation of the state with CNNs are used in the same way as in
ur proposal. However, the application again consists of a binary
overage (covered/uncovered regions) with no temporal criterion
r useful redundancy factors in the coverage.
Regarding the particular use of DRL for path planning with

on-convex scenarios, most of the works focus on simply finding
bstacle-free routes [27] or low-level control [28]. In [27], the
win Delayed Deep Deterministic policy gradient (T3D) algorithm
s implemented for obtaining optimal obstacle avoidance policies
or aerial vehicles with distance sensors. In [28], the DRL is ap-
lied in obtaining a low-level tracking policy for an Autonomous
nderwater Vehicle (AUV) using visual inputs from a camera.
y the means of the TinyYOLO architecture, an convolutional
bstacle detection system, the AUV is able to track the desired
aths without collisions. Another interesting application of DRL
n vehicles can be found in [29], where a DRL policy is optimized
o solve the vehicle routing and navigation task in an interac-
ive and self-adapting manner. The difference in the sense of
bstacle-avoidance between such approaches and ours is that
he proposed censoring mechanism implies a simplification. The
avigation map is known a priori, and the obstacles are observ-
ble. Then, the decisions related to the information acquisition
re surrogated to the detection mechanism and therefore.
With regard to the patrolling and surveillance tasks, where

here is a temporal criterion involve, there are previous exam-
les [30,31] that use DRL with a visual formulation of the state.
n [30], the use of DQL is proposed for the realization of partial
overage routes based on a battery budget with vehicle landing
onstraints. Our work differs in the sense of the resolution and the
tate–action domain, which is significantly bigger in our case. The
ork [30] is more similar to a low resolution task like [17]. In [31],
n interesting example of nonhomogeneous temporal patrolling
an be found, where emphasis is put on going over the most
mportant areas with longer waiting time, in a similar way, but
ith a discrete redundancy criterion. The proposed work differs

rom [31] in the presence of nonnavigable zones. There is also a
ifference in the acquisition system. Whereas in [31] a camera is
n charge of sensing, the proposed approach uses point samples
nd generates a model in between.
In summary, it can be observed that most of the previous

orks have worked in one or another of the main research lines
n this work: informative path planning, non-convex planning,
ntropy reduction, etc. We have detected a research gap in those
revious works in the sense that most applications of DRL in
ehicles are limited to low-level control or path planning, with
esults similar to classical algorithms. This work proposes a way
o optimize more complex problems, with a much higher resolu-
ion from previous approaches with entropy minimization as the
ptimality criterion for environmental monitoring. We propose
visual formulation of the process, which is not a novelty, but
e go a step further from completely model-free DRL algorithms
sing deterministic knowledge of the environment for a more ef-
icient learning. Another important improvement respect to some
revious approaches is in the formulation of the information in
erms of the predictive uncertainty. This formulation is able to
ake in account the redundancy of the information and a simple
xtension to the temporal patrolling. Finally, the novelty of this
ork relies in taking the ability of DRL to work with high dimen-
ional decision problems (with almost infinite possible solutions)
sing a proper formulation of the information, which have only
een treated using classical heuristics or computational expensive
ptimizers so far.
5

3. Materials and methods

This section introduces the mathematical framework of the
monitoring problem and the assumptions taken to model the
scenario. Both monitoring cases are considered: a static scenario,
where the gathered information does not recover its importance
once obtained, and a dynamic scenario, where the unvisited zones
increase its uncertainty within time.

3.1. Entropy framework

To present the IPP and IPPP problems, we begin with the
definition a navigable space X ∈ R2, where the vehicle can take
WQ samples. We also define the subset set of sampled locations
Xmeas ∈ R2, and a binary matrix M which is a navigability map
such that X = ∀p := [px, py] |;M(p) = 1. Now, we define that
each visitable point p behaves as a Gaussian random variable of
mean µ and standard deviation σ such that p ≈ N (µ, σ ). The
space X is thus formed as a Multivariate Gaussian Distribution
(MGD), where X ≈ Nn (µ,Σ ), with Σ being the correlation
matrix of X .

The measure of the correlation between points can be ob-
tained by means of a function that indicates how closely related
two variables are in the search space. For this application, a RBF
kernel has been chosen, so that the correlation between two
variables decreases smoothly and exponentially with the dis-
tance between them according to the Eq. (1). This choice makes
sense from the point of view of water resources monitoring since
physico-chemical variables usually have a smooth distribution.2
Thus, two samples taken in close proximity will presumably be
highly correlated and the information they both provide can
be redundant. The parameter l will serve to scale how much
correlated two measurements (p, p′) are with each other and is
usually chosen based on prior knowledge of the environment to
be monitored [5,15] or intensity of the environment coverage.

RBF (p, p′) = exp

(
(px − p′x)

2
+ (py − p′y)

2

2l2

)
(1)

Thus, we can find the correlation matrix of the navigable space
conditional on the sampled locations by the element-wise eval-
uation of Eq. (1). The conditional correlation matrix Σ [X |Xmeas]
ill have the expression of the Eq. (2) [9].

Σ [X |Xmeas] =

Σ [X, X]−Σ [X, Xmeas]×Σ [Xmeas, Xmeas]−1 ×Σ [Xmeas, X]−1
(2)

Now, the monitoring objective involves decreasing the en-
tropy associated with the conditional correlation. The information
entropy H [X |Xmeas] gives a measure of the uncertainty about
the monitoring domain and the randomness of a sample at an
arbitrary point in that space. The lower the entropy, the more
confidence one has about the scenario. In this sense, under the
assumption that the monitoring space X is an MGD, the entropy
gives a lower bound on the error of an arbitrary estimator µ̂ [32],
as given in the Eq. (3).

E
[
(µ− µ̂)2

]
≥

1
2πe

e2H(µ|Xmeas) (3)

Finally, the entropy can be calculated as [9]:

H [X |Xmeas] =
1
2
log(|Σ [X |Xmeas] |)+

dim(X)
2

log(2πe) (4)

An example of how the min–max normalized standard devia-
tion values σ of Σ [X |Xmeas] (its diagonal) decrease when starting
from a sample at pt to pt+1 can be seen in Fig. 2. In the vicinity of
those sample points, σ is not 1.0 at all since a smooth correlation
is assumed with the RBF function.

2 https://marmenor.upct.es/maps/

https://marmenor.upct.es/maps/
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Fig. 2. Uncertainty conditioning process. When we go from pt to pt+1 and
incorporate a new sample to Xmeas with the Eq. (2), we can obtain a new
Σ [X |Xmeas] matrix. It is observed that the standard deviation associated with
Σ [X |Xmeas] becomes zero at the sample points (assuming no sampling noise)
and in their environments according to the RBF function. The entropy H [X |Xmeas]
of the process decreases accordingly.

3.2. Temporal-dependent entropy

In a more general case, where the variables to be monitored
change during a mission, it is necessary to readjust the entropy
formulation to include such factor. To do this, a monotonically
increasing time-dependent function f (t) is included in the corre-
lation matrix Σ [X |Xmeas] calculus, such that the uncertainty of the
measurements increases as a function of the time that has passed
since each location Xmeas was visited. Thus, the definition of Xmeas
is expanded to include the instant of visit of each sample tmeas.
Similar to [33], the correlation matrix of samples Σ [Xmeas, Xmeas]
is calculated by adding the temporal term to the diagonal:

Σ [Xmeas, Xmeas] = RBF (Xmeas, Xmeas)+ τ (t − tmeas)
2 I (5)

This is analogous to increasing the noise of each particular
sample quadratically with time. Old samples do not contribute to
decreasing entropy, and over time, unvisited areas recover their
original entropy. In the Eq. (5), the value τ is a forgetting factor
that modulates how fast the correlation in each zone regenerates.
Thus, with this formulation, decreasing entropy involves not only
visiting areas never visited before, but cyclically patrolling the
areas to prevent entropy from increasing.

3.3. Deep Q-Learning

In this section it is presented the foundations of the selected
DRL algorithm, Double Deep Q-Learning [34]. The different mod-
ules of the reinforcement learning paradigm are presented, such
as the state representation, reward function, Deep Q -function,
and the variations from the original approach in [34] that enhance
the learning in this scenario.

Deep reinforcement learning (DRL) is a methodology for solv-
ing sequential problems such as the proposed one [17,21]. In
DRL, a Markov Decision Problem (MDP) is described so that an
agent (vehicle), which is in a state st , takes an action at according
to a policy at = π (st ). The environment processes the action
and returns the next state st+1 and a reward value r . To solve
a MDP one has to find the optimal policy π∗(s) that maximizes
the discounted reward in a control horizon T :

π∗(st ) = max
π (st )

T∑
[R(st , at = π (st ))] (6)
t=0

6

Deep Q-Learning (DQL) algorithms within DRL are based on
finding an action-value function Q (s, a; θ ), represented by a Deep
Neural Network (DNN) with θ being the trainable parameter,
which estimates the discounted future reward, given a state s and
for each possible value of actions at ∈ A according to the Eq. (7).
The value of γ ∈ [0, 1) discounts the value of the reward function
r(st , at ) over a finite decision horizon.

Q (st , at; θ ) = E
[
r(st , at )+ γ max

a′
Q (st+1, a′; θ )

]
(7)

The Q function is estimated by collecting experiences E ∼
⟨st , at , st+1, rt⟩, storing them in a experience-replay buffer, and
training the DNN in batches of size |B|. The training procedure is
based on updating the network parameters θ in the direction of
the descending gradient of the loss function. This loss function is
computed as the Time Difference (TD) error between the chosen
action of E and the best predicted values of a discounted target
function Q ∗(s′, a, θ ′) (see Eq. (8)). Thus, the parameters θ of the
network are updated by taking an stochastic gradient descent
step with a learning rate of lR.

L =

⎡⎢⎢⎢⎣Q (st , at; θ )−
(
rt + γ max

a′
Q ∗(st+1, a′; θ ′)

)
  

TD

⎤⎥⎥⎥⎦
2

(8)

Through trial and error, the Q function is adjusted to the real
value and the agent learns to select the best actions. The target
function is periodically updated with the value of the Q function
itself [34] to improve the stability of the training. To have a bias-
free estimate of the Q function, it is necessary to collect both
good and bad experiences. The balancing of the exploration of
the action-state domain and the exploitation of what is learned is
usually left to the DQL by a ϵ-greedy policy. This policy balances
exploration and exploitation by taking a random action to explore
with ϵ-probability. The value of ϵ starts high at the beginning of
training and decays as learning is completed to take advantage of
the knowledge gained in the early stages.

3.4. Proposed framework

The proposed problem is based on sequentially choosing pt+1
that provides the most information from the perspective of en-
tropy reduction. The formulation of the actions, the state, the
deep policy architecture, and the reward function are described
below. For a complete understanding of the system, see Fig. 1,
which visually describes the framework based on the DRL Cen-
soring method, its inputs and outputs (see Fig. 3).

3.4.1. Actions
A discrete formulation of the action space is chosen to reduce

the number of possible action-state combinations. Discretizing
the action space in this way has proven to be sufficient in previ-
ous works [5] and allows for better convergence of policies [35].
Thus, the ASV agent can choose from up to 8 possible actions that
will result in a movement in 8 different directions with respect
to a fixed reference system parallel to the axes of the navigation
map M . The possible angles of direction Psi follow the bearings
of a compass A :=[S, SE, E, NE, N, NW, W, SW]. Note that the
order of these angles does not intervene at all in the algorithm. An
intuitive order has been chosen but, for the sake of the algorithm,
an arbitrary order could have been chosen. Therefore, each action
a leads the ASV to a movement in that direction until it reaches
a point at a distance of dmeas with respect to the previous point.
In Fig. 4 it is depicted the process of movement within its refer-
ence frame. Regarding the dangerous movements, any action that
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(

Fig. 3. This diagram describes the general operation of the system. The algorithm is given a simulation environment based on plausible WQ data and a navigation
map. The agent uses a deep policy Q (s, a) to decide the direction of movement in which to take the next sample. The censoring mechanism prevents invalid
hard-constrained) actions. Simultaneously, a WQ model is being shaped by a regression method (Gaussian Processes, Support Vector Regressor, etc.).
p
f
s
T
b

Fig. 4. The ASV is moves in 8 possible directions Ψ . Those directions are fixed
respect to an inertial reference frame parallel to the navigation map M . Every
action implies a travel in the selected direction for a distance dmeas . Therefore,
every point pt is separated from the previous one pt−1 by a distance of dmeas .

generates a waypoint outside the navigable areas is neglected and
will not cause any movement. For any effective action, a sample
of the WQ values is taken and the new position is updated in
the set of visited zones such that X t+1

meas ← X t
meas ∪ pt+1. With

this, the covariance matrix is recomputed according to Eq. (2) and
the next action can be queried to the policy π (s). The number of
possible actions is determined by the length of the path D, which
will depend on the problem we are solving and the ASV battery
budget.

3.4.2. State
The state st represents the observable information of the sce-

nario at a certain instant t . To fulfill the Markovian hypothesis,
the future reward should depend exclusively on the current state
and the action taken. Consequently, the state of the problem must
be chosen carefully, including all necessary a priori information
for entropy minimization. As the IPP is a problem with physical
constraints dependent on the current position of the navigability
map, in addition to the information collected, an image-like state
with three channels is proposed: (i) the binary navigability map,
(ii) a map of the path followed so far, and (iii) an uncertainty
map in which each cell has a value equal to the value of σ
according to the conditional correlation matrix Σ [X |Xmeas] (see
Fig. 5). This last state will depend on the kernel hyperparameters
as it is mentioned in Section 3.1. and will change according to
Eq. (2). This way, the state s = [s1, s2, s3] is discretized into
three images of 75 × 60 pixels. These images represent all the
information available for the scenario, which makes this problem
a Fully Observable MDP (FOMDP) To avoid large input values to
the Deep Q -network, the tree images are minmax-normalized.
This way, every pixel value of the state is within [0, 1].

It is worth mentioning that, to avoid violating the Markovian

assumption, the path traveled by the ASV up to the current

7

instant is included as part of the image (see Fig. 5b). In order to
distinguish the old positions from the current one, the oldest of
the positions will have a value of 0 and the current one will have
a value of 1.

3.4.3. Noisy neural architecture
To represent the function Q (s, a), we propose the use of a

CNN to process the state as an image. A Dueling architecture
has been designed. With this architecture, we seek to compute
two reward estimators: on the one hand, the value function V (s),
which represents the estimated future reward in the state s. On
the other hand, the advantage function A(s, a), which represents
the estimated future reward for each action a with respect to the
value of V (s):

A(s, a) = Q (s, a)− V (s)

Thus, the calculation of Q (s, a) is performed such that:

Q (s, a) = V (s, a)+ A(s, a)−
1
|A|

∑
A(s, a) (9)

This is a common technique used in DQL approaches like [23]
that allows to better generalize the learning of actions, in the
presence of similar Q (s, a) states, as demonstrated in [12]. The
roposed network is composed by two parts: the first is a visual
eature extractor in charge of transforming the spatial relation-
hips of the state (images) into a feature vector using CNNs.
he feature extractor is composed of 3 consecutive convolutional
locks, with 64, 32 and 16 filters each, of size 3 × 3. Then,

3 layers of fully connected neurons are used. Finally, the 256
output values are processed in parallel by a value head V (s) and
an advantage head A(s) with a size of 64 neurons each. Using
Eq. (9), the final values of Q (s, a) are obtained. Every activation
layer corresponds to a Rectified Linear Unit (ReLU), except for the
output layer, which does not have any (see Fig. 6) to effectively
represent the real values of Q.

Furthermore, it has been also implemented a technique useful
in the efficient exploration of the state–action domain called
Noisy Network [13]. The classic neurons are replaced by noisy
neurons that vary their value at each evaluation in a stochastic
manner. To the weights of each neuron (W , b) are added the
parameters (Wn, bn) which are trainable and are weighted with
random values (ϵW , ϵb) taken from Gaussian distributions (ξW , ξb)
(see Fig. 7). In this way, the neural network introduces an intrinsic
method of exploration. This is different from classic dropout lay-
ers, implemented to avoid over-fitting. The noisy strategy embeds
the exploration into the policy and lets the deep agent decide the
level of noise in its actions as it learns. This method can be inter-
preted as a form of evolutionary strategy in which the exploration
policy itself is embedded within the agent’s action policy. Similar
studies, such as [36], have shown that these techniques are able
to return better solutions thanks to their enhanced exploration
capability.
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Fig. 5. The 3 channels of the state: (a) corresponds to the navigation map of the Ypacaraí Lake in Paraguay; (b) corresponds to the path traveled so far; (c) corresponds
to the uncertainty map given by diag(Σ [X |Xmeas]).
Fig. 6. CNN that represents the Q (s, a; θ ) function. The dueling-network processes the state to obtain the advantage value A(s, a) and the stave-value V (s). All the
ctivation layers corresponds to ReLU function. The output of the network will be 8 Q -values corresponding to expected discounted accumulated reward for taking
very action a ∈ A in the current state s (the input of the network). Note that these values does not take in account any invalid (hard-constrained) actions.
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Fig. 7. In (a), it is depicted a classic neuron with ReLU activation function. In (b),
a noisy neuron is presented. It is added to the weights and biases a stochastic
value weighted by two trainable parameters (Wn, bn).

.4.4. Prioritized experience replay
A fundamental part of DQL is the so-called Experience Replay

ER). As it is mentioned before, the ER consists of sampling
atches of previous experiences, saved in a memory buffer M

as they occur, to fit the Q (s, a) function. It is commonplace
to use uniform random sampling to batch the experiences to
avoid correlated values that will lead the NN to overfitting easily.
Nonetheless, with this method, every previous experience has the
same probability to be sampled, without considering any further
information like the knowledge Q (s, a) has already learned about
similar states. To enhance this behavior, the work [11] proposes a
8

Prioritized Experience Replay (PER) method that emphasizes the
learning of those experiences that have bigger TD error in terms
of Eq. (8). The PER method imposes a probability Pi of sampling
an experience i in the buffer proportional to its TD error

Pi =
TDα

i(∑
∀E∈Memory TD

)α (10)

ith α being a parameter of how uniform the sampling is. To
void the bias generated by the prioritized selection of bigger TD
alues, the loss generated by these experiences is weighted using
q. (11). In this importance-based sampling, β ∈ [0, 1] represents

the level of compensation, and in this work it is annealed from a
baseline value, to 1, as the learning progresses.

wi =

(
1
N
·
1
Pi

)β

(11)

.4.5. Censoring Q-values
As learning simultaneously to deal with the entropy minimiza-

ion task and avoiding invalid actions is an arduous task, a simple
odification of the classical DQL algorithm can be implemented

o overcome this situation. The navigation map can be used to
btain the actions that will cause a collision in a given state s.
nce those invalid actions are calculated, a censoring function
(s, a) ∈ R|A| that represents whether an angle of Ψ can be

performed or not. Once the invalid actions are computed, the
state s is processed by the CNN and the final censored Q values Q̂
re obtained. The agent can only choose those actions a that are
ot marked as invalid by η, as depicted in Eq. (12).

η(s, a) =
{
1, if a is valid
−∞, if a not valid

ˆ

(12)
Q (s, a)← η(s, a) ◦ Q (s, a)
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This technique allows the agent to choose the best actions
learned in Q (s, a) by greedily acting with basic knowledge of the
scenario. The final algorithm can be seen in Algorithm 1. This
algorithm is similar to the one implemented by [13] but with
the censoring mechanism incorporated. When the agent selects
a new action with a new noise distribution ε, the censor mask
η(s) is applied depending on its position. This will unequivocally
lead to a valid movement without any penalization. When it
is time to update the weights of the network using a batch of
experiences B, it is necessary to also apply the censoring mech-
anism to the target predictions η(sBt , a′) ◦ Q ∗(sBt+1, a

′
; θ ′, ε), so

no invalid action is considered in greedy bootstrapping selection.
This mechanism can be implemented in a straightforward fashion
without modification of other parts of the algorithm, such as the
PER, noisy networks, or the dueling architecture. This mechanism
simplifies learning and reward shaping by eliminating the need
for collision-related parameters, such as penalties and terminal
conditions. The issue of reward shaping is discussed in [17] and
involves not only the definition of penalization, but also the
terminal condition of the episode. This condition determines how
many collisions are permitted before the episode ends. If the
memory buffer is filled with many collision experiences, the agent
will overfit and will not learn efficient policies. On the other hand,
if not enough collisions are experimented with, there is a high
probability of collision, as there is a low probability of sampling
collisions from the PER. This method allows all these aspects to be
eliminated from the problem by means of a simple hard censoring
approach. If navigable contours are available, the most efficient
approach is not to learn those dynamics that are available all the
time, which is the case for navigation boundaries.

Algorithm 1 Noisy Censoring-DQL

Input: Env, α, β, γ , lR,Memory, ϖ
Output: Q (s, a; θ, ϵ)

Initialize Q (s, a; θ ′, ϵ),Q ∗(s, a; θ ′′, ϵ)
while episode ≤ Learning budget do

Reset Env
st ← s0 from Env
while not done do

ε← ε′ ▷ Sample new noisy weights.
Q̂ (st , a)← η(st , a) ◦ Q (st , a) ▷ Apply safe censoring.
at ← argmaxa Q̂ (st , a; θ, ϵ)
st+1, rt = Env.step(at )
Store < st , at , rt , st+1 > in Memory
Update Memory priorities using Eq. (10).
B← ExpRep.sample ▷ Prioritized sample.
ε← ε′′ ▷ Sample another noisy weights.
y← rBt + γ maxa′ η(sBt , a′) ◦ Q ∗(sBt+1, a

′
; θ ′, ε)

L = wB
×
[
Q (sBt , aBt ; θ, ϵ)− y

]2
θ ← θ + lR × ∂L

∂θ
▷ SGD step.

θ ′ ← (1−ϖ )× θ ′ +ϖ × θ

if Env.distance ≥ distance budget then
done← True

end if
end while
episode← episode+ 1

end while

3.4.6. Reward function
The design of an adequate reward function is fundamental for

ny DRL application [17]. The reward function r(s, a) will define
ow good an action a is in a state s from the perspective of
he optimization objective. In this work, the final optimization
oal is to reduce the entropy. As the entropy is proportional
9

to |Σ [X |Xmeas] |, the reward function must evaluate the actions
that decrease this determinant by defining an information gain
measure. According to [37], the most effective way to reduce the
determinant follows the A-optimal criterion, which is to minimize
the average of the eigenvalues λ of Σ [X |Xmeas]. This will lead
to a definition of the information value I as seen in Eq. (13).
This information measure has also been tested in other relevant
works such as [5]. The A-optimal criterion consists of reducing
the diagonal values of |Σ [X |Xmeas] | by taking measurements
following Eq. (2). This will be equivalent to weighting every action
in terms of how much the action reduced the mean uncertainty
in the monitoring domain X .

I =
n∑

i=1

λi = tr(Σ[X |Xmeas]) (13)

In the end, the information gain ∆I can be defined as the de-
crease in information when incorporating the next measurement.

∆It+1|t = It − It+1 (14)

If an action has less information than ∆Imin, a useless move-
ent is considered, and a penalization of κ < 0 is applied. When
ollisions are considered, an action that aims to move the vehicle
o an unvisitable zone, a penalty of c. The final reward function
(s, a) is represented in Eq. (15).

(s, a) =

⎧⎨⎩
c, if (s, a)→ collision
κ, if ∆It+1|t < ∆Imin

∆It+1|t , otherwise
(15)

. Results and discussions

This section describes the simulation settings, the assumptions
nd limitations, the performance metrics related to the moni-
oring task, the results of such simulations, and a comparative
tudy between our proposed work and previous algorithms and
euristics.

.1. Environment setting and assumptions

The proposed environment used for training will be the lake
pacaraí (Paraguay, 60 km2), but the framework is not limited to
his bounding condition. We assume that the vehicle will take one
easurement at a time with a distance budget for static missions
f 45 km. In the non-stationary case, since we are concerned
ith continuous patrolling of the waters, the total distance will
e 112, 5 km. This increase is comprehensible, since the vehicle
eeds to travel for longer periods to gather changes in the lake
ynamics. In relation to WQ parameters, it is imposed that their
ehavior responds to a randomized benchmark function (Shekel
unction) previously used for monitoring tasks [18,21]. These
unctions represent a plausible characterization of real water
esources such as the Mar Menor in Murcia.3 We assume that in
he static case the unknown distribution of data does not change,
hich is plausible for some WQ variables. On the other hand, in
he dynamic case, we assume a random Brownian motion with a
aximum speed of vmax (see Fig. 8), which is acceptable in terms
f the expected changes in the dynamics of the algae blooms,
ind conditions, etc. The information model parameters, like the

ength scale l of the RBF function or the forgetting factor τ (see
1)) are chosen using the known data from the scenario [6], and
an be adapted in terms of the data distribution for other use
ases.

3 https://deap.readthedocs.io/en/master/api/benchmarks

https://deap.readthedocs.io/en/master/api/benchmarks
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Fig. 8. Four different ground truths generated using a randomized Shekel function. The maxima of these ground truths can move with a constant speed of v in
andom directions in the dynamic case.
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.2. Performance metrics

To measure the performance of the method, several metrics
re used. These metrics are considered to take into account dif-
erent aspects of the monitoring: the WQ parameter estimation,
utlier detection, and covered area. These metrics will be used in
he comparison between algorithms.

• It : The non-gathered information, still available at time t .
In the static case, the indicative metric of the performance
is the information at the end of a mission IT , and in the
temporal case, as the It grows in the zones further from the
actual position of the ASV, it is considered the average non-
gathered information once the initial 45 km are traveled.
The lower this metric, the less useful information remains
non-gathered in the scenario.
• AI : Represents the useful information area in (km2) covered

by the ASV. A zone x ∈ R2 is considered covered if the
uncertainty σ (x) is less than 0.05. The higher the value of
AI , the more thorough the coverage.
• MSE: Mean square error between a regression model and

the ground truth of the WQ variables. Two regression meth-
ods have been tested: GP as in [6] and Space Vector Regres-
sor (SVR) [38]. Both regression methods use the same kernel
in Eq. (1). For the temporal case, the sample time tmeas is
imposed as a variable like in [33]. The lower the MSE, the
better the environmental model is obtained.
• ξ: Peak detection rate. In the presence of k random peaks of

algae blooms or contamination, the average rate of detected
peaks is defined as ξ = E[kdetected/k]. A local maximum
is considered detected when the uncertainty σ (x) at its
location x ∈ R2 is less than 0.05. For the temporal case,
to comply the dynamic scenario, the contamination peaks
can move through the scenario with max. speed vmax =

0.3m·s−1, as explained in Section Section 4.1. A higher value
of ξ indicates better detection of outliers and peaks.

.3. Learning settings

All simulations were run using PyTorch on an Ubuntu 20.04
erver with an RTX A600 GPU (42 Gb VRAM), 192Gb RAM, and
wo Intel Xeon Gold 5220R 2.20 GHz. In both static and dynamic
cenarios, the agent has been trained for 1 × 104 episodes. Note
hat in the static case, at most and in the absence of collisions,
he vehicle will take 67 water quality samples, considering the
alue of dmeas = 0.675 km. In the case of the dynamic scenario,
he episode will last 168 steps at most. Considering Algorithm 1,
his implies a higher number of updates of the neural network
eights. This is in line with the need for more training for the
econd problem, which has a higher dimensionality and therefore
s more complex.
 t

10
Table 1
List of environment parameters, simulation settings, and hyperpa-
rameters related to the proposed DQL algorithm.
Learning hyperparameter Value

Learning rate 1× 10−4

Target update constant ϖ 1× 10−4
Batch size |B| 64
Unbias β interval [0.5, 1]
Priority value α 0.5
Discount factor γ 0.99
ϵ interval [1, 0.05]
Collision penalty c −1
Redundancy penalty κ −0.5
Information threshold ∆Imin 0.01

Environment parameter Value

dmeas 0.675 km
RBF lengthscale l 1.125 km
Forgetting factor τ 0.03
Max. peaks speed vmax 0.3 m s−1

The number of episodes has been chosen using a similar order
to that of previous similar applications [17]. It has been observed
that the number of episodes is sufficient so that, in both cases, the
policy converges to a local optimum with a sufficiently adequate
execution time. Regarding training times, it is important to note
that the use of GPUs is highly recommended. In the static case,
the simulation has a training time of approximately 4.5 h for the
static case and 11.3 h for the dynamic case, which has a longer
duration of episodes.

The SGD optimizer is Adam with a learning rate lR of 1×10−4.
o compare the ϵ-greedy exploration policy with the intrinsic
xploration of the noisy neural network, separate experiments
ave been performed under the same conditions. In the case
f the epsilon-greedy policy, the value of ϵ has been imposed
o decay within the interval [ϵmax, ϵmin] = [1, 0.05] over the
raining time. Then, ϵ decays from the very beginning of the
raining to 3000 episodes. From this point, if the exploration
hase is extended, no improvement has been observed. In any
ase, when evaluating the resulting policies, it is imposed a full-
reedy action selection without any exploration ϵ = 0. All other
yperparameters and other simulation settings are summarized
n Table 1.

.4. Learning results

The learning results can be seen in Figs. 9 for the static case.
he advantage of using a noisy network can be seen in terms
f convergence and training speed. In this first scenario, the use
f the noisy network will increase the learning efficiency and,
t the same time, eliminate the need to design the ϵ-greedy
trategy and its hyperparameters. The noisy network converges

o an explorative–exploitative balanced policy, which can be seen
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Fig. 9. Accumulated reward over training time in the static scenario. It rep-
resents the average reward with a moving window of 100 episodes with its
standard deviation. Note that Q-Censoring has collision-free training and no
penalization is applied.

Fig. 10. Box plot of information at the end of the mission, for 100 different
starting points, in the static case.

Fig. 11. Number of useless moves on average, where it is applied a penalization
f κ for the three variants of the DRL approach.

s incorporating the exploration behavior into the policy. The
oisy + Q-Censoring strategy, in the static case, slightly over-
omes the average reward by approximately 30% with respect to
he ϵ-greedy counterpart and by 20% with respect to the only
oisy Network case. Although the improvement is not overly
ignificant, the Q-Censoring strategy translates its advantage in
he fact that the convergence is reached earlier and, once again,
t eliminates the need of designing the collision penalty. In [17], it
as studied how the penalty affects convergence and how it can
ause poorer performance under certain conditions. In Fig. 10, the
ntropy is shown at the end of an episode after evaluating the
roposed method 100 times starting from random points on the
ap at each run. The noisy policies return more informative paths

12% improvement), and the noncensored version still provides
n effective policy to deal with collisions at the same time the
11
Fig. 12. Accumulated reward over training time in the dynamic scenario. Note
that the total reward changes from the static case, as the amount of information,
once the map has been covered after a while, is much lower than in the static
scenario.

entropy is reduced. It is also noticeable that the number of av-
erage redundant/useless movements that produce I t < Imin (see
the reward function Eq. (15)) is 4 times higher in the ϵ-greedy
strategy and 2.75 times higher in the noncensored version than
in the censored version (see Fig. 11). This indicates a better policy
in terms of the information gathering capabilities of the proposed
method.

Regarding the dynamic case, in Fig. 12 it can be seen how
the Q-Censoring strategy overcomes the other methods. As the
episode in this particular case is 2,5 times bigger, both the noisy
and ϵ-greedy strategies tend to generate collisions at a certain
point. Using the Q-Censoring strategy, learning is simplified and
allows for a higher reward in time with little effort. The Non-
Censoring Noisy Network version can be seen as a curricular
learning like in [39], where it is assimilated first through the
boundaries of the map, and later, the entropy reduction pol-
icy is optimized. The censored strategy alleviates this condition,
especially in longer episodes, where the possibility of collision
is greater. In Fig. 13, it shows the result of the nongathered
information It of 100 episodes using the three DRL approaches.
Two important aspects must be remarked: (I) As the uncertainty
grows within time, it is not possible to gather information with
near-zero values, as in the static case. It is only possible to find an
equilibrium where the patrolling path reduces the information to
a certain point and avoids unnecessary redundant movement. (II),
the three DRL methods result in valid temporal patrolling strate-
gies, but the censoring version policy is obtained with 50% less
episodes and therefore is the best candidate for more complex
scenarios.

4.5. Comparison with other methods

To evaluate the performance of the proposed method in IPP
and IPPP, different algorithms have been tested in the Ypacaraí
scenario. To fairly compare the ability of the other algorithms
to reduce the available information, only safe actions can be
performed, considering the navigation map:

• Safe Random Agent: Actions are randomly chosen from the
action space A if they are valid. This algorithm is useful for
comparing the difficulty of the patrolling problem, in a way
similar to [4].
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Fig. 13. Comparison of non-gathered information It in the scenario for the three DRL algorithms. It represents the average of 100 missions with different starting
points and its standard deviation.
Table 2
Metrics obtained by executing all algorithms after 100 episodes for the static case. Bold values correspond to the best performance,
and red values to the second best performance.
Algorithm IT Ar ξrate MSEGP MSESVR

Mean Std. Mean Std. Mean Std. Mean Std. Mean Std.

DRL 7,722 0,30 52,73 3,52 0,602 0,14 0,019 0,10 0,032 0,03
Lawn Mower 30,486 3,81 34,34 3,32 0,393 0,12 0,121 0,13 0,394 0,29
Random 40,302 6,77 22,36 5,52 0,256 0,15 0,741 0,40 0,755 0,57
NRRC 22,128 5,29 34,16 2,96 0,377 0,16 0,252 0,25 0,107 0,13
I-greedy 15,524 0,43 47,18 7,87 0,541 0,16 0,132 0,17 0,116 0,19
EI 29.34 16.19 33.03 15.87 0,34 0,22 0,310 0,22 0,481 0,53
• Lawn Mower: The Lawn Mower (LM) algorithm is a strat-
egy that generates intensive coverage paths. The LM agent
chooses a random direction to start and goes straight until
it is not possible to go further. Then, the agent returns in
a parallel straight line, one step forward from the previous
path.
• Non-Redundant Random Coverage: The Non-Redundant

Random Coverage (NRRC) algorithm randomly selects a di-
rection of movement from A, different from the previously
selected to avoid retracing its steps. Once the vehicle cannot
advance in this direction, a new direction is sampled. This
is a variation of the Intelligent Random algorithm used for
comparisons in [15].
• I-greedy Strategy: The I-greedy strategy selects the highest

point of uncertainty on the map and, using a local path
planner, guides the vehicle to this point without collisions.
• Expected Improvement Acquisition Function: This ap-

proach takes the Expected Improvement (EI) Acquisition
Function as a policy that indicates the next valid best point
to visit [6]. The EI is a function that tries to optimize the
Gaussian Process mean by searching for a higher value than
the maximum available. To adapt this algorithm to our
framework, we maintain the movement restriction imposed
by dmeas.

The results of the static case are presented in Table 2, for
100 different starting point routes. These results clearly show
how the proposed method is able to obtain the most informa-
tive paths compared to the other algorithms. The information
obtained at the end of the episode is 49% lower than the second
best algorithm (I-greedy). The DRL agent is able to gather more
information in much less time, as seen in Fig. 14. The DRL policy is
also less affected by the starting point in terms of the standard de-
viation of the information, which can be seen as the robustness of
the informative trajectories. The proposed algorithm also obtains
a policy capable of detecting 60% randomly located contamination
12
peaks in the environment, which is a 51% improvement on aver-
age over the other algorithms. Improvement is also significant in
terms of MSE using both regression methods. On the one hand,
when using a GP, the MSE is reduced to 0.019, which represents
an average error of 13.7% across the water surface (see Fig. 15)
On the other hand, the SVR returns an average MSE of 0.032,
again an average 17,8% error, lower than in any other acquisition
strategy tested. The results of the EI approach indicates that the
acquisition function is too greedy with respect to the GP mean.
Even when is able to reach the maxima of the scalar field easily, as
in Bayesian Optimization approaches [6,18], it is not explorative
enough. This algorithm also suffers when imposing a truncated
traveling distance dmeas without any prior hyperparametrization
tailored to the ground truth value. Therefore, our proposal seems
to be more robust in terms of the exploration as it does not
depend on any regression values, only in the uncertainty.

It is noticeable that the acquisition path is relevant to the
modeling problem and also to the regression method used. GPs
obtained, on average, better solutions for the static case, indepen-
dent of the path. Nevertheless, it is proven that the error in the
model is conditioned on the information gathered, which is the
reduction of the entropy. In this static case, the lower the entropy,
the lower the error in the estimation for different regressors. This
suggests that optimizing under this informative entropic crite-
rion produces useful coverage paths for many purposes: model
estimation, patrolling contamination peaks, complete coverage,
etc.

Finally, if the final paths are studied as seen in Fig. 16, it is
clear that they are less redundant in the proposed DRL policy.
The paths generated by the LM approach tend to be too thorough
and do not take into account the redundancy of the information
in consecutive and near samples. In a different way, the greedy
approach does not consider any further information than the
maximum uncertainty position, which inevitably leads to redun-
dant subpaths in the way of reaching the most informative point.
The proposed algorithm takes into account not only the next

point, but also the future discounted information available, and
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Fig. 14. Comparison of the average information in the static scenario for all algorithms after 100 missions from different starting points and its standard deviation.
Fig. 15. Mean squared error using a GP with the proposed kernel after 100 missions (static case) with random ground truths for every algorithm. The average is
represented within its standard deviation.
Fig. 16. Paths generated by common coverage path planning algorithms in the static scenario: (a) Random, (b) Lawn mower, (c) Nonredundant Random Coverage,
(d) I-greedy, (e) the proposed DRL approach, and (f) Expected Improvement AF. All paths start in this figure from the same deploy zone for comparison. The path
is colored according to the time t divided by the mission time T . The grayscale background color represents the predictive uncertainty σ (x) of a particular zone x.
obtains, even in the final steps when there is little information
left, significant measurements.

In the temporal scenario, the results can be interpreted in a
similar way (see Table 3 for complete results). The proposed al-
gorithm is able to obtain 30% more informative paths on average
than the other proposed heuristics. The DRL policy produces in-
formative patrolling paths that can reduce entropy and maintain
stability as information from the unvisited zone regenerates (see
Fig. 17). When analyzing the ability of the algorithm to detect
random peaks, the proposed DRL approach obtains similar but
slightly better results than the second-best algorithm (LM). The
LM algorithm, as it produces very extensive coverage paths, is
13
able to detect those moving peaks, but at the expense of the
surrogate model accuracy, which is far from the one obtained
using the DRL method (a 51% worse contamination model).

Both regression methods used in the temporal case are mod-
ified to consider the acquisition time of a sample as a measured
parameter, as explained above (see (5)). The RBF kernels are con-
sequently modified to include a time-dependent third dimension.
It was also considered an estimation horizon of 67 samples in the
past (the final number of samples in the static scenario), so the
very first measurements were discarded for estimation, as they
cannot be assumed valid anymore. With this simple temporal
regression method, both GPR and SVR are able to converge in
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Fig. 17. Comparison of the average information in the temporal scenario for all algorithms after 100 missions from different starting points and its standard deviation.
Table 3
Metrics obtained by executing all algorithms after 100 episodes for the temporal case. Bold values correspond to the best performance,
and red values to the second best performance. Those MSE values with >1 correspond to those cases in which the regression method
fails to converge and returns a useless model with errors greater than 1.
Algorithm IT Ar ξrate MSEGP MSESVR

Mean Std. Mean Std. Mean Std. Mean Std. Mean Std.

DRL 26.673 4.75 809.5 32.4 0.725 0,10 0.136 0,20 0.101 0,07
Lawn Mower 36.765 4.15 913.7 96.0 0,700 0,20 0.342 0,22 >1 >1
NRRC 46.585 3.63 811.9 34.5 0.325 0,14 0.449 0,42 >1 >1
Coverage 29.904 2.52 673.2 36.6 0.565 0,16 0,184 0,20 0,417 0,20
I-greedy 37.755 11.77 587.1 163.9 0.525 0,20 0,471 0,65 >1 >1
EI 43.771 13.72 444.38 176.4 0,35 0,23 0,57 0,51 >1 >1
temporal-dependent models of the WQ variables with MSE values
of 0,136 and 0,101, respectively, for each regressor. These values
are obtained on average once the ASV has completed the first
45km (the distance limit in the first static scenario). As can be
induced from Table 3, the MSE values are higher than in the static
case, as the benchmark function changes over time. The model
can only be adjusted when the old zones are revisited and the
regressor updates its state information. In a further test, after 20
missions starting from a single starting point, the resulting MSE
using GP is not only lower on average, but the lower bound is
reached earlier in the DRL proposal (see Fig. 18). In the SVR, it is
worth mentioning that not all policies result in a convergence of
the surrogate model. In the case of the Random Agent, the NRRC,
and the greedy approach, the measurements do not conform to an
adequate set to converge over time. However, when converging,
as happens in the DRL approach, the error can be even lower
than in the GPR counterpart. With regards to the EI application, it
suffers again from the things mentioned before. The routes seem
to be more redundant, as the EI relies not only in the uncertainty
but also in the mean of the GP. The EI-agent tries to revisit those
places with higher mean instead of exploring high uncertainty
values. This results in a lack of exploratory behavior that is
not seen in, for example, the I-greedy agent or in the proposed
DRL policy. It has to be further analyzed the sensitivity of the
hyperparameters in the EI policy, nonetheless, it has been clear
that it is not a suitable choice for extensive search but for sample-
efficient missions without any movement restrictions imposed by
dmeas. Nonetheless, sample-efficiency will always involves a trade-
ff between number of samples and robustness in the accuracy
nd anomalies detection (given the performance in the metric
rate).
The example paths in Fig. 19 show how the DRL policy tends

o generate cyclic patrol routes to keep the growing uncertainty
14
low. LM algorithm, while intensive in the final steps, tends to
generate high redundancy coverage. The greedy approach, as the
maximum uncertainty is always growing, tends to oscillate and
fails the patrolling task. The NRRC is the only algorithm that can
compete in terms of the MSE model but easily generates long
redundant paths.

4.6. Discussion of the results

The proposed algorithm has been proven to be effective in
both IPP and IPPP applications in terms of monitoring metrics
and learning efficiency. It is important to highlight the following
aspects of the results:

• The use of noisy neural networks allows for efficient ex-
ploration of the action-state domain, resulting in an im-
provement in the information collected on the routes (20%
improvement). Additionally, the design of the epsilon-greedy
strategy is no longer necessary.
• The use of Q-censoring allows for better results than base-

lines (8% improvement) in the static case and an increase in
convergence speed (50% faster).
• The use of Q-censoring also allows the user to not impose

any collision penalty, resulting in an improvement in policy
performance in terms of information collected.
• The agent in the static case produces significantly better

monitoring results than the other heuristics (13.7% on av-
erage among all algorithms in terms of MSE).
• In the temporal case, the improvement is not only signifi-

cant in terms of model error (8% better than the best among
the other algorithms), but also in other metrics, such as the
detection rate of contamination agents (37% more detections
on average among the other algorithms).
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Fig. 18. Mean squared error using a GP with the proposed kernel after 20 missions starting from the same point (temporal case) with random ground truths. The
standard deviation is omitted for a better visualization.
Fig. 19. Paths generated by common coverage path planning algorithms in the temporal scenario: (a) random, (b) lawn mower, (c) nonredundant random coverage,
(d) I -greedy, (e) the proposed DRL approach, and (f) Expected Improvement AF. The path is colored according to the time t divided by the mission time T . The
ray background color represents the uncertainty σ (x) of a particular zone x.
• On a qualitative level, the routes of both algorithms are less
redundant and better understand the boundaries of the map
and the information constraints on them.

5. Conclusions and future lines

The monitoring and patrolling task in big water resources
equires an efficient path planning policy that gathers the most
nformation available at the same time the navigation bound-
ries are considered. This work proposes a Deep Reinforcement
earning framework that optimizes a convolutional policy based
n a visual state of the informative scenario using the entropy
inimization as the surrogate objective for the patrolling task.
nowledge assimilation is enhanced using state-of-the-art meth-
ds such as Noisy Networks and Prioritized Experience Replay to
ive into a more exploratory policy that can deal with two cases
f monitoring: the static scenario and the temporal patrolling
ase. Ultimately, a Q-Censoring strategy has been proposed that
ermits scenario-gnostic learning to avoid dangerous movements
owards the land. This approach has proven to be much more
fficient than the classic ϵ-greedy strategy and the noisy base-
ine, especially in the static case. The difference also lies in the
onvergence speed. As the Q-Censored approach does not deal
ith the collision problem, as in [7,15], consequently the speed
f learning is significantly increased. The result of this framework
ill allow the establishment of efficient routes in the collection
15
of water quality data and in many other applications, such as the
measurement of radiation levels, gas sources, etc., without loss
of generality. This framework is particularly useful due to the
vehicle safety criterion and due to the formulation of information
based exclusively on uncertainty.

The algorithm, in the end, results in a more useful policy than
other approaches like the Lawn Mower or I-greedy, since it learns
how to plan in an optimization horizon according to the tailored
reward function. There is also improvement from previous ap-
proaches using Expected Improvement as an acquisition function,
since pursuing the reduction of the uncertainty seems to be a
more robust criterion that balancing the exploitation/exploration
like in Bayesian optimization approaches. This improvement in
entropy minimization is translated into lower model errors and
higher detection rates of contamination peaks. However, regres-
sion methods have been shown to be very sensitive to acquisition
policies and require further research. The convergence of the
regression is not guaranteed, and the estimation error could be
used as part of the reward function. Another future line is the
generalization of the algorithm to the multiagent paradigm. Like
in [21], this approach can be applied to multiple cooperative
agents using the same uncertainty map to efficiently collect in-
formation. In this regard, it is important to address the question
of how different agents can effectively cooperate to cover the
scenario. This raises the problem of not only static obstacle avoid-
ance, but also between-agent collision avoidance. A future use of
multiagent Q-censoring will be necessary.
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