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Abstract— Developing and managing firewall Access Control 
Lists (ACLs) are hard, time-consuming, and error-prone tasks 
for a variety of reasons. Complexity of networks is constantly 
increasing, as it is the size of firewall ACLs. Networks have 
different access control requirements which must be translated 
by a network administrator into firewall ACLs. During this task, 
inconsistent rules can be introduced in the ACL. Furthermore, 
each time a rule is modified (e.g. updated, corrected when a fault 
is found, etc.) a new inconsistency with other rules can be 
introduced. An inconsistent firewall ACL implies, in general, a 
design or development fault, and indicates that the firewall is 
accepting traffic that should be denied or vice versa. In this paper 
we propose a complete and minimal consistency diagnosis process 
which has worst-case quadratic time complexity with the number 
of rules in a set of inconsistent rules. There are other proposals of 
consistency diagnosis algorithms. However they have different 
problems which can prevent their use with big, real-life, ACLs: 
on the one hand, the minimal ones have exponential worst-case 
time complexity; on the other hand, the polynomial ones are not 
minimal. 
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I. INTRODUCTION

Although deployment of firewalls is an important step in 
the course of securing networks, the complexity of firewall 
ACL design might limit the effectiveness of firewall security. 
Writing and managing Access Control Lists (ACLs) are time-
consuming and error-prone tasks due to a variety of reasons [1, 
9]. One of the main ones is that complexity of networks is 
constantly increasing, as changes in requirements, topology, 
etc. occur with higher frequency and density nowadays. 
According to Taylor [3], the number of rules in a firewall ACL 
usually ranges between a few ones and five thousand. Another 
reason is that networks have different access control 
requirements (or objectives) which must be translated by 
network administrators into firewall ACLs. The gap between 
the high-level access control requirements and low-level ACLs 
is too wide. Low-level firewall languages are difficult to learn, 
use and understand, and are very different from each other in 
syntax and semantics [27]. Although many high-level 
languages have been proposed in order to reduce design and 
development complexity and thus faults, no one have been 
widely adopted by the industry for various reasons [2]. 
Furthermore, their use does not guarantee that the resulting 

ACL is fault-free, thus a method to diagnose design and 
development faults must be used in order to correct ACLs prior 
to its deployment. 

One of the most important and frequent faults during ACL 
design, development, and management are inconsistencies [1, 
9]. A firewall ACL with inconsistent rules implies, in general, 
that the firewall is accepting traffic that should be denied or 
vice versa. This can cause severe problems such as unwanted 
accesses to services, denial of service, overflows, etc. ACL 
consistency is of extreme importance in several contexts, such 
as highly sensitive applications (e.g. health care). Since ACLs 
in complex networks are very big, giving the smallest set of 
rules that must be corrected is mandatory. Also note that when 
a rule is modified to correct an inconsistency, a new 
inconsistency with other rules can be introduced. Thus, the 
consistency diagnosis process should be run multiple times 
until no more faults remain. Furthermore, consistency 
management is becoming an important topic in a new range of 
applications for resource-constrained devices in ubiquitous 
networks such as ad-hoc network node real-time ACL updates, 
real-time IDS or IPS rule updates, QoS management, etc. For 
these reasons, the efficiency in time and space of the diagnosis 
process must be an important objective of the process. 

Many algorithms with these goals have been proposed 
earlier [5, 6, 10]. However, these proposals have many 
problems regarding different aspects of the diagnosis problem 
that prevent their use with big, real-life, ACLs. On the one 
hand, there are minimal proposals but with exponential worst-
case time complexity. On the other hand, there are polynomial 
ones, but they are not minimal. 

In this paper, we propose a complete and minimal 
consistency diagnosis process for firewall ACLs with worst-
case quadratic time complexity with the number of rules in a 
set of inconsistent rules. The union of these features is the main 
contribution of the paper. To the best of our knowledge, it is 
the first time that a process with these features has been 
proposed. Our proposal is based on a reformulation of the 
problem to the Minimal Vertex Cover in Graph Theory one. 
Experimental results with real ACLs that validate our proposal 
and compare it with other ones are also provided.  

The paper is structured as follows. In Section 2, consistency 
problems in firewall ACLs are explained and formalized. In 
Section 3 related works are reviewed. In Section 4 the minimal 



diagnosis process is formalized and solved in quadratic time 
complexity. In Section 5 experimental results with real ACLs 
and a comparison with other proposals are provided. The paper 
finishes in Section 6 with some concluding remarks and 
insights for future works. 

II. CONSISTENCY IN FIREWALL ACLS

As with other related works within the topic, this paper is 
focused in layer 3 firewalls, and thus in the five typical 
selectors [3]: protocol, source and destination IPs, and source 
and destination ports. Stateful and stateless firewall ACLs are 
supported, since there are no differences in their ACL 
formalization.  

A. Problem Formalization
Firewall rule-matching engines match packets in a linear

way, checking ACL rules from the first to the last one. The 
matching process stops once a rule has been matched, or once 
there are no more rules in the ACL (in this case, the firewall 
platform executes a predefined default action). The values of 
selectors (or filtering fields) between different rules can 
overlap, and can even be rules that are completely equal to 
others. An example of a layer-3 firewall ACL is presented in 
Fig. 1.  

A layer 3 Firewall ACL is a list of linearly ordered (total 
order) condition/action rules. Each firewall rule is formed by an 
antecedent and a binary consequent representing the action that 
must be taken once a packet matches the rule. Let PORTSRC 
and PORTDST be sets of natural numbers and intervals of 
naturals in [0..65535] representing port numbers. Let IPSRC 
and IPDST be two sets of valid IPv4 addresses in octet/CIDR 
format (o1.o2.o3.o4/CIDR). Let PROTOCOL be a set of 
natural numbers in [0..255] representing protocol numbers. Let 
ID≥1 be a natural number representing the rule priority in the 
ACL (1 is the rule with more priority). Let ACTION={Allow, 
Deny} be the binary set of possible actions for a rule. Let 
W=PROTOCOL×IPSRC×IPDST×PORTSRC×PORTDST be 
the cartesian product of the five previous sets or selectors, 
which represents a 5-dimensional hypercube. W is the space 
where an antecedent of a firewall rule can be defined. 

Definition 2.1. A firewall ACL or rule set, is defined as the 
cartesian product ACLf=W×ACTION, where |ACLf|=f. A rule in 
ACLf is defined as ,1k fR ACL k f∈ ≤ ≤ , k ID∈ .  
Rk[PROTOCOL],  Rk[IPSRC], Rk[IPDST], Rk[PORTSRC], 

Rk[PORTDST], Rk[ACTION] represent the corresponding 
selectors of the rule Rk and its action. 

Example 2.1 (Rule). Take rule R1 in Fig. 1. In this case, 
following Definition 2.1: k=1, R1[PROTOCOL]=6, 
R1[IPDST]=0.0.0.0/0, R1[PORTSRC]=[0..65535],
R1[PORTDST]=[80], R1[ACTION]=allow. 

Definition 2.2. ACLf can be trivially divided in two disjoint 
sets, one composed of rules with Allow action (ACLallow, where 
|ACLallow|=m), and the other composed of rules with Deny 
action (ACLdeny, where |ACLdeny|=n). 
Thus allow deny fACL ACL ACL=∪  and allow denyACL ACL ∅=∩

Example 2.2. Take Fig. 1 example, where ACLallow={R2, 
R3, R6, R7, R9, R10, R11} and ACLdeny={R1, R4, R5, R8, 
R12}, then allow denyACL ACL ∅=∩ . 

Definition 2.3. Let the antecedent of a rule of k fR ACL∈
be defined as an element or subset of W, ( )ka R W⊆ . Let the 
consequent of a rule k fR ACL∈  be defined as 

( )kc R ACTION⊂ . The union of the antecedents of all rules in 

ACLallow is the set A, 
1

( ) / ( )
m

i allow iA a R ACL c R allow= ∈ =∪ . 

The union of the antecedents of all rules in ACLdeny is the set D, 

1

( ) / ( )
n

j deny jD a R ACL c R deny= ∈ =∪
Definition 2.4. Ri and Rj are mutually inconsistent, I(Ri, Rj) 

├ ⊥ ( ) ( )i allow j denya R ACL a R ACL⇔ ∈ ∈ ≠ ∅∩ . Two elements 
in ACLf  representing an action and the contrary over a subset 
of W are logically inconsistent. In the same way ACLf is 
inconsistent A D⇔ ≠ ∅∩ . Consistency is not affected by the 
relative priority between rules. An inconsistency is considered 
to be a fault if an administrator identifies the behaviour of the 
executed ACL as being causing undesirable effects (or having 
errors). 

Example 2.4. Take Fig. 1 example. R1 and R2 are 
inconsistent (there are more inconsistencies in this ACL). Fig. 
1 ACL is also inconsistent, since there is at least one pair of 
inconsistent rules, and thus A D ≠ ∅∩ . 

Definition 2.5. Inconsistency Isolation. It is the action of 

Priority/ID Protocol Source IP Src Port Destination IP Dst Port Action 
R1 tcp 192.168.1.5/32 * *.*.*.*/0 80 deny
R2 tcp 192.168.1.*/24 * *.*.*.*/0 80 allow
R3 tcp *.*.*.*/0 * 172.0.1.10/32 80 allow
R4 tcp 192.168.1.*/24 * 172.0.1.10/32 80 deny
R5 tcp 192.168.1.60/32 * *.*.*.*/0 21 deny
R6 tcp 192.168.1.*/24 * *.*.*.*/0 21 allow
R7 tcp 192.168.1.*/24 * 172.0.1.10/32 21 allow
R8 tcp *.*.*.*/0 * *.*.*.*/0 any deny
R9 udp 192.168.1.*/24 * 172.0.1.10/32 53 allow

R10 udp *.*.*.*/0 * 172.0.1.10/32 53 allow
R11 udp 192.168.2.*/24 * 172.0.2.*/24 any allow
R12 udp *.*.*.*/0 * *.*.*.*/0 any deny

Figure 1.  Example of a layer-3 Firewall ACL 



finding out all i allowR ACL∈ , j denyR ACL∈  such that I(Ri, Rj) 
├ ⊥. The isolation process identifies all the inconsistent rules 
of ACLf. The set of the isolated rules is INC. 

Definition 2.6. Minimal Diagnosis Set. The Minimal 
Diagnosis Set MDS INC⊆  is a set such that fACL MDS− is 
consistent. Therefore if all rules in MDS are removed or 
corrected and no more inconsistencies are introduced, ACLf 
├T. MDS is minimal iff there is no proper subset of INC, 

'MDS INC⊂ , such that | ' |   | |MDS MDS< , with MDS’ 
being a diagnosis. 

B. Example
An example of a layer-3 firewall ACL is presented in Fig.

1. Note that this example ACL can represent both stateful and
stateless firewalls, since they do not differ in the number or
type of selectors. In this example, 4 3R R⊂  because all
selectors of R4 are at least subsets of the same selectors of R3.
However, their actions are the opposite. In this case R4 is never
going to be matched in this ACL, because all packets that R4
could match are also matched by a rule with higher priority,
R3. In this case, the firewall administrator must be notified,
since R3 may be a faulty rule (the consequence, or the error, is
that there is traffic that is allowed by R3 and it may be denied).
Take as another example the rules 1 2R R⊂ . In this case traffic
that is denied by R1 is also accepted by R2. This kind of
relation is used by administrators to express exceptions (the
most specific rule, R1) to a general rule (R2), and is not usually
considered to be a fault, because there is no error in the ACL
execution.

Note that in the examples, actions are always different. If 
actions were equal, there is no potential erroneous behavior in 
the executed ACL, and thus there is no inconsistency. However 
there is redundancy, which is another kind of fault which can 
reduce the performance and increase the memory consumption 
of the rule-matching engine. In this paper, we only consider 
rules which can be potential faults, or inconsistent rules. 

C. Consistency Management Cycle
In earlier works [16] we proposed to divide the ACL

consistency diagnosis problem in three automatic sequential 
steps: inconsistency detection and isolation, minimal 
identification of the rules to be corrected (minimal diagnosis), 
and the characterization of the diagnosis. In this paper, we 
augment that automatic process in order to define the 
Consistency Management Cycle, CMC (Fig. 2). Although we 
have made contributions in all parts of the cycle in the past, this 

paper is focused in the fourth step, Minimal Identification of 
Inconsistent Rules. However, to give context to the reader, all 
parts of the cycle are briefly described below. 

In the proposed CMC, the ACL must be first designed and 
developed by an administrator. There are several alternatives 
for this part of the process: high-level languages [2], low-level 
languages, commercial or free tools based on GUIs, etc. 

Next, redundancies should be automatically detected and 
corrected. The objective is twofold. On the one hand, an ACL 
without redundancies is smaller than an ACL with them, and 
thus reduces the time and memory required to process packets 
when the ACL is deployed. On the other hand, redundant rules 
can cause more inconsistencies that do not give the 
administrator important information, since they are redundant 
inconsistencies. As we described earlier in this section, 
redundancies are not a consistency problem, because they do 
not change the semantics of the ACL. Redundancies can be 
detected and removed in quadratic time using automatic 
algorithms as the proposed by Liu et al. [25]. In the third one, 
inconsistent rules must be detected and, if any, isolated from 
the ACL. This third step of the process is important in order to 
know if a rule of the ACL is inconsistent with others, if a 
modification of a rule can cause new inconsistencies, or even to 
know if a new rule being introduced in the ACL could cause 
inconsistencies with the existing ones. However note that in 
Fig. 1 example all rules are mutually inconsistent with at least 
another rule in the ACL, and thus all of them will be isolated in 
this step of the CMC process. 

Thus another step (the fourth one) is necessary in order to 
compute (identify) which of the isolated inconsistent rules are 
the ones that, once corrected or removed, make the ACL 
consistent. This result must be complete, i.e. with the identified 
rules it must be possible to correct all inconsistencies in the 
ACL. Since the Parsimony Principle says that the preference 
for a diagnosis of a problem is to give the least complex 
explanation, the optimal result for the identification step is the 
minimal one. This is especially important for big ACLs and in 
ACLs with a lot of inconsistencies, since not giving it could 
result in an overwhelming number of rules to be corrected. The 
result of the identification part of the process can be used to 
automatically correct the ACL using schemas such as the one 
proposed in [6]. 

Both third and fourth steps of the CMC are the consistency 
diagnosis of the ACL, because with this result it is possible to 
correct all inconsistencies. Several algorithms with different 
complexities can be used to give a minimal diagnosis [5, 6, 15]. 
However, these algorithms have exponential worst case time 

Figure 2. Concistency Management Cycle, CMC 



and space complexity, which prevents their use with big, real-
life ACLs. To the best of our knowledge, it has been proposed 
no polynomial algorithm to solve the minimal diagnosis 
problem, but only heuristics [26].  

In earlier works, we proposed a worst case quadratic 
firewall-ACL-specific algorithm for step three (inconsistency 
detection and isolation) [16]. The main objectives and 
contributions of this work are the demonstration of that a 
quadratic space and time minimal and complete identification 
(fourth part of the CMP) algorithm exist and a proposal of one. 

The fifth step of the process is the diagnosis 
characterization. Note that with the result of the diagnosis, an 
experienced administrator has to check the diagnosed rules in 
order to know which kind of inconsistencies are faults or not. 
Recall from the first part of this section that there could be 
inconsistencies that do not generate an erroneous behaviour in 
the ACL. However, there exist a well accepted and established 
taxonomy of consistency faults for firewall ACLs, which has 
been formally proved to be complete [14]. Thus, even more 
accurate results can be given to the administrator if the 
diagnosis is characterized using this taxonomy. 

Finally, once the inconsistencies have been characterized, 
the administrator must correct them or not, depending if they 
cause errors or not. Note that once inconsistencies have been 
corrected, there is no guarantee that the new inconsistencies or 
redundancies are introduced. Thus, the full consistency 
management cycle starts again until the desired ACL is 
obtained. This is one of the reasons why the performance of the 
CMC is a key part of the problem. 

III. RELATED WORKS

There are mainly two research lines focused in diagnosis 
algorithms for firewall ACLs. In the first one, the proposals are 
focused in firewall ACLs, characterizing the diagnosis using a 
known and complete fault taxonomy [14]. In some of these 
works the given diagnosis is minimal, but the results are 
usually given in exponential time complexity. In the second 
one, the proposals are more general, and are not focused in 
firewall ACLs, but in network filters in general. These works 
do not give a minimal diagnosis, and neither characterize it, 
although their complexity is polynomial. 

The most important works in the first research line 
(minimal diagnosis and its characterization) were made by Al-
Shaer et al [5]. In their works, authors’ define a complete 
inconsistency taxonomy for firewall ACLs [14] which include 
redundancies. They provide a rule order-dependent consistency 
diagnosis algorithm between every pair of rules in the ACL. An 
indivisible part of their diagnosis algorithm is the 
characterization of the faults found, using their own taxonomy, 
which has been formally proved to be complete [14]. However, 
one of the main drawbacks of this proposal is that the 
algorithms do not characterize inconsistencies with a 
combination of more than two rules and thus the diagnosis 
could not be minimal. In fact, the result given by this proposal 
is an isolation of inconsistent pairs of rules (Definition 2.5, 
previous section), and not a diagnosis. In the worst case (i.e. all 
rules are inconsistent in an ACL), the number of returned pairs 
of inconsistencies could be ACLallow·ACLdeny. 

Another important drawback of this proposal is that they 
use an ACL decomposition technique in order to make the 
problem tractable for big ACLs. This technique is called rule 
decorrelation [8]. The result of this decomposition is a new 
ACL with no overlapping rules. This new ACL is the real input 
for their diagnosis algorithms. However, as the decorrelated 
ACL is free from rule overlaps, it could have more rules than 
the original one, and so the problem size is bigger than the size 
of the original ACL. Furthermore, the decorrelation process 
used [8] is worst-case exponential time and space complexity 
with the number of decorrelated rules. Although the diagnosis 
and characterization algorithms proposed by Al-Shaer are 
worst-case polynomial, the decorrelation pre-process 
dominates the complexity of the full process. Finally, results 
are given over the decorrelated ACL, but the firewall 
administrator must correct faults over original ACL without 
any aid to reverse the decorrelation. 

A modification to Al-Shaer proposal was provided by 
García-Alfaro et al [6], where they integrated the decorrelation, 
consistency diagnosis, and characterization algorithms 
(including redundancy) of Al-Shaer, proposal plus an 
automatic ACL correction, in only one step. One of the 
improvements of García-Alfaro proposal is that they provide a 
characterization technique with multiple rules, instead of the 
pair-wise one of Al-Shaer. However, due to the use of the same 
decorrelation techniques, García-Alfaro’s proposal has the 
same drawbacks of Al-Shaer’s one, including the exponential 
time complexity. 

In Fireman [15], authors’ have addressed the consistency 
diagnosis and characterization problem using a formal model 
of the firewall ACL. They solved the problem using Ordered 
Binary Decision Diagrams (OBDDs), providing the first 
technique which does not need to decompose the ACL. As with 
García-Alfaro’s proposal, this technique is also able to give 
inconsistencies and redundancies within several rules, and not 
only between pairs. Authors provide an experimental analysis 
in which it can be seen that the time complexity is linear with 
the number of rules in the ACL. However, the minimal 
diagnosis is not guaranteed. In order to guarantee it, OBDD 
nodes must be optimally ordered, but the optimal node ordering 
of OBDDs is a NP-Complete problem [19]. The bottom line is 
that Fireman is the best proposal to date, but if a minimal 
diagnosis is desired, the process is worst-case exponential time 
complexity. 

In the second research line, Baboescu et al. [10] provide 
diagnosis algorithms that are 30 times faster than the trivial 
quadratic one for the general case of k selectors per rule and for 
general network filters. In fact, they provide two different 
diagnosis algorithms: one for the diagnosis of a full ACL, and 
another one for ACL management (only used when the ACL 
has been developed). The reason is that their proposal has a 
trade off between the space needed and speed in the diagnosis 
algorithm. The minimal diagnosis is not guaranteed in neither 
of the two algorithms, since it depends on the topology of the 
abstract data types they use (bit tries). Furthermore, Baboescu 
definition of inconsistency is more general than Al-Shaer 
taxonomy ones, and does not include redundancies. Babouescu 
technique is also able to give inconsistencies within several 
rules. 



Although its algorithmic complexity is not given, it 
empirically improves other previous diagnosis proposals made 
by Hari et al and Suri et al [11, 12]. Like Al-Shaer and García-
Alfaro proposals, Baboescu algorithms depart from a 
decomposed ACL, where selectors that support intervals have 
been converted to binary prefixes using the range to prefix 
conversion technique [7]. This technique splits the selectors 
which contain ranges into several prefixes and thus the final 
number of rules could increase over the original ACL. Taylor 
[3] and Gupta [13] outlined that this kind of conversion could
be inefficient, because transport layer specifications vary
widely (for example it is possible to specify open port ranges,
such as “all ports greater than 1023”). Taylor also calculated
that, in the worst case, a range covering w-bit port numbers
may require 2(w-1) prefixes, and that a single ACL including
only two port ranges could require 2(w-1)2 entries (i.e. 900
entries for 16-bit port numbers), increasing the number of rules
in the ACL and the problem size. Fortunately, the decomposed
ACL could be trivially reverted to the original one in order to
correct faults more easily. With real ACLs, the time complexity
of the diagnosis algorithms entirely depends on the increase in
the ACL size derived from the use of the range to prefix
decomposition. If the ACL size does not increase very much,
Baboescu’s algorithms are really fast; but if the ACL size
increases a lot, it could be even more inefficient than the trivial
algorithm (comparing every pair of rules of the original ACL in
quadratic time), as is going to be shown in the experimental
results section of this paper.

There are several important differences between our work 
and the reviewed ones. The most important one is that our 
process is divided in two sequential parts, which use different 
kind of techniques to be solved. In the first part, inconsistent 
rules are isolated using a technique which does not need to 
decompose the ACL and with has better time complexity than 
Baboescu’s proposal. This technique is also able to give 
inconsistencies within several rules. This first part of the 
process is not covered in this paper, since it has been proposed 
in an earlier work [16]. With Baboescu’s proposal it is also 
possible to obtain a similar result, but with higher time 
complexity. 

The result of this first part of the process is a complete but 
non-minimal set of inconsistent rules (INC, Definition 2.5), and 
is the input to the process provided in this paper. In this paper 
we propose a process to get a minimal diagnosis in worst-case 
quadratic time complexity with the number of rules in INC. In 
order to get this result, we formally prove that the problem can 
be reformulated to a known graph one, the Minimal Vertex 
Cover [22], which can be solved in quadratic time. Note that in 

our proposal, redundancies are not considered. 

To the best of our knowledge, this is the first time that a 
non exponential process to minimally solve the diagnosis 
problem in firewall ACLs has been formally proved to be 
possible, and algorithms provided. 

IV. MINIMAL CONSISTENCY DIAGNOSIS

The start point to the minimal diagnosis process is the 
transformation of the INC set into a graph called Inconsistency 
Graph, IG (Definition 3.1). The graph can also be constructed 
during the execution of the inconsistency isolation algorithm, 
during the step three of the CMC. 

Definition 3.1. Inconsistency Graph. An IG(V,E) is a 
graph whose vertices are the rules in INC (i.e. the inconsistent 
rules of ACLf), and whose edges are the inconsistency relations 
between these rules. Note that |V| is the number of inconsistent 
rules in ACLf, and |E| corresponds with the number of 
inconsistencies in ACLf. 

The IG has been proposed in an earlier paper [20]. 
However, in this paper we provide an analysis of its properties 
which are the key to obtain a minimal diagnosis in quadratic 
time reformulating the problem to a Graph Theory dual one: 

• Property 1. IG is not directed. Given two rules,

i allowR ACL∈ and j denyR ACL∈ , if they are inconsistent, the

inconsistency is, by Definition 2.4, mutual. Since edges in
the IG represent inconsistencies, they must not be directed.

• Property 2. IG is bipartite. Let assume the action of the
rules in the IG as a colour. Then, the vertices in the IG can
be divided in two disjoint sets, each one storing rules of one
of the two colours: U for allow-coloured rules, and V for
deny-coloured rules. As rules can only be inconsistent if
they have different actions (by Definition 2.4), edges in the
IG must always be between vertices of different colours
(i.e. every edge in the IG connects a vertex in U to one in V,
and there can never be edges between vertices in U or
between vertices in V). The IG is thus 2-colorable. A graph
is bipartite iff it is 2-colorable [22]. Thus the IG can be
redefined as IG(U,V,E). In graph theory, U and V are called
Independent Sets. The IG of the example ACL (Fig. 1) is
presented in Fig. 3. Light gray-coloured vertices represent
rules with allow action, and dark grey-coloured vertices
represent rules with deny action.

• Property 3. IG could have more than one connected
component. In an ACL there could be cases where the
same inconsistency is shared between several rules. For
example, in Fig. 3, R12 is inconsistent with rules R9, R10,
and R11. This happens when the rules with the same action
have overlapping selectors. There could also be cases where
inconsistencies are only between pairs of rules. Each set of
inconsistencies with rules not related with others in the
ACL leads to different connected components in the IG. In
Fig. 3 there are two connected components: one with rules
C1={R1, R2, R3, R4, R5, R6, R7, R8}, and the other with
rules C2={R9, R10, R11, R12}. Rules in C1 do not overlapFigure 3. IG derived from Fig. 1 example ACL 



with rules in C2, and thus a rule in C1 can never participate 
in an inconsistency with a rule in C2. The maximum 
number of connected components in the IG is theoretically 
limited by the maximum number of inconsistencies in the 
corresponding ACL (or edges in the IG). 

• Property 4. |Emax|=|U|·|V|. In a bipartite graph, the maximum
number of edges is U·V [22]. This is an important property
because it can be used to measure the IG maximum density.
Although there is no agreed definition of how to
characterize a dense or sparse graph (i.e. which is the cut
value in the number of edges to consider a graph dense or
sparse), one of the most accepted characterization for
undirected graphs have been given by Coleman and Moré
[21]. They define a dense graph as a one which its number
of edges, |E|, is near the maximum possible, U·V. The
maximum density could be used to know if IGs used in the
experimental analysis have a high number of
inconsistencies or not, with respect to the maximum
possible, ACLallow·ACLdeny.

From the previous section, recall that the objective of the
minimal diagnosis is to compute which, from the isolated rules, 
are the minimal ones that once corrected or removed make the 
ACL consistent (Definition 2.6, Minimal Diagnosis Set). It is 
implicit that the MDS is also complete. However, there could 
be more than one MDS. This is the case of the example 
presented in Fig. 1 (IG of Fig. 3), where there are two 
minimums: MDS1={R1,R4,R5,R8,R12} and 
MDS2={R2,R3,R5,R8,R12}. In this paper, and in absence of 
specific criteria, we assume that any minimum is valid (e.g. the 
first found). Fig. 4 presents the resulting example IG when 
MDS1 vertices (and their corresponding edges) have been 
removed. In the next section we explain how to obtain one of 
the possible MDS in quadratic time. 

A. Problem reformulation
During the reformulation of the problem to graph theory,

we found that a dual one is the Minimum Vertex Cover 
(MVC). A vertex cover [22] of a graph G is a set of vertices C 
such that each edge of G is incident to at least one vertex in C. 
The set C is said to cover the edges of G. A minimum vertex 
cover is a vertex covering of the smallest possible size [22]. 
However, a demonstration is needed in order to assure this 
duality and generalize the result to any IG. 

MDS MVC. A MDS is a minimal set of vertices such that 
if they are removed from the IG, the resulting one contains no 
edges (and thus the corresponding ACLf is also consistent). 
Therefore, each edge of the IG is incident to at least one vertex 
in the MDS. 

MDSMVC. A MVC is a minimal set of vertices such that 
every edge of a graph is incident to at least one vertex in the 
MVC. Thus, if all the vertices in the MVC are removed from 
the graph, the resulting one contains no edges. 

MDS MVC. Since the objective functions to be optimized 
in both MDS and MVC problems are the same, and is the 
minimum number of vertices (rules) which if removed (or 
corrected) make the IG (or ACLf) consistent, solving the MDS 
and MVC problems over the same IG give equivalent results. 

B. MVC Problem and Algorithms
Finding a MVC is a classical optimization problem in

computer science and also a typical example of an NP-hard 
optimization problem. However, for some graphs with special 
characteristics the problem can be solved in polynomial time. 
This is the case of bipartite graphs, like the IG. Moreover, the 
MVC problem can be formulated as a half-integral linear 
program whose dual linear program is the Maximum Matching 
Problem (MM) [22]. In graph theory, a Matching or Edge-
Independent Set of a graph is a set of edges without common 
vertices. This is a very important duality, since there are no 
known algorithms to directly solve the MVC problem in 
bipartite graphs in polynomial time. However, there exist many 
algorithms that can solve the MM problem in bipartite graphs 
in worst-case quadratic time and space [22] with the number of 
vertices and edges in the graph, and which can be directly 
applied to an IG. This is the case of Hopcroft-Karp [23] or Alt 
[18] algorithms. However, with all these algorithms the
Maximum Matching (a set of edges) must be converted to a
MVC. Fortunately, this can be done in quadratic time via
König’s theorem [22]. König's theorem states that, in bipartite
graphs, the MM is equal in size to the MVC. Although there
are many other algorithms, the objective of the paper is not to
explain them, because there are very good descriptions (and
also implementations) available in the bibliography.

Nevertheless, there is more general way of getting a MVC: 
using algorithms to solve the Maximum Flow problem in flow 
networks. A flow network is a directed graph where every edge 
has a capacity and where each edge receives a flow. The 
amount of flow on an edge cannot exceed its capacity. A flow 
must satisfy the constraint that the amount of flow into a vertex 
equals the amount of flow out of it. However, source vertices 
only have outgoing flow, and end vertices or (sinks) only have 
incoming flow. The maximum flow problem is to find a 
feasible maximum flow through a single-source, single-sink 
flow network. 

Fortunately, undirected bipartite graphs can be reduced to a 
flow network, where fictitious source (super-source) and sink 
(super-sink) vertices are added to the graph. Undirected edges 
are transformed to directed ones from the source node to the 
sink. All edges have a capacity of 1. Ford-Fukerson [24], 
Edmonds-Karp [4], and Dinic [17] algorithms use basically the 
same technique (augmenting paths [22]) and can be used with a 
similar time bound in bipartite graphs, worst-case 
O((|U|+|V|)·|E|). Ford-Fulkerson and Edmonds-Karp 
algorithms are the most used, because they have the lowest 
multiplicative constant in the time bounds and the smallest 
space complexity. 

Figure 4. Resulting IG with MDS1 vertices removed: the IG (and thus 
ACLf) are consistent 



As with algorithms for the Maximum Matching Problem, 
the maximum flow result (edges) must be transformed to 
vertices. There are two possibilities for this: König theorem 
again, or the more direct Max-flow Min-cut theorem. Max-
flow Min-cut theorem [22] states that in a flow network, the 
maximum amount of flow passing from the source to the sink 
nodes is equal to the minimum capacity that needs to be 
removed from the network so that no flow can pass from the 
source to the sink. In other words, the maximum value of a 
flow from the source to the sink is equal to the minimum 
capacity of a source-sink cut. In graph theory, a cut is a 
partition of the graph vertices into two disjoint subsets. In a 
flow network, a source-sink cut is a cut that requires the source 
and the sink to be in different subsets. A cut is minimum if the 
size of the cut is not larger than the size of any other cut. In 
fact, the same algorithms used to calculate the max-flow can 
also be directly used for the min-cut in bipartite graphs, giving 
a direct Minimal Vertex Cover result. 

One question that may arise is how to deal with rule 
updates, since running the whole process each time is not an 
effective way of doing it. This topic has been covered in earlier 
works [28]. 

C. Example
By Property 3, an IG can have more than one connected

component. In this case, different flows can pass through each 
one without affecting other components’ flows. However note 

that different source and sink nodes are necessary for each 
component. A beneficial lateral effect of this property is that 
the maximum-flow and min-cut algorithms can be run in 
parallel for each component. Property 3 thus allows a reduction 
of the problem by a factor that depends on the number of 
connected components in the graph. We will illustrate this in 
the experimental results section. The MVC for the full graph is 
computed by the union of the MVCs of each connected 
component. Fig. 5 shows the two flow networks resulting from 
the decomposition of Fig. 3 example IG, the min-cut edges in 
each component, and the resulting MVC. Note that this 
example only represents one of the two possible minimums, 
MDS2. Since the MVC is equivalent to the MDS in an IG, this 
is the desired result, which has been obtained in worst case 
O((|U|+|V|)·|E|) time and space complexity with the number of 
vertices and edges in the IG. Recall that MDS vertices directly 
correspond to vertices in ACLf, which is the original ACL that 
was developed by the firewall administrator. 

Moreover, more information could be given to the 
administrator: the MDS plus the rules which they are 
inconsistent with (Fig. 6), resulting in a diagnosis with multiple 
rules, in contrast with other pair-wise diagnosis techniques. 
This information can be trivially obtained from the IG by 
getting the adjacent vertices to the MDS ones in the original IG. 
Although our process does not include a diagnosis 
characterization step, it can be trivially added applying Al-
Shaer’s taxonomy [14]. 

V. EXPERIMENTAL RESULTS

In absence of standard ACLs for testing, experimental 
results have been obtained using real firewall ACLs. These 
ACLs represent a wide spectrum of cases, with sizes ranging 
from 50 to 10611 rules, and percentages of allow and deny 
rules from 2% to 65%. Table I presents the characteristics of 
these ACLs as well as its associated IG characteristics. The 
first column represents the size of the ACL; the second and 
third ones the number of a deny and allow rules; the fourth one 
the theoretical maximum number of edges (inconsistencies) 
that the IG could have, |U|·|V|; the fifth one the real number of 
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ssink

MIN-CUT EDGES (PARTITION 1)
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{R12}
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{R1, R4, R5, R8, R12}

Figure 5. Flow network, min-cut, and MVC derived from Fig. 2 example 
IG (one the two possible minimum solutions, MDS2) 

Figure 6. Result of the Minimal Consistency Diagnosis of Fig. 1 ACL 

TABLE I. EXPERIMENTAL ACL AND IG CHARACTERISTICS 

ACL 
Size 

No. of Deny 
rules, |U| 

No. of Allow 
rules, |V| 

Theoretical  
|E|max in IG 

Real |E| in 
IG 

|U|+|V| 
in IG 

Connected 
Components 

Component 1 
size 

Component 2 
size 

50 11 39 429 37 39 2 19 20
144 34 110 3740 108 110 2 47 63
238 95 143 13585 231 149 2 92 57
450 116 334 38744 422 340 2 190 150
900 116 784 90944 871 789 2 374 415

2500 163 2337 380931 3349 2399 2 978 1421
5000 97 4903 475591 4937 4909 1 4909 -

10611 213 10398 2214774 11866 10488 1 10488 -



edges in each IG; the sixth one the number of vertices in the IG 
for each ACL; the seventh one, the number of connected 
components; and the two final columns, the number of vertices 
in each one. Experiments were performed on a mono-threaded 
Java implementation with Sun JDK 1.6.0 64-bit HotSpot VM 
on an isolated HP Proliant 145-G2 server (AMD Opteron 275 
2.2GHz, 2Gb RAM DDR400). 

Note that, in general, the analyzed ACLs result in sparse 
IGs, i.e. graphs where the number of edges (inconsistencies) is 
not near to the maximum possible (Fig. 7). This is very 
important, since the computational complexity of all the 
algorithms for the Maximum Flow and Maximum Matching 
problems depend on the number of edges in the graph. In fact, 
this was a very predictable thing, since other experimental 
analysis made in the past have confirmed [5, 1] that, in general, 
the number firewall ACL inconsistencies is very low compared 
to the theoretical maximum.  

Also note that the maximum number of connected 
components for the test ACLs is very low, with only one or two 
components. When there is more than one component, sizes are 
more or less equilibrated, which is the best possible case. 
Recall from the previous section that is necessary to run a 
different maximum flow algorithm for each component. 

Although algorithms can run in parallel, our implementation is 
sequential. 

Table II presents the results of the experiments with our 
proposed scheme. For the Minimal Vertex Cover we have 
chosen Edmonds-Karp algorithm. First column represents the 
ACL size; the second one the size of the minimal diagnosis set; 
the third one the time taken by the inconsistency isolation 
algorithm used [16] (including ADT instantiation time); the 
fourth one the time needed to build each IG; the fifth column 
represents the execution of the process proposed in the paper, 
that comprehends the division in connected components of the 
graph, the conversion to flow networks of each component, the 
Edmonds-Karp algorithm for each one, the conversion of the 
results to the MVC, and the union of the results for each 
component (where applicable); finally, the last column 
represents the total time needed to get a minimal and complete 
consistency diagnosis using our proposal. 

Results show that the identification of inconsistent rules 
part of the process is linear, with a very low multiplicative 
constant [16]. The graph construction time takes approximately 
half the time needed to identify these inconsistencies, which 
also gives and idea of how low the complexity of the 
identification part of the process is. The minimal diagnosis, in 
the other hand, has a very high execution time when compared 
with the previous part of the process. However, in all cases the 
time needed is under 2000ms. In fact, the time needed for the 
whole process is always below 2000ms. We think that these 
times are very reasonable even for really big ACLs, especially 
when taking into account that the full process must be run 
iteratively until all faulty rules have been corrected or removed. 
However, if the minimal diagnosis is not desired, the execution 
times are very low (Table II, third column). 

Table III represents the evaluation of other algorithms in 
order to have an idea of the improvement obtained with our 
proposal. Note that in this table only the trivial and Baboescu 
proposals have been evaluated. The reason is that they are the 
closest ones to ours, although neither of them gives a minimal 
diagnosis. Al-Shaer’s, García-Alfaro’s, and Fireman proposals 
have been left out of the evaluation because they include 

TABLE II.  EVALUATION OF OUR PROPOSAL 

ACL 
Size |MDS|=|MVC| Inconsistent rules 

Identification (ms) IG construction (ms) Minimal Diagnosis (ms) 
(Edmonds-Karp) TOTAL (ms) 

50 2 0.11 0.03 0.32 0.47
144 2 0.23 0.10 0.96 1.29
238 10 0.39 0.23 2.16 2.78
450 10 0.80 0.42 4.33 5.55
900 10 1.54 0.86 11.30 13.70

2500 32 4.40 3.71 148.53 156.64
5000 6 10.08 6.05 150.80 166.93

10611 41 30.16 17.89 1919.48 1967.53

TABLE III.  OTHER PROPOSALS EVALUATION 

ACL 
Size 

Trivial algorithm 
Diagnosis Set size 

Trivial algorithm 
execution (ms) 

Baboescu algorithm 
decorrelated ACL size 

Baboescu algorithm 
increase of ACL size 

Baboescu algorithm 
Diagnosis Set size 

Baboescu algorithm 
execution (ms) 

50 37 0.22 203 4.06 2 9.96
144 108 1.34 21970 360.9 2 270.41
238 231 3.56 52129 219.03 14 381.55
450 422 13.22 52765 117.26 14 461.17
900 871 51.57 53219 59.13 14 626.69

2500 3349 387.86 69559 27.82 70 2614.17
5000 4937 3160.09 733547 146.71 10 22062.10

10611 11866 12046.67 877582 82.7 103 91263.17

Figure 7. Theoretical number of edges in IG vs real edges



redundancy diagnosis and a diagnosis characterization stage, 
and these parts are inseparable of consistency diagnosis in their 
algorithms. The first column represents the ACL size; the 
second and third ones represent the size of the Diagnosis Set 
given by the trivial algorithm (the same one as |E| in their 
corresponding IG) and its execution time, respectively; the 
fourth and fifth columns are the size of the ACL once it has 
been decomposed by the range to prefix technique (this is the 
input to the Baboescu algorithm), and the increase in size over 
the original one; the sixth column represents the size of the 
Diagnosis Set given by Baboescu algorithm; finally, the 
seventh column is the time taken by the Baboescu diagnosis 
algorithm, including ADT instantiation (bit tries). 

The first thing that should be noted is the really low 
cardinality of the MDS (Table II, second column, and Fig. 8). 
Even for really big ACLs, the number of inconsistent rules that 
must be corrected or removed is under 45, which contrasts with 
the high number of inconsistencies returned by the trivial 
algorithm (Table III, second column). This clearly shows that 
giving the smallest possible diagnosis is a must in order to 
reduce the number of rules given to the firewall administrator. 
Even with the Baboescu algorithm (the best one to date) the 
size of the Diagnosis Set doubles the size of the minimal one, 
although for small ACLs the Diagnosis Set is of the same size 
as the minimal one. 

Execution time of the trivial algorithm (Fig. 9) is only faster 
than the total time taken by our process in the ACL of size 50, 
even with the fact that in our proposal there is a start-up time 
needed to create some ADTs [16]. However, this was 
predictable, since the theoretical complexity of our proposal is, 
in the worst case, an order of magnitude faster than the trivial 
one. This contrasts a lot with Baboescu’s proposal, since their 
execution time is even slower than the trivial one and, in their 
paper they state that their proposal is about 30 times faster than 
the trivial one. Fortunately, there is a clear and simple 
explanation for this: the problem size increase due to the range 
to prefix decomposition could be very inefficient, as has also 
been stated by Taylor [3] and Gupta [13]. This is represented in 
Table III, fourth and fifth columns, with an average increase 
size of 127.20 times for the test ACLs. Thus, Baboescu 
proposal is only faster than the trivial one for big ACLs and 
when the increase in size is not too much (about 10 to 15 
times). 

VI. CONCLUSIONS AND FUTURE WORKS

In this paper we have proposed a quadratic time and space 
complexity process for the Minimal Consistency Diagnosis 
problem in firewall ACLs. For this, the problem has been 
transformed to a graph, and its properties analyzed. Then we 
have demonstrated a duality with the Minimal Vertex Cover 
problem in bipartite graphs. As has been shown in 
experimental results, our proposal is several orders of 
magnitude faster with real ACLs than the best algorithm to 
date, even considering that our proposal gives a minimal 
diagnosis and other proposals do not. 

In our work, results are given over the original ACL, which 
eases the task of correcting inconsistencies. However, once 
inconsistencies have been corrected, new ones can be 
introduced. Thus the minimal diagnosis process must be run 
several times until no more faulty rules need to be corrected. 
This is the main reason why the process must be as fast as 
possible. Furthermore, it is very important to give a minimal 
diagnosis, since in big ACLs this number, if not minimal, could 
be very high, as experimental results have shown. 

In future works we plan to include redundancy diagnosis 
and a diagnosis characterization stage.  
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