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Abstract
Bell non-locality and Kochen–Specker (KS) contextuality are logically independent 
concepts, fuel different protocols with quantum vs classical advantage, and have dis-
tinct classical simulation costs. A natural question is what are the relations between 
these concepts, advantages, and costs. To address this question, it is useful to have 
a map that captures all the connections between Bell non-locality and KS contex-
tuality in quantum theory. The aim of this work is to introduce such a map. After 
defining the theory-independent notions of Bell non-locality and KS contextuality 
for ideal measurements, we show that, in quantum theory, due to Neumark’s dilation 
theorem, every quantum Bell non-local behavior can be mapped to a formally identi-
cal KS contextual behavior produced in a scenario with identical relations of com-
patibility but where measurements are ideal and no space-like separation is required. 
A more difficult problem is identifying connections in the opposite direction. We 
show that there are “one-to-one” and partial connections between KS contextual 
behaviors and Bell non-local behaviors for some KS scenarios, but not for all of 
them. However, there is also a method that transforms any KS contextual behavior 
for quantum systems of dimension d into a Bell non-local behavior between two 
quantum subsystems each of them of dimension d. We collect all these connections 
in map and list some problems which can benefit from this map.
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1 Introduction

Bell non-locality [1–3] and Kochen–Specker (KS) contextuality [4–9] are, in princi-
ple, logically independent concepts [10]. Both have theory-independent definitions 
and refer to correlations between outcomes of compatible (or jointly measurable) 
measurements (i.e., those which can be implemented as different coarse-grains of 
the same measurement). However, each concept makes emphasis on a differ-
ent aspect. Bell non-locality focuses on correlations between space-like-separated 
measurement events on composite systems; see Fig. 1a. KS contextuality does not 
have the restriction to composite systems or space-like separated events, but it is 
restricted to ideal [11–13] measurements; see Fig. 1b. Ideal measurements (some-
times called sharp measurements [11–13]) are those that yield the same outcome 
when they are performed repeatedly on the same physical system and do not disturb 
the outcome statistics of any compatible observable.

In quantum theory, Bell non-locality and KS contextuality fuel different proto-
cols with quantum vs classical advantage. Bell non-locality underpin applications 
such as device-independent quantum key distribution [14–16], reduction of commu-
nication complexity [17], private randomness expansion [18, 19], and self-testing 
[20–22]. KS contextuality is a necessary resource for quantum speed-up in some 
paradigms of fault-tolerant quantum computation [23–25] and is behind the quan-
tum advantage in circuits of bounded depth [26]. Simulating with classical systems 
quantum Bell non-locality requires superluminal communication [27–29]. Simulat-
ing KS contextuality with classical systems requires hidden memory [30–32] and 
has a thermodynamical cost [33].

Nevertheless, in quantum theory, there are many examples where both concepts 
are deeply connected (see, e.g., [34–38]) and, in fact, it is fair to say that it is quan-
tum KS contextuality what enables quantum Bell non-locality [9]. However, this 
view naturally leads to the following questions: 

 (I) For which pairs of a Bell scenario and a KS scenario, Bell non-locality and 
KS contextuality are connected “one-to-one” in the sense that every quantum 
Bell non-local/local behavior (i.e., set of probability distributions, one for 
each context) violating/non-violating a tight Bell inequality can be mapped 
to a formally identical quantum KS contextual behavior violating/non-vio-
lating a tight KS non-contextuality inequality which is formally identical to 
the precedent Bell inequality?

 (II) What types of connections can be established between a Bell scenario and 
a KS scenario when there is no one-to-one connection?

 (III) What do all these connections tell us about how the respective quantum vs 
classical advantages and classical simulation costs are related?

The aim of this paper is to provide an answer to questions (I) and (II) and list prob-
lems for which these answers might be helpful.

The structure of the paper is the following. In Sects. 1.1 and 1.2, we review the 
theory-independent definitions of Bell non-locality and KS contextuality for ideal 
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measurements, respectively. In Sect. 2, we show that every Bell scenario is in one-
to-one connection (in the sense defined before) with a KS scenario. Hence, one can 
write (as, e.g., in [39]) that

Since KS contextuality also occurs in experiments with indivisible physical systems, 
it is frequently pointed out (see, e.g., [39]) that

However, in Sect. 3.1, we show that, for certain KS scenarios, every quantum KS 
contextual behavior can be mapped into a formally identical quantum Bell non-local 
behavior for a Bell scenario with tight Bell inequalities which are formally identical 
to the tight KS non-contextuality inequalities of the KS scenario. That is, for some 
KS scenarios, there is a one-to-one connection in the opposite direction. In addition, 

(1)Bell non − locality ⇒ KS contextuality.

(2)KS contextuality  ⇒ Bell non − locality.

Fig. 1  a Scheme of an experiment of bipartite Bell non-locality on pairs of physical systems. b Scheme 
of an experiment of KS contextuality with sequential ideal measurements on single physical systems
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in Sect.  3.2 we show that there are other KS scenarios for which there is a con-
nection that is not one-to-one, as some quantum behaviors that are possible in the 
KS scenario are impossible in the Bell scenario, and a tight KS non-contextuality 
inequality can map into a Bell inequality that is not tight. In Sect. 3.3, we review a 
method that converts any quantum KS contextual behavior into a bipartite quantum 
Bell non-local behavior. Finally, in Sect. 4 we collect all the connections in a map 
and discuss some problems for which this map may be useful.

1.1  Bell Non‑locality

To define Bell non-locality, we need to consider n ≥ 2 spatially separated observers, 
here called Alice,… , Zoe. We assume that each of them can freely and independently 
choose one among several possible measurement devices to perform a measurement 
on its physical system. We will denote by x,… , z Alice’s,… , Zoe’s measurement set-
ting choice, respectively, and by a,… , c their respective outcomes. We also assume 
that there is space-like separation between any observer’s choice and any other 
observer’s outcome. A Bell scenario is characterized by the number of spatially sep-
arated observers, the number of measurement devices that each observer has, and 
the number of possible outcomes that each measurement device has.

In Bell non-locality, we are interested in theories satisfying the following assumption:

Local realism The probabilities of outcomes a,… , c for, respectively, measure-
ments x,… , z can be written as 

 where � is a set of hidden variables.
A behavior {P(a,… , c|x,… , z)} for a given Bell scenario is Bell non-local if its ele-
ments cannot be written as (3).

There are actually two assumptions behind the assumption of local realism. One 
is that the measurement outcome is associated to local properties. The other is that 
influences cannot propagate faster than light in vacuum. In Bell non-locality, space-
like separation guarantees that any outcome cannot be influenced by the choices 
made by the distant observers.

1.2  KS Contextuality

The modern notion of KS contextuality is rooted in the theorems of impossibility of 
hidden variables in quantum mechanics of Kochen and Specker [4, 6] and Bell [5]. 
These theorems are based on two assumptions: 

 (I) Any measurement x that is represented in quantum theory by a self-adjoint 
operator reveals a preexisting outcome which is determined by the hidden 

(3)P(a,… , c|x,… , z) = ∫ d�P(a|x, �)⋯P(c|z, �),
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variables and which is the same outcome for all possible sets of commut-
ing measurements that contain x (i.e., sets of measurements represented by 
mutually commuting self-adjoint operators).

 (II) The preexisting outcomes of these measurements satisfy the same functional 
relations that quantum mechanics predicts for quantum systems of a given 
dimension (for example, for a three-dimensional spin-1 system [5, 6] or for 
a four-dimensional pair of spin-1/2 systems [40, 41]).

In contrast, the modern notion of KS contextuality [8, 9], which is the one 
adopted in this paper, is theory independent. It removes assumption (II) and 
replaces assumption (I) by:

Outcome non-contextuality for ideal measurements Any ideal measurement x 
reveals a preexisting outcome which is the same for all possible sets of com-
patible ideal measurements that contain x.

A KS scenario is characterized by a set of ideal measurements, their respective 
possible outcomes, and their mutual relations of compatibility. Any set of ideal 
measurements such that any pair of them is mutually compatible can be jointly 
measured [12]. Therefore, in KS scenarios, contexts are (maximal) sets of com-
patible ideal measurements.

A behavior {P(a,… , c|x,… , z)} for a given KS scenario (i.e., where x,… , z 
are ideal and compatible measurements) in which each of the measurements has 
been freely and independently chosen, is KS contextual if it cannot be explained 
by a model satisfying the assumption of outcome non-contextuality. Hereafter, 
we will refer to these models as non-contextual hidden-variable (NCHV) models. 
Equivalently, a behavior produced by ideal measurements is KS contextual if the 
probability distributions for each context cannot be obtained as the marginals of a 
global probability distribution on all observables.

The assumption of outcome non-contextuality for ideal measurements is moti-
vated by the fact that ideal measurements always yield the same outcome no mat-
ter which other compatible ideal measurements are performed in between two rep-
etitions of the same measurement. For example, if x, y, and z are compatible ideal 
measurements, then performing the sequence x, y, z, x, z, y, y yields the sequence of 
outcomes a, b, c, a, c, b, b, which suggests that measurements reveal persistent prop-
erties which can be attributed to the measured system, as different copies of equally 
designed devices can be used to measure, e.g., x the first and second times.

2  Every Bell Non‑local Behavior can be Mapped to a KS Contextual 
Behavior

Here, we see in which sense the statement “Bell non-locality implies KS contex-
tuality” holds. Consider a Bell inequality for a Bell scenario
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where the upper bound � holds for theories satisfying local realism (LR). Now con-
sider a Bell experiment aiming a particular quantum Bell non-local behavior that 
violates this Bell inequality. If all the measurements involved in the experiment 
would be ideal, then we would be implementing a KS scenario with the same set of 
measurements, outcomes, and relations of compatibility that the preceding Bell sce-
nario had, and the Bell inequality (4) would become a KS non-contextuality inequal-
ity with a formally identical expression, namely,

where the bound � , which is the same as in (4), now holds for NCHV theories. 
Therefore, a Bell inequality test performed with ideal measurements and yielding 
a violation of inequality (4) is also a KS contextuality test violating the KS non-
contextuality inequality (5).

What if measurements are not ideal? Then, the experiment is not a KS con-
textuality test. Nevertheless, in this case, we still can recall a remarkable pre-
diction of quantum theory, namely, that while positive-operator valued measures 
(POVMs) represent the most general type of measurements allowed in quantum 
theory, every POVM can be realized as a projection-valued-measure (PVM) in 
a Hilbert space of augmented dimension. PVMs represent ideal measurements 
in quantum theory. This prediction follows from Neumark’s dilation theorem 
[42–44]. This implies that, according to quantum theory, in any Bell scenario, 
any local measurement represented by a POVM x always admits a local dilation 
x̂ to a local PVM such that x̂ is the same in every context of the Bell scenario 
in which x appears. Therefore, in quantum theory, every Bell non-local behavior 
{P(a,… , c|x,… , z)} can be obtained using only local ideal measurements. “Gen-
eralized” quantum measurements do not produce Bell non-local behaviors that 
cannot be produced by ideal measurements. Consequently, according to quan-
tum theory, any Bell experiment producing a behavior {P(a,… , c|x,… , z)} can 
be associated to a KS contextuality experiment which is simply the same Bell 
experiment but performed with ideal measurements. Therefore, every quantum 
Bell non-local behavior can be mapped to a formally identical quantum behavior 
produced by ideal measurements. In particular, every quantum violation of the 
Bell inequality (4) can be mapped to a quantum violation by the same value of the 
KS non-contextuality inequality (5).

Moreover, if the Bell inequality (4) is tight, i.e., corresponds to a facet of the 
polytope of local behaviors [45–49] associated to a Bell scenario with a given set 
of measurements, outcomes, and relations of compatibility, then the corresponding 
KS non-contextuality inequality is also tight, as it is associated to the corresponding 
facet of the corresponding polytope of KS non-contextual behaviors [50, 51] of the 
KS scenario with the same measurements, outcomes, and relations of compatibility.

This link between Bell non-locality to KS contextuality justifies, for 
instance, considering the experimental tests of the quantum violation of the 

(4)⟨�⟩
LR≤�,

(5)⟨�⟩
NCHV≤ �,
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Clauser-Horne-Shimony-Holt Bell inequality using different degrees of freedom 
of single photons [52] and neutrons [53] to be experiments on KS contextuality 
on indivisible systems.

3  Connections from KS Contextuality to Bell Non‑locality

3.1  KS Scenarios with Complete n‑partite Graphs of Compatibility

There is no general method that converts a quantum KS contextual behavior for an 
arbitrary KS scenario into a formally identical quantum Bell non-local behavior for a 
Bell scenario. However, it is possible to establish a one-to-one connection (as defined 
before) for some KS scenarios and a less strong connection for other KS scenarios.

Recall that a KS scenario is characterized by a set of ideal measurements, their out-
comes, and their relations of mutual compatibility. These relations can be encoded in a 
graph in which each measurement is represented by a vertex and only those measure-
ments represented by mutually adjacent vertices are mutually compatible.

In graph theory, an n-partite graph is one whose vertices can be divided into n dis-
joint and independent sets A,..., N and such that every edge connects a vertex in one of 
these sets to one vertex in a different set. Vertex sets A,..., N are called the parts of the 
graph. A n-partite graph is complete if there is an edge connecting every vertex of each 
part with all the vertices of the other parts.

For any n-partite Bell scenario the graph of compatibility is complete n-partite and 
has at least two (incompatible) measurements in each part. Therefore, for any KS sce-
nario whose graph of compatibility is complete n-partite and has at least two (incom-
patible) measurements in each part there is a one-to-one connection between any KS 
contextual behavior and a Bell non-local behavior, and also between tight KS non-con-
textuality inequalities and tight Bell inequalities.

3.2  KS Scenarios with Incomplete n‑partite Graphs of Compatibility

A more interesting case is that of KS scenarios in which the graph of compatibility is 
n-partite (and has at least two incompatible measurements in each part) but not com-
plete n-partite. There, there is a one-to-one connection between any KS contextual 
behavior and a Bell non-local behavior, and also between tight KS non-contextuality 
inequalities and Bell inequalities. However, in this case the Bell inequality may not be 
tight.

The simplest example is the scenario with six dichotomic ideal measurements Mi , 
with i = 1,… , 6 , whose graph of compatibility is an hexagon. In this case, the follow-
ing KS non-contextuality inequality is tight [51]:

with

(6)⟨�⟩
NCHV≤ 4,
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where Mi has possible results −1 and 1, Mi and Mi+1 are compatible, and ⟨MiMj⟩ is 
the mean value of their products. Here, we can distribute measurements M1 , M3 , and 
M5 to Alice (and relabel them as A1 , A3 , and A5 ), and measurements M2 , M4 , and M6 
to a spatially separated Bob (and relabel them as B2 , B4 , and B6 ). Then,

with

is a Bell inequality. In fact, this is the first ever Bell inequality with more than two 
alternative settings proposed [54] (see also [55]). Interestingly, it is not a tight Bell 
inequality. The same happens for the scenarios with an even number n > 4 of dicho-
tomic measurements with an n-gon as graph of compatibility [51].

Therefore, the experiments [56] can be considered as the first KS contextuality 
experiments testing a quantum violation of tight KS non-contextuality inequalities 
different than the KS non-contextuality inequality associated to the bipartite Bell 
inequality with two measurement settings per party.

The crucial observation is that any quantum violation of a KS non-contextuality 
inequality in a KS scenario with n-partite graph of compatibility (and with at least 
two incompatible measurements in each part) can be associated to a quantum viola-
tion of a formally identical n-partite Bell inequality: If the graph of compatibility is 
complete n-partite, then there are one-to-one correspondences between the values of 
the violations and also between the tightness of the inequalities, but if the graph of 
compatibility is n-partite but not complete, then the quantum value of the violation 
of the KS non-contextuality inequality can be impossible to achieve in the Bell sce-
nario [57] and the tightness of the KS non-contextuality inequality can be lost in the 
Bell scenario [51].

3.3  Connecting Arbitrary KS Contextuality to Bell Non‑locality

Finally, there is a method [58] which uses the measurements that produce any arbi-
trary quantum KS contextual behavior in any KS scenario to produce a (different) 
quantum Bell non-local behavior in a bipartite Bell scenario. Here we give a general 
idea of how the method works. For details, see [58].

The method begins with the measurements leading to a particular example of 
state-dependent quantum contextuality. Let us call S this set of measurement. S can 
be enlarged into a critical state-independent-contextuality (SI–C) set S . A SI–C set 
[8, 50, 59–61] is a set of measurements on a quantum system of dimension d ≥ 3 
that produces contextuality for any initial state. Critical means that if we remove any 
of the elements S , then the resulting set is not a SI–C set.

(7)⟨�⟩ =
5�

i=1

⟨MiMi+1⟩ − ⟨M6M1⟩,

(8)⟨� ′⟩
LR≤4,

(9)⟨� �⟩ =
�

i∈{1,3,5}

⟨AiBi+1⟩ − ⟨A1B6⟩,
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Associated to this SI–C set there is a non-contextuality inequality with bound 
� which is equally violated by all states by a value q. This inequality can be trans-
formed into a bipartite Bell inequality which has � as local bound and, when 
Alice and Bob share a two-qudit maximally entangled state and choose their 
measurements in S , is violated exactly by q. The connection between the result-
ing Bell non-local behavior and the initial KS contextual behavior produced by S 
comes from the fact that, if we remove from S any of the measurements in S then 
the violation of the Bell inequality (for the maximally entangled state) vanishes.

4  Connections and Implications

Now we can collect all the connections between Bell non-locality and KS contex-
tuality that we have discussed so far into a map. This map is shown in Fig. 2.

How this map might be useful? There are, at least, three problems which may 
benefit from this map. 
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Fig. 2  Connections between Bell non-locality and KS contextuality in quantum theory. Continuous 
(dashed) arrows indicate that the quantum value and the tightness of the inequalities are (not necessarily) 
preserved. The upper block is discussed in Sects. 2 (from Bell non-locality to KS contextuality) and 3.1 
(from KS contextuality to Bell non-locality). The middle block is discussed in Sect. 3.2. The lower block 
is discussed in Sect. 3.3.
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(A) Classically simulating a particular violation of a Bell inequality requires a cer-
tain amount of superluminal communication C [27–29]. Classically simulating 
a particular violation of a KS non-contextuality inequality has a memory cost 
memory M [30–32]. The map may help us to formulate the question of what is 
the relation between C and M in a more precise way, as now, e.g., we can com-
pute C for the violation of the Bell inequality and then M for the corresponding 
violation of the KS non-contextuality inequality.

(B) In Ref. [62], it is shown that “quantum theory allows for absolute maximal 
contextuality.” This means the following. Any KS contextuality witness can be 
expressed as a sum S of n probabilities of events. The relations of mutual exclu-
sivity between these events can be represented by an n-vertex graph G in which 
there is an edge if the corresponding events are mutually exclusive. The inde-
pendence number �(G) and the Lovász number �(G) of G give the maximum of 
S for non-contextual theories and for quantum theory, respectively [63]. A theory 
allows for absolute maximal contextuality if it allows that �(G)∕�(G) approach n. 
The map leads to the following problem: What happens when we extend a quan-
tum absolute maximal contextuality into its minimal state-independent version 
and then into the corresponding Bell non-locality? How is Bell non-locality in 
that case? What happens to other interesting forms of contextuality (according 
to that or other measures of contextuality [64])?

(C) Self-testing unknown quantum states and measurements is a fundamental prob-
lem in quantum information processing. Recently, a method for self-testing using 
the KCBS KS non-contextuality inequality and its generalizations has been intro-
duced [65]. One practical drawback of the method is the need of assuming that 
measurements are ideal and perfectly compatible. However, the map guide us to 
convert the maximal violation of the KCBS KS non-contextuality inequality into 
a violation of a bipartite Bell inequality. It would be interesting to identify such 
Bell non-local behaviors and study the connection between self-testing based 
on KS contextuality [65] and self-testing based on Bell non-locality.

Let this short list serve as an example of the usefulness of the map we have pre-
sented. Probably many other problems can take advantage of it.
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