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‘Absfract- In mobile robots it is usual that the desired 
trajectory is memorized or previously generated. When 
following a trajectory, there are several possibilities attending to 
the way in which the actual robot state can he related with the 
whole trajectory. One of them is the extension of the 
servosystem approach, usually called “trajectory tracking”. This 
is the only possibility if we need strict temporal deterministic 
requirements. But if not, other possibilities appear. One of them 
is called “path following”, where the path’s point to track is the 
“nearest” (under several conditions) to the actual robot’s 
position. In this paper we present another method suitable for 
non-deterministic systems, which we may call “error adaptive 
tracking”, because the tracking pace adapts to the errors. Its 
benefits and advantages are identified. Afterwards, we 
determine how to construct this method and we apply it to the 
case of SIRIUS, an advanced wheelchair. Then a control law 
that ensures asymptotic stability is extracted using the second 
Lyapunov method and under the error adaptive tracking 
approach. Finally, we show the benefits of the new method, 
comparing it with the trajectory tracking approach. 

Index Terms-- mobile robots, nonholonomic constraints, 
chained systems, path following, trajectory tracking. 

1. INTRODUCTION 
In robotics it is usual to distinguish between two control 

problems: 
The stabilization problem, i.e. how to get the system to a 
fixed point (in its state space). 
The tracking problem, i.e. how to follow a desired 
trajectory or path. 

Both problems have been studied profusely in robotics and 
they can present very different characteristics. Special cases 
of robots are those that have nonholonomic constraints, e.g. 
mobile robots (except for omnidirectional mobile robots), 
where the number of state coordinates is higher than the 
number of degrees of freedom DOF. Furthermore, mobile 
robots are intrinsically nonlinear systems, because of their 
kinematic model. Due to this, the convergence of a non- 
omnidirectional mobile robot to a fixed posture (the 
stabilization problem), can not be achieved through a smooth 
feedback stabilization control law (a direct result of 
Brockett’s theorem [I]). On the other hand, in mobile robots 
it is usual that the trajectory or path is memorized, and the 
point stabilization problem is very different to the path’s 
convergence problem, which is considered here. 

There is no doubt that the applications of mobile robots 
will be large in the next few years, especially in fields such as 
intelligent transportation systems (ITS), explorer vehicles, 
and personal or assistant robots. Consequently, in the last 
decade there has been a great interest in finding controllers 
for these robots. 
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Many researchers have studied various tracking methods 
when the desired path is memorized or previously generated. 
In the field of mobile robots MO main tracking methods have 
been proposed. In a first group we find those that consider 
time explicitly in the tracking [2,3,4] (usually called 
“trajectory tracking” (TT)), and try to approach the robot to a 
moving objective point. It is similar to servosystems, and it is 
guaranteed that the system will converge to the desired point 
in a deterministic time. In a second one, we find those that do 
not consider timing requirements and try to converge to a 
path [4,5,6,7,8,9] (usually called ‘>path following”(PF)). 
Moreover, we can find several excellent compendia of both 
methods in some reports or books [2,10]. It has been shown 
that P F  is more suitable for many situations in which time is 
not a critical parameter (see section 11). Unfortunately no P F  
have been designed that can be applicable for all possible 
paths (to the authors’ knowledge). 

In this paper we propose a new tracking policy that tries to 
overcome the difficulties of the other methods. We have 
named it error adaptive tracking (EAT), because the tracking 
adapts to the system errors. Its design is similar to that of TT 
but it is intended for path recovering without strict timing 
requirements. We will show that it retains the exposed 
advantages of P F  and it can be applied to all sets of paths. 

The need for this new tracking method comes to us from 
the development of advanced wheelchairs. Our research 
group has been interested during the last years in the 
improvement of electrical wheelchairs 19,131, which 
incorporate advanced features. Playing back previously 
recorded trajectories is considered a very helpful aid. This 
avoids the user the difficult maneuvering of reverse driving, 
and may be very useful in small areas like bathrooms. In our 
group we have developed SIRIUS, an advanced wheelchair 
prototype that includes path recovery of trajectories, 
detection and avoidance of obstacles through simple sensors 
like sonars, intelligent user interfaces with shared control, etc. 
[9,13]. It is important to mention that in SIRIUS we must 
contemplate all the possible desired paths that can be made 
by the user (usually driving hisiher joystick), including zero- 
radius turns. 

Once the tracking method has been selected, a 
convergence law must be found. In mobile robots, the most 
frequent contributions are those based in the Lyapunov direct 
method, which we will also use it in this paper. Finally, as we 
are interested in convergence to a path, we will suppose in 
this work that the desired trajectory has no end. 

In the next sections we will try to analyze and expose the 
error adaptive tracking. In section I1 we formulate the 
different tracking methods. In section I11 we define our robot 
model, construct the new tracking technique, and apply an 
asymptotically stable control law. Evaluation is found in 
section IV and finally we expose the conclusions. 
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11. TRACKMG METHODS’ FORMULATION 

A memorized, reference or desired path (or merely puth) 
can be described by a single descriptor parameter [14], 
namely r, and it can be expressed as a vector of state 
coordinates qdes(r). As a result, tracking progress can be 
identified with the progress of r. Although the parameter may 
be time, in the case where time dependence is not relevant, 
many others are possible. For example, in differential 
geometry the natural arc parameter [14], which makes the 
linear speed equal to 1, is generally preferred. Independently 
of the selected parameter we can classify the tracking of the 
path according to the way in which we impose or design 
(when possible) the progress of parameter r. 

I ” I ” 
---+ 
Fig. lo: Trocking in a servosystem Fig. Ib: Trojectory Trucking 

I I’ r=(q) I I‘ i =g(I,rJ 

+ 
Fig. I C :  Poth Following Fig. Id: Error odaptiw 

frocking 
Fig. 1: Tracking methods regarding to descriptor parameter. 

In servosystems we track a mobile system or tar@ at the 
time it moves. In Fig. lo we show this case. The state 
coordinates are called q(t), the desired coordinates qd&), and 
the error coordinates are defined as eq(t)=q(t)-qde3(t), In 
servosystems where time is critical, this is the only pcBssibility 
we have. Nonetheless, when we try to track a memorized 
path, the tracking methodology can be designed openly, as 
we know a priori the whole trajectory. Of course the (classical 
servosystem tracking can be done just by identifiing the 
parameter r associated to the path with time, that is  r(t)=t. 
This is usually called trajectory !rucking (TT). Furthermore, 
TT can be extended in a more general assumption than 
simple servosystems (see Fig. 1 b):  let the parameter r be an 
increasing function of time r=r(t), for example r = d ,  00. 
Therefore, error coordinates are eq(t)=q(t)-qd..(r(t)). An 
asymptotically stable control law guarantees that the! system 
will converge to a point in the desired path in a deterministic 
time, except for the inherent perturbations that i t  may suffer. 

The best-established alternative in literature is path 
following, which is very suitable when time is not a. critical 
parameter. This is based in some relation between actual 
system’s state q(t) and the whole memorized parb. This 
relation or projection will give us the desired point qdes(r), 
i.e. the descriptor parameter r as a function of the actual 
position and the path: r=<q), where ii is a some kind of 
projection of actual position to the path. Then the real system 
must try to follow this point instead of the one given by the 
other approach (see Fig. IC) .  For example, the desired point is 
usually selected to be the “closest point on the path” to the 
actual robot’s position [14]. The term “closest” means the 
path’s point that makes certain distance criterion minimum. 

~ 
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The error coordinates are also e,(t)=q(t)-qd,(r). Of course 
using this approach, it is not guaranteed that the system will 
reach a point of the desired trajectory in a deterministic time. 
But the main problem with PF is that projection uniqueness 
has not been guarantied yet. 

It has been shown that PF is more suitable for many 
situations. This can be understood if we consider the 
following example: if perturbations force the system to be at 
rest, the desired point for TT will move unavoidably. This 
means that errors will grow up to some value that may 
introduce instability. On the other hand, if PF were used, the 
desired point will be the same in spite of these perturbations, 
because the path’s shape and the real robot state remain the 
same. 

Having in mind the difficulties and the goals explained 
before, we present here the e r o r  uduprive hocking (EAT). 
Note that in a pure TT, r is determined exclusively as a 
function of time 1. That is, desired point selection does not 
contemplate actual robot’s posture, because the intention is to 
have a deterministic tracking. But when time is not so 
critical, we can “design” the variation of r, instead of stating 
the parameter r itself. And we can regard robot state, i.e. 
taking errors into account. Thus, contrasting the TT’s rigid 
variation of r ( i = l  or in general r=f(t)), we propose 
i =g(eJ (see Fig. Id), where g(eJ is a “convenient” function 
of the errors. Here “convenient” is referred to the designer 
objectives, but also it means that tracking is done correctly 
and the previously explained advantages of PF are preserved. 
That is, the function g(eJ should fulfil (see Fig. 2): 

If errors are small, g(eJ should tend to 1, so the tracking 
resembles TT, and near deterministic following is done. 
The real and the reference robot advance at the same pace. 
If errors are large, the reference robot should “wait for” the 
actual robot. That is, g(eJ should be small until a good 
convergence is reached. Here the tracking rate must not be 
far from that of PF. In fact when errors are large in PF, we 
expect that the projecting point on the desired path varies 
very little, that is r tends to zero. Of course in this 
situation, no deterministic following is expected. 

4 

Fig. 2: Rules on the variation ofdescriptor parameter 

The above conditions imply that the tracking will not 
preserve time determinism. Otherwise, if our design needs 
some aspects of time determinism, the variation of r can be 
extended to include the “inaccuracy in the deterministic 
tracking”. That is, the difference between the descriptor 
parameter r (that indicates the target of our control design 
qd.,(r)) and the time t (that indicates the target of the timing 
requirements qde9(t)). To sum up, a more general function for 
i. would be g(t,eJ. 

Of course many possible functions g(t,eJ can be designed 
attending to the characteristics and purposes of each system 
but, in this work, we would explore mainly two: 

g is only a function of errors e, and ig(eJlSlVe,. With 
these conditions the tracking can not be deterministic and 
reminds that of PF. 



g(f,eJ is a”comhined function of errors e4 and the 
difference between parameter r and time f. This strategy 
is intended to get a deterministic tracking at the end, 
although if errors are large, determinism is not applied 
for a while: 

The formulation advantage of EAT is that it obviously can 
he applied to all sets of paths. 

In order to fix ideas, we first analyze a very simple system 
with two state coordinates x={xl, x2}, and whose state 
equations are: 

x, = U ,  
x, = U i  

The goal is to follow a reference path Xd..={xlda(r)r 

L* = U,.& ( r )  

.;.des = *>,de, (4  

x2der(r)} made by a virtual robot, which still must fulfil: 

where (‘) holds for derivative with respect to r. Applying 
chain’s law: ui,,,&)= r ui,dpr(r), j=1 .2 .  And then we have 

As we are interested in the tracking we define the system’s 
xj,de, = U ~ , ~ * , ( I )  .j=1.2. 

errors as the difference: 
4 1 )  = x d t )  -xId&f)) ; 

ed1) = 4 1 )  - x d r ( f ) )  ; 
e, (I)= ud1) -i ulder(r): 
e> (I) = U d t )  - i u2der(r): 

We have expressed explicitly the dependence of these 
variables because the design methodology must now choose 
between different forms of r(t). 

In a servosystem r=t, i = l  and a very simple convergent 
control law can he: ui(t) = uj,d&)-?+l = i. ui,dex(r)-&ep 
j=1.2, where 6 >O. If TT is chosen, the dependence r=r(t) 
will only add a scale on the election of r ,  supposing that r >O 
Vi. Note that in both cases, the condition r >O Vi implies that 
the reference point {xlder(r(f)), x2der(r(f))} will unavoidably 
advance in spite of real robot motion. 

But if we could apply the PF method, the situation would 
be very different. First we must look for the most suitable 
projection r=n(x). in order to select the descriptor parameter 
r and hence, the reference point {xlder(r). xzdes(r)} at any 
instant. The most obvious choice is the projection that selects 
the closest point on the path to the robot’s position, i.e. r that 
makes xf=,e; minimum. For example, if the desired path is 
the line {xldes(r)=sr. xzdes(r)=O, s>O} then the closest point 
will he xdeS={xl, O}, and the projection: r= xI/s. 
Differentiation of projection give us the rate for (1): r =uI/s. 
Then the tracking will progress only if r increases, i.e. if u,>O 
(or ul<O if the tracking is to be done in reverse order). Then 
we must impose some condition or “motion exigency”[4] to 
ensure that the (real and virtual) robots advance, and hence to 
guarantee that the tracking is being done. The simplest 
motion exigency is of course u,=consfanl>O, hut other more 
sophisticated can he proposed. If the trivial motion exigency 
is preferred (and enough for our control purposes) then 
i =U,= constant = K,,,>O, and the previous control law still 
succeeds (only for input 2): 

uz (1) = Kmot uZ,d&) - C = - 4 el. 
This is obviously a particular case. If a generic trajectory 

had to be tracked (as in our application case in section HI), 
then a more general motion exigency is preferable, for 
example U?+ uz%mstant>O [4]. This has the additional 
advantage of maintaining inputs within certain values, 
avoiding an excessive increase of inputs (which may 
introduce instability). The imposition of this last condition on 

the inputs implies that the control jaw must now be a reiation 
between U, and uz. It can he obtained easily for example if we 
impose that the derivative of the Lyapunov function 
Y=e;te; is equal to -Ky  (e;+e,% Kp-0. Note that in PF it 
is not predictable when the robot will reach any path’s point 
in the general case. On the other hand PF is in general more 
stable when perturbations make errors increase. 

However, problems arise when we can not guarantee 
projection uniqueness. For example, if the path were a circle 
and previous projection want to be applied, then projection 
uniqueness is broken when the robot approaches the circle 
center. So it is not fully applicable for all kind of paths, and 
projection uniqueness should he carefully analyzed (see [4]). 

For all stated above, we propose the new tracking method. 
In EAT we can design the most appropriate tracking rate, i.e. 
an equation for i. as a function of the errors. As explained 
before a very simple and interesting possibility would he: 

i =g(eJ=exp (-K, (e?t e;)) ; &>O is the scale factor. 
This proposal fulfils the rules of Fig. 2, and tries that 

errors do not increase greatly. Therefore, it conserves the PF 
advantages, while avoiding the projection difficulties. 

Besides, for this trivial system the previous TT control law 
still works: 

u,(t)=exp(-K,(e,’+ e;)) ui,d8s(r)-qei ; j=1,2, 6 >O. 
The main difference is that when errors are large enough, 

the convergence resembles that of the stabilization problem. 
Nevertheless, this is not the case for all systems. We will see 
in the next section that several assumptions, which are more 
complex, have to he made for mobile robots. 

111. APPLICATION TO MOBILE ROBOTS AND EAT SELECTION. 

One of the typical topologies for electric wheelchairs is the 
so-called unicycle. They include driver motors at each rear 
wheel, that can turn independently forward or backward. 
Different speeds at each rear wheel cause the turn of the 
chair. Let’s consider the mobile robot shown in Fig. 3 (whose 
dimensions are those of SIRIUS) and let q=(X Y, A‘ he its 
state coordinates, which represent the coordinates (X: Y) of a 
certain point Po (typically the midpoint between rear wheels) 
in the basis of the fixed frame (@=(O; i, j) and the 
orientation 4 of the robot with respect to the fixed frame. Let 
u=(v, a)‘ be the pair of input variables which are the linear 
velocity of point P. and the angular velocity of the robot, 
respectively. The unicycle robot has three state variables hut 
only two degrees of freedom, as a result of the nonholonomic 
constraint. We assume that the wheels are nondefonnable and 
that they are moving on a horizontal plane without slip in 
order to hold the constraint. 

“ A  

Fig. 3: Unicycle robot model. 

For these vector variables the kinematic model of the 
unicycle robot can be expressed by the equations: 
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In this paper we consider the following state and control 
transformation o f ( l )  [IO]: 

XI = 4  
(2) xt =Xcos(+Ysi@ 

x, =Xsin(-Ycos( 
v, =o 
v2 = v-(Xsin(- Y cos()o 

Then, it can be verified that the transformed kinematic 
takes the form of a very simple chained system: 

A reference or desired path to be followed can be 
expressed as a vector of desired state coordinates expressed 
as a function of the descriptor parameter r: xd..(r)=(xl,d..(r), 
xt,der(r)r xJ,d.r(r))‘ . Let Vdedr)=(V/,ddr), V2,des (r))‘ be the 
desired inputs. Besides, applying the chain law we can 
declare that v ~ & ) = ~ Y ~ & - ) .  

To study the tracking of a path xder(r) let us define the 
error coordinates e4=(el, et, e#, that are given by the 
transformation: 

(4) 
We can choose matrix Td.,(xd.,) so that the new state 

equations on the errors maintain the same dependi. w e  on 
inputs v. That is, if we differentiate (4): 

e = T ( d ( x  - x d J  

e = ‘iT’e + T(x,,)B(x)v - T(xde,)B(xd“)vdm 

And we demand that: We) = T(x,,,)B(x) ,we get to: 

The final state equations are: 

e =  B(e)v-A(e)v,,, ; B(e)= ; A(e)= [: :I [: 11 
This form agrees with the intuition that error variables 

With these relative coordinates, the nonholonomic 

e 3  =-v2.&sel +vl,dase2 (6) 
Now we can look for a convenient function r =;#,e) to 

implement an error adaptive tracking. Therefore, we will 
obtain the advantages of the PF method, but without its 
problems. 

Let us first analyze the most elementary case, where g 
does not depend on 1. We have shown that if errors are small, 
then g(e) should tend to I ,  but if they were large, then g(e) 
would be small. The previous simple idea g(e)=exp(-lel) is 
not valid now. The nonholonomic constraint of the iunicycle 
prohibits this g (if we want to look for a Lyapuncmv-based 
control law). It can he seen that if a Lyapunov function V is 
the sum of positive definite functions of the relative (errors e, 
then the derivative of V cannot he negative definite, but only 
a negative semidefinite function. This is a direct consequence 
of the nonholonomic constraint (6): if (ef, e>) are null at a 
time, then el must also be null. Therefore eJ cannot decrease 
at this moment, and hence V can decrease either. Therefore 

must grow with both real and desired posture’s advancement. 

constraint takes the form of: 

we can not impose to be negative definite, but only 
negative semidefinite. 

In this situation, any robot movement (satisfying the 
constraint) will increase el or e2, while eJ remains constant, 
and we can observe that when r becomes lower, the 
convergence will be slower. This is due to the fact that the 
input v2 can not exceed V2,ds(t)=i. v2,der(r) (to avoid el being 
increased). To sum up, when v is zero, the decrement of Vis 
“connected” or “attached” to the increment of i., and then if 

is null, i. should be maximum, to get a fast convergence. 
Moreover if the control law will pursuit v to be the “closest” 
to -KV, D O ,  then g(e)=exp(Kvv), Kv>O can be a plausible 
solution. With “closest” we mean that v can not be -KV 
because of the constraint, although it was desirable to get 
exponential convergence. Considering this, we can design a 
control law based on the following theorem. 

Theorem: For unicycle robots and the Lyapunov function: 

v = - c 3  1 e ; ,  then e=O is an asymptotically stable 2 1 4  

equilibrium point, and v+v,,(t)=kdn(r), if: 

vddr)* 0. 
r =g(e)=exp(Kvf ), Kv>O 
The following control is imposed 
vI =Vl,des-&2el+ al , K,>O 
v2 =v2,dol-K2 el+ a2, Kp-0 2 

where the feedfonvard terms al and a2 are: 

0 I - J  v2,dpr,’ az=-eJ vl.der+ K?eJe/ 
Proof: Differentiating V and using state equations and 

p = -E’ ,=, 

2 
eJ V2,der 

control law, we get to: 
=-Kl e?+ K2 e; 

Then V is non-increasing, so v + 0 ,  and Y converges to 
some limit: V -+ V,, t 0. Therefore by Barbalat’s lemma 

[16] ej --t O,e, --f 0 ;  j=1,2,  and then el+ el,iim < m . At this 
limit, i = 1, and the control law is: 

V I  =vl.drr(r) + e~v~.der(r) 

v2 =v2,der(r)-ej vl.der(r) - ejl v2.des(r) 
And the state equations tend to: 

. .  . . .  

Therefore, using the first state equation we have that 
eJ,,inv2,der(r)==0; and then by the second one: e3,,fm vl.du(r). 

Squaring and adding previous equations we get to: 

that implies (by the first hypothesis) that e,,iim=O. 

0 = ( V L ,  (r)  + V L S  (r)) 

QED 
Remark I :  Note that if g(e) tended to zero in the case 

e,  --f 0, i j  -+ 0 ;  j=1,2,  el+ el,iim <CO, then v also would 
tend to zero and convergence would be very slow. 

Remark 2: Actually there is not special exigencies on g(e); 
only it is convenient to tend to one in the case V + 0 and to 
zero when l’+ -m. In fact we will use g(e)=exp(- 

K v n  ), Kv>O in the next section to achieve an adequate 
convergence. 
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The results’of this proposal will be shown in the next 
section. Now we will study the case where g has also 
dependence on 1. As mentioned before, we concentrate on a 
function g(t,e) that is a combined function of the errors and 
the.difference ( f -r) ,  in order to get a “relaxed” deterministic 
tracking. The dependence of g on errors could be the same as 
before, because here previous reasons apply also when r=t. 
The intention for introducing the dependence on t is to permit 
that r remains “at rest” when the robot is far from the path (in 
spite of the increase of r-t). In a second case, when robot 
“recuperates” and approaches the path, the difference r-f 
should be reduced. Therefore g(t,e) can not be bounded by 1, 
because in the second case r must approach t. Moreover at 
the origin (t-r=O, e=O), g must he 1. Thus we might think of a 
first proposal for this more complex EAT, e.g.: 

g(t,e)=exp( ri ) (I+K,prctun(t-r)) (7) 
where K,,>0 is a scale factor that indicates how fast the 

convergence of r to t is. Here g(t,e) is upper bounded by 

I + K,, - ,and lower bounded by 1 - K,, E or 0. 
2 2 

We assume that the previous choice can not be optimal at 
all for some applications and more sophisticated g can be 
tried in future work, but this simple alternative is sufficient 
for a mobile robot like SIRIUS as a first proposal. 

In addition, the proposed function g(t,e) fulfils remark 2 of 
the previous theorem: it tends to zero when l‘ + -m , and in 
the case l’ --f 0 it does not tend to one if and only if r is 
much greater than t (i.e. the robot is in advance with respect 
to time). But in this last case, the robot will simply be quiet 
until the time has approached r, and at that moment the 
convergence will be rapid (however note that this situation is 
not very usual). Finally if K,,>2/6 the variation of r can be 
null or even negative when robot is in advance with respect to 
the desired point. This situation does not make sense when a 
wheelchair is required to track a path and it will be avoided in 
this paper (we will choose exactly K,,=2/z, so the chair will 
wait for xd.,(t) if necessary). 

z 

V. SIMULATION RESULTS. 
In this section we show the behavior of our system in 

several situations. For our real svstem SIRIUS. the inertia 

The values for constant parameters have been tuned to 
ensure a smooth convergence when errors are small and a fast 
one when they are large: K;=0.7 s-’; K;=1.2 s-’. Also 
K p 5 ~ ~ ” r n . ’  has b een chosen to achieve a satisfactory 
variation of r when errors are large. 

I 0.8 

load driven by the motors is important even when gearbox 
ratio is high (31:l). Due to this it is very important to 
consider the case where the motors have a response delay 
(is., the real kinematic inputs are delayed with respect to the 
commanded inputs). In spite of this, we will show that the 
EAT method ensures that errors will not grow too much 
when motor response is slow. 

Even when asymptotic convergence is ensured, simulation 
is always a good way to verify and observe the control 
behavior. This behavior is primarily significant when errors 
are large, because, if they were small, simulated system’s 
behavior will he similar to that of an exponential convergent 
system. 

We first analyze two contrasting desired paths: a straight 
line (case 1; vl,de3(r)=0, v2,das(r)=lm/s) and a zero-radius turn 
(case 2;  vl,des(r)=lrad/s, vzde3(r)=0). Generality of the EAT 
method is confirmed by these examples. We present different 
initial conditions (with considerable initial errors), so that the 
robot has to cope with different situations. The errors for the 
two cases are: case 1, e=(-O.Srad, 0.5m, 0.5m); case 2, e=(0, 
0, 0.6m). 

1 

Fig. 4: EAT behavior for case 1 (left) and case 2 (ngh 

Obviously when errors are small convergence to the path 
is smooth and fast. However, in spite of the presence of 
extreme conditions, good convergence of EAT method is 
observed, as seen in Fig. 4. Note that at the moment in which 
errors el and ez approach to zero (vertical dashed line on case 
I), Vand eJ do not decrease as explained above (they have an 
inflexion point and a maximum, respectively). 

In Fig. 5 we can see how r evolves for each case: in case 
1 i. begins with a value near to zero because of the big initial 
errors, and then it “recovers” until it reaches the stationary 
value of 1 .On the other hand, in case 2 i- begins with a value 
near to one because el and e2 are zero, afterwards it decreases 
(e2 must grow so that e3 is allowed to decrease), and finally it 
reaches the stationary value of I .  Of course the differences 
between r and 1 make r less than f. This will be avoided 
with g(t,e). 

Fig. 5:  Variation of r for the two experiments. 

In the simulated experiments presented before we have 
illustrated the nice behavior of EAT method for an ideal 
model. Similarly, the TT has such a good behavior with an 
ideal model. However, the above commented high inertia of 
SIRIUS’ motors will not permit instantaneous speed changes 
of its wheels. We then must go further in the simulations and 
emulate the inertia of the motors, so that the real speeds 
change always smoothly. Although the tracking is not perfect 
for this real situation, our aim is to demonstrate that EAT 
behaves better than TT under these perturbations. 

In the following experiment we emulate the motors inertia 
like a first order delay, with the equation: 

e = r, (vJcon, - v ~ , , ~ ~ ! ) ;  j = l ~  
di 

where r,>0 are time constants, v,,,,,, the inputs demanded 
by the control and vJ,,.., the real ones. With time constants 
rl=r2=0.5s, we repeat the tracking of a line. In Fig. 6 ,  the 
experiment is prolonged for 14.5s for TT (left figure) and 
EAT (right figure). The robot starts at the same position of 
previous case 1: r=O, e=(-OSrad, OSm, 0.5m), v,..,=(O,O). 
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Note that TT method deviates the system very faraway 
from the path and the robot oscillations are remarkable, 
because the desired posture &(I) advances continuously. On 
the other hand EAT method obliges x&(t) to 'kait" for the 
robot until the errors have reduced sufficiently, so the 
deviation is not so pronounced (compare with case 1 in Fig. 
4). Moreover and due to its large errors, the real speeds 
demanded by TT are bigger than those of EAT, and bigger 
than usual for wheelchairs (2m/s).  It is obvious that speed 
limitation will degrade even more TT response. This is a 
well-known advantage of PF [2,7], that the new EAT retains. 
Nonetheless, determinism has been lost when this pure EAT 
is applied simulation gives a final value for parameter r of 
7.9 m (instead of 14.5111, given by TT). 

10 

Fig. 6: Line following with response delay for TT (I&) and EAT (right). 

Although previous simulations are not rigorous 
demonstrations that EAT is more robust than TT against 
perturbations or unmodeled dynamics, we think that there is 
no doubt that the adaptive variation of r facilitates robustness. 
Furthermore it is important to observe that the qu.alitative 
behavior of EAT is similar to that of PF, i.e. r reduces in 
presence of large errors until system approaches the path. Of 
course both methods are constructed in a very differ'znt way, 
so it is not easy to compare them quantitatively. 

Finally we present some results for the EAT that include 
time in i .  In this work, we concentrate on: 

g(r, e)=exp(-K -V ) (I+Kr,urcfan(f-r)) (8) 
with K,~5s"~m?,  K,=2/77 m/s. In Fig. 7 we represent the 

first 14.5 seconds of the convergence to a straight line using 
the EAT method (8) (initial conditions are those of Iprevious 
case 1). Note that, while this tracking is similar 10 that of 
previous EAT (same constants are used), from the evolution 
of i. we discover that in the first transient xd., "waits" for the 
robot, while from t=6s approx. i exceeds 1, so the final r has 
almost reached 14.5 m (exactly 14.37111). 

, ' .  , 

I d I 
(5 0 (0 

Fig. 7: EAT withg(1,e): Errors (left), r evolution (right) for case 1. 

The good qualities of this EAT are highlighted when the 
robot has reached the path (i.e it is on some xdes(r)) but it is 
not upon the point xde,(f). Then e=x(t)-xd.,(r) is null and input 
U is a scale of desired input udr,. Hence only the feedforward 
terms vl,der, vlder of v and ware not null. 

We hope that both EAT methods can soon be implemented 
successfully in the SIRIUS wheelchair when recovering a 
path done by the user, in order to confirm simulations results. 

Vi. CONCLUSIONS. 
We present a method for tracking memorized paths: the 

error adapfive fracking (EAT). It is based on the design of 
the variation of path's descriptor parameter, so that the 
tracking adapts to the system errors. Based upon this EAT 
methodolog,, a control law that ensures asymptotic stability 
is proposed for mobile robots, and it is compared with 
classical trajectory tracking. Its benefits are identified and 
shown through several simulations: 

It conserves most of the advantages of the path following 
method, while it avoids its main obstacle: the non- 
uniqueness of the selected path's point. 
It is valid for all possible trajectories. 
Its behavior under large errors or delayed response is 
much better than that of a trajectory tracking. Overall, 
simulations reveal that EAT facilitates robustness. 
A variety of EAT that includes time in the variation of 
path's parameter to preserve deterministic (non-strict) 
tracking, is also presented. It also behaves better than 
pure TT and similarly to previous EAT. Future research 
will investigate this method more deeply. 
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