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Evidence for a thromboembolic 
pathogenesis of lung cavitations 
in severely ill COVID‑19 patients
Jan Matthias Kruse1*, Daniel Zickler1, Willie M. Lüdemann2, Sophie K. Piper4, 
Inka Gotthardt1, Jana Ihlow3, Selina Greuel3, David Horst3, Andreas Kahl1, 
Kai‑Uwe Eckardt1 & Sefer Elezkurtaj3*

Severe acute respiratory syndrome coronavirus 2 (SARS‑CoV‑2) causing coronavirus disease 2019 
(COVID‑19) induces lung injury of varying severity, potentially causing severe acute respiratory 
distress syndrome (ARDS). Pulmonary injury patterns in COVID‑19 patients differ from those in 
patients with other causes of ARDS. We aimed to explore the frequency and pathogenesis of cavitary 
lung lesions in critically ill patients with COVID‑19. Retrospective study in 39 critically ill adult patients 
hospitalized with severe acute respiratory syndrome coronavirus 2 including lung injury of varying 
severity in a tertiary care referral center during March and May 2020, Berlin/Germany. We observed 
lung cavitations in an unusually large proportion of 22/39 (56%) COVID‑19 patients treated on 
intensive care units (ICU), including 3/5 patients without mechanical ventilation. Median interquartile 
range (IQR) time between onset of symptoms and ICU admission was 11.5 (6.25–17.75) days. In 15 
patients, lung cavitations were already present on the first CT scan, performed after ICU admission; 
in seven patients they developed during a subsequent median (IQR) observation period of 48 (35–58) 
days. In seven patients we found at least one cavitation with a diameter > 2 cm (maximum 10 cm). 
Patients who developed cavitations were older and had a higher body mass index. Autopsy findings in 
three patients revealed that the cavitations reflected lung infarcts undergoing liquefaction, secondary 
to thrombotic pulmonary artery branch occlusions. Lung cavitations appear to be a frequent 
complication of severely ill COVID‑19 patients, probably related to the prothrombotic state associated 
with COVID‑19.
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PIP  Peak inspiratory pressure
PTT  Partial thromboplastin time
SARS-CoV-2  Severe acute respiratory syndrome coronavirus 2
SOFA  Sequential Organ Failure Assessment
UFH  Unfractionated heparin
VT  Tidal volume
VTE  Venous thromboembolic

The novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), a beta coronavirus is causing corona-
virus disease 2019 (COVID-19). In the past months, its spread to most countries of the world has led to a global 
 pandemic1, causing more than 1,600,000 deaths to  date2.

Severe hypoxemic respiratory failure due to acute lung injury is the most common complication leading 
to admission to intensive care units (ICU) and one of the main causes of  death3,4. The precise etiology of the 
impaired gas exchange and optimal treatment strategies remain a matter of  debate5. Of note, some clinical 
aspects seem to differentiate COVID-19 from other forms of acute respiratory distress syndrome (ARDS). In 
particular, in many COVID-19 patients with ARDS the pulmonary compliance is not significantly altered, in 
contrast to classic  ARDS5.

Besides lung injury a prothrombotic state has emerged as an important characteristic of COVID-19. Data 
from both clinical studies and postmortem case series demonstrate a high incidence of thromboembolic  events6–9. 
These events include pulmonary artery occlusions, which may have a thrombotic or thromboembolic  origin10. 
Massive pulmonary embolism has been suggested to cause out-of-hospital  mortality11. Whether pulmonary 
artery occlusion contributes to hypoxemic respiratory failure due to impaired lung perfusion and dead space 
ventilation is  controversial12.

To clarify the etiology of the seemingly high incidence of cavitary lesions was the purpose of the retrospective 
analysis of our cohort of severely ill COVID-19 patients.

Material and methods
Since we conducted a retrospective analysis the materials and methods section describes the standard of care 
of COVID-19 patients in our institution. We screened the electronic records for possible discriminating factors 
between patients who did and did not delvelope cavitary lesions with special consideration of markers of the 
coagulation und inflammatory cascades.

Patients. We retrospectively analyzed clinical patient data of 39 COVID-19 patients admitted to ICU 
between March and May 2020 who received at least one chest CT shortly before or during their ICU stay. All 
patients were tested positive for SARS-CoV-2 by polymerase chain reaction (PCR). Five patients were admitted 
through the emergency department, one patient was directly admitted to our ICU from an outpatient setting, 
two patients had worsened during their stay on regular wards and 31 patients were secondary referrals from 
other ICUs.

Anticoagulation. All patients received unfractionated heparin (UFH) with a targeted partial thromboplas-
tin time (PTT) of 50–55. Patients who suffered from venous thromboembolic (VTE) complications or who had 
other indications for therapeutic anticoagulation were dosed for a target PTT of 60–80 s.

Patients who did not reach the target PTT with usual doses of UFH were switched to Argatroban. Patients 
were also switched to Argatroban when they required extracorporeal membrane oxygenation therapy (ECMO).

Mechanical ventilation. All mechanically ventilated patients received pressure controlled ventilation. Pos-
itive endexspiratory pressure (PEEP) was titrated to reach best possible oxygenation index. Patients received low 
tidal volume ventilation with a target tidal volume (VT) of 6 ml/kg/PBW and a diving pressure below 15 mmHg 
was targeted.

Data collection. CT scans were analyzed independently by two of us (JMK, WML) for parenchymal cavi-
ties, defined as a lucency within a zone of pulmonary consolidation, a mass, or a nodule; hence, a lucent area 
within the lung that may or may not contain a fluid level and that was surrounded by a wall of varied  thickness13.

Screening for venous thrombosis was performed using ultrasound (GE Vivid S70 ultrasound machine with 
a 9L-D probe) in all patients after ICU admission and repeated at least weekly.

Laboratory parameters included viscoelastic coagulation testing after ICU admission using the ROTEM 
Sigma System (Tem International, Munich, Germany)14. Maximum values of C-reactive protein (CRP), d-dimers, 
fibrinogen, leukocytes, interleukin-6 and procalcitonin were compared between patient groups.

Microbiology reports of all of the collected specimens from the respiratory tract and blood cultures were 
analyzed for pneumopathogenic species.

The highest levels of PEEP, peak inspiratory pressure and driving pressure during the ICU stay were recorded 
and analyzed in ventilated patients.

The highest values for SOFA and APACHE II during the course of therapy were recorded and analyzed.
Five patients (13%) had died during their ICU stay, 22 patients (56%) had been discharged alive and 12 

patients (31%) were still treated on ICU. On three of the five patients who succumbed, autopsies were performed 
on days 31, 37 and 47 after ICU admission. The study was approved by the Ethics Committee of the Charité 
(EA4/115/20) and was in compliance with the Declaration of Helsinki.
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Autopsy procedure. Complete autopsies and tissue sampling were performed by opening all luminal 
structures and lamellar incisions of all parenchymatous organs. The lung was dissected by a combination of 
lamellar incision and subsequent selective preparation of the airways and blood vessels to allow for visualization 
of pulmonary lesions in the context of vascular supply and airways. For histopathology, representative tissue 
samples of all organs were fixed in 4% buffered formalin, dehydrated, paraffin embedded and sectioned with a 
thickness of 4 µm. Paraffin sections were stained with hematoxylin and eosin (HE), periodic acid Schiff´s reac-
tion (PAS), Van Gieson’s elastic stain, Prussian blue stain and Kongo-red stain. Two pathologists (DH and SE) 
examined all slides by light microscopy.

Statistics. Statistical evaluations were performed with IBM SPSS Statistics Version 26 (New York, USA). 
The descriptives are given as median and limits of the interquartile range [IQR] for continuous variables or as 
absolute and relative frequencies for categorical variables.

Due to the retrospective nature of the study no sample-size or power calculations were performed. We con-
ducted a post-hoc power calculation as a substitute.

Mann–Whitney U tests were used to compare differences between patient groups in continuous variables 
while Chi-squared tests were used for categorical data. A two-sided significance level of 0.05 was applied with-
out adjustment for multiple comparison. All p-values constitute exploratory data analysis and do not allow for 
confirmatory generalization of results.

Ethics approval and consent to participate. The study was approved by the ethics committees of 
Charité – Universitätsmedizin Berlin (EA4/115/20) and was in compliance with the Declaration of Helsinki. 
Informed consent was waived by the ethics committees of Charité – Universitätsmedizin Berlin due to the ret-
rospective nature of the study.

Results
Chest CT findings. 64 CT scans were analyzed, of which 39 were performed shortly before or after ICU 
admission and 25 during the course of the ICU stay. In 37/39 (95%) of patients we found ground glass opacities 
of the lung parenchyma, characterized as “mosaic pattern”. Cavitary lung lesions were found in 22 patients (56; 
95% confidence interval 41–72%), of which 15 patients presented with cavitations in the initial CT while seven 
patients exhibited cavitary lesions in a subsequent CT scan.

Among patients with cavitations the number of cavities between left and right lung were similar. Cavitations 
were evenly distributed between central and peripheral parts of the lungs. Eleven patients presented with periph-
erally and 11 patients with centrally located cavitations. Thirteen patients showed involvement of the lower parts, 
while in 9 patients cavitations were found in the upper parts of the lung. Figure 1 shows typical characteristics of 
cavitary lesions on representative CT scans. The spectrum ranges from unilateral peripheral cavitations (Fig. 1A) 
to well-separated lesions in both lungs (Fig. 1B) and extensive bilateral cavitating destructions of the lung paren-
chyma (Fig. 1C). Maximum cavitation size in the two patients with the largest cavities was approximately 10 cm. 
Repetitive CT scans had been performed in 13/22 patients. In these patients a comparison between first and last 
CT scan showed an increase in cavity number in eight patients, no change in four patients and a decline in one 
patient. In 18/22 patients, cavities were identified in opaque lung areas (example in Fig. 1D). Among patients 
with lung cavities 19 were on mechanical ventilation, while three patients required no mechanical ventilation.

Clinical characteristics. Table 1 shows demographics, preexisting comorbidities and treatment parameters 
of the patient cohort and the two subgroups with and without lung cavitations. Most parameters were similar 
between groups, except that patients in the group with cavitations were older and had a higher body mass index 
(BMI) than those without cavitations.

Fifteen patients (38%) developed deep vein thrombosis. Pulmonary emboli were identified by CT imaging in 
five patients (12% of the whole group), four with and one without lung cavitations. Two patients had an ischemic 
stroke (5%). One patient required urgent extracorporeal membrane oxygenation (ECMO)-circuit change due 
to fulminant clotting and one patient showed acute thrombotic obstruction of the venous drainage cannula on 
ECMO. There was no statistically significant difference when considering all these thromboembolic complica-
tions combined between the group of patients with and without lung cavities.

Ventilation parameters. 34 patients (87%) were mechanically ventilated via endotracheal tube or tra-
cheostomy using a pressure controlled mode. The median peak inspiratory pressure (PIP) was 31 mbar [IQR 
28.7–35.0], the median positive endexspiratory pressure was 17 mbar [IQR 15–18.2]. The median driving pres-
sure was 15 mbar [IQR 11.7–17.2]. There were no significant differences in these parameters between the group 
of patients with and without cavitary lesions on CT. 25 patients were proned (64%), 12 patients in the group 
with and 13 patients in the group without lung cavitations. Ten Patients received nitric oxide (26%), six and four 
patients with and without cavitations, respectively. Ten patients were treated with veno-venous ECMO (26%), 
four and six patients with and without cavitations, respectively.

Laboratory and microbiology findings. Table 2 shows markers of inflammation and coagulation. These 
parameters did not differ significantly between the patients with and without cavitations.

Positive cultures of respiratory secretions were found in 32 of our patients (82%), 16 (73%) patients with and 
16 patients (94%) without pulmonary cavities. The microbial spectrum appeared typical for ventilated patients. 
Bacterial species known to be able to induce pulmonary abscesses, such as Klebsiella spp. and Staphylococus aureus 
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were cultivated in 13 and 11 of the patients with or without lung cavities, respectively. All broncheoalveolar lavage 
specimens were tested for Mycobacterium tuberculosis and none of them revealed a positive result.

Autopsy findings. In all three patients in whom an autopsy was performed, lung cavities had previously 
been identified on CT scans. External examination of the lungs showed pronounced pleural fibrin deposits 
and sunken lung areas, which corresponded to bullous transformations of lung parenchyma. Findings in two 
patients are presented in Fig. 2. Upon opening the cavities appeared as areas of liquified necrosis (Fig. 2B). Care-
ful dissection revealed connections between cavities and bronchial system (Fig. 2C). Moreover, preparation of 
the pulmonary vessels on frontally oriented cross-sections yielded unequivocal associations of cavitary lesions 
with thrombotic occlusion of the supplying pulmonary artery branches (Fig. 2D, E). Microscopy of adjacent lung 
tissue revealed numerous thrombotic vascular occlusions and extended, partially hemorrhagic and partially 
anemic infarct zones in spatial association with vascular occlusions (Fig. 2F). The border zone of the infarct areas 
showed pronounced neutrophil infiltrations, but there was morphologic evidence for bacterial colonization. In 
summary, macro- and microscopic findings in combination suggested extensive vascular occlusions of different 
duration with multiple pulmonary infarctions of different size, some of which had transformed into liquefying 
necrosis, corresponding to large cavities. Table 3 shows markers of coagulation, inflammation and ventilation of 
the patients, who underwent autopsy.

Discussion
We noted extensive lung cavitations in single cases of COVID-19, which prompted us to perform a systematic 
analysis of a cohort of 39 critically ill COVID-19 patients consecutively admitted to two ICUs in a tertiary care 
referral center. This analysis revealed a high incidence of cavitary lung lesions. Computer tomography (CT) 
morphology and the results of postmortem macro- and micropathological examination point to an ischemic 
etiology of these lesions due to thrombotic obstruction of pulmonary artery branches.Our findings indicate that 
lung cavitations of variable size, at least in part a consequence of liquefying ischemic lung infarcts, contribute 
to lung pathology and loss of functional lung parenchyma in COVID-19 patients. These observations extend 
the reported spectrum of lung CT findings that is considered as typical for COVID-19, including ground glass 
opacities, consolidations and a “crazy paving pattern” of the lung  parenchyma15,16.

Figure 1.  CT scans in COVID-19 patients receiving long term ICU care. CT scans showing typical cavitary 
lesions in four COVID-19 patients. (A) Single cavity in a 49-year old male patient 29 days after symptom onset; 
(B) bilateral cavitations in a 77-year old male patient 39 days after onset of symptoms; (C) extensive bilateral 
cavities in a 57-year old male patient on day 36 after symptom onset; (D) right-sided cavitation in a large lower 
lobe consolidation in a 69-year old female patient 29 days after onset of symptoms. Only open source software 
(GIMP 2.10.18 https:// www. gimp. org/ and Inkscape, Version 1.0 (4035a4fb49, 2020–05-01) ) were used to 
generate the figure.

https://www.gimp.org/
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Table 1.  Patient characteristics of total cohort and the groups with and without cavitary lesions on CT 
scan. ECMO, Extracorporeal Membrane Oxygenation; SOFA, Sequential Organ Failure Assessment; CRRT, 
Continuous Renal Replacement Therapy; APACHE, Acute Physiology And Chronic Health Evaluation. PEEP, 
positive endexspirarory pressure, PIP, Peak inspiratory pressure, deltaP, driving pressure. *Until the time point, 
when the study was censored.

Cohort
(N = 39)

Lung cavitations
(N = 22)

No cavitations
(N = 17) p-value

Age (years, (median, [IQR])) 67 [58–76] 69.5 [60.5–77.3] 62 [61.5–67.75] 0.047

Gender, male (n, %) 34 (87%) 19 (86%) 15 (88%) 0.86 s

BMI, kg/m2 (median, [IQR]) 28 [25–33] 27.8 [24.2–33] 25.2 [24.32–28.7] 0.009

Days between symptom onset and ICU admission 11 [25–33] 12 [6–17] 11 [6–19] 0.49

Duration ICU stay, days (median, [IQR]) 28 [15.5–39.8] 30.9 [27.07–34.25] 25 [8.5–30.5] 0.25

Intubation (n, %) 34 (87.2%) 18 (81%) 16 (94%) 0.47

ECMO (n, %) 10 (25.6%) 5 (22%) 5 (29.4%) 0.22

CRRT* (n, %) 19 (48.7%) 12 (54.5%) 7 (50%) 0.19

SOFA-Score (median, [IQR]) 9 [7–12] 10 [6–11] 9 [7–11] 0.49

APACHE-Score (median, [IQR]) 28 [22–33] 28 [24–34] 26 [22–34] 0.65

Secondary ICU referral 23 (59.0%) 11 (48%) 12 (52%) 0.32

PEEP (median, [IQR]) 17 [15–18] 17 [15–18] 17 [15–19] 0.58

PIP (median, [IQR]) 31 [29–35] 32 [27–35] 31 [29–34] 0.90

Delta P (median, [IQR]) 15 [12–17] 17 [15–18] 15 [12–16] 0.86

Preexisting conditions

Coronary artery disease (n, %) 9 (23.1%) 7 (31.2%) 2 (11.7%) 0.44

Hypertension (n, %) 27 (74.0%) 14 (63.63%) 13 (76.5%) 0.12

Diabetes mellitus/insulin resistance (n, %) 14 (35.9%) 8 (36.4%) 6 (35.3%) 0.62

Chronic kidney disease (n, %) 7 (17.9%) 3 (13.6%) 4 (23.5%) 0.42

Chronic dialysis (n, %) 1 (2.5%) 0 (0%) 1 (5.9%) 0.30

COPD (n, %) 10 (25.6%) 7 (31.8%) 3 (17.6%) 0.32

Table 2.  Coagulation, inflammatory and ROTEM parameters of total cohort and sub cohorts with and 
without cavitary lesions on CT-scan.

Cohort (N = 39)

Median [IQR]

Cavitations

Yes (N = 22) No (N = 17)

p-valueMedian [IQR] Median [IQR]

Laboratory variables (normal values)

Haemoglobin (12.5–17.2 g/dL) 10.1 [8.5–11.2] 10.1 [8.7–11.9] 9.50 [8.1–10.9] 0.34

White blood cells (3.5–10.5/nl) 19.3 [16.3–28.8] 21.4 [17–30.6] 19.3 [14.9–28.8] 0.63

Platelet count (150–370/nl) 186 [131.3–314] 190 [128–254.0] 186 [121–324] 0.68

Prothrombin time (70–130%) 71 [62–82.7] 70 [51–82.5] 74.5 [67.25–85] 0.27

INR (0.9–1.25) 1.35 [1.2–1.6] 1.5 [1.3–1.7] 1.29 [1.1–1.4] 0.12

PTT (26–40 s) 45.7 [40–56.1] 45.1 [40.3–585] 46.1 [39.1–56] 0.75

Fibrinogen (1.6–4 g/l) 6.6 [4.7–7.8] 6.4 [4.7–7.2] 6.1 [4.6–7.9] 0.38

D-dimers (< 0.5 mg/l) 8.4 [3.9–17.2] 10 [3.6–18.6] 8.2 [3.9–11.6] 0.48

Procalcitonin (0.5 µg/l) 7.6 [1.9–15.7] 7.9 [1–16.9] 7.6 [3.1–18.9] 0.86

CRP (< 0.5 mg/l) 312.9 [207.1–344.1] 305.6 [181.8–352.5] 333.9 [215.6–344.4] 0.56

IL-6 (< 7 ng/l) 558.6 [180.2–1921.7] 567.2 [163.8–18600] 550 [179.5–1894.5] 0.97

Ferritin (30–400 µg/l) 2619.8 [1557–7111.9] 2621 [1155.7–8068.8] 2113.3 [1710.9–6392.2] 0.50

Ristocetin-Co-factor (%) 349 [204–404] 349 [179.5–429.5] 291 [259–401.5] 0.78

vWillebrand antigen (%) 391 [283.5–400] 394 [266.5–400] 368.5 [278.7–400] 0.96

Factor VIII (50–150%) 258 [190.5–319.5] 259 [212.2–293.5] 245 [153.2–340] 0.71

EXTEM MCF (mm) 75 [70–78] 74.5 [69.7–78.2] 76 [70.5–77.5] 0.89
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In general, infectious causes and ventilator induced lung injury are recognized as the main etiologies of 
lung cavities in critically ill  patients17. Ischemia is less commonly considered as a cause, although cavitations 
are described in up to 32% of patients with pulmonary embolism and are a common finding in patients suf-
fering from chronic thromboembolic pulmonary  hypertension18,19. While the precise pathogenesis is difficult 
to ascertain in individual cases in our study, we believe that several lines of evidence indicate that an ischemic 
pathogenesis rather than alternative causes play a major role.

First, several of our findings are not consistent with primarily ventilator induced lung injury. Ventilator set-
tings were chosen to minimize lung trauma and did not differ significantly between the groups with and without 
lung cavities. The distribution of the cavities with a significant proportion of central lesions and involvement of 
the lower parts of the lung argues against ventilator induced lung injury, since from our experience one would 
expect mainly peripheral lesions in the upper lobes, if mechanical overdistension played the main role. The 
observation that a high percentage of lesions occurred in preexisting opacities also seems rather untypical for 
classical ventilator induced lung alterations. Due to higher compliance of the less affected regions, overdistension 
tends to occur preferentially in non-opaque regions of the lung. Most striking is the fact, that three of five patients, 

Figure 2.  Postmortem findings in two patients. (A)–(D) show findings in a 77-year old patient who died 
42 days after ICU admission. (A) Frontal reconstruction of lung CT showing large basal, left-sided cavity 
(corresponding to cross-sectional CT scan in Fig. 1B). Macroscopic findings during subsequent preparation 
steps show (B) opened lung cavity with necrotic lining (arrowheads), (C) direct connection of an opened 
bronchus with the cavity (dotted line), corresponding to positive aerogram on CT (A) and (D) a pulmonary 
artery branch (stippled line), directly connected with the necrotic cavity. A thrombotic vessel occlusion is 
indicated by white arrows. (E) and (F) show macro- and microscopic findings in a 69-year old patient, who 
died 33 days after ICU admission. (E) Opened pulmonary artery branches with subtotal (left) and total (right) 
occlusion of the vessel lumen (black arrows), and a directly adjacent lung cavity, suggesting that the large 
thrombus on the right has caused liquefactive infarct necrosis of the lung parenchyma. The necrotic area has 
gained access to the bronchial system (white arrow). The adjacent lung parenchyma shows a combined anemic 
and hemorrhagic infarct (arrowheads) that has not undergone cavitary transformation. (F) Histological 
sectioning (HE) shows multiple thrombotic occlusions (arrowheads) of pulmonary artery branches with 
consecutive anemic infarct necrosis (light red zones) with entrapment of bronchial airways (asterisks). Dark red 
zones around the bronchial airways represent hemorrhagic necrosis. The black dotted line delineates a small 
area of vital lung parenchyma.
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who did not need mechanical ventilation, also developed cavitations. Still mechanical ventilation might play an 
important role in the development of the cavitary lesions in that it aggravates the damage done by microvascular 
and macrovascular thrombosis. We therefore think that sticking to the principles of lung-protective ventilation 
is of great importance in this group of patients to minimize pulmonal destructions even if the lung compliance 
does not seem to be altered in every case.

Second, patients who developed cavitations did not exhibit positive cultures more often than the patients 
without, nor did we find typical abscess inducing species more frequently in the patients with lung cavities. 
However, a secondary bacterial infection of infarcted areas, transforming into cavitations cannot be ruled out.

Third, we found evidence for a prothrombotic state both in terms of coagulation parameters and thrombo-
embolic complications. Although thromboembolic complications were evenly distributed between patients with 
and without lung cavities, notably pulmonary embolism was more frequent in patients with cavities (4 vs. 1). 
Patients who developed cavitations during the course of their disease were significantly older and had a higher 
BMI. Obesity has been associated with a prothrombotic state and  hypofibrinolysis20–24. The “mosaic pattern” of 
the lung-parenchyma that we observed in accordance with previous publications and the lung cavities strikingly 
resemble findings in patients with chronic thromboembolic pulmonary  hypertension15,18,19.

During the time of this observational study critical care resources for COVID-19 patients were in no way 
compromised in our regional setting, enabling long-term ICU therapy. Together with a very large proportion 
of secondary referrals this might explain why others have to the best of our knowledge not yet reported similar 
observations. However, several other observations support the concept of impaired lung perfusion in COVID-
19 patients. Ackermann et al. found a high incidence of microvascular thrombi and signs of endothelitis during 
autopsy of seven COVID-19  patients6. Lang et al., using dual source computer tomography, discovered severe 
perfusion abnormalities in the lungs of three COVID-19 patients and postulated a significant contribution of 
altered perfusion to the etiology of respiratory failure in COVID-1912.

In terms of the mechanisms potentially causing pulmonary hypoperfusion, SARS-CoV-2 binds to the angio-
tensin converting enzyme 2 (ACE-2) receptor of alveolar epithelial  cells25. There is evidence for consecutive 
downregulation of ACE-2 leading to increased levels of angiotensin  II25. High levels of angiotensin II in the 
pulmonary circulation may lead to endothelial activation and vasoconstriction and promote a prothrombotic 
 state26. Hypoperfusion of pulmonary artery branches either due to vasoconstriction or due to thromboembolic 
occlusion will lead to increased dead space ventilation and impaired gas exchange, consistent with the ventila-
tion pattern observed in COVID-195,27. Selective perfusion of the pulmonary circulation through anastomoses 
between the bronchial and the pulmonary circulation might further contribute to respiratory failure due to an 
increased right-to left shunt  fraction28.

By implying a link between a prothrombotic stage, pulmonary hypoperfusion and structural lung changes, 
our data add to the considerations for therapeutic anticoagulation in COVID-19 patients. Interestingly in this 
regard Wang et al. recently reported a positive impact of tissue plasminogen activator treatment on oxygenation 
in a case  series29. An association of higher therapeutic targets of systemic anticoagulation and improved survival 
has also been  reported11,30. Although our data point towards a thromboembolic etiology of the cavitary lesions, 
the markers of coagulation measured in our study could not discriminate between the two groups and signifi-
cant differences were only found regarding age and BMI. D-Dimers for example were not significantly different 
between the groups. One might argue that due to the high degree of activation of the coagulation system in both 
groups, the d-dimers are not sensitive enough to detect a difference. Increased age and body weight might lead 
to structural weakness of the lung tissue facilitating the development of cavitations. Hopefully future studies will 
identify more sensitive and specific laboratory markers in this regard and clarify the precipitating factors that 
add to the development of cavitary lung destruction in certain patient populations.

Table 3.  Coagulation, inflammatory and ventilatory parameters of three patients who underwent autopsy. 
PEEP, positive endexspirarory pressure, PIP, Peak inspiratory pressure, deltaP, driving pressure, CRP, 
C-reactive-protein, IL-6, Interleukin-6, INR, International normalized ratio, PTT Partial Thromboplastin 
Time.

Patient 1 2 3

Prothrombin time (70–130%) 69 50 71

INR (0.9–1.25) 1.2 2 1.2

PTT (26–40 s) 46 64 38

Fibrinogen (1.6–4 g/l) 5.36 6.2 5.2

D-dimers (< 0.5 mg/l) 13.1 6.6 3.0

Procalcitonin (0.5 µg/l) 0.6 1.8 0.2

CRP (< 0.5 mg/l) 157 255 133

IL-6 (< 7 ng/l) 142 224 104

Ferritin (30–400 µg/l) 2633 4078 1490

EXTEM MCF (mm) 58 78 78

PEEP (mmHg) 17 18 16

PIP (mmHg) 35 41 31

deltaP (mmHg) 18 23 15
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Our study has several limitations. Being retrospective and non-interventional it can only be hypothesis-
generating. It is monocentric and focusses on severely ill patients, many of whom received ICU treatment for 
several weeks and our findings may not be generalizable to less severely ill patients. Due to the relatively small 
sample size, the power of our study is limited. We found a high proportion of cavitary lung lesions in the CT-scan 
(22/39 = 56%). The 95% confidence interval is 41–72% for our finding of this high incidence of lung cavitations. 
We included all 39 consecutive patients who received a CT-scan and were treated in our intensive care unit dur-
ing the first COVID-19 wave, so we cannot provide a larger data set.

To make a more accurate assessment of the proportion of patients with cavitation we would have to include 
more patient data. For a sample size of 100, a two-sided 95% confidence interval for a single proportion using 
the large sample normal approximation would extend 0.097 from the observed proportion for an expected 
proportion of 0.56.

With a sample size of 380, a two-sided 95% confidence interval for a single proportion using the large sample 
normal approximation would extend only 0.05 from the observed proportion for an expected proportion of 0.56.

The etiology of lung cavitations is possibly heterogeneous and multifactorial. Finally, the number of autopsies 
supporting our interpretation is small and although all point to the exact same pathogenesis of the cavitations 
we do not know whether the same results would have been found in the lungs of the other patients of the cohort.

In conclusion, we found that cavitating lung lesions occur frequently in severely ill COVID-19 patients and 
provide evidence that pulmonary hypoperfusion and occlusion of pulmonary arteries plays an important role 
in the pathogenesis of these lesions.

Conclusion
Although the small sample size limits the power of our study, we found a high incidence of cavitary lesions in 
our cohort of severely ill patients with COVID-19. Our findings underline the importance of sufficient antico-
agulation in the management of patients with severe COVID-19 pneumonia. Furthermore our data show, how 
vulnerable the malperfused lungs of these patients are, even though the compliance might not be altered in the 
beginning. This points to the importance of lung protective ventilation in order to avoid further damage in the 
poorly perfused areas of the lungs of these patients.

Data availability
The datasets analyzed during the current study are available from the corresponding author upon reasonable 
request.
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