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Abstract
We consider the following repulsive-productive chemotaxis model: find 0, the
cell density, and 0, the chemical concentration, satisfying

0 in 0
in 0

(1)

with 1 2 , a bounded domain ( 1 2 3), endowed with non-flux
boundary conditions. By using a regularization technique, we prove the existence of
global in time weak solutions of (1) which is regular and unique for 1 2. More-
over, we propose two fully discrete Finite Element (FE) nonlinear schemes, the first
one defined in the variables under structured meshes, and the second one by
using the auxiliary variable and defined in general meshes. We prove some
unconditional properties for both schemes, such as mass-conservation, solvability,
energy-stability and approximated positivity. Finally, we compare the behavior of
these schemes with respect to the classical FE backward Euler scheme throughout
several numerical simulations and give some conclusions.
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1 Introduction

Chemotaxis is the biological process of the movement of living organisms in res-
ponse to a chemical stimulus, movement that can be addressed towards a higher
(chemo-attraction) or lower (chemorepulsion) concentration of a chemical substance.
At the same time, the presence of living organisms can produce or consume chemical
substance. A repulsive-productive chemotaxis model can be given by the following
parabolic PDE’s system:

in 0
in 0

(2)

where 0 and 0 denote, respectively, the cell density
and the concentration of a repulsive chemical signal at position (
1 2 3, being a bounded domain with boundary ) and at time 0. Moreover,

0 (if 0) is the production term. In this paper, we consider the particular
case of superlinear signal production, that is, , with 1 2, and then
we focus on the initial-boundary value problem:

in 0
in 0

0 on 0

0 0 0 0 0 0 in .

(3)

From the biological point of view, the nonlinear signal production considered in
model (3) is justified and explains the saturation effects of chemotactic signal
production at large (or short) densities of cells (see [32] and references therein).

The theoretical analysis of chemorepulsion models has included the study of some
qualitative properties of the solutions, such as existence, uniqueness, regularity and
behavior at infinite time, among others [9, 14, 17, 30, 31]. In the case of linear
( 1) or quadratic ( 2) production term, problem (3) is well-posed (see [9,
17] respectively) in the following sense: there exist global in time weak solutions in
3 domains, which are regular (and unique) for 1 and 2 domains. In [14], the
uniqueness and global existence of solution for a chemorepulsion model with linear
production and superlinear diffusion in domains (for 3) have been proved.
In the context of Lotka-Volterra competition models, the effect of a chemorepulsive
signal has been considered by Tello and Wrzosek in [31], proving the existence of
global classical solution for the model in domains (for 1). A chemorepul-
sion model with nonlinear chemotactic sensitivity has been studied in [30], obtaining
the existence of bounded classical solution and the convergence at infinite time to a
constant steady state in domains (for 3).

With respect to the study of chemotaxis models with nonlinear signal produc-
tion ( ) the literature is scarce (we refer [23, 32]). In [32], Winkler studied radially
symmetric solutions of a parabolic-elliptic system, proving the existence of global
bounded classical solution under some conditions on the power . Considering non-
linear chemotactic sensitivity, chemorepulsion and nonlinear production, in [23] Lai
and Xiao analyzed the existence, uniform boundedness and asymptotic behavior of

87   Page 2 of 38 Adv Comput Math (2021) 47: 87



global classical solutions also for a parabolic-elliptic model. However, as far as we
know, there are not works studying the parabolic-parabolic problem (3) with produc-
tion (for 1 2). Therefore, the first aim of this work is to study the existence
of global weak solutions of (3) (in the three-dimensional case) and global regularity
(in the two and one-dimensional cases).

On the other hand, the second aim is to design numerical methods for model (3)
conserving properties of the continuous problem such as: mass-conservation, energy-
stability and positivity. It is important to mention that approaching chemorepulsion
problems by using Finite Element (FE) approximations is not an easy task, because
negative (discrete) solutions can be computed (see [17, 19, 20]). In those cases, some
spurious oscillations may appear (see, for instance, [19] for a chemorepulsion model
with quadratic production).

Some numerical schemes have been studied for chemotaxis models. Existence
of discrete solutions, convergence, mass-conservation and error estimates, among
other qualitative properties, have been studied in the context of Finite Volume (FV)
schemes [13, 22, 34], Finite Element (FE) approximations [11, 25, 27, 28, 33] or
combined FV-FE schemes [7].

Energy-stable numerical approximations have also been studied in the chemo-
taxis context. A conditionally energy-stable FV scheme for a chemo-attraction model
with an additional cross-diffusion term was analyzed by Bessemoulin and Jüngel
[6]. Energy-stability of time-discrete numerical approximations and fully discrete FE
schemes for a chemorepulsion model with quadratic production have been analyzed
in [17] and [18, 19], respectively; while, in the case of linear production, we refer
[20]. However, as far as we know, for the chemorepulsion model with production
term given in (3) there are not works studying energy-stable numerical schemes.

Likewise, the positivity or approximated positivity properties have been studied
on numerical schemes for chemotaxis models. In [8], Chamoun and collaborators
proved a discrete maximum principle for a combined FV-FE scheme approaching a
chemotaxis-fluid model. The positivity of only time-discrete schemes and approx-
imated positivity of a fully discrete FE scheme associated with a chemorepulsion
model with quadratic signal production were proved in [17] and [19], respectively;
while, for the case of linear production, we refer to [20]. Positive numerical methods,
using FE techniques, associated with a generalized Keller-Segel model were studied
in [10]. In [34], a positive FV scheme for a parabolic-elliptic chemotaxis model was
analyzed. However, there are not works studying positive (or approximately positive)
FE schemes for model (3).

The idea here is to extend the analysis made in [20], although in this case, we
need to use two matrix operators (see (51) and (52) below) in order to obtain energy-
stability and approximated positivity. The first one is the operator defined in [2] (and
used in [20]); while, the second one, is obtained by constructing regularized functions
associated with the test function 1. For the second operator, it was necessary to
prove technical Lemmas (see Lemmas 4.4 and 4.10 below) which are requiered in
order to obtain the desired properties for the numerical schemes.
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Consequently, the main novelties in this paper are the following:

The analysis of the existence of weak solutions of model (3) in the 3D case
(which are regular and unique in the 2D and 1D cases) satisfying, in particular,
an energy inequality (see (8) below).
The introduction of a FE scheme (see scheme UV in Section 4.1 below) for
model (3) which is energy-stable with respect to an energy in the primitive vari-
ables and approximately positive, under a right-angled constraint on the
spatial triangulation (see hypothesis (H) in (46) below).
The introduction of another FE scheme (see scheme US in Section 4.2 below)
for model (3) which is unconditionally energy-stable with respect to a modified
energy and approximately positive, without imposing the restriction (H) on the
mesh.

The outline of this paper is as follows: In Section 2, we give the notation and some
preliminary results. In Section 3, we prove the existence of weak-strong solutions
of model (3) (in the sense of Definition 3.1 below) by using a regularization tech-
nique. In Section 4, we propose two fully discrete FE nonlinear approximations of
problem (3), where the first one is defined in the variables , and the second one
introduces as an auxiliary variable. We prove some unconditional properties
such as mass-conservation, energy-stability, approximated positivity and solvability
of the schemes. In Section 5, we compare the behavior of the schemes with respect
to classical FE backward Euler scheme throughout several numerical simulations,
including experimental convergence rates; and in Section 6, the main conclusions are
summarized.

2 Notation and preliminary results

Along this paper, we will consider the usual Lebesgue spaces 1
with norm . In particular, the 2 -norm will be denoted by 0. From now
on, will denote the standard 2-inner product over . The usual Sobolev spaces

, for a multi-index ,
and 1, with norm denoted by will be also considered. If 0 is not
integer, the space is a subspace of (where is the integer part
of ) of functions with finite norm (see [26]):

1
.

In the case when 2, we denote 2 , with respective norm .
Moreover, the following spaces are set

n n
0 on (for 1 1 )

1 1 n 0 on
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and the following equivalent norms in 1 and 1 , respectively, will be used
(see [26] and [1, Corollary 3.5], respectively):

2
1

2
0

2
1

2
1

2
0 rot 2

0
2
0

1 . (4)

Here rot denotes the well-known rotational operator (also called curl) which is a
scalar operator for 2D domains and vectorial for 3D ones. In particular, (4) implies
that, for all 1 ,

2
1

2
0

2
0. (5)

If is a general Banach space, its topological dual space will be denoted by .
Moreover, the letters will denote different positive constants which may change
from line to line. The following result will be used along this paper:

Theorem 2.1 [12] Let 1 ( 3) and suppose that

0 , 0
2 2

, where

2 2
2 2

if 3
2 2

n if 3.

Then, the problem

in 0

n
0 on 0

0 0 in

admits a unique solution in the class

0 2 0 2 2
0 .

Moreover, there exists a positive constant such that

0 2 2 0 0 2

0 0 2 2 .

When large time estimates will be treated, the following result will be used
(see [21]):

Lemma 2.2 Assume that 0 and 0 satisfy

1 1 0.

Then, for any 0 0,

1 0 0 1
0.
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3 Analysis of the continuousmodel

In this section, the existence of weak-strong solutions of problem (3) will be proved
in the sense of the following definition.

Definition 3.1 (Weak-strong solutions of (3)) Let 1 2. Given 0 0
1 with 0 0, 0 0 a.e. in ,

a pair is called weak-strong solution of problem (3) in 0 , if 0,
0 a.e. in 0 ,

0
5

3 0 1 5
3 0

0 1 2 0 2 0

10
3 6 0 1 10

7 6
5
3 0

5
3 0

the following variational formulation for the -equation holds

0 0

0
0

10
7 6 0 1 10

7 6 0 (6)

the -equation holds pointwisely

a.e. 0 (7)

the boundary condition
n

0 and the initial conditions (3)4 are satisfied, and the

following energy inequality (in integral version) holds a.e. 0 1 with 1 0 0:

1 1 0 0

1

0

4 2 2
0

2
1 0

(8)
where

1

1

1

2
2
0. (9)

Observe that any weak-strong solution of (3) is conservative in , because the total
mass remains constant in time. In fact, by taking 1 in (6):

0 i.e., 0 0 0. (10)

In addition, integrating (7) in , one has

. (11)
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3.1 Regularized problem

In order to prove the existence of weak-strong solution of problem (3) in the sense
of Definition 3.1, we introduce the following regularized problem associated with
model (3): Let 0 1 , find , with 0 a.e. in 0 , such that,
for all 0,

0
4
5

5
3

5
3 0 2 5

3
5
3 0

5
3

(12)

and satisfying the system

in 0
in 0

n n
0 on 0

0 0 0 0 0 0 in

(13)

where is the unique solution of the elliptic-Newman problem

in

n
0 on

(14)

and 0 0
4
5

5
3 2 with

0 0 0 0 in 1 as 0. (15)

Notice that from (12), system (13) is satisfied a.e. in 0 . From now
on in this section, we will denote solution of (14) only by . Observe that if

is any solution of (13), then (10) and (11) are satisfied for .

Theorem 3.2 There exists at least one solution of problem (12) and (13).

Proof We will use the Leray-Schauder fixed point theorem. With this aim, we denote

0 2 2 0 1

and we define the operator by ,
such that solves the following linear decoupled problem

in 0
in 0

n n
0 on 0

0 0 0 0 0 0 in

(16)
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where and, in general, we denote max 0 . Then, is a
solution of (13) iff is a fixed point of the operator defined in (16). Let us
check every hypotheses of Leray-Schauder Theorem:

1. is well defined. Observe that if , from the 2 and 3-regularity of
problem (14) (see [15, Theorems 2.4.2.7 and 2.5.1.1] respectively), we have that

0 2 2 0 3 .

Thus, we deduce that 0 1 2 0 2

10 0 10 . Then, using this fact and taking into account that
10 3 0 10 3 2, we obtain that

5
3 0

5
3 and

5
3 0

5
3 for any

1 2 (using that
10
3 0

10
3 ). Thus, applying Theo-

rem 2.1 to (16), we deduce that there exists a unique solution of (16),
(where is defined in (12)).

2. All possible fixed points of (with 0 1 ) are bounded in and
0. In fact, observe that if is a fixed point of , then

satisfies

in 0
in 0

n n
0 on 0

0 0 0 0 0 0 in

(17)

Multiplying (17)1 by min 0 and integrating in , we have

1

2
2
0

2
0 0

which, taking into account that 0 0 a.e. in , implies that
0 a.e. in 0 . Thus, . Now, we test (17)1 and (17)2

by
1

1 and respectively, and adding both equations, the

terms
1

1 and cancel, and taking into

account (14), we obtain

4 2 2

2
0

2
0

2
0

2
0 0 (18)

where
1

1

1

2
2
0 2

2
0.

Moreover, we observe that the function
2

satisfies the

time differential inequality
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with 2 . In fact, it follows by multiplying (11) (for

) by and using the Young inequality. Therefore,

0
0

, which implies that

2

0

2 2
0 0. (19)

Then, from (18) and (19) and using (5), we deduce the following estimates with
respect to :

is bounded in 0 2

2 is bounded in 0 2 2 0 1 10
3 0

10
3

is bounded in 0 3 and is bounded in 2 0 3 .
(20)

Then, from (20) we conclude that is bounded in . Moreover, testing (17)1
by , we have

1

2
2
0

2
1

2
0

1

2
2
1

4
1 1 2

0

from which, taking into account (20) and using the Gronwall Lemma, we deduce
that is bounded in .

3. is compact. Let be a bounded sequence in . Then
solves (16) (with and instead of

and respectively). Therefore, analogously as in item 1, we obtain that

and are bounded in
5
3 0

5
3 ; and therefore,

from Theorem 2.1 we conclude that is bounded in which
is compactly embedded in , and thus is compact. Observe that the com-
pactness embedding comes from the continuous embedding (using embeddings

, see [24, Theorem 9.6]):

0 1 2 5 3 0 17 10 2 0 3 2 .

Then 0 1 2 2 0 3 2 and
5 3 0 5 3 , hence the compactness holds by applying the Aubin-Lions

Lemma (see [29]).
4. is continuous from into . Let be a

sequence such that

in as . (21)

Therefore, is bounded in , and from item 3 we deduce that
is bounded in . Then, there exist and

a subsequence of still denoted by such that

weakly in and strongly in . (22)
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Then, from (21) and (22), a standard procedure allows us to pass to the limit,
as goes to , in (16) (with and instead of and

respectively), and we deduce that . Therefore, we
have proved that any convergent subsequence of converges to

strong in , and from uniqueness of , we conclude that
the whole sequence in . Thus, is continuous.

Therefore, the hypotheses of the Leray-Schauder fixed point theorem are satisfied
and we conclude that the map has a fixed point , that is,

, which is a solution of problem (12) and (13).

3.2 Existence of weak-strong solutions of (3)

Theorem 3.3 There exists at least one weak-strong solution of problem (3).

Proof Observe that a variational problem associated with (13) is:

0
0 0 0

10
7 6 0 1 10

7 6

0
0 0

0

5
2 0 1 .

(23)

Recall that is the unique solution of problem (14). From (18) we have
that satisfies the following energy equality:

4 2 2
0

2
1

2
1 0. (24)

Then, from (24) and using (19) we deduce the following estimates (independent of )

2 is bounded in 0 2 2 0 1 10
3 0

10
3

is bounded in 0 1 2 0 2

is bounded in 0 2 2 0 1

(25)

and therefore,

is bounded in 0 0 3 5
3 0

5
3

is bounded in 0 2 2 0 1

is bounded in
10

7 6 0 1 10
7 6

is bounded in
5
2 0 1 .

(26)

Moreover, taking into account that from (25)1 we have that 2 is bounded

in 2 0 2 and from (26)1
1 2 is bounded in

10
6 3 0

10
6 3 , we
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conclude that
2 1 2 2 is bounded in

5
3 0

5
3 .

Therefore, we deduce that

is bounded in
5

3 0 1 5
3 . (27)

Notice that from (14) and (25)3, we can deduce that

2 2 1 2 2 1 0 as 0. (28)

Then, from (25)–(28), we deduce that there exists , with

0
5
3 0

5
3

5
3 0 1 5

3

0 1 2 0 2

such that for some subsequence of still denoted by , the
following weak convergences hold when 0,

weakly in
5
3 0

5
3

5
3 0 1 5

3

weakly in 2 0 2

weakly in 2 0 1

weakly- in
10

7 6 0 1 10
7 6

weakly- in
5
2 0 1 .

(29)

On the other hand, taking into account (26)3 and (27), the Aubin-Lions Lemma
implies that

is relatively compact in
5

3 0 2 (30)

(and also in 0 , for all 5
3 ). In particular, since 0 then

0 a.e. in 0 . Moreover, since the embedding 0 2

2 0 1 10
3 0

10
3 is continuous, from (25)2 we deduce that

weakly in
10
3 0

10
3 . (31)

Thus, from (30) and (31) and using that is bounded in
10

3 6

0
10

3 6 , we deduce that

weakly in
10

3 6 0
10

3 6 . (32)

Moreover, since strongly in 0 , we have that

strongly in 1 0 1 . (33)
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Thus, taking to the limit when 0 in (23), and using (29), (32) and (33), we obtain
that satisfies

0 0 0
0

10
7 6 0 1 10

7 6

(34)

0 0 0 0

5
2 0 1

(35)
and therefore, integrating by parts in (35) and taking into account that

5
3 0

5
3 and 2 0 2 , we arrive at

in
5
3 0

5
3 (36)

with 0 on . Notice that the limit function is nonnegative. In fact, it follows

by testing (36) by and using that 0 0. Finally, we will prove that satisfies
the energy inequality (8). Indeed, integrating (24) in time from 0 to 1, with 1

0 0, and taking into account that
1

0

1 1 0 0 0 1

since 1 1 0 for all 0, is continuous in time, we deduce

1 1 0 0
1

0

4 2 2
0

2
1

2
1 0 0 1. (37)

Now, we will prove that

a.e. 0 . (38)

Since is relatively compact in 0 , we have

strongly in 0 . (39)

Moreover, for any 0,

1 0
0

0

1

1

1

2
2
0

2
0 2

2
0

1 0 0 0
1

1

2
2 0 2 2 0 2 2 0 2

2
2

2 0 2 . (40)

Then, taking into account that strongly in 0 ,
strongly in 2 0 2 for any 0, and is bounded in 2 0 2 ,
from (40) we conclude that strongly in 1 0 for
all 0, which implies in particular (38). Finally, observe that from (39) we have
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that 2 2 strongly in 2 0 2 ; and since 2 is bounded
in 2 0 2 we deduce that

2 2 weakly in 2 0 2 .

Then, by using weakly lower semicontinuity,

lim inf
0

1

0

4 2 2
0

2
1

2
1

1

0

4 2 2
0

2
1 1 0 0.

On the other hand, owing to (38),

lim inf
0

1 1 0 0 1 1 0 0

a.e. 1 0 1 0 0. Thus, taking lim inf as 0 in inequality (37), we deduce
the energy inequality (8) for a.e. 0 1 1 0 0.

Remark 3.4 (Regularity in 1 and 2 domains) In this work, we have proved
existence of global in time weak solutions for model (1). In [5], the existence and
uniqueness of a local in time positive classical solution is proved whenever

0
0 and 0

1 for (for 1 the space dimension), which is
global in time under the extensibility criteria

1 for all 0 . (41)

Moreover, it is also proved in [5] that condition (41) holds if there exist 0 and
1 with 2 such that

for all 0 . (42)

Observe that, in 1 , 2 or 3 domains, condition (42) reads as
for all 0 , for 1, and 3 2, respectively. Since the weak-

strong regularity of given in Definition 3.1 only guarantees the boundedness
of , therefore this regularity result can only be applied for 1
domains. On the other hand, in [9] it is proved that in 2 domains, assuming

2 0 2 and reasoning over the equation (1)1, then 0
for any . Consequently, since the weak-strong regularity guarantees that

2 0 2 and the -equation in our model and in [9] is the same, then one
also has the existence and uniqueness of global in time regular solutions for (1) in
2 domains.

4 Fully discrete numerical schemes

In this section, two fully discrete numerical schemes associated with model (3)
are proposed. Some unconditional properties such as mass-conservation, energy-
stability, approximated positivity and solvability of the schemes are proved.
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4.1 Scheme UV

In this section, in order to construct an energy-stable fully discrete scheme for model
(3), we are going to make a regularization procedure, in which we will adapt the
ideas of [2] (see also [16]). With this aim, given 0 1 we consider a function

0 , approximation of , such that 2 and

2 if
2 if 1

2 if 1.
(43)

Then, is obtained by integrating in (43) and imposing the conditions
1

1 and 1 for all 1 (see Fig. 1); and

1
1 2 3 if

if 1

1 2 3 if 1.
(44)

0 2 4 6
0

0.5

1

1.5

2

2.5

F ''(s)

F(s)=s p-2

0 2 4 6 8

0

2

4

6

F '(s)

F'(s)=sp-1/p-1

-5 0 5 10
0

20

40

60

80

F (s)

F(s)
p-2s2/4

Fig. 1 The function and its derivatives
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Then, taking into account the functions , its derivatives and , a regularized
version of problem (3) reads: Find 0 and 0 ,
with 0, such that

0 in 0
1 in 0

n n
0 on 0

0 0 0 0 0 0 in .

(45)

Remark 4.1 The idea is to define a fully discrete scheme associated with (45), taking
in general , such that 0 as 0, where is the time step
and the mesh size.

Observe that (at least formally) multiplying (45)1 by , (45)2 by ,
integrating over and adding, the chemotaxis and production terms cancel and we
obtain the following energy law

1

2
2 2 2

1 0.

In particular, the modified energy

1

2
2

is decreasing in time. Thus, we are going to consider a fully discrete approximation
of the regularized problem (45) using a FE discretization in space and the backward
Euler discretization in time (considered for simplicity on a uniform partition of 0
with time step 0 ). Let be a polygonal domain. We consider
a shape-regular and quasi-uniform family of triangulations of , denoted by 0,
with simplices , and max , so that .
Further, let a denote the set of all the vertices of , and in this case we
will assume the following hypothesis:

(H) The triangulation is structured in the sense that all simplices have a right angle.
(46)

We choose the following continuous FE spaces for and :

1 2 generated by 1 with 1.

Remark 4.2 The right-angled constraint (H) and the approximation of by 1-
continuous FE are necessary to obtain the relations (49) and (50) below, which are
essential in order to obtain the energy-stability of the scheme UV (see Theorem 4.7
below).
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We denote the Lagrange interpolation operator by , and we
introduce the discrete semi-inner product on (which is an inner product in )
and its induced discrete seminorm (norm in ):

1 2 1 2 . (47)

Remark 4.3 In , the norms and 0 are equivalent uniformly with respect to
[4].

We consider also the 2-projection on , 2 and the classical
1-projection 1 given by

(48)

.

Moreover, owing to the right-angled constraint (H) and the choice of 1-continuous
FE for , following the ideas of [2] (see also [16]), for each 0 1 , we can
construct two operators ( 1 2) such that are
symmetric matrices and 1 is positive definite, for all and a.e. in , and
satisfy

1 in (49)
2 1 in . (50)

We emphasize that thanks to the choice of 0 made up of simplices (triangles
in 2D and tetrahedra in 3D), and the fact that the gradient of a 1-function is constant
over each element of the triangular mesh, the operators ( 1 2) are constant
by elements matrices such that (49) and (50) hold in each element . This condition
is not satisfied when rectangular meshes are considered or approximation for
2. In the 1-dimensional case, are constructed as follows: For all and

with vertices a0 and a1 , we set

1
a1 a0
a1 a0

1 if a0 a1
1
a0

if a0 a1

(51)

for some , and

2
1

a1 a0
a1 a0

1 1

2
if a0 a1

1
a0
a0

if a0 a1

(52)

for some 1 2 . Following [2] (see also [16]), these constructions can be
extended to dimensions 2 and 3, and from (51) the following estimate holds:

2 1 1 2 . (53)

The following result will be useful to prove the well-posedness of the scheme UV
and we write its proof in the Appendix.
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Lemma 4.4 Let denote the spectral norm on . Then for any given 0 1
the function 2 satisfies, for all 1 2 and with
vertices a 0,

2
1

2
2

3 2 2 max 1 1 2 2 max
1 ... 1 a 2 a

1 a0 2 a0 (54)

where a0 is the right-angled vertex.

Let be the linear operator defined as follows

.

Then, the following estimate holds (see for instance, [18, Theorem 3.2]):

1 6 0 . (55)

Thus, we consider the following first order in time, nonlinear and coupled scheme:

Scheme UV :
Initialization: Let 0 0

0 0 .
Time step n: Given 1 1 , compute
solving

2

1
(56)

where, in general, we denote
1

.

Remark 4.5 (Positivity of ) By using the mass-lumping technique in all terms
of (56)2 excepting the self-diffusion term , and approximating by 1-
continuous FE, we can prove that if 1 0 then 0. In fact, it follows testing
(56)2 by , where min 0 (see Remark 3.12 in [20]).

4.1.1 Mass-conservation, energy-stability and solvability

Since 1 and 1 , we deduce that the scheme UV is conservative
in , that is,

1 1 1 1 0 1 0 1 0 1

0 1 0 (57)

and we have the following behavior for :

1 . (58)
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Definition 4.6 A numerical scheme with solution is called energy-stable
with respect to the energy

1
1

2
2
0 (59)

if this energy is time decreasing, that is 1 1 for all 1.

Theorem 4.7 (Unconditional stability) The scheme UV is unconditionally energy
stable with respect to . In fact, if is a solution of UV , then the
following discrete energy law holds

2

2
2
0 2

2
0

2 2
0

2
0

2
0 0. (60)

Proof Testing (56)1 by and (56)2 by , adding and
taking into account that are symmetric as well as (49) and (50), the terms

2 2

1

and

1 1

cancel, and using that 1 1 we obtain

1 1

1

2
2
0 2

2
0

2
0

2
0 0. (61)

Moreover, observe that from the Taylor formula we have

1 1 1

2
1 1 1 2

and therefore,

2
1 1 2. (62)

Then, using (62) and taking into account that is linear and 2 for all
, we have

2
1 1 2

1
2

2
2. (63)

Thus, from (61), (53), and (63) and Remark 4.3, we arrive at (60).
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Corollary 4.8 (Uniform estimates) Assume that 0 0
2 1 . Let

be a solution of scheme UV . Then, it holds

1
1

2
2
1

1

2 2
0

2
0

2
0

0 1 (64)

0

0 1

2
1 6 1 1 1 (65)

where the integer 0 0 is arbitrary, with the constants 0 1 0 depending on
the data 0 0 , but independent of and .

Proof First, taking into account that 0 0
0 0 , 0 0 (and

therefore, 0 0), as well as the definition of , we have that

0 0 0 1

2
0 2

0
0 2 1

2
0 2

0

0 2
0

0 2
0 0

2
0 0

2
1 0 (66)

where the constant 0 0 depends on the data 0 0 , but is independent of
and . Therefore, from the discrete energy law (60) and estimate (66), we have

1

2 2
0

2
0

2
0

0 0
0.

(67)
Moreover, from (58), the definition of , Remark 4.11 and (67), we have

1 1 1 (68)

where the constant 0 is independent of and . Then, applying Lemma 2.2
in (68) (for 1 and ), we arrive at

1 0 1 0

which, together with (67), imply (64). Moreover, adding (60) from 0 1 to
0, and using (55) and (64), we deduce (65).

Theorem 4.9 (Unconditional existence) There exists at least one solution
of scheme UV .

Proof The proof follows by using the Leray-Schauder fixed point theorem. With this
aim, given 1 1 , we define the operator
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by , such that solves the following linear decoupled
problems

s.t.
1 1 1 2

s.t.
1 1 1 1 .

The hypotheses of the Leray-Schauder fixed point theorem are satisfied as in Theo-
rem 3.13 of [20], but applying in this case Lemma 4.4 in order to prove the continuity
of the operator . Thus, we conclude that the map has a fixed point , that is

, which is a solution of the scheme UV .

4.1.2 Approximated positivity of un

In this subsection we are going to prove the property of approximated positivity for
solution of the scheme UV , in the sense that 0 as 0 in the 2 -

norm, where min 0 0. With this aim, we will prove first a preliminary
result.

Lemma 4.10 The function (with 2 2 2 1
2 1 2 )

satisfies
2

4 2
and (69)

where the constant 0 is independent of .

Proof One has that 2 since 2 , and therefore, by using the
Taylor formula as well as the definition of and , we have that, for some 0
between 0 and ,

0 0
1

2
0

2 2

1

2 2

1
1 1

2
0

2.

(70)
Then, taking into account that 2 for all , from (70) we
have that: (a) if 0 , 1

2
2 2; and (b) if 0, by using the Young

inequality,

2

1

2 1

4
2 2 2

1

2 1

2
2 2 1

4
2 2

from which we deduce (69)1. Finally, (69)2 follows directly from the definition of
for .

Remark 4.11 Notice that estimates in (69) imply that 1 2 for all
, where the constants 1 2 0 are independent of .
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Theorem 4.12 (Approximated positivity of ) Let be any solution of
scheme UV . Then, it holds

max
0

2
0 0

2 1

1 1 2
1 and 1

(71)
where the constant 0 is independent of and , the constant was
defined in Lemma 4.10, and the constant 0 is independent of and .

Proof Recall that . Then one can easily verify that (60) remains
true for instead of in the term . Therefore, arguing as (66)
and (67), one has

1
1

2
2
0

1

2 2
0

2
0

2
0

1

1
0 0

2
0 0 0 1. (72)

Moreover, from (69)1, we have 1
4

2 2 for all ; and
therefore, using that 2 2 for all , we have

1

4
2 2 1

4
2 2 . (73)

Thus, from (72) and (73) we obtain that

max
0

2
0 0

2 1

1
1 .

Since 1 2, we can conclude (71)1. Finally, taking into account that
for all , as well as Remark 4.11 and (64), we have

1 2

arriving at (71)2.

Remark 4.13 From (71)1 one has that, in order to guarantee the approximated posi-
tivity property for the scheme UV , it is necessary to choose such that 2

1 1 2 0 as 0.

4.2 Scheme US

In this section, we are going to construct another energy-stable fully discrete scheme
for (3) considering the auxiliary variable an the regularized function

1 . We will also use the regularized functions , and

Page 21 of 38    87Adv Comput Math (2021) 47: 87



defined in Section 4.1. Then, another regularized version of problem (3) reads: Find
0 and 0 , with 0, such that

0 in 0
rot(rot ) in 0

n
0 n 0 [rot n] 0 on 0

0 0 0 0 0 in .

(74)

This kind of formulation considering as auxiliary variable has been used in
the construction of numerical schemes for other chemotaxis models (see for instance
[18, 20, 33]). Once problem (74) is solved, we can recover from by solving

in 0

n
0 on 0

0 0 0 in .

Observe that (at least formally) multiplying (74)1 by , (74)2 by , integrat-
ing over and adding both equations, the terms cancel, and we
obtain the following energy law

1

2
2 2 2

1 0.

In particular, the modified energy
1

2
2 is decreasing

in time. Then, we consider a fully discrete approximation of the regularized problem
(74) using a FE discretization in space and the backward Euler discretization in time
(considered for simplicity on a uniform partition of 0 with time step

0 ). Concerning the space discretization, we consider the triangulation
as in the scheme UV , but in this case without imposing the constraint (H) related
with the right-angled simplices. We choose the following continuous FE spaces for

, , and :
1 H1 1 generated by 1 with 1.

Then, we consider the following first order in time, nonlinear and coupled scheme:

Scheme US :
Initialization: Let 0 0

0 0 . Here, is the
2-projection on defined in (48), and is the classical 2-projection on

,
Time step n: Given 1 1 , compute
solving

(75)

where max 0 0 and the operator is defined as

rot rot .
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We recall that is the Lagrange interpolation operator, and the
discrete semi-inner product was defined in (47).

Once the scheme US is solved, given 1 , we can recover
solving:

1 . (76)

Given and 1 , Lax-Milgram theorem implies that there exists a
unique solution of (76). Moreover, notice that the result concerning to the
positivity of solution of scheme UV established in Remark 4.5 remains true for

in the scheme US .

4.2.1 Mass-conservation, energy-stability, solvability and approximated positivity

Observe that the scheme US is also conservative in (satisfying (57)), and we have
the following behavior for :

1 .

Definition 4.14 A numerical scheme with solution is called energy-stable
with respect to the energy

1
1

2
2
0 (77)

if this energy is time decreasing, that is 1 1 for all 1.

Theorem 4.15 (Unconditional stability) The schemeUS is unconditionally energy
stable with respect to . In fact, if is a solution of US , then the
following discrete energy law holds

2

2
2
0 2

2
0

2

2
1 0. (78)

Proof Testing (75)1 by , (75)2 by and adding, the terms
cancel, and we arrive at

2 1

2
2
0

2
2
0

2
1 0

which, proceeding as in (62) and (63) and using Remark 4.3, implies (78).
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Corollary 4.16 (Global energy law) Assume that 0 0
2 1 . Let

be a solution of scheme US . Then, it holds

1
1

2
2
0

1

2 2
0

2
1 0 1

(79)
with the constant 0 0 depending on the data 0 0 , but independent of

and .

Proof Proceeding as in (66) (using the fact that 0 0
0 0 ), we

can deduce that

0 1

2
0 2

0 0 (80)

where the constant 0 0 depends on the data 0 0 , but is independent
of and . Therefore, from the discrete energy law (78) and estimate (80), we
have

1

2 2
0

2
1

0 0
0

which implies (79).

Remark 4.17 (Approximated positivity of ) The approximated positivity result
for established in Theorem 4.12 remains true for the scheme US .

Theorem 4.18 (Unconditional solvability) There exists at least one solution
of scheme US .

Proof The proof follows as in Theorem 4.6 of [20], by using the Leray-Schauder
fixed point theorem.

5 Numerical simulations

In this section, we will compare the results of several numerical simulations using the
schemes derived through the paper. The spaces for , and have been generated by

1-continuous FE, and all the simulations have been carried out using FreeFem++
software. We will also compare with the classical Backward Euler scheme for
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problem (3), which is given for the following first order in time, nonlinear and
coupled scheme:

Scheme UV:
Initialization: Let 0 0 an approximation of 0 0 as 0.
Time step n: Given 1 1 , compute by
solving

.

Remark 5.1 The scheme UV has not been analyzed in the previous sections because
it is not clear how to prove neither its energy-stability nor its approximated positivity.
In fact, observe that the scheme UV (which is the “closest” approximation to the
scheme UV considered in this paper) differs from the scheme UV in the use of the
regularized function and its derivatives (see Fig. 1) and in the approximation of
the cross-diffusion and production terms, and respectively, which
are crucial for the proof of the energy-stability of the scheme UV , and consequently
for the approximated positivity.

We have used a structured mesh for the simulations of the scheme UV (then the
right-angled constraint (H) holds), and unstructured meshes for the schemes US
and UV. The linear iterative methods used to approach the solutions of the nonlinear
schemes UV , US and UV are the following Picard methods:

(i) Picard method to approach a solution of the scheme UV :
Given , compute 1 1 solving the

decoupled problems
1 1 1 1 1 2

1 1 1 1 1 1 1

and choosing the stopping criterion as max
1

0

0

1
0

0
.

(ii) Picard method to approach a solution of the scheme US :
Given , compute 1 1 solving the

decoupled problems
1 1 1

1 1

1 1 1 1 1 1 1

choosing the stopping criterion max
1

0

0

1
0

0
.

Note that a residual term 1 is considered. This term is
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required in order to improve the convergence of this iterative method. Indeed,
since the self-diffusion term of the u-equation is rewritten in a nonlinear form,
we have checked that this fact makes the convergence of the corresponding
iterative method worse.

(iii) Picard method to approach a solution of the scheme UV:
Given , compute 1 1 solving the

decoupled problems
1 1 1 1 1 1

1 1 1 1 1 1 1

and choosing the stopping criterion max
1

0

0

1
0

0
.

Remark 5.2 In all cases, first we compute 1 solving the -equation, and then,
inserting 1 in the -equation (resp. -system), we compute 1 (resp. 1).

5.1 Positivity of un

In this subsection, the positivity of the variable in the three schemes is com-
pared. We recall that for the two schemes studied in this paper, namely schemes UV
and US , the positivity of the variable is not clear. However, it was proved that

0 as 0 (see Theorem 4.12 and Remark 4.17). For this reason,
in Figs. 3, 4 and 5 we compare the positivity of the variable in the schemes, for
different values of , 1 2, and taking 10 5 and 10 8. We consider

0 2 2, 10 5, 1
80 , the tolerance parameter 10 4 and the initial

conditions (see Fig. 2)

0 10 2 2 10 1 2 10 1 2 10.01

0 80 2 2 30 1 2 30 1 2 0.01.

0 0.5 1 1.5 2
x

0

20

40

60

80

100

u
0

v
0

Fig. 2 Cross section at 1 of the initial cell density 0 and chemical concentration 0
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Fig. 3 Behavior of the minimum of , taking 1.1

Note that 0 0 0 in , min 0 0 1 1 0.01 and max 0 0 1 1
80.01. We obtain that:

(i) All the schemes take negative values for the minimum of in different times
0, for the different values considered for and . However, in the case

of the schemes UV and US , it is observed that these values are closer to 0 as
0 (see Figs. 3, 4, and 5).

(ii) In the cases 1.1 y 1.5, the scheme US “preserves” better the pos-
itivity than the other schemes; while for 1.9, the scheme UV evidence
“better” the positivity (see Figs. 3, 4, and 5).

5.2 Energy-stability

In this subsection, we compare numerically the stability of the schemes UV , US
and UV with respect to the “exact” energy

1 1

2
2
0. (81)
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It was proved that the schemes UV and US are unconditionally energy-stables with
respect to modified energies defined in terms of the variables of each scheme, and
some energy inequalities are satisfied (see Theorems 4.7 and 4.15). However, it is not
clear how to prove the energy-stability of these schemes with respect to the “exact”
energy given in (81), which comes from the continuous problem (3) (see (8)
and (9)). Therefore, it is interesting to compare numerically the schemes with respect
to this energy , and to study the behavior of the following “residual” of the
discrete energy law

4 1
2

2 2 1 2
0

2
0 .

We consider 0 2 2, 10 5, 1
25 , 1.4, 10 4 and the initial

conditions (see Fig. 6)

0 14 2 2 14.0001 and 0 14 2 2 14.0001.
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Fig. 4 Behavior of the minimum of , taking 1.5
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Fig. 5 Behavior of the minimum of , taking 1.9

Then, we obtain that:

(i) All the schemes UV , US and UV satisfy the energy decreasing in time
property for the exact energy (see Fig. 7a), that is,

1 1 .

0 0.5 1 1.5 2
x

0

5

10

15

20

25

30

u
0

v
0

Fig. 6 Cross section at 0 of the initial cell density 0 and chemical concentration 0
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Fig. 7 Energy-stability with respect to the exact energy

(ii) All the schemes show 0 for some 0; being those corresponding
to scheme UV that reach higher values, while the scheme US evidence the
smallest values. Moreover, it is observed that the scheme UV introduces lower
numerical source than the scheme UV, and lower numerical dissipation than
the scheme US (see Fig. 7b).

5.3 Experimental convergence rates

In order to show the accuracy of the schemes proposed in this paper, we compare the
schemes UV , US and UV against an exact solution and on several meshes. With
this aim, in this experiment we consider the exact solution

2 2 2

1 2 2 2 .

Note that 0 on . Moreover, we use a uniform partition with 1
nodes in each direction. We consider 0 1 2 and 10 6.

Numerical results of convergence rates in space are listed in Tables 1, 2, 3, 4, 5, 6,
7, 8 and 9 for 5 10 5 with respect to the final time 0.1. We denote the
total errors by and . For the three schemes UV , US
and UV, and different values of , we obtain optimal order of convergence in space,
that is, second-order for in 2 -norm and first order in 2 1 -norm.

Table 1 Convergence rates for 1.1 in the scheme UV

2 Order 2 1 Order 2 Order 2 1 Order

36 36 4.8694 e-03 - 1.1647 e-01 - 4.8717 e-03 - 1.2842 e-01 -

44 44 3.2658 e-03 1.9907 9.5368 e-02 0.9961 3.2717 e-03 1.9841 1.0517 e-01 0.9951

52 52 2.3386 e-03 1.9989 8.0732 e-02 0.9973 2.3483 e-03 1.9850 8.9042 e-02 0.9966

60 60 1.7551 e-03 2.0058 6.9988 e-02 0.9980 1.7678 e-03 1.9842 7.7198 e-02 0.9974
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Table 2 Convergence rates for 1.5 in the scheme UV

2 Order 2 1 Order 2 Order 2 1 Order

36 36 4.9220 e-03 - 1.1647 e-01 - 4.9150 e-03 - 1.2842 e-01 -

44 44 3.3010 e-03 1.9907 9.5368 e-02 0.9961 3.3009 e-03 1.9839 1.0517 e-01 0.9951

52 52 2.3638 e-03 1.9990 8.0732 e-02 0.9973 2.3693 e-03 1.9849 8.9042 e-02 0.9966

60 60 1.7740 e-03 2.0059 6.9988 e-02 0.9980 1.7836 e-03 1.9842 7.7198 e-02 0.9974

Table 3 Convergence rates for 1.9 in the scheme UV

2 Order 2 1 Order 2 Order 2 1 Order

36 36 4.9552 e-03 - 1.1647 e-01 - 4.9785 e-03 - 1.2842 e-01 -

44 44 3.3232 e-03 1.9908 9.5368 e-02 0.9962 3.3437 e-03 1.9836 1.0517 e-01 0.9951

52 52 2.3797 e-03 1.9991 8.0732 e-02 0.9973 2.4001 e-03 1.9846 8.9042 e-02 0.9966

60 60 1.7859 e-03 2.0060 6.9988 e-02 0.9980 1.8069 e-03 1.9839 7.7198 e-02 0.9974

Table 4 Convergence rates for 1.1 in the scheme US

2 Order 2 1 Order 2 Order 2 1 Order

36 36 4.1857 e-03 - 1.1821 e-01 - 4.7592 e-03 - 1.2842 e-01 -

44 44 2.8272 e-03 1.9554 9.6354 e-02 1.0191 3.1958 e-03 1.9847 1.0517 e-01 0.9951

52 52 2.0386 e-03 1.9578 8.1350 e-02 1.0133 2.2937 e-03 1.9854 8.9043 e-02 0.9966

60 60 1.5410 e-03 1.9553 7.0407 e-02 1.0096 1.7267 e-03 1.9844 7.7199 e-02 0.9974

Table 5 Convergence rates for 1.5 in the scheme US

2 Order 2 1 Order 2 Order 2 1 Order

36 36 4.2616 e-03 - 1.1824 e-01 - 4.7199 e-03 - 1.2842 e-01 -

44 44 2.8767 e-03 1.9584 9.6365 e-02 1.0194 3.1691 e-03 1.9850 1.0517 e-01 0.9951

52 52 2.0735 e-03 1.9599 8.1357 e-02 1.0134 2.2744 e-03 1.9857 8.9043 e-02 0.9966

60 60 1.5670 e-03 1.9570 7.0411 e-02 1.0097 1.7121 e-03 1.9848 7.7199 e-02 0.9975

Table 6 Convergence rates for 1.9 in the scheme US

2 Order 2 1 Order 2 Order 2 1 Order

36 36 4.2053 e-03 - 1.1820 e-01 - 4.6755 e-03 - 1.2842 e-01 -

44 44 2.8380 e-03 1.9597 9.6345 e-02 1.0189 3.1390 e-03 1.9854 1.0517 e-01 0.9951

52 52 2.0453 e-03 1.9607 8.1345 e-02 1.0131 2.2527 e-03 1.9860 8.9043 e-02 0.9966

60 60 1.5457 e-03 1.9574 7.0403 e-02 1.0095 1.6957 e-03 1.9849 7.7199 e-02 0.9975
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Table 7 Convergence rates for 1.1 in the scheme UV

2 Order 2 1 Order 2 Order 2 1 Order

36 36 5.1255 e-03 - 1.1650 e-01 - 4.8769 e-03 - 1.2842 e-01 -

44 44 3.4248 e-03 2.0091 9.5385 e-02 0.9967 3.2750 e-03 1.9843 1.0517 e-01 0.9951

52 52 2.4425 e-03 2.0236 8.0742 e-02 0.9976 2.3505 e-03 1.9854 8.9042 e-02 0.9966

60 60 1.8246 e-03 2.0381 6.9994 e-02 0.9982 1.7694 e-03 1.9848 7.7198 e-02 0.9974

Table 8 Convergence rates for 1.5 in the scheme UV

2 Order 2 1 Order 2 Order 2 1 Order

36 36 5.0897 e-03 - 1.1650 e-01 - 4.9202 e-03 - 1.2842 e-01 -

44 44 3.4011 e-03 2.0089 9.5384 e-02 0.9966 3.3041 e-03 1.9843 1.0517 e-01 0.9951

52 52 2.4257 e-03 2.0232 8.0742 e-02 0.9976 2.3714 e-03 1.9855 8.9042 e-02 0.9966

60 60 1.8122 e-03 2.0375 6.9994 e-02 0.9982 1.7850 e-03 1.9850 7.7198 e-02 0.9974

Table 9 Convergence rates for 1.9 in the scheme UV

2 Order 2 1 Order 2 Order 2 1 Order

36 36 5.0376 e-03 - 1.1650 e-01 - 4.9868 e-03 - 1.2842 e-01 -

44 44 3.3664 e-03 2.0087 9.5383 e-02 0.9966 3.3489 e-03 1.9841 1.0517 e-01 0.9951

52 52 2.4011 e-03 2.0227 8.0741 e-02 0.9976 2.4036 e-03 1.9853 8.9042 e-02 0.9966

60 60 1.7941 e-03 2.0367 6.9993 e-02 0.9982 1.8093 e-03 1.9849 7.7198 e-02 0.9974

6 Conclusions

In this paper, the existence of global in time weak solutions for the chemorepulsion
with -power production model (3) and satisfying the energy inequality (8) has been
proved in the 3D case, which are regular and unique in the 2D and 1D cases.

In addition, two new mass-conservative, unconditionally energy-stable and
approximated positive fully discrete FE schemes for model (3), namely UV and US
have been developed. From the theoretical point of view, the following statements
have been deduced:

(i) The solvability of both schemes.
(ii) The scheme UV is energy-stable with respect to the modified energy

(given in (59)), under the right-angled constraint (H); while the scheme US
is unconditionally energy-stable with respect to the modified energy
(given in (77)), without this restriction (H) on the mesh.

(iii) It is not clear how to prove the energy-stability of the scheme UV (see Remark
5.1).
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(iv) In the schemes UV and US there is a control for in 2-norm, which
tends to 0 as 0. This allows to conclude the non negativity of the solution

in the limit as 0.

On the other hand, from the numerical simulations, the following deductions can be
made:

(i) The three schemes have decreasing in time energy , independently of
.

(ii) All the schemes show 0 for some 0; reaching highest values the
scheme UV, and the smallest values the scheme US . Moreover, scheme UV
introduces lower numerical source than the scheme UV, and lower numerical
dissipation than scheme US .

(iii) Both schemes UV and US satisfying that min
0

0 as 0.

(iv) All the schemes have optimal order of convergence in space, independent of
the -values.

Appendix. Proof of Lemma 4.4

The proof follows the ideas of [3, Lemma 2.1], with some modifications. For sim-
plicity in the notation, we will prove (54) in the 1-dimensional case, but this proof
can be extended to dimensions 2 and 3 as in [3, Lemma 2.1]. Observe that, from (52)

2
1

2
2

2
1

2
1 2

2
1 2

2
2

1 11

12

1

2

1 1

2

21

22
(82)

where 1 2 1 with 1 2 a0 2 a0 and 1 2 a1 1 a1 , 1 ( 1 2)

lie between 1 a0 and 1 a1 , 2 ( 1 2) lie between 2 a0 and 2 a1 , and
( 1 2) lie between 1 a1 and 2 a0 . Then, first we will show that

1 11

12

1

2
3 2 2 max 1 1 2 2

1 a0 2 a0

(83)
for 1 a0 2 a0 , because the case 1 a0 2 a0 is trivially true. With this
aim, we consider ( 1 2) lying between 1 a0 and 2 a0 such that

1
2 a0 1 a0

2 a0 1 a0

and 2
2 a0 1 a0

2 a0 1 a0
(84)
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and therefore, from the definitions of , and 1 , 1 2, given after (82) and
(84), we deduce

2 a0 1 a0 1 2 a0 1 a1 1 1 a1 1 a0 11
(85)

2 a0 1 a0 2 2 a0 1 a1 2 1 a1 1 a0 12 .
(86)

Then, for 2 a0 , 1 a0 and 1 a1 , there are only 3 options: (1) 1 a1 lies
between 2 a0 and 1 a0 ; (ii) 2 a0 lies between 1 a1 and 1 a0 ; and (iii)

1 a0 lies between 1 a1 and 2 a0 .

Notice that from (43) and (44), we have that and 1 are globally Lip-

schitz functions with constants 2 and 1 respectively, and 1 2. Then,
in case (i), taking into account that all intermediate values 1 ( 1 2) lie
between 2 a0 and 1 a0 , we have

1 11

12

1

2
1 11 12

12

1 12

12

2

2
1 1 2

2

1 2 2
11 12 12 2 1 2 2

1 2

3 max 1 1 2 2
1 a0 2 a0 . (87)

In case (ii), all intermediate values 1 ( 1 2) lie between 1 a1 and

1 a0 , and from (85) and (86) by eliminating the term 2 a0 1 a1 , we have
the equality

1 a1 1 a0
1

2

11

12
2 a0

1 a0
2

12

1

2

1

2

from which, bounding the term 1

2

1

2
as in (87), we obtain

1 1 a1 1 a0
11

12

1

2
2 2 3 max 1 1 2 2

1 a0 2 a0 1 a1 1 a0

and therefore, dividing by 1 a1 1 a0 we arrive at

1 11

12

1

2
3 2 2 max 1 1 2 2

1 a0 2 a0 .

(88)

87   Page 34 of 38 Adv Comput Math (2021) 47: 87



In case (iii), by arguing analogously to case (ii), from (85) and (86) we have

1 a1 2 a0
1

2

11

12
2 a0

1 a0
2

2

1

2

11

12

which implies (88). Therefore, we have proved (83). Analogously, we can prove that

1 1

2

21

22
3 2 2 max 1 1 2 2

1 a1 2 a1 .

(89)
Thus, from (82), (83) and (89) we conclude (54).
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6. Bessemoulin-Chatard, M., Jüngel, A.: A finite volume scheme for a Keller-Segel model with
additional cross-diffusion. IMA J. Numer. Anal. 34(1), 96–122 (2014)

7. Chamoun, G., Saad, M., Talhouk, R.: Monotone combined edge finite volume-finite element scheme
for anisotropic Keller-Segel model. Numer. Methods Partial Differ. Equ. 30(3), 1030–1065 (2014)

8. Chamoun, G., Saad, M., Talhouk, R.: Numerical analysis of a chemotaxis-swimming bacteria model
on a general triangular mesh. Appl. Numer. Math. 127, 324–348 (2018)

9. Cieslak, T., Laurencot, P., Morales-Rodrigo, C.: Global Existence and Convergence to Steady States
in a Chemorepulsion System. Parabolic and Navier-Stokes Equations. Part 1, 105-117, Banach Center
Publ., 81 Part 1, Polish Acad. Sci. Inst. Math., Warsaw (2008)

10. De Leenheer, P., Gopalakrishnan, J., Zuhr, E.: Nonnegativity of exact and numerical solutions of some
chemotactic models. Comput. Math. Appl. 66(3), 356–375 (2013)

11. Epshteyn, Y., Izmirlioglu, A.: Fully discrete analysis of a discontinuous finite element method for the
Keller-Segel chemotaxis model. J. Sci. Comput. 40(1-3), 211–256 (2009)

12. Feireisl, E., Novotna, A.: Singular Limits in Thermodynamics of Viscous Fluids. Advances in
Mathematical Fluid Mechanics. Basel, BirkhAuser (2009)

13. Filbet, F.: A finite volume scheme for the Patlak-Keller-Segel chemotaxis model. Numer. Math.
104(4), 457–488 (2006)

14. Freitag, M.: Global existence and boundedness in a chemorepulsion system with superlinear diffusion.
Discret. Contin. Dyn. Syst. 38(11), 5943–5961 (2018)

15. Grisvard, P.: Elliptic Problems in Nonsmooth Domains. Pitman Advanced Publishing Program,
Boston (1985)

16. Grün, G., Rumpf, M.: Nonnegativity preserving convergent schemes for the thin film equation. Numer.
Math. 87, 113–152 (2000)
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model with quadratic production. Part II: Analysis of an unconditionally energy-stable fully discrete
scheme. Comput. Math. Appl. 80, 636–652 (2020)
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Et Recherches MathéMatiques, No. 17 Dunod, Paris (1968)

25. Marrocco, A.: Numerical simulation of chemotactic bacteria aggregation via mixed finite elements.
m2AN Math. Model. Numer. Anal. 37(4), 617–630 (2003)
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diaruego@uis.edu.co

1 Dpto. Ecuaciones Diferenciales y Análisis Numérico and IMUS, Universidad de Sevilla,
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