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Abstract

We study the asymptotic behaviour of the solutions of nonlinear Dirichlet systems when the operators and the open sets
where they are posed vary simultaneously. We obtain a representation of the limit problem and we prove that it is stable by
homogenization. A corrector result is also givan2002 Editions scientifiques et médicales Elsevier SAS. All rights reserved.

Résumé

On étudie le comportement asymptotique des solutions des systémes de Dirichlet non linéaires quand ils varient
simultanement les opérateurs et les ouverts ol les problémes sont posés. On obtient une représentation du probléme limite,
laquelle on montre qui est stable par homogénéisation. On donne aussi un résultat de carr@@@RiEditions scientifiques
et médicales Elsevier SAS. All rights reserved.
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Introduction

Our interest in the present paper is to study the homogenization problem
—diva, (x, Dup) = fp in D'(£2,,RM),

1lp M 0.1)

Uy € WO’ (.Qn,R ),

where a,: 2 x Myxny > Myxny is a sequence of Carathéodory functions which define monotone operators in

W&’p (2, RM) ands2, is a sequence of open sets which are contained in a fixed bounded ogerr g (no more hypotheses
abouts2, are imposed).
The homogenization of (0.1) has been studied in several papers,&herfixed, ora, is fixed.
When$2, does not vary{,, = £2 for everyn € N), it is known (see, e.g., [16,20,21], .. .) that there exists a funetivhich
satisfies analogous conditionsdp and does not depend gf, or f, such that (for a subsequence) the limit problem of (0.1) is
—diva(x, Du) = f in £,

0.2
ue wyP(2,’RM), 0.2)

i.e., it has the same structure that (0.1).
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Whena, is fixed, it has been proved in [5] (see also [2—4,6,9—-13,22,23] that for a subsequence, there exits a measure
ne Mg(.Q) (see Notations) and a Carathéodory function2 x RM — RM which does not depend ¢f, or f, such that the
limit problem of (0.1) is

we wy(2,RM)n Lh(2,RM),
/a(x,Du):Dvd.x—l—/ F(x,u)vdu = (f, v), (0.3)
2 2

Yue wyP (2,RM)n L (2,RM),

or, whenu is Radon,

—diva(x, Du) + Fx,uyu = f in D'(2,RM),
u=0 in 082.

Thus, it contains a new term which does not appear in (0.1). However, if following G. Dal Maso and U. Mosco (see [11]), we
introduce the measures, € M{)’(Q) as

oo if Cp(BN(£2\24)) >0,
0 if Cp(BN(£2\52,))=0, VB C 2 Borel,

then (0.1) is equivalent to

(0.4)

un(B) = {

un € Wy (2, RM)N LS (2,RM),
/an(x7DMn)3Dde+/ Fu(x, up)vduy = (fu, v), (0.5)
2 22

Yoe WP (2,RM)n Lh (2,RM),

for a good choice of;}, (it is enough to asl}, (x, s) = 0 iff s = 0). So, written (0.1) in this way, we see that (0.3) has the same
structure. In fact, it is proved in [5] that if,, is an arbitrary sequence ymg (£2) (not necessarily associated to a sequeBgg
and F;,, satisfy analogous properties to the functiBrwhich appear in (0.3), then the limit problem of (0.5) with = a is
still (0.3) for someF and . (F is not exactly in the same class that). Therefore, better than (0.1), let us consider in this
work the homogenization of (0.5) for arbitrany, F,, and . This has been realized in [15] when the operators are linear.
For nonlinear equations (not systems), a previous result has been obtained by Kovalevsky in [19], where the problem is written
as (0.1) for a sequence which satisfy the following hypothesis {gis not arbitrary).
There exists > 0, such that for every € C8°(.Q), there exists,, € W&”’(.Q) which converges weakly t@ in W&”’(.Q)
and it is such that

limsup [ [Vien |7 dx < v/(wuv’  lul?) dr,

n—>00
Qo

VQ C £2 closed cube.

In the present paper we prove thawjf and (F,, 1,) in (0.5) satisfy the conditions which appear in Section 2, then, for
a subsequence, there existand (F, 1) which satisfy exactly the same conditions thatand (F;,, u,) and do not depend
on f, or f, such the limit problem of (0.5) are (0.3). The idea of the proof is to compare our problem with other ones for which
the behaviour is known. The method generalize the corresponding one used by J. Casado-Diaz and A. Garroni in5] when
is fixed. It can be extended to the case of pseudomonotone operatorgMvkehnby using the corresponding adaptation of the
ideas used in [4].

In Section 5, we obtain a corrector result, i.e., an approach in the strong topoldg¥(&f, M s x) of the derivative of
the solutionu,, of (0.5). Essentially (see Theorem 5.7) we show that there exists a seqRgnee x RM — M.y, such

that if « is the weak limit inwg‘p((z, RM) of u,, solutions of (0.5), and,, is the solution of
—diva, (x, Duy) = —diva(x, Du) in £2,,
iin € WP (2,RM),
thenDiy, + R, (x, u) is a good approach in? (2, My« n) of Duy,.
From the point of view of the applications, the results exposed in the present paper can be used to study control problems

for partial differential equations in which the control variables are the coefficients and the open sets in which the equations are
posed. This is related with the selection of optimal materials and shapes.
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1. Notations

Let M, N € N, we denote byM ;. v the space oM x N real matrices. The scalar product of two matrideB € My v
will be denoted byA: B. Let £2 be a bounded open subset Bf'. For a measure. in £2, we denote byL,’j(.Q,]RiM),
1< p < 400, the usual Lebesgue spaces relatives to the measufe. is the Lebesgue measure, we wilt8(2, RM).

We denote by« (RY) the Hardy space (see [25])

HYRY) = {f e LYRN): suplh, = f1 e LYRY)},
t>0
whereh; = (1/tN)h(-/1), h € CRN), h >0, supph C B(0, 1).

The spaceD(£2) is the space o€ > functions with compact support if2. Its dual is the space of distributions §a and it
is denoted byD’(£2).

We denote byWé”’(Q,]RiM) and WP (2, RM), 1< p < 400, the usual Sobolev spaces, and By L7 (2, RM),
1/p +1/p =1, 1< p < 400, the dual ofwg’p(.Q,]RM). Wcl’p(.Q,RM) is the subspace of functions &F1-7 (2, RM)
with compact support it2. WhenM = 1, we omitR™ in these notations.

For everyA C £2, andp € (1, +00), we denote byC(, (A, 2) the C-capacity ofA (in £2), which is defined as the infimum
of fQ |Vu|?P dx over the set of the functionse Wg”’(.Q) such thatx > 1 a.e. in a neighbourhood df.

We say that a propert(x) holds Cp-quasi-everywhere (abbreviated as g.e.) in aetf there existsN C E with
Cp(N, 2) =0 such thatP(x) holds for allx € E\N.

A function u: 2 — RM is said to beC ,-quasi-continous if for every > 0 there existsV C £2, with C,(N, 2) < ¢,
such that the restriction of to £2\N is continuous. It is well known that evenye W17 (2, RM) has aC p-quasi-continuous
representative (see [17,18,26], ...). We always identifyith its C,-quasi-continuous representative.

We denote by\/ig(.(z) the class of all nonnegative Borel measures which vanish on the s€jscdpacity zero and satisfy

w(B) =inf{u(A): ACp-quasi-openB C A C 2}

for every Borel seB C £2.
The characteristic function & c R will be denoted byy . For everyk > 0, the functionT}, : R — R is defined by

k if s>k,
Tr(s)=1s if —k <s <k,
—k if s < —k.

Fors = (s1,...,sy) € RM we use the notatiof, (s) to mean
Tie () = (Tic(un), Te(w), ... Te(up)).-
Forz,s € R, we denote
tVvs=maxt,s}, t As=min{z, s}.
Let us denote by, , (respectively0,) a generic sequence of real numbers such that

lim limsup|Om | =0, lim 0, =0.
m—00 ;560 n—00

Definition 1.1. Letay, : 2 x Mpyxn = My xn be a sequence of Carathéodory functions. For this sequence, we denote by
an 2 X Mpypxn = Mpyrxn, @n =2 X My n X Mpuyxn = My n the functions defined by

an(x, &) =an(x,€):&, VEeMpyy, a.ex €S2,
an(x,£1,82) = (an(x,61) —an(x,£2)) : (61— &2), VE1L.Ep e Mpyiy. a€x € 2.

We assume there exisgs> 2, such that

() an(x,00=0, VneN, aexe;
(i) there exists a constant> 0 such that

an (x,€1,82) > alér — £217, (1.1)
VneN,V&,6pe Myxn,a.ex e $2;
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(iii) there exist two constantg > 0, o € (0, 1], and a function- € L1(£2) such that

lan (x, £1) — an (x, £2)| <y (r(0) + an (x, £1) + @n(x, £2)) P70 PG (x, £1, 2777,
VneN, V1,60 My«n, a.€x € 52.

(1.2)

Remark 1.2.Hypotheses (i), (ii) and (iii) imply:
(i) there exists a constapt > 0 and a function’ € L?(£2) such that

lan (x, £1) — an (x, £2)| <3/ (' (x) + [81] + &) PP P~ gy _ g0/ (=0),

(1.3)
VneN, V&1,6 e My «n, a.ex € £2.

In particular,a, satisfy:

(iv") there exists a constagit> 0 and a functior € LP/(.Q) such that

|an(x, )| <h() + BIEIPL, VneN, V& e Myyy, aexe Q. (1.4)

Reciprocally, if we assume (i), (i), (Iij, thena, satisfy (i) with constant$’, & and a function”. Remark tha& =o/(p — o)
only coincides witho for p =2 ando = 1.

Remark 1.3. The hypothesis (i) can be replaced hy, -, 0) belongsLP/(Q)". In this case, it is enough in the following to
replaceq, by a, defined by

an(x, &) =an(x,&) —an(x,0), VneN, VEe My, a.x € 2.

Consider a sequence of functiofg : 2 x RM — RM such thatF, (-, s) is j1,-measurable for very € RM. Analogously
to a,, we defineF), : 2 x RM — RM  andF,: 2 x RM x RM — RM py

Fn(x, s)=Fy(x,s)s, VneN, Vse RM, up-a.ex € 2 and
Fn(x, §1,82) = (Fn (x,51) — Fu(x, SZ))(S]_ —52), VneN, Vsq,s0¢€ RM, Un-a.ex € 2.

The sequencé), is assumed to satisfy:

(A) En(x,0)=0, VneN, up-a.ex € 2;
(B) Fu(x,s1,s2) = alsy—s2|P, VneN, Vsl,szeRM, Un-a.e.x € 2;
o~ o~ 717 ~
(©) |Fulx,s1) = Fu(x,52)| < v [FuCx,51) + Fu e, 5] 2P| Fox, s1.52)[ 77,
Vn eN, Vsq, 52 ERM, Up-a.ex € 2.

Remark 1.4.Analogously taq,, the hypotheses (A), (B), (C) imply:

(C') there exists a constapt > 0 such that
| Fu(x.s1) = Fa (. 52)| <y (1] + Is2l) PP 007D 5y — s/ (070,

Vsq, 80 € ]RM, un-a.ex € 2, Vne N.
In particular, F;, satisfies:

(D) there exists a constagte R such that
|Fu(x,5)| < BIsIP™L, VseRM, py-aexef, VneN

It is clear that this constant can be chosen as the same which appeafk in (iv
Reciprocally, if we assume (A), (B) and([Cthen F;, satisfy (C) for some constafitands =o/(p — o).

Remark 1.5.0ur results can be easily extended fot b < 2. In this case, (ii) and (B) must be respectively replaced by
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&1 — &2/
611277 + [£2)%—P’
sy — s2l?
511277 + [s|2— P’

an(x,£1,862) > «a VneN, V&1, € Myxn, a€exe 2, and

Fn(x, 51,82) = o VneN, Vs1,50 € ]RM, Up-a.ex € £2.

Notation 1.6.Usually, in order to write shorter expressions, we do not specify the dependencé in and F,. For example,
we writeay, (Du) to meanu,, (x, Du(x)) and F;, (1) to meanF,, (x, u(x)).
We denote byC a generic constant which only dependsonV, y andg and can change from a line to another one.

2. Preliminary results

In order to realize the homogenization of (0.1) the idea is essentially to compare our problem with other ones for which the
behaviour is known. We start this section by recalling some results related with the homogenization problem

un € Wy ()N LY (),
/Q Vitn |P ™2V, Vv dx + /Q lun P~ 2unv dpn = (£, ), (2.1)
YoewgP@)nLh (2),
where f is a given element irW—l’l’/(.Q).
Definition 2.1. For a given sequenge, in Mg(.Q), we definew, as the solution of
wy € Wg’p
/ |Vwn | P2V w, Vo dx +/ lwn 1P~ 2wyv di, =[ vdx, (2.2)
2 Q 2

Yoe Wil @)nLh@).

(2)NLE (52),

The sequence, has its norm bounded iW&”’(.Q) NL®R2)N L”n (£2) and is nonnegativ€ ,-g.e. in 2. Extracting a
subsequence if necessary, there exists a nonnegative fum:ﬁcwg‘p (£2) N L*°(£2), such thatw, converges weakly ta in

W&”’(.Q) and weaklyx in L°°(£2). Moreover the convergence is strongw@l’q(ﬂ), 1< q < p (see[12], Theorem 6.8). Itis
proved in [12] that there exists a measyre Mg(.Q) such that analogously t0,, w satisfies

we Wyl (@) nLh@),

/ |Vw|'”_2VwVvdx+/ |w|p—2wvdu=/ vdx, (2.3)
2 2 2

Yoe Wyl (@) nLh(2).

Assume that the solutiow, of (2.2) converges weakly if1?(£2) to w and consider the measugedefined in [12], such
that (2.3) holds. The following properties abaut, w andu are proved in [5,12].

Theorem 2.2.The sequence;,, the functionw and the measurg satisfy

(@) The set{wy: ¥ € D(£2)} is dense inwg‘p((z) n Lﬂ((z). Moreover, the setd of all the functions of the form
wY!_j aixk, whereq; € R and K; are closed subsets 6 such thatw = 0 y-a.e. onk; N K, withi # j, is dense
in LI (£2).

(b) For every Borel seB C £2 with C,(B N {w = 0}) > 0, we haveu(B) = +oo.

(c) Letu € Wé’P(Q) N L (£2) be and considey,, € D(£2) such thatwy,, converges strongly to in Wg’p((z) NLE(9).
Then

m— 00 n— 00

lim lim (/!V(wnwm—u)|pg0dx+/|wnl//m|'”godu,,)=/|u|'”g0du, Yo e WhP(@2)NL®2). (2.4)
22 22 22
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(d) Letu, e WhP(22) N LE, (£2) which converges weakly i1 (£2) to a functionu. Then

|iminf</|Vun|‘”dx+/|un|p dun> >/|Vu|pdx+/|u|p du, (2.5)
n—>oo

2 22 2 22
|imi&f</|wu,, —u)|pdx+/|un|pdu,,> >/|M|P dp. (2.6)
n—

2 2 2

In particular, if ””"”L{i @) is boundedy belongs toLﬁ(Q).

(e) We considep, ¢ € WP (£2) N L°°(£2) such thatpy belongs towg‘p((z). Then, we have

n%(/w(ww)wm + / |wnw|l’¢dun) = f!Wwwlpgodx +/ wis|Pp . 2.7)
2 2 2 2
nimoo<f|v(wn —w)W|pde+f|wn¢|pwdun> =[|wl//|”<0du. (2.8)
2 1?) 1?)
For every sequence, € Wé’P(Q) N LY, (£2) such that|jv, Ier (2 is bounded and converges weaklyti W17 (£2),
we have
Jm [ 190”2V T+ [ 172w i
1?) 2

(2.9)
- f IV (wy) | P2V (wy) Vop dr + f g P2 vp du,
2 2

for everyp € WL-P(2) N L®(£2).
Another interesting property af,, is given by the following proposition.

Proposition 2.3.Let g, € wlrP(2)Nn L) be a sequence which converges wealen%ll’(Q), and weaklyx in L%°(£2)
to a functionp € W17 (£2) N L%°(2) whenn tends to infinity. IV, |? is equiintegrable, we have

lim </|V(wn —w)|p<pndx+/w,",7<pn du,,) :/wpqyd,u. (2.10)
n—oQ
2 2 2

Proof. Takingw, (¢, — ¢) as atest function in (2.2), we get
/Ianl”(son — @) dx +/ [VwnlP =2V w, V(¢n — @)wy dx +/wr"f(<ﬂn —¢)du, = / wn(pn — @) dx = Oy (2.11)
Q Q Q Q

Since |Vwy |P~2Vw, is bounded inLl’/(Q) and converges in measure (Bw|P~2Vw, and V(pn — @) converges weakly
to zero inLP(£2) and its powerp is equiintegrable, an easy application of the Egorov’s theorem shows that the second term
in (2.11) converges to zero.

On the other hand,

[IVwnl? = [V(wn —w)|P| <C(IVwn P71+ Vw|P~Y) | Vw|, VreN,
where the right-hand side is equiintegrable and the left-hand side converges in medSure’tdSo, we deduce
IVwn|? — |V(wy — w)|” — [Vwl?  in LY(@).

So, the first term of (2.11) satisfies

/|an|1’<¢>n — @) dx =f|V<wn —w)|(gn — ) dx + Op.
2 2

Using these estimates in (2.11) and taking into account (2.8), we conclude (2r10).
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Although it is not needed for our purpose, we recall here the role of the sequen@nd the measure in the
homogenization of (2.1). The following theorem has been proved in [12] (see also [10]).

Theorem 2.4.Assume thaiv, converges weakly irWé”’(.Q) to a functionw (this always holds true for a subsequence

and consider the measuye which satisfie€2.3). Then, for every sequengg which converges strongly iW—l’l”(Q) to a

distribution f, the solutionu,, of (2.1) converges weakly irWé”’(.Q) and strongly inwg’q(.Q), 1< g < p, to the unique
solutionu of

ue Wyl @) nLh),

/ |Vu|'”—2Vqudx+/ Iull’_zuvduzf fudx,
2 2 2
Yoe Wyl (@) nLh(2).

Moreover, if f belongs toL*°(£2), we haveVu, — V(w,u) — 0in W&”’(.Q).

Let us now give some results related with the homogenization problem
—diva,(Vup) = f, in D'(2,RM),
1p v (2.12)
Un € WO’ (.Q, R )

where f,; isin w—Lp (£2,RM) anda, satisfy (i)—(iii) of the previous section.
The homogenization of (2.12) is given by the following theorem (see [16,20,21], ...).

Theorem 2.5.There exits a subsequenceapf still denoted byz,, and a Carathéodory functiom: 2 x My = Muyxn
such that for every sequengg which converges strongly w1 (£2) to a distribution f, the solutioru,, of (2.12)converges
weakly inW&”’(.Q, RM) to the unique solution of

—diva(Vu)=f  in D/(2,RM),
1 M
uewy?(2,RM).
Analogously taz,, the functioru satisfieqi), (i) and(iii) , for the same constants y, o and the same function

The next theorem will be frequently used.

Lemma 2.6.Assume thaf;, € Wfl’P/(.Q, RM) converges strongly imv*l’P’(sz, RM)toa distribution f and letu,, be the
solution of(2.12) Then, the sequend®u, |? x ¢ is equiintegrable for everk C £2, compact.

The proof of Lemma 2.6 is based on a simple applicatioftitdfregularity and the following result due to R. Coiffman,
P.L. Lions, Y. Meyer and S. Semmes (see [8]).

Theorem 2.7.There exists a constagt > 0 with the following propertyif A € LP (RN, RN), B e LP' RN, RN), 1 < p < o0,
are such thatliv(A) = 0 andcurl(B) = 0in D'(RY), thenA B belongs to the Hardy spadél(RN) and satisfies

1ABlpa@nyn < CIANLp@yy - 1Bl Ly @y

Proof of Lemma 2.6. Assume first thaf belongs toLl’/(Q, RM). Since the solutiom,, of
—divay(Dvy) = f  in D'(2,RM),
v € Wy (2,RM),

satisfies that,, — u, converges strongly to zero w(}'P(Q, RM), we can assumg, = f for everyn € N.
We considerp € D(£2), ¢ > 0. Since dia, (Duy)¢) is bounded inLP’(RN, RM), there exists a sequence

ym € WHP'(RN, My, ) such that
divy, = div(an (Dun)g) - and 11Vl @y agy,. < ClAV(anDune) |y @y gury-
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Taking in Theorem 2.4, and B, respectively théth row of a,, (Du,)¢ — ¥, andDuy, 1 <i < n (u, is assumed to be zero
outside ofs2), we then deduce thét, (Duy)¢ — ¥,] : Du, is bounded i1, On the other hand, by the Sobolev’s imbedding
theoremyr,, Du,, is bounded ir.” (RY, M s v) for somer > 1 and then ir¢1. Thus, the sequencg = a, (Duy) : Dung is
bounded ir{1. Since it is nonnegative, we conclude tlatiog ¢, is bounded inL1(RV) (see [7,24] and [25]). By (i) and (ii)
we deduce thaVu, |P ¢ is equiintegrable for every € D(£2).

Using that everyf € W17 (2, RM) is the limitin W—L7' (2, RM) of a sequence, € L? (2, RM), it is easy to extend
the result to the casg in W17 (2,RM). o

3. Estimates and a first representation of the limit problem

Extracting a sequence if necessary, we assumeuthaatisfies there exisb W(}*P(Q) andu € Mg((z) such that the

solutionw, of (2.2) converges weakly iw&”’(.Q) to a functionw and (2.3) holds. Moreover, we assume there existsthe
conditions of Theorem 2.5. 1
In the following, we consider sequences of distributiofise W17 (2, RM), of functionsu, € Wy (2, RM), a

distribution f € W—17' (2, RM) and a function: e Wg”’(.Q, RM) N L} ($2,RM) such that
fo— [ inwL (2, RM), (3.1)
un—u in Wy (2,RM), (3.2)
un € Wyl (2, RM)N LS (2,RM),
/Q an(Duy) : Dvdx + /Q Fn(un)vdun = (fa, v), (3.3)
Voe WpP (@, RM)n Lh (2,RM).
Remark 3.1.Usingu, as atest function in this equation, we easily deducentmaJtLZ @) is bounded, then by Theorem 2.2(d),
the functionu is in LY (£2).
We also defingi,, € W&”’(.Q, RM) as the solution of

—diva, (Dity) = —diva(Du) in D'(2,RM), -
3.4
iin € 3P (2,RM).

Our aim in the present section is to obtain some estimates dbout — i, ), which we will need later in order to obtain the
problem satisfied by.

Remark 3.2.By Theorem 2.5ji;, converges weakly ta in Wé’P(Q, RM) and by Lemma 2.6,Dii,|” xx is equiintegrable
for every compact sek C 2.

Let us now obtain an estimate fai,, |7 .

Proposition 3.3.The sequencg, satisfies

lim |Diiy|P dx =0, VK C £ compact. (3.5)
n—oo
{u=0}NK

Proof. Fore > 0 andK C £2 compact, we consider € Wcl”’(.Q, RM)yn L2, RM), 0< ¢ <1,Cp-g.e.ing2, such that

1 Cyqe. infu=0NK,
¢={ ’ (3.6)

0 Cp-g.e.infu>e/2}.
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Then, we take Ty (it;,) — T, (1))@ € Wé’P(Q, RM) k > 0, as a test function in (3.4). This gives
/ an(Ditn) : D(Tic(itn) — Ti ) p dx + / an (Ditn) = [(Tk (in) — Ty () ® Vo] dx
2 2 3.7
= {~diva(Du), (Ti(iin) — Te))p).
By the weak convergence Wé”’(fz, RM) of (Ty(itn) — Ty (1)) to zero and the Rellich—Kondrachov's theorem, we have
(—diva(Du), (Ty(itn) — Te(w))¢) = On, Vk €N,
/an(Dﬁn) (T Gin) — Te(w)) ® Vol de = 0y, VkeN.

Q
Therefore, (3.7) gives

/an(Dﬁn) : D(Tx (iin) — Ty (w)) @ dx = O,,  VkeN. (3.8)
2
On the other hand, we have

/an(Dﬁn)D(Tk(ﬁn) — Ty (u)) g dx

“ (3.9)
= /an(Dﬁn) : D(ity, — u)e dx +/an(Dﬁn) : D(Ty (itn) — itn) @ dx + /an(Dﬁn)D(u — Ty (u)) g dx.
Q Q Q
Using DTy (i) = Dity in {|iin|oo < k}, We have
1 1

‘/anwﬁn) : D (T (iin) —ﬁn)godx‘ < C< f |an (Dii)|” wdx) ! ( f |Dﬁn|Pwdx) "

Q {litn | oo >k} {litn | oo >k}
By the equintegrability of Dii,, |P ¢ and the Rellich—Kondrachov's compactness theorem we get

/an(Dﬁn) : D(Tk(ﬁn) - ’/_ln)(/’dx = Og,n-

Q
Analogously,

/an(Dﬁ,,) : D(Tx (it) — i) dx = Oy .

Q
Returning to (3.8), we deduce

/an(Dﬁn) : Dty dx =/an (Dity) : Dupdx + Oy, (3.10)

Q Q
which implies

a / |Dity|P dx < / |an(Dﬁn)||Du|dx+0n

{u=0}NK {O<|u|<e}
L 1
< </|a,,(Dfm)\” dx)" ( / |Dul? dx>” +O0p, Ve>0. (3.11)
2 {O<|u|<e}

Since

lim / |Du|? dx =0,

e—0

{O<|u|<e}

we deduce (3.5). O
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Let us now study how closBu;, is to Di,,. We start by showing (see [1,5,14]):

Lemma 3.4.The sequences, andii, satisfy

U — ity — 0in Wy (2,RM),  1<q <p. (3.12)

Proof. Lete > 0 be given. For every € N, we considet,, € (0, ) which we shall fix later an@;, D@®RM) such that

_ 1 if Iyl <en,
‘psn(y)_{o if |y| > 2¢p,

0< e, <1InRN and |V, | < C/ey. Then fory,, defined by, (v) = ¢, (y)y, we take
_ 1
Ve, (un — itn)wn € Wy'P (2, RM)n LY (2. RM)

as a test function in the difference of (3.3) and (3.4), gag(u,) € Wg’p(.Q, RMyn LY (2,RM) as atest function in (3.3).
Adding, we get

/[an (Dup) — an (D’/_ln)] : D[wsy, (un — ’/_ln)]wn dx + /[an (Dup) — an(Dﬁn)] : [wsn (un —itn) ® an] dx
2 2

+/an(Dun):D‘//an(un)dx‘F/Fn(un)(Wsn(un _’Zn)wn‘FWsn(un)) dun (3.13)
2 2

= <fna Ve, (n — Un)wn + Y, (un)) - /Q(DH)D[‘//&,‘” (un — ﬁn)wn] dx.
2

From (A) and (B), we have

/ Fn(un) e, (tn) dun = 0.
2

By (iii"), (D) and sincat, andw, are bounded irwg’p(.Q, RM)n LY ($2,RM), we deduce there exists a constaht> 0
such that

‘/[an(D Un) — an(Dﬁn)] : [Wsn (un —itn) ® an] dx‘ < Cye, ‘/ Fn(un)wp e, (un —tn) diy | < Cre. (3.14)
2 2

For the second member of (3.13), we have

(s e, un — i) wn) = O, (3.15)
/a(Du)D[wgn (un — iin)wy | dx = Op. (3.16)
2

So, by (i), (iii"), (iv'), w, bounded inL°°(£2) and the properties af, , we get
|D(un — itn)| " wy dx + / | Duy |P dx
{lun—itn|<en} {lunl<en}

, B p(p=1-0) P
<C / (' () + | Ditn| + [Dun|) P~ [D(up — itn)| P~ d

{en <lun—itn | <20}

(3.17)

e / (h() + 1 Duun|P =) [ Dty | e + { fr. W, () + 2C12 + Op.
5n<|un|<25n

Now, sinceu,, andii, are bounded irWé”’(Q, RM), there exists a constaM > 0, such that

, B p(p—1-0) _ L -1
/(V (x)+|Dun|+|Dun|) = |D(u,,—un)|l’*“dx+/(h(x)+|Dun|p )IDun|d—x<M-
2 2
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ForK €N, § > 0, we have

K , _ p(p—1-0) o,
> / (' () + | Ditn| + [Dun|) ™ 77 | D(up — it)|7~7 dx

k=1 ok 5y — it | <2 5)

+ / (h(x)+ |Dun|”*1)|Dun|dx> <M.
215 Juy <245

So, for everyn € N, there exitsk(n) € {1, ..., K} such that
, _ p(p=1-0) _ _p_
(r' (o) + |Ditg| + |Dun|) ~ 7= |D(un —itn)| 77 dx
{2k =18 Juy —it, | <28 5}

+ / (h(x) + | Dty |P )| Duy | dx <

zk(n)flg |”n | gzk(n)

M
X

Takings and K such that = 2K § and there,, = 2¢(W~15 we deduce from (3.17):

M
| D(un — iin) [P wp dx + f | Duyp |P dx < Cx+ C12KH5 - (fu, e, un)) + On.

{lun—itn | <5} {lun|<é8}

Let us pass to the limit in this inequality, for this purpose, sittgg(u,,) is bounded irWé”’(Q) by a constant which does not
depend orK nor ind and|y, (un)] < 2¢;,, we can assume (it is true for a subsequence) that there e%i%ts W&”’(.Q) such
that v, (u,) converges weakly ta%, s in W&"”(Q). Moreover,u} 5 is bounded inWé"”(Q) and satisfiegu’, ;| < 2Ks. So

for everyK > 0, u’ , converges weakly to zero M’g‘p(fz), whens$ tends to zero. Thus, taking the limit, firstin then ins
and then ink , implies
lim |imsup< / | D(un — itn)| P wy dx + / |Duy|P dx) =0. (3.18)
3—0 n—oo
{lun—itn| <8} {lun <8}

Let p, 8 > 0 be, two parameters devoted to converge to zero, and congiderD(£2), 0 < ¢, < 1 in £2 which pointwise
converges to 1 im2. Forq € [1, p), we get

/|D(u,, —itp)|? dx

2
g wn q/p g
- |D(un — iin)| - dx + |D@up —iin)|T¢p dx
it —itn| <8)N{p<w) {1t <8}N{w=0}
q
_ w 4
+/|D(un — )| (1— (f) X{p<w){jun —itn| <8} —<0p><{|un|<a}m{w=0}> dx
1 7 P=q 7 P=q
_ P p—q _ P p—q
< | D — iin)|Pwn dx) 2|7 +c f | Dun —un>\”¢pdx) 12|77
P lun—itn|<8) {lun] <8N {w=0}
P—q

% w % 1’5‘1 T
+ <f|D<un - ﬁn)|de> (/(1— (;") X{p<wNf{lup —itn] <8} — %X{w=0}n{|un|<6}> dX> :
2 2

Since{w = 0} is contained in{u = 0} (this is consequence of Theorem 2.2), (3.5) and (3.18), taking the limit in the above
inequality first whem tends to infinity, then whe#d tends to zero and then whentends to zero, we conclude that — i,
converges strongly to zero iW1-4(2). O

Corollary 3.5. The sequence, (Du,,) satisfies

an(Duy) — a(Du) in L7 (2,RM). (3.19)
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Proof. By (iii’) and (3.12)a, (Duy) — an(Diin) converges to zero in” (2, RM), 1< r < p’. Sincea, (Duy) is bounded in
LP’(.Q, RM) anda, (Diy) converges weakly ta(Du) in LP’(.Q, RM), we conclude (3.19). O

The following lemma replaces Lemma 6.6 in [5] (see also Lemma 2.5 in [2]) and permits to obtain a first representation of
the limit problem of (3.3).

Lemma 3.6.For everyp € D(£2), ¢ > 0 Cp-g.€. ins2, we have

n—oo

Iimsup( [1pn =~ odc+ [y dun) <c [uredu (3.20)
2 2 2

Proof. Let w, andw be respectively the solutions of problems (2.2) and (2.3). For evenye N, we define

Wn
Wpm = ——— 7 -
wv1l/m

By Theorem 2.2(a), it is easy to show that there egifse Wg”’(.Q, RM) N L% (2, RM) which is zeroC-g.e. infw < 1/m}

and such thaivy,,,, converges strongly te in Wé”’(fz, RM)n Ll (2, RM).
For everyn, m € N, we definei, ,, as the solution of the problem

—divay (Ditn,m) = —diva(Dwy)) in w2 (2,RM),

(3.21)
finm € WP (2, RM).

By Lemma 2.6 and sincav;,, converges strongly in/Vé’P(Q), we easily have that for every compact gétc 2,
|Viy m|P xk is equiintegrable (im andm).
Forp e D(£2), ¢ >0 Cp-g.e. ins2, we take

[in = W T i) 9 € Wo P (2, RMY N L, (2, RM)

as a test function in (3.3). This gives

[“n(Dun) . D[”n - wn,me (ﬁn,m)]¢dx +/an (Dup) : ([un - wn,me (ﬁn,m)] ® VQD) dx
2

$2 (3.22)

+ [ Fn(un)[un — Wn,mTm (ﬁn,m)]ﬁod/"n = <fn7 [un - wn,me(ﬁn,m)]§0)7
2

where using thalu, — wy,m Tm (ity, m)] converges weakly irW&’”(.Q, RM) to zero whem and thenm tends to infinity, it is
easy to see that the second and fourth terms are eq@gl tp Thus, we have

[“n(Dun) : D[”n - wn,me(ﬁn,m)]ﬁod—x + [ Fn(un)[un - wn,me(ﬁn,m)]‘/)dﬂn =Om,n. (3.23)
2 2
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This implies

/an(Dun):D(un —ﬁn)fde+/Fn(un)un¢dun

2 2
= [an(Dun) . D[wn,m T (ﬁn,m) - ﬁn](/’dx + [ Fn(un)wn,me (ﬁn,m)(/’ dl’vn + Om,n
2 22
= [an(DMn) DT (Un,m) (Wn,m — D dx +/an (Dup) : D[Tm (ttn,m) — l/_ln,m]‘/’dx
2 2
V(wy — w) (3.24)
+ /an(Dun) . D(ﬁn,m - lzn)QDd—x +/an(Dun) : <Tm(ﬁn,m) ® 7]_)‘/7(1’6
2 2 v
. - (w —wp) . -
+ an(Duy) : (Tm(un,m)®vw)7‘/7dx+m an(Dup) : (Tm(un,m)®vw)§0d—x
{w>1/m} {w<1/m}
+ / Fn(un)wn,me (ﬁn,m)(/’dl’vn + Om,n-
2

Let us estimate the first term of the right-hand side of (3.24). It can be descomposed as

an(Dup) : DTy (tn,m) (Wn,m — Dpdx + [ an(Dup) : DTy (ln,m) (Wn,m — Do dx, (3.25)
{0Sw<1/m} {w>1/m}
where from (3.5) applied t@, , the first term tends to zero whertends to infinity, for everyn € N. The equintegrability of
|Dity,m |P ¢ and the convergence in measurgof, m — 1)@ xw>1/m t0 zero also implies that the second term in (3.25) is equal

to O, (use Egorov’s theorem), for eashe N.
From the equiintegrability ofDii,, ,, | ¢ we easily show

/!D(ﬁn,m - Tm(ﬁn,m))|p</7dx = Om,n,
2

and then, the second term in the right-hand side of (3.24) is equa), tp.
Usingii, — iin,;m as a test function in the difference of (3.4) and (3.21), we deduce

[!D(ﬁn - ﬁn,m)|pdx = 0m,n~
2

Thus, the third term in (3.24) is equals @&, , . The fifth and sixth terms of (3.24) converge clearly to zero wheands to
zero for everyn € N (use thaty,,, =0 Cp-g.e. inw < 1/m).
Now, by (iii") we have
|[an (Dun) = an (D (un — in)) ] D(un — itn) |¢
' L ) R B (3.26)
<Y/ (r' @)+ 1Dun| + [DCun — @n)[) 7= |Ditn| =7 | D(un — iin) g,

where from Lemmas 2.6 and 3.4, the right-hand side tends to zerd(@, RM) and then
[an(Dutn) — an(Dun — @n))] : D@y —iin)p — 0 in L1(2,RM).
Analogously, we can prove

(a0 (D) — an (Dt — 1)) L2220 in L1(2, RM).
w

m

So, from (3.24) and the properties@f and F;,, we get

/!D(un_’Zn)|p§0d—x+/|un|p‘/7dﬂn
2 2
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IV (wn — w)|

wv 1/m ‘Tm(ﬁn,m)“/’dx

<c/[h<x>+ DG — itn)|” 1]

+Cf|”n|p Vl/ |Tm(unm)|§0dﬂn+0mn

=
C(/ID(un—u)\‘"wdx+/lun|”<pdun>

1
T; P p
</|V(u}n - |(ul:1\(/u;.l/l:1))|p pdx + %‘Tm (in, m)‘ (/’dx> + Om.n,
2

where we have used th&(w, — w) converges to zero in measure and then, tWa, — w)| converges weakly to zero in
LP (22, RM). Young's inequality and Proposition 2.3 imply

/‘D(un_ﬁn)‘p¢dx+/|un|p‘/7dﬂn

T ( P wp |P _
<C(/A|v(w"_1’U)|")M(/’dx+/‘L‘Tm(url,m)‘ln/’(bf) + Omn
2 2

(w vV 1/m)P (w vV 1/m)P

= C/Tm(w‘//m)pﬁodﬂ + Omn = C/ [ulP o du + Om,n.
Q
This finishes the proof of (3.20).0

Lemma (3.7) gives a first representation of the problem satisfied by

Theorem 3.7.Assumg(3.1), (3.2) and (3.3). Then there exists @-measurable functiord € Lﬂ,(Q,RM), such thatu is
solution of the variational problem

we wyP(2,RM)n Lh(2,RM),
/ a(Du):Dzdx+/ Hzdu=(f.2), (3.27)
2 2
vze Wyl (2,RM) N Lh (2, RM).
The functionH satisfies
|H| < Clu|P~! p-ae.in2 and (3.28)

/wa// du :nlmoo</a,, (D(un - ﬁ,,)) : (1// ® V(w, — w)) dx + / Fy (uy)wn du,,), (3.29)
2 2 2

for everyy € WP (2, RMyn L2 (2, RM).
Proof. Fory € WhP (2, RM) 0 L°(22, RM), we takew, ¥ as a test function in (3.3). This gives

/an(Dun):Dlpwndx—l—/an(Dun):(¢®Vw)dx+/an(Dun):(w®V(wn —w))dx
2 22 2

+ / Fu(up)wp du = (fn, wp ).
2

(3.30)

The strong convergence W—17 (2, RM) of f£,, implies

(fu, wn¥r) = (f, wi) + On, (3.31)
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and Corollary 3.5 easily gives

/an(Dun) : Dyrw, dx + /an(Dun) (Y @ Vw) dx = /a(Du)D(ww)dx + Oy.
2 2 2

On the other hand, reasoning as in (3.26) (in the proof of Lemma 3.6), we get
[an (Dun) — an (DCun — )] : [¥ ® V(wn —w)] — 0 inL(2,RM).

Therefore, by (3.30), we get

/a(Du)D(ww)dx + /an (D(Mn - l/_ln)) : [w ® V(wn — w)] dx + / Fn(un)wn ¥ dun = (f, wiy) + Op. (3.32)
2 2 2

In order to characterize the second term in (3.32) we use

[l (9 = )| = w3 e+ [ )]l < .
2 2

So, there exists a vector Radon measuseich that fon) € C.(£2, RM), we have

/de =n[)moo</an(l)(un - ﬁn)) : [lﬁ ® V(wy — w)]dx + f Fn(un)wn dﬂn>~
2 2 2

By (iv'), (C'), Holder inequality) V(w, — w)| converging weakly to zero in? (£2), (2.8) and (3.20), we get

oo
2

< /[h‘f'ls!D(un_ﬁn)|p_l]|v(wn_w)||w|dx+C/|Mn|p_1wn|¢|dl’vn+0n
2 2

p-1
P

1
<C</\D(un —itn)| Py | dx +/ |un|P|w|dun) (/IV(wn —w)|P|y|dr +[w£’|w|dun)" + Oy
2 2 2 2

p-1 1
<C</|u|f’|w|du) ! (/wmwdu)".
2 2

Using the derivation theorem for measures (see [17,26]), it is easy to deduce that there gxiseasgurable vector function
G=(Gq,..., G py) such that

/wdv=/Gwdu, vy e Ce(2,RM) and |G| <ClulP~tw p-ae.ing.
2 2

Defining thenH = G/w € Lﬁ,(fz, RM), we deduce thaH satisfies (3.28) and

n—oo

lim </an(D(un_"_‘n)):[W@V(wn_w)]dx‘F/Fn(un)wnwdﬂn)2/‘//dV=/HdeM,
2 2 2 2

Vi € Co(£2,RM). So, from (3.32) we get
/a(Du)D(wW)dx—F/le//dM: (f, wir), (3.33)
2 2

for every ¢ € Wé’P(Q, RM) N C.($2,RM). By Theorem 2.2(a), we conclude thasatisfies (3.27). Returning to (3.32), we
deduce that (3.29) holds far in W27 (2, RM)nL>®(2,RM). O
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4. Dependence off with respect tou

As in the previous section, we considser, u, f,, and f which satisfy (3.1)—(3.3). We also considsr, g,, v andg such
that

gn, g € WL/ (2, RM), 4.1)

gn— gin WL (2, RM), '

vn € W'l (20, RM) N LE, (2, RM),

/Q an(Dvp)Dzdx + /Q Fu(vp)zduy, = {gn»2), (4-2)
vze Wyl (2, RM)nLE (2,RM),

ve WLr(Q RMYN LY (2, RM),
(2, BM) 0 Lf(2,BY) “s)

vy, = vin Wg’p(.Q,RM).
As for u,,, we defineu, € W&’p(Q,RM) by

—divay (Do) = —diva(Dv) in WLr' (2, RM),

(4.4)
iy € WyP (2,RM),

By Theorem 3.7, there exits two-measurable functiond, H' € L;'Z,(.Q, RM), such that: andv respectively satisfy

/a(Du):Dz—F[sz;L:(f,z), vze WP (2, RM)nLh (2, RM) and (4.5)
2 2
[a(Dv):Dz—l—/H/sz:(g,Z), vze Wy (2, RM) nLh (2, RM). (4.6)
2 2

Our aim in the present section is to prove Lemma 4.2, where we estimate the differddianadfr’. First, we show:

Lemma 4.1.For everyp € D(£2), we have

n@lo(/&”(l)(”" _b_in))(/’dx'i—/fn(un)‘/’dl’vn) =/Hu(pdﬂ, (4.7)
2 2 2

nll)mm</an(D(un —ip), D(vy — ﬁn))‘/’dx + / Fn(um Un)‘/’dl’vn) = /(H - H/)(u —v)pdu. (4.8)
2 2 2

Proof. Forg € D(£2), we take(u, — v,)e as a test function in the difference of (3.3) and (4.2). This gives

[an(Duna Dup)gp dx + [[an (Duy) — an(DUn)] : [(un — ) ® Vgo] dx + / Fn (un, vn)e dun
2 2 2
= <fn — 8n, (un — Un)§0)~

(4.9)

In the second term of (4.9), we use that(Du,) and a,(Dvy,) respectively converge ta(Du) and a(Dv) weakly in
LP’(.Q, RM). Using also the Rellich—-Kondrachov’s compactness theorem, we get

/[an(Dun) —an(Dvy) ] : [(un — vp) ® Vo] dx = /[a(Du) —a(Dv)]: [(u—v) ® Ve]dx + Oy. (4.10)
2 2

For the fourth term of (4.9), we have

<fn — 8n, (un — Un)§0)=<f_g, (u— U)§0)+ Onp.
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The first term of (4.9) is the most difficult to estimate. We use

fﬁn(Dun, Dup)gdx
2
= [[an (Dup) — an(DUn)] :D(up — v — iy + Op)p dx + [[an (Duy) _an(Dﬁn)] : D(ity — vn)e dx (4.12)
2 2
- /[an (Dvp) — an(Dl_)n)] : D(ity — vp)e dx + /[an (Dity) — an(Dl_)n)] : D(ity, — vp)e dx.
2 2
In the first term of the second member of (4.11) we use that
(an(DMn) —dan (D(un - ﬁn))) :D(up — vy — ity + Up)g

is equiintegrable and by Lemma 3.4 pointwise converges in measure to zero. So, it converges strongly thxezolti/).
Reasoning analogously with

(an(DUn) —dan (D(Un - 1_)11))) 2 D(up — vp — lp + V),

we get
/[an (Dup) _an(DUn)] :D(up — vp — tip + Op)p dx = /an (D(un —itp), D(vy — 1_)n))§0d—x + On. (4.12)
2 2

For the second term of the right side of (4.11), we use &dhé&Du,) — a, (Dii,), converges weakly to 0 in? (2,RM) and
strongly inL" (2, RM) for 1 < r < p’ (use (iif) and Lemma 3.4). Since the powgrof D(ii, — )¢ is equiintegrable, the
Egorov’s theorem implies

/[an(Dun) —an(Ditp)] : D(ity — ) dx = Op, (4.13)

Q
and analogously

[[an(Dvn) _an(Dﬁn)] 1 D(ity, — Up)e dx = Oy.
2

For the fourth term of the right-hand side of (4.11), taking — v,,) as a test function in the difference of (3.4) and (4.4), we
easily get

/’d,,(Dﬁ,,, D) dx = /’d(Du, Dv)pdx + O,. (4.14)
Q Q
So, from (4.11) we get

/’d,,(Du,,, Dv,)pdx = /’d,,(D(un —iin), D(vy — V)@ dx + /E(Du, Dv)p dx + 0,,. (4.15)
2 2 2
So, (4.9), (4.10) and (4.15) give

/[Q(Du) - a(Dv)] : D((u - U)‘P) dx + /an(D(un — ), D(vy — ﬁn))‘ﬂdx + / Fn(unv Un) @ ditn
2 2 2 (4.16)
=({f—¢& w—v)g)+ On.
On the other hand, usin@ — v)¢ as a test function in the difference of (4.5) and (4.6) we have
/ (a(Du) — a(Dv)) : D((u — v)g) dx + [ (H—H)u—vpdu=(f - g u—v)p). (4.17)
Q

Q
From (4.16) and (4.17) we deduce (4.8). In order to obtain (4.7), it is enough to take im(48), =v=0. O

Lemma 4.2.The functionsd and H’ satisfy the following inequalities
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(H-—H)Ywu—-v)>alu—v|?, p-ae.inf2 and (4.18)
p—1l-0o a
|H—H'|<y(Hu+H'v) » [(H—H)u-v)]r, p-ae ing. (4.19)

Proof. In order to obtain (4.18), we use (4.8) and the properties (ii) and (&), @nd Fy. Then, forp e D(£2), ¢ > 01in £2,
we get

0‘/|D(un — Uy — ity + )| e dx +a/ lun — vl @ duy < /(H — H')(u—v)pdu. (4.20)
Q Q Q
Let us estimate the left-hand side of (4.20). For that, we take a sequipce D(£2), such thatwyy,, — u — v in
W(}*P(Q, RMyn L] (2,RM) (use Theorem 2.2(a)). By convexity, we have

/|D(un — Uy —lUp +l_)n)|p(/’dx+/|un — vn|P o dun
2 2
> /|D(wnwm —u+v)|[Ppdx +p/|D(wnwm —u+ )P 2D Wy — u+v) : D2y e dx (4.21)
2 2

+/ [wn Y|P @ din +I7/ |wnWm|p72wn‘//m(un — Up — Wp¥m)@ Ay,
2 2

wherez, m =up — vy — iy + Uy — Wp¥m +u — v.
By (2.4), we deduce

/|D(wnlﬁm _u+v)|p§0d—x+/|wnlﬁm|p§0dﬂn >/|u_v|p§0d/"+0m,n- (4.22)
2 2 2

On the other hand, for every € N, we have that
| DCwn Wi — 1+ )P 2D (wn¥im — 1+ v)p — | D) | P 2D wn )¢

pointwise converges a.e. and hag’th power equiintegrable. So, it converges strongly}ﬁ(ﬂ, RM). Thus,

/|D(wn¢m —u+ U)|p_2D(wn¢m —u+v):Dzpmedx + / |wn¢m|p_2wn¢m(un — Un — Wn¥m)e dun
2 2
= /|D(wn¢m)|p_2D(wnwm) i D(up — vp — wpPm)e dx + / |wn1ﬁm|p_2wn¢m(un — Up — wa¥m)e dun
2 2

- /|D(wnwm)|”‘20(wnwm) : D(ity — p — u+v)@dx + Op .

2
(4.23)
By (2.9), we have
/|D(wn¢m)|p_2D(wnwm) : D(up — vp — wp¥m)@ dx + / |wn¢m|p72wn1ﬁm (un — vn — wn¥m)@ dun
o o (4.24)

= Om,n-

Using that for everym € N, |D(w,,x//m)|P*ZD(w,,wm) converges weakly irLP’(.Q,RM) and strongly inL" (2, RM) for
1<r < p’ and thatD(it, — ¥, — u + v)e converges weakly iL?(£2, RM) and its powerp is equiintegrable, the Egorov’s
theorem gives

/‘D(wnlﬁmﬂpizD(wnWm) :D(itp —vp —u+v)pdc =0y, VmeN. (4.25)
2

Thus, (4.20), (4.21), (4.22), (4.23), (4.24) and (4.25), imply

a/lu—vlpdeS/(H—H’)(u—v)sodu, VYo e D(2), ¢ >20in 2.
2 2
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An easy application of the derivation measures theorem then gives (4.18).
Let us now prove (4.19). By (3.29) and Holder's inequality, for everg W27 (2, RM) 0 L (2, RM), we have

V(H - H’)wwdu‘
2

< ‘/(Gn (D(Mn - l/_ln)) —dan (D(Un - ﬁn))) : [lﬁ ® V(wy — w)] dx‘ + ‘/(Fn(un) — Fy (Un))wnw ditn | + On
2 2

r=1 1
<L 1) + O,

(4.26)
with

L= f!an(mun—ﬁn>)—an(0(vn—6n))|ﬁ|x/f|dx+f|Fn(un>—Fn<vn)|ﬁ|w|dun and
2 2

Iy = f!wwn—w)|P|x/f|dx+f|wn|"|xp|dun.
2 2

By (1.2), (3.12) and (C), we can write

P . _ . _ p=l-o | _ -2
Ip < yrt /(an(D(un _un))+an(D(Un _Un))) p-1 an(D(un —itp), D(vy —vn))"*llwldx
2
P ~ -~ p=l-o _o
+V"71/(Fn(un)+Fn(Un)) P=1 Fy(un, vn) P~ 1Y | dpn + On
2
p—l-0 o

N

y 7" 1 4 O,

with

I3

/(&n(mun —iip)) + an (D (v — 0))) | dx +/(Fn<un) + Fy(v)) || duy,  and
2 2

Iy = /EH(D(un_ﬁn)vD(Un_1_)n))|‘//|d—x+/Fn(unavn)|‘//|dﬂn-

2

Q

From (4.7) and (4.8), we get

p—l-0o g
p—1

(/(H —H)u— v)llﬁldﬂ)ﬁ + Op.
2

<yl (/(Hu+ H’v)|w|du>
2

On the other hand, by (2.8) we have

Izszpwdu—i— Oy.
Q
Using in (4.26) the estimates obtained ferand 7> and applying the derivation measures theorem we easily deduce (4119).

5. The homogenization and corrector results

In this section, we will obtain a representation theorem for the functiowhich appears in Theorem 3.7. Indeed, from
Lemma 4.2, the pointwise values ofi(x) depend only on the pointwise values ofx), i.e., there existsF" such that
H(x) = F(x,u(x)) u-a.e. in$2, but F is only defined on the pairérg, sg) such thatsg = u(xg), whereu is the limit of a
sequencer, which satisfies (3.3) for somg, which converges strongly inl'P,(.Q, RM) to a distributionf . The following
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lemma shows that the set of suct, sg) is dense ifw > 0} x R™. The result is analogue with Theorem 6.9 in [5] and has
a similar proof. So, we do not prove it.

Lemma 5.1.For everyg € QM and everyn, n € N, we denote by," the solution of the problem
gm e WpP(2,RM)n Lh (2,RM),
[ antoaryvr+ [ Fular)odin =m [ [lonal”~2ung g 1727 Joc, 51
1,
vve Wy P (2, RM)n Ll (2.RM).
Then, there exists a subsequence,dftill denoted by:, such that for every: € N, the sequence)’ converges to a functiog™

weakly in W&”’(.Q,RM). This sequence™ converges tawg strongly in W&”’(.Q,RM) N L} ($2,RM) and there exists
a u-measurable functio®@™, such thay™ satisfies

g" e WP (2,RM) n L (2,RM),
/Q a(Dg™)vdx + '/;2 OMvu=m /Q[lwap_zwq — g™ |1’_2qm]vdx, (5.2)
Voe Wyl (2,RM) 0 LE (2, RM).

The sequenc@™ converges strongly irZL;'Z,(.Q, RM) to a functionQ.

Definition 5.2. We consider the subsequence:agiven by Lemma 5.1. Then, we defite: 2 x Q¥ — RM by

Fx,q)=0x), VgeQM, p-aexen.
By (3.28), (4.18) and (4.19) it is easy to show that for everyg, € Q™ andp-a.e.x € 2, we have

F(x,00=0, (5.3)
(Fx.q2) — F(x.q1)) (g2 — q1) > alg2 — g1/ w(x)”, (5.4)
|F(x,q2) — F(x, qD)| < C(F(x, q1)q1 + F(x,92)92) e [(F(x.q2) — F(x,q1)) (a2 — q1)| 7 (5.5)

From (5.5), we can extend by continuiyto 2 x RM . We then defing : 2 x R® — RM by

| Fx,s/wx)) if wx) >0,
Fx,9) = {O if w(x)=0.
Analogously taz, and F,,, we respectively note b : 2 x RM — RM andF: 2 x RM x RM — RM the functions:
F(x, s)=F(x,s)s, F(x, 51,82) = (F(x, s1) — F(x, sz))(sl —52),

Vs, s1,s0 € RM | y-ae.x € 2. For everysq, so € RM andpu-a.e.x € £2, the functionF (as usual, we do not specify the
dependence on) satisfies

F(0)=0, (5.6)
e e p—1l-o0 o

|F(s2) — F(s1)| < C(F(s1) + F(s2)) 7 |F(s2,51)|7. (5.7)

F(sp,51) > alsoy —s1|P, Vs, s0 eRY, p-aexe Q. (5.8)

Theorem 3.7 and estimate (4.19) give the following homogenization result for problem (3.3). The proof is similar to the
corresponding one of Theorem 2.1 in [2].

Theorem 5.3.We consider the subsequencenafiven by Lemm&.1 and the functionF given by Definitiorb.2 Then, for
every sequence, € W—L7' (2, RM) which converges tg in W17 (2, RM), the solutioru,, of
un € WyP (2, RM) N LE (2,RM),
/Qan(Dun):Dvdx—|—/F,,(u,,)vd,un=(f,,,v), (5.9)
Q
vue Wy (2,RM)n L (2,RM),
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converges weakly iWé”’ (22, RM) to the unique solution of
we Wy (2,RM)n Lh(2,RM),
/ a(Du):Dvdx+/ Fwvdu = (f,v), (5.10)
Q Q
Yue wyP (2,RM)n L (2,RM).

To finish the paper, we give in the present section a corrector result (i.e., an approach in the strong topology of
LP (82, My n)) of the gradient of the solutions, of (5.9). We will use the following estimate.

Lemma 5.4. We consider the subsequencemofyiven by Lemma.1 Assumeu,, v, € W&”’(Q,RM) NLL (2,RM),

Furgn e WLP (@ RM), uve wg’”(sz,RM) NLL2,RM), f,¢ e w17 (2,RM) such that(3.1)~(3.4) (4.1)—(4.4)
hold. Then

pp—l-o

pp=1-0) P
Iimsup</|D(un B T — T +17n)|p(pdx +/ ltp — vnlp(pdun> < C/(lul + )P Ju—v| P pdu,
2 2 2

n—oo

(5.11)
Vo e D(£2), ¢ =2 0.

Proof. The result follows from (4.8), the properties (ii) and (B)afand F,,, Theorem 5.3 and (¢ (applied to the functiorF
which appear in Theorem 5.3).0

Definition 5.5. We consider the subsequence mfgiven by Lemma 5.1. For any,,n € N and s € RM, we define
R":2 xRM — My, n by

R (x,s) = Ds)' — D(5p) a.e. in2, (5.12)
wheres))" is the unique solution of
smewyP (2, RM)nLh (2,RM),
/ an(Ds)y') : Dvdx +/ Fy (s,’l")vdu,, = m/ [|w,,s|P*2w,,s — |Agr’l"|P*2s;l"]v dx, (5.13)
Q Q Q
voe Wy (2, RM)n L] (2,RM),
ands,, is the unique solution of
—divay(Dsy) = —div a(sw) in W2 (2,RM),
S Wyl (2,RM),
By Theorem 5.3, the sequengg converges to the unique solutiefi of
1,
s™ e Wyl (2, RM)n LY (2, RM),
/ a(Ds™) : Dvdx —|—[ F(x,s™)vdu = m/ [|ws|p72ws - |sm|p72sm]vdx,
Q Q Q
1,
vve Wyl (2, RM)n Ly (2.RM).
Reasoning as in Lemma 5.1, we deduce

st — swin W&’p(.Q,RM) ﬁLz(.Q,RM).

Remark 5.6. The functionR) (x, s) is measurable im for s fixed but in general is not continuous srfor x fixed. Hence R}
is not a Carathéodory function.
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The following result gives an approach i (2, M ) of the gradient of the solutiom, of problem (3.3).

Theorem 5.7.Let n be the subsequence ofgiven by Lemmd&.1 Then, there exits a constaat > 0 which satisfies the
following property

Consider f;, € Wfl’P/(.Q,]RM) which converges strongly tg in Wfl’P/(.Q,]RM) and defineu,, u, i, respectively
by (3.3), (5.10)and (3.4). Then, for every simple functiop = Zﬁzlsixlgi with s; e RM | K; c £ compact andw = 0
p-a.e.onk; N K;,i# j, we have

pp=l-0c

limsup lim / |D(up —itn) — R (x, ¥)| P dr < / (lul + lwy )~ 7 )|u—wl//|ﬂ%a du. (5.14)

m—>o0 N>
! I
Uiz Ki Uiz Ki

Proof. Let s € R given. Using the definitions (5.12) and (5.13) Bf’ ands™, Lemma 5.4 implies that for any function
¢ € D(£2), 9 >0, and anyn € N, we have

1-o

. plp=l-o) _r_
limsup | |D(itn —s') — D(u —5")| o dx < C/(|u| +1s™) P Ju—s"77 pdu, (5.15)
n—oo

2

wheres," is the solution of
—divay, (DE,Z”) =—diva, (Dsm),
sm ey ().

Using thats™ converges strongly tas in Wé’P(Q, RM)n Lﬁ((z, RM), we easily deduce from (5.15)

p(p=1-0) .
limsuplimsup | |D(un — iin) — R (x, 5)|7 dx < C/(|u| +lswl) P77 Ju—sw|?P du (5.16)
m—0o00 n—>0oo

K

for every compact sek C £2.
If now ¢ = Zﬁzlsixlgi is the function which appears in the statement of Theorem 5.7, then, writing (5.16) f6r and
adding ini, we deduce (5.14). O

Remark 5.8.The meaning of Theorem 5.7 is that
u
~ 7 m p—
Dy ~ Diiy + R" (x, w)
in LP (2, RM), howeverR)" (x, u/w) is not well defined (see Remark 5.6). So, we need to write (5.14).

Analogously as it has been proved in [5], there are some properties, about the seguesdgomogeneity (Proposition 5.9)
or linearity (Proposition 5.10) which are inherited by the functiéhanda in the limit problem. More exactly, we have:

Proposition 5.9.Leta;, and (F;, uy) in the conditions in Sectio® Let us also assume the following homogeneity conditions

an(x,7&) = AP %han(x,£), VEe Mpyxn. VAR, aex e 2,
Fo(x,As) = AP 20F,(x,s), VseRM VieR, ae.xe.

Under these hypotheses, in Theorgrdithe functions: and F satisfy the same homogeneity conditions.
In the linear case, we analogously have:

Proposition 5.10.Let us consider now that the functiomg(x, £) are in the formu,, (x)&, wherea, (x) are measurable functions
in 2, valuated in the space of the linear functionshi,, .y and satisfythere exists two constanis y > 0 such that

1
an(x)(§1—82): (61— 862) > max{a|§1 — &2 " |an (x) (1 — %‘2)|2}, VneN, V&1, 6 e My«n, a.e.x € £2.
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For a given sequence,, € Mg((z), we also assume that the functioRs are linear in the second argument, i.e., of the form
F,(x)s, were F,, are u,-measurable functions if? valuated in the space of the linear functionsRi{ and satisfy

1
Fu(x)(s1 — s2)(s1 — s2) = max{ozlsl - 52|2, —|Fn(x)(sl - 52)|2}, Vn eN, Vsq,s0 € RM ,-aexef.
Y

Under these hypotheses, it can be proygee[5]) that the functiong” and « in the limit problem(5.10) satisfy the same
conditions of linearity with the same constants.
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