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Abstract

We study the asymptotic behaviour of the solutions of nonlinear Dirichlet systems when the operators and the open sets
where they are posed vary simultaneously. We obtain a representation of the limit problem and we prove that it is stable by
homogenization. A corrector result is also given. 2002 Éditions scientifiques et médicales Elsevier SAS. All rights reserved.

Résumé

On étudie le comportement asymptotique des solutions des systémes de Dirichlet non linéaires quand ils varient
simultanement les opérateurs et les ouverts oú les problémes sont posés. On obtient une représentation du probléme limite,
laquelle on montre qui est stable par homogénéisation. On donne aussi un résultat de correcteur. 2002 Éditions scientifiques
et médicales Elsevier SAS. All rights reserved.

Keywords:Homogenization; Nonlinear systems; Perforated domains

Mots-clés :Homogénéisation ; Systémes non linéaires ; Domains perforés

Introduction

Our interest in the present paper is to study the homogenization problem{−divan(x,Dun)= fn in D′
(
Ωn,R

M
)
,

un ∈W1,p
0

(
Ωn,R

M
)
,

(0.1)

where an :Ω × MM×N → MM×N is a sequence of Carathéodory functions which define monotone operators in

W
1,p
0 (Ω,RM) andΩn is a sequence of open sets which are contained in a fixed bounded open setΩ ⊂RN (no more hypotheses

aboutΩn are imposed).
The homogenization of (0.1) has been studied in several papers, whenΩn is fixed, oran is fixed.
WhenΩn does not vary (Ωn =Ω for everyn ∈N), it is known (see, e.g., [16,20,21], . . . ) that there exists a functiona which

satisfies analogous conditions toan and does not depend offn or f , such that (for a subsequence) the limit problem of (0.1) is{−diva(x,Du)= f in Ω,

u ∈W1,p
0

(
Ω,RM

)
,

(0.2)

i.e., it has the same structure that (0.1).
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Whenan is fixed, it has been proved in [5] (see also [2–4,6,9–13,22,23],. . . ) that for a subsequence, there exits a measure
µ ∈Mp

0 (Ω) (see Notations) and a Carathéodory functionF :Ω×RM→RM which does not depend offn or f , such that the
limit problem of (0.1) is

u ∈W1,p
0

(
Ω,RM

)∩Lpµ(Ω,RM),∫
Ω
a(x,Du) :Dv dx +

∫
Ω
F(x,u)v dµ= 〈f,v〉,

∀v ∈W1,p
0

(
Ω,RM

)∩Lpµ(Ω,RM),
(0.3)

or, whenµ is Radon,{−div a(x,Du)+ F(x,u)µ = f in D′
(
Ω,RM

)
,

u= 0 in ∂Ω.
(0.4)

Thus, it contains a new term which does not appear in (0.1). However, if following G. Dal Maso and U. Mosco (see [11]), we
introduce the measuresµn ∈Mp

0 (Ω) as

µn(B)=
{+∞ if Cp(B ∩ (Ω\Ωn)) > 0,

0 if Cp(B ∩ (Ω\Ωn))= 0, ∀B ⊂Ω Borel,

then (0.1) is equivalent to
un ∈W1,p

0

(
Ω,RM

)∩Lpµn(Ω,RM),∫
Ω
an(x,Dun) :Dv dx +

∫
Ω
Fn(x,un)v dµn = 〈fn, v〉,

∀v ∈W1,p
0

(
Ω,RM

)∩Lpµn(Ω,RM),
(0.5)

for a good choice ofFn (it is enough to askFn(x, s)= 0 iff s = 0). So, written (0.1) in this way, we see that (0.3) has the same
structure. In fact, it is proved in [5] that ifµn is an arbitrary sequence inMp

0 (Ω) (not necessarily associated to a sequenceΩn)
andFn satisfy analogous properties to the functionF which appear in (0.3), then the limit problem of (0.5) withan = a is
still (0.3) for someF andµ (F is not exactly in the same class thatFn). Therefore, better than (0.1), let us consider in this
work the homogenization of (0.5) for arbitraryan,Fn andµn. This has been realized in [15] when the operators are linear.
For nonlinear equations (not systems), a previous result has been obtained by Kovalevsky in [19], where the problem is written
as (0.1) for a sequence which satisfy the following hypothesis (i.e.,Ωn is not arbitrary).

There existsν > 0, such that for everyu ∈ C∞0 (Ω), there existsun ∈W1,p
0 (Ω) which converges weakly tou in W1,p

0 (Ω)

and it is such that

limsup
n→∞

∫
Q

|∇un|p dx � ν

∫
Q

(|∇u|p + |u|p)dx,

∀Q⊂Ω closed cube.
In the present paper we prove that ifan and (Fn,µn) in (0.5) satisfy the conditions which appear in Section 2, then, for

a subsequence, there existsa and (F,µ) which satisfy exactly the same conditions thatan and (Fn,µn) and do not depend
onfn or f , such the limit problem of (0.5) are (0.3). The idea of the proof is to compare our problem with other ones for which
the behaviour is known. The method generalize the corresponding one used by J. Casado-Díaz and A. Garroni in [5] whenan
is fixed. It can be extended to the case of pseudomonotone operators whenM = 1 by using the corresponding adaptation of the
ideas used in [4].

In Section 5, we obtain a corrector result, i.e., an approach in the strong topology ofLp(Ω,MM×N) of the derivative of
the solutionun of (0.5). Essentially (see Theorem 5.7) we show that there exists a sequenceRn :Ω × RM →MM×N , such

that if u is the weak limit inW1,p
0 (Ω,RM) of un, solutions of (0.5), and̄un is the solution of{−divan(x,Dūn)=−div a(x,Du) in Ωn,

ūn ∈W1,p
0

(
Ω,RM

)
,

thenDūn +Rn(x,u) is a good approach inLp(Ω,MM×N) of Dun.
From the point of view of the applications, the results exposed in the present paper can be used to study control problems

for partial differential equations in which the control variables are the coefficients and the open sets in which the equations are
posed. This is related with the selection of optimal materials and shapes.
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1. Notations

LetM ,N ∈N, we denote byMM×N the space ofM×N real matrices. The scalar product of two matricesA,B ∈MM×N
will be denoted byA :B. Let Ω be a bounded open subset ofRN . For a measureµ in Ω , we denote byLpµ(Ω,RM),
1 � p �+∞, the usual Lebesgue spaces relatives to the measureµ. If µ is the Lebesgue measure, we writeLp(Ω,RM).

We denote byH1(RN) the Hardy space (see [25])

H1(RN )= {f ∈ L1(RN ): sup
t�0

|ht ∗ f | ∈ L1(RN )},
whereht = (1/tN )h(·/t), h ∈C∞0 (RN), h� 0, supph⊂ B(0,1).

The spaceD(Ω) is the space ofC∞ functions with compact support inΩ . Its dual is the space of distributions inΩ and it
is denoted byD′(Ω).

We denote byW1,p
0 (Ω,RM) andW1,p(Ω,RM), 1 � p � +∞, the usual Sobolev spaces, and byW−1,p′ (Ω,RM),

1/p′ + 1/p = 1, 1� p � +∞, the dual ofW1,p
0 (Ω,RM). W1,p

c (Ω,RM) is the subspace of functions ofW1,p(Ω,RM)

with compact support inΩ . WhenM = 1, we omitRM in these notations.
For everyA⊂Ω , andp ∈ (1,+∞), we denote byCp(A,Ω) theCp-capacity ofA (in Ω), which is defined as the infimum

of
∫
Ω |∇u|p dx over the set of the functionsu ∈W1,p

0 (Ω) such thatu� 1 a.e. in a neighbourhood ofA.
We say that a propertyP(x) holdsCp-quasi-everywhere (abbreviated as q.e.) in a setE, if there existsN ⊂ E with

Cp(N,Ω)= 0 such thatP(x) holds for allx ∈E\N .
A function u :Ω → RM is said to beCp-quasi-continous if for everyε > 0 there existsN ⊂ Ω , with Cp(N,Ω) < ε,

such that the restriction ofu toΩ\N is continuous. It is well known that everyu ∈W1,p(Ω,RM) has aCp-quasi-continuous
representative (see [17,18,26], . . . ). We always identifyu with itsCp-quasi-continuous representative.

We denote byMp
0 (Ω) the class of all nonnegative Borel measures which vanish on the sets ofCp-capacity zero and satisfy

µ(B)= inf
{
µ(A): ACp-quasi-open,B ⊆A⊆Ω}

for every Borel setB ⊆Ω.
The characteristic function ofE ⊂RN will be denoted byχE. For everyk > 0, the functionTk :R→R is defined by

Tk(s)=
{
k if s � k,
s if −k � s � k,
−k if s �−k.

For s = (s1, . . . , sM) ∈RM , we use the notationTk(s) to mean

Tk(u)=
(
Tk(u1), Tk(u2), . . . , Tk(uM)

)
.

For t, s ∈R, we denote

t ∨ s =max{t, s}, t ∧ s =min{t, s}.
Let us denote byOm,n (respectivelyOn) a generic sequence of real numbers such that

lim
m→∞ limsup

n→∞
|Om,n| = 0, lim

n→∞On = 0.

Definition 1.1. Let an :Ω ×MM×N →MM×N be a sequence of Carathéodory functions. For this sequence, we denote by
ân :Ω ×MM×N →MM×N , ãn :Ω ×MM×N ×MM×N →MM×N the functions defined by

ân(x, ξ)= an(x, ξ) : ξ, ∀ξ ∈MM×N, a.e.x ∈Ω,
ãn(x, ξ1, ξ2)=

(
an(x, ξ1)− an(x, ξ2)

) : (ξ1− ξ2), ∀ξ1, ξ2 ∈MM×N, a.e.x ∈Ω.

We assume there existsp � 2, such that

(i) an(x,0)= 0, ∀n ∈N, a.e.x ∈Ω ;
(ii) there exists a constantα > 0 such that

ãn(x, ξ1, ξ2)� α|ξ1− ξ2|p, (1.1)

∀n ∈N, ∀ξ1, ξ2 ∈MM×N , a.e.x ∈Ω ;
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(iii) there exist two constantsγ > 0, σ ∈ (0, 1], and a functionr ∈ L1(Ω) such that∣∣an(x, ξ1)− an(x, ξ2)∣∣� γ
(
r(x)+ ân(x, ξ1)+ ân(x, ξ2)

)(p−1−σ)/p
ãn(x, ξ1, ξ2)

σ/p,

∀n ∈N, ∀ξ1, ξ2 ∈MM×N, a.e.x ∈Ω.
(1.2)

Remark 1.2.Hypotheses (i), (ii) and (iii) imply:

(iii ′) there exists a constantγ ′ > 0 and a functionr ′ ∈Lp(Ω) such that∣∣an(x, ξ1)− an(x, ξ2)∣∣� γ ′(r ′(x)+ |ξ1| + |ξ2|)p(p−1−σ)/(p−σ)|ξ1− ξ2|σ/(p−σ),
∀n ∈N, ∀ξ1, ξ2 ∈MM×N, a.e.x ∈Ω. (1.3)

In particular,an satisfy:

(iv′) there exists a constantβ > 0 and a functionh ∈Lp′(Ω) such that∣∣an(x, ξ)∣∣� h(x)+ β|ξ |p−1, ∀n ∈N, ∀ξ ∈MM×N , a.e.x ∈Ω. (1.4)

Reciprocally, if we assume (i), (ii), (iii′), thenan satisfy (iii) with constants̃γ , σ̃ and a functioñr . Remark that̃σ = σ/(p− σ)
only coincides withσ for p = 2 andσ = 1.

Remark 1.3. The hypothesis (i) can be replaced by “an(·,0) belongsLp
′
(Ω)”. In this case, it is enough in the following to

replacean by ān defined by

ān(x, ξ)= an(x, ξ)− an(x,0), ∀n ∈N, ∀ξ ∈MM×N , a.e.x ∈Ω.

Consider a sequence of functionsFn :Ω ×RM →RM such thatFn(·, s) is µn-measurable for verys ∈RM . Analogously
to an, we defineF̂n :Ω ×RM →RM , andF̃n :Ω ×RM ×RM →RM by

F̂n(x, s)= Fn(x, s)s, ∀n ∈N, ∀s ∈RM, µn-a.e.x ∈Ω and

F̃n(x, s1, s2)=
(
Fn(x, s1)− Fn(x, s2)

)
(s1− s2), ∀n ∈N, ∀s1, s2 ∈RM, µn-a.e.x ∈Ω.

The sequenceFn is assumed to satisfy:

(A) Fn(x,0)= 0, ∀n ∈N, µn-a.e.x ∈Ω ;
(B) F̃n(x, s1, s2)� α|s1− s2|p, ∀n ∈N, ∀s1, s2 ∈RM, µn-a.e.x ∈Ω ;

(C)
∣∣Fn(x, s1)− Fn(x, s2)∣∣� γ

[
F̂n(x, s1)+ F̂n(x, s2)

](p−1−σ)/p∣∣F̃n(x, s1, s2)∣∣σ/p,
∀n ∈N, ∀s1, s2 ∈RM, µn-a.e.x ∈Ω .

Remark 1.4.Analogously toan, the hypotheses (A), (B), (C) imply:

(C′) there exists a constantγ ′ > 0 such that∣∣Fn(x, s1)−Fn(x, s2)∣∣� γ ′
(|s1| + |s2|)p(p−1−σ)/(p−σ)|s1− s2|σ/(p−σ),

∀s1, s2 ∈RM, µn-a.e.x ∈Ω, ∀n ∈N.

In particular,Fn satisfies:

(D) there exists a constantβ ∈R such that∣∣Fn(x, s)∣∣� β|s|p−1, ∀s ∈RM, µn-a.e.x ∈Ω, ∀n ∈N.

It is clear that this constant can be chosen as the same which appears in (iv′).

Reciprocally, if we assume (A), (B) and (C′), thenFn satisfy (C) for some constant̃γ andσ̃ = σ/(p− σ).

Remark 1.5.Our results can be easily extended for 1< p < 2. In this case, (ii) and (B) must be respectively replaced by
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ãn(x, ξ1, ξ2) � α
|ξ1− ξ2|p

|ξ1|2−p + |ξ2|2−p
, ∀n ∈N, ∀ξ1, ξ2 ∈MM×N, a.e.x ∈Ω, and

F̃n(x, s1, s2) � α
|s1− s2|p

|s1|2−p + |s2|2−p
, ∀n ∈N, ∀s1, s2 ∈RM, µn-a.e.x ∈Ω.

Notation 1.6.Usually, in order to write shorter expressions, we do not specify the dependence inx of an andFn. For example,
we writean(Du) to meanan(x,Du(x)) andFn(u) to meanFn(x,u(x)).

We denote byC a generic constant which only depends onp,N,γ andβ and can change from a line to another one.

2. Preliminary results

In order to realize the homogenization of (0.1) the idea is essentially to compare our problem with other ones for which the
behaviour is known. We start this section by recalling some results related with the homogenization problem

un ∈W1,p
0 (Ω)∩Lpµn(Ω),∫

Ω
|∇un|p−2∇un∇v dx +

∫
Ω
|un|p−2unv dµn = 〈f,v〉,

∀v ∈W1,p
0 (Ω)∩Lpµn(Ω),

(2.1)

wheref is a given element inW−1,p′ (Ω).

Definition 2.1.For a given sequenceµn in Mp
0 (Ω), we definewn as the solution of

wn ∈W1,p
0 (Ω)∩Lpµn(Ω),∫

Ω
|∇wn|p−2∇wn∇v dx +

∫
Ω
|wn|p−2wnv dµn =

∫
Ω
v dx,

∀v ∈W1,p
0 (Ω)∩Lpµ(Ω).

(2.2)

The sequencewn has its norm bounded inW1,p
0 (Ω) ∩ L∞(Ω) ∩ Lpµn(Ω) and is nonnegativeCp-q.e. inΩ . Extracting a

subsequence if necessary, there exists a nonnegative functionw ∈W1,p
0 (Ω)∩L∞(Ω), such thatwn converges weakly tow in

W
1,p
0 (Ω) and weakly-∗ in L∞(Ω). Moreover the convergence is strong inW1,q

0 (Ω), 1� q < p (see [12], Theorem 6.8). It is

proved in [12] that there exists a measureµ ∈Mp
0 (Ω) such that analogously town, w satisfies

w ∈W1,p
0 (Ω)∩Lpµ(Ω),∫

Ω
|∇w|p−2∇w∇v dx +

∫
Ω
|w|p−2wv dµ=

∫
Ω
v dx,

∀v ∈W1,p
0 (Ω)∩Lpµ(Ω).

(2.3)

Assume that the solutionwn of (2.2) converges weakly inW1,p(Ω) to w and consider the measureµ defined in [12], such
that (2.3) holds. The following properties aboutwn, w andµ are proved in [5,12].

Theorem 2.2.The sequencewn, the functionw and the measureµ satisfy:

(a) The set{wψ : ψ ∈ D(Ω)} is dense inW1,p
0 (Ω) ∩ Lpµ(Ω). Moreover, the setΛ of all the functions of the form

w
∑l
i=1 aiχKi whereai ∈ R andKi are closed subsets ofΩ such thatw = 0 µ-a.e. onKi ∩ Kj , with i �= j , is dense

in Lpµ(Ω).
(b) For every Borel setB ⊂Ω withCp(B ∩ {w = 0}) > 0, we haveµ(B)=+∞.
(c) Let u ∈W1,p

0 (Ω) ∩ Lpµ(Ω) be and considerψm∈D(Ω) such thatwψm converges strongly tou in W1,p
0 (Ω) ∩ Lpµ(Ω).

Then

lim
m→∞ lim

n→∞

(∫
Ω

∣∣∇(wnψm − u)∣∣pϕ dx +
∫
Ω

|wnψm|pϕ dµn

)
=
∫
Ω

|u|pϕ dµ, ∀ϕ ∈W1,p(Ω)∩L∞(Ω). (2.4)
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(d) Letun ∈W1,p(Ω)∩Lpµn(Ω) which converges weakly inW1,p(Ω) to a functionu. Then

lim inf
n→∞

(∫
Ω

|∇un|p dx +
∫
Ω

|un|p dµn

)
�
∫
Ω

|∇u|p dx +
∫
Ω

|u|p dµ, (2.5)

lim inf
n→∞

(∫
Ω

∣∣∇(un − u)∣∣p dx +
∫
Ω

|un|p dµn

)
�
∫
Ω

|u|p dµ. (2.6)

In particular, if ‖un‖Lpµn(Ω) is bounded,u belongs toLpµ(Ω).

(e) We considerϕ,ψ ∈W1,p(Ω)∩L∞(Ω) such thatϕψ belongs toW1,p
0 (Ω). Then, we have

lim
n→∞

(∫
Ω

∣∣∇(wnψ)∣∣pϕ dx +
∫
Ω

|wnψ |pϕ dµn

)
=
∫
Ω

∣∣∇(wψ)∣∣pϕ dx +
∫
Ω

|wψ |pϕ dµ, (2.7)

lim
n→∞

(∫
Ω

∣∣∇(wn −w)ψ ∣∣pϕ dx +
∫
Ω

|wnψ |pϕ dµn

)
=
∫
Ω

|wψ |pϕ dµ. (2.8)

For every sequencevn ∈W1,p
0 (Ω) ∩Lpµn(Ω) such that‖vn‖Lpµn(Ω) is bounded and converges weakly tov in W1,p(Ω),

we have

lim
n→∞

∫
Ω

∣∣∇(wnψ)∣∣p−2∇(wnψ)∇vnϕ dx +
∫
Ω

|wnψ |p−2wnψvnϕ dµn

=
∫
Ω

∣∣∇(wψ)∣∣p−2∇(wψ)∇vϕ dx +
∫
Ω

|wψ |p−2wψvϕ dµ,
(2.9)

for everyϕ ∈W1,p(Ω)∩L∞(Ω).

Another interesting property ofwn is given by the following proposition.

Proposition 2.3.Let ϕn ∈W1,p(Ω) ∩L∞(Ω) be a sequence which converges weakly inW1,p(Ω), and weakly-∗ in L∞(Ω)
to a functionϕ ∈W1,p(Ω)∩L∞(Ω) whenn tends to infinity. If|∇ϕn|p is equiintegrable, we have

lim
n→∞

(∫
Ω

∣∣∇(wn −w)∣∣pϕn dx +
∫
Ω

w
p
n ϕn dµn

)
=
∫
Ω

wpϕ dµ. (2.10)

Proof. Takingwn(ϕn − ϕ) as a test function in (2.2), we get∫
Ω

|∇wn|p(ϕn − ϕ)dx +
∫
Ω

|∇wn|p−2∇wn∇(ϕn − ϕ)wn dx +
∫
Ω

w
p
n (ϕn − ϕ)dµn =

∫
Ω

wn(ϕn − ϕ)dx =On. (2.11)

Since |∇wn|p−2∇wn is bounded inLp
′
(Ω) and converges in measure to|∇w|p−2∇w, and∇(ϕn − ϕ) converges weakly

to zero inLp(Ω) and its powerp is equiintegrable, an easy application of the Egorov’s theorem shows that the second term
in (2.11) converges to zero.

On the other hand,∣∣|∇wn|p − ∣∣∇(wn −w)∣∣p∣∣�C(|∇wn|p−1+ |∇w|p−1)|∇w|, ∀n ∈N,

where the right-hand side is equiintegrable and the left-hand side converges in measure to|∇w|p . So, we deduce

|∇wn|p −
∣∣∇(wn −w)∣∣p→ |∇w|p in L1(Ω).

So, the first term of (2.11) satisfies∫
Ω

|∇wn|p(ϕn − ϕ)dx =
∫
Ω

∣∣∇(wn −w)∣∣p(ϕn − ϕ)dx +On.
Using these estimates in (2.11) and taking into account (2.8), we conclude (2.10).✷



C. Calvo-Jurado, J. Casado-Díaz / J. Math. Pures Appl. 81 (2002) 471–493 477

Although it is not needed for our purpose, we recall here the role of the sequencewn and the measureµ in the
homogenization of (2.1). The following theorem has been proved in [12] (see also [10]).

Theorem 2.4.Assume thatwn converges weakly inW1,p
0 (Ω) to a functionw (this always holds true for a subsequence)

and consider the measureµ which satisfies(2.3). Then, for every sequencefn which converges strongly inW−1,p′ (Ω) to a

distribution f , the solutionun of (2.1) converges weakly inW1,p
0 (Ω) and strongly inW1,q

0 (Ω), 1 � q < p, to the unique
solutionu of

u ∈W1,p
0 (Ω)∩Lpµ(Ω),∫

Ω
|∇u|p−2∇u∇v dx +

∫
Ω
|u|p−2uv dµ=

∫
Ω
f v dx,

∀v ∈W1,p
0 (Ω)∩Lpµ(Ω).

Moreover, iff belongs toL∞(Ω), we have∇un −∇(wnu)→ 0 inW1,p
0 (Ω).

Let us now give some results related with the homogenization problem{−divan(∇un)= fn in D′
(
Ω,RM

)
,

un ∈W1,p
0

(
Ω,RM

)
,

(2.12)

wherefn is inW−1,p′ (Ω,RM) andan satisfy (i)–(iii) of the previous section.
The homogenization of (2.12) is given by the following theorem (see [16,20,21], . . . ).

Theorem 2.5.There exits a subsequence ofan, still denoted byan, and a Carathéodory functiona :Ω ×MM×N →MM×N
such that for every sequencefn which converges strongly inW−1,p′ (Ω) to a distributionf , the solutionun of (2.12)converges

weakly inW1,p
0 (Ω,RM) to the unique solutionu of{−diva(∇u)= f in D′

(
Ω,RM

)
,

u ∈W1,p
0

(
Ω,RM

)
.

Analogously toan, the functiona satisfies(i), (ii) and(iii) , for the same constantsα,γ,σ and the same functionr .

The next theorem will be frequently used.

Lemma 2.6.Assume thatfn ∈W−1,p′ (Ω,RM) converges strongly inW−1,p′ (Ω,RM) to a distributionf and letun be the
solution of(2.12). Then, the sequence|∇un|pχK is equiintegrable for everyK ⊂Ω , compact.

The proof of Lemma 2.6 is based on a simple application ofH1 regularity and the following result due to R. Coiffman,
P.L. Lions, Y. Meyer and S. Semmes (see [8]).

Theorem 2.7.There exists a constantC > 0 with the following property: if A ∈Lp(RN,RN), B ∈Lp′ (RN,RN), 1< p <∞,
are such thatdiv(A)= 0 andcurl(B)= 0 in D′(RN), thenAB belongs to the Hardy spaceH1(RN) and satisfies

‖AB‖H1(RN)N � C‖A‖Lp(RN) · ‖B‖Lp′ (RN).

Proof of Lemma 2.6. Assume first thatf belongs toLp
′
(Ω,RM). Since the solutionvn of{−divan(Dvn)= f in D′

(
Ω,RM

)
,

vn ∈W1,p
0

(
Ω,RM

)
,

satisfies thatvn − un converges strongly to zero inW1,p
0 (Ω,RM), we can assumefn = f for everyn ∈N.

We considerϕ ∈D(Ω), ϕ � 0. Since div(an(Dun)ϕ) is bounded inLp
′
(RN,RM), there exists a sequence

ψn ∈W1,p′(RN,MM×N
)

such that

divψn = div
(
an(Dun)ϕ

)
and ‖ψn‖W1,p′ (RN,MM×N ) � C

∥∥div
(
an(Dun)ϕ

)∥∥
Lp
′
(RN,RM)

.
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Taking in Theorem 2.7An andBn respectively theith row of an(Dun)ϕ −ψn andDun 1 � i � n (un is assumed to be zero
outside ofΩ), we then deduce that[an(Dun)ϕ−ψn] :Dun is bounded inH1. On the other hand, by the Sobolev’s imbedding
theorem,ψnDun is bounded inLr(RN,MM×N) for somer > 1 and then inH1. Thus, the sequenceςn = an(Dun) :Dunϕ is
bounded inH1. Since it is nonnegative, we conclude thatςn logςn is bounded inL1(RN) (see [7,24] and [25]). By (i) and (ii)
we deduce that|∇un|pϕ is equiintegrable for everyϕ ∈D(Ω).

Using that everyf ∈W−1,p′ (Ω,RM) is the limit inW−1,p′(Ω,RM) of a sequencefn ∈ Lp′(Ω,RM), it is easy to extend
the result to the casef in W−1,p′ (Ω,RM). ✷

3. Estimates and a first representation of the limit problem

Extracting a sequence if necessary, we assume thatµn satisfies there existw ∈W1,p
0 (Ω) andµ ∈Mp

0 (Ω) such that the

solutionwn of (2.2) converges weakly inW1,p
0 (Ω) to a functionw and (2.3) holds. Moreover, we assume there existsa in the

conditions of Theorem 2.5.
In the following, we consider sequences of distributionsfn ∈ W−1,p′(Ω,RM), of functions un ∈ W1,p

0 (Ω,RM), a

distributionf ∈W−1,p′ (Ω,RM) and a functionu ∈W1,p
0 (Ω,RM)∩Lpµ(Ω,RM) such that

fn→ f inW−1,p′(Ω,RM), (3.1)

un ⇀ u inW1,p
0

(
Ω,RM

)
, (3.2)

un ∈W1,p
0

(
Ω,RM

)∩Lpµn(Ω,RM),∫
Ω
an(Dun) :Dv dx +

∫
Ω
Fn(un)v dµn = 〈fn, v〉,

∀v ∈W1,p
0

(
Ω,RM

)∩Lpµn(Ω,RM).
(3.3)

Remark 3.1.Usingun as a test function in this equation, we easily deduce that‖un‖Lpµn (Ω) is bounded, then by Theorem 2.2(d),

the functionu is in Lpµ(Ω).

We also definēun ∈W1,p
0 (Ω,RM) as the solution of{−divan(Dūn)=−div a(Du) in D′

(
Ω,RM

)
,

ūn ∈W1,p
0

(
Ω,RM

)
.

(3.4)

Our aim in the present section is to obtain some estimates aboutD(un − ūn), which we will need later in order to obtain the
problem satisfied byu.

Remark 3.2. By Theorem 2.5,̄un converges weakly tou in W1,p
0 (Ω,RM) and by Lemma 2.6,|Dūn|pχK is equiintegrable

for every compact setK ⊂Ω .

Let us now obtain an estimate for|Dūn|p .

Proposition 3.3.The sequencēun satisfies

lim
n→∞

∫
{u=0}∩K

|Dūn|p dx = 0, ∀K ⊂Ω compact. (3.5)

Proof. For ε > 0 andK ⊂Ω compact, we considerϕ ∈W1,p
c (Ω,RM) ∩L∞(Ω,RM), 0� ϕ � 1,Cp-q.e. inΩ , such that

ϕ =
{1 Cp-q.e. in{u= 0} ∩K ,

0 Cp-q.e. in{u > ε/2}. (3.6)
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Then, we take(Tk(ūn)− Tk(u))ϕ ∈W1,p
0 (Ω,RM), k > 0, as a test function in (3.4). This gives∫

Ω

an(Dūn) :D
(
Tk(ūn)− Tk(u)

)
ϕ dx +

∫
Ω

an(Dūn) :
[(
Tk(ūn)− Tk(u)

)⊗∇ϕ]dx

= 〈−div a(Du),
(
Tk(ūn)− Tk(u)

)
ϕ
〉
.

(3.7)

By the weak convergence inW1,p
0 (Ω,RM) of (Tk(ūn)− Tk(u))ϕ to zero and the Rellich–Kondrachov’s theorem, we have〈−div a(Du),

(
Tk(ūn)− Tk(u)

)
ϕ
〉=On, ∀k ∈N,∫

Ω

an(Dūn) :
[(
Tk(ūn)− Tk(u)

)⊗∇ϕ]dx =On, ∀k ∈N.

Therefore, (3.7) gives∫
Ω

an(Dūn) :D
(
Tk(ūn)− Tk(u)

)
ϕ dx =On, ∀k ∈N. (3.8)

On the other hand, we have∫
Ω

an(Dūn)D
(
Tk(ūn)− Tk(u)

)
ϕ dx

=
∫
Ω

an(Dūn) :D(ūn − u)ϕ dx +
∫
Ω

an(Dūn) :D
(
Tk(ūn)− ūn

)
ϕ dx +

∫
Ω

an(Dūn)D
(
u− Tk(u)

)
ϕ dx.

(3.9)

UsingDTk(ūn)=Dūn in {|ūn|∞ < k}, we have∣∣∣∣ ∫
Ω

an(Dūn) :D
(
Tk(ūn)− ūn

)
ϕ dx

∣∣∣∣�C( ∫
{|ūn|∞>k}

∣∣an(Dūn)∣∣p′ϕ dx

) 1
p′
( ∫
{|ūn|∞>k}

|Dūn|pϕ dx

) 1
p

.

By the equintegrability of|Dūn|pϕ and the Rellich–Kondrachov’s compactness theorem we get∫
Ω

an(Dūn) :D
(
Tk(ūn)− ūn

)
ϕ dx =Ok,n.

Analogously,∫
Ω

an(Dūn) :D
(
Tk(ū)− ū

)
ϕ dx =Ok,n.

Returning to (3.8), we deduce∫
Ω

an(Dūn) :Dūnϕ dx =
∫
Ω

an(Dūn) :Duϕ dx +On, (3.10)

which implies

α

∫
{u=0}∩K

|Dūn|p dx �
∫

{0<|u|<ε}

∣∣an(Dūn)∣∣|Du|dx +On
�
(∫
Ω

∣∣an(Dūn)∣∣p′ dx) 1
p′
( ∫
{0<|u|<ε}

|Du|p dx

) 1
p +On, ∀ε > 0. (3.11)

Since

lim
ε→0

∫
{0<|u|<ε}

|Du|p dx = 0,

we deduce (3.5). ✷
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Let us now study how closeDun is toDūn. We start by showing (see [1,5,14]):

Lemma 3.4.The sequencesun and ūn satisfy

un − ūn→ 0 inW1,q
0

(
Ω,RM

)
, 1 � q < p. (3.12)

Proof. Let ε > 0 be given. For everyn ∈N, we considerεn ∈ (0, ε) which we shall fix later andΦεn ∈D(RM) such that

Φεn(y)=
{

1 if |y| � εn,
0 if |y| > 2εn,

0 � ψεn � 1 in RN and|∇ψεn |� C/εn. Then forψεn defined byψεn(y)=Φεn(y)y, we take

ψεn(un − ūn)wn ∈W1,p
0

(
Ω,RM

)∩Lpµn(Ω,RM )
as a test function in the difference of (3.3) and (3.4), andψεn(un) ∈W1,p

0 (Ω,RM) ∩Lpµn(Ω,RM) as a test function in (3.3).
Adding, we get∫

Ω

[
an(Dun)− an(Dūn)

] :D[ψεn(un − ūn)]wn dx +
∫
Ω

[
an(Dun)− an(Dūn)

] : [ψεn(un − ūn)⊗∇wn]dx

+
∫
Ω

an(Dun) :Dψεn(un)dx +
∫
Ω

Fn(un)
(
ψεn(un − ūn)wn +ψεn(un)

)
dµn

= 〈fn,ψεn(un − ūn)wn +ψεn(un)〉− ∫
Ω

a(Du)D
[
ψεn(un − ūn)wn

]
dx.

(3.13)

From (A) and (B), we have∫
Ω

Fn(un)ψεn(un)dµn � 0.

By (iii ′), (D) and sinceun andwn are bounded inW1,p
0 (Ω,RM) ∩ Lpµn(Ω,RM), we deduce there exists a constantC1 > 0

such that∣∣∣∣∫
Ω

[
an(D un)− an(Dūn)

] : [ψεn(un − ūn)⊗∇wn]dx

∣∣∣∣� C1ε,

∣∣∣∣∫
Ω

Fn(un)wnψεn(un − ūn)dµn
∣∣∣∣� C1ε. (3.14)

For the second member of (3.13), we have〈
fn,ψεn(un − ūn)wn

〉=On, (3.15)∫
Ω

a(Du)D
[
ψεn(un − ūn)wn

]
dx =On. (3.16)

So, by (ii), (iii′), (iv′), wn bounded inL∞(Ω) and the properties ofψεn , we get∫
{|un−ūn|<εn}

∣∣D(un − ūn)∣∣pwn dx +
∫

{|un|<εn}
|Dun|p dx

� C

∫
{εn�|un−ūn|�2εn}

(
r ′(x)+ |Dūn| + |Dun|

) p(p−1−σ)
p−σ ∣∣D(un − ūn)∣∣ p

p−σ dx

+C
∫

εn�|un|�2εn

(
h(x)+ |Dun|p−1)|Dun|dx + 〈fn,ψεn(un)〉+ 2C1ε+On.

(3.17)

Now, sinceun andūn are bounded inW1,p
0 (Ω,RM), there exists a constantM > 0, such that∫

Ω

(
r ′(x)+ |Dūn| + |Dun|

) p(p−1−σ)
p−σ ∣∣D(un − ūn)∣∣ p

p−σ dx +
∫
Ω

(
h(x)+ |Dun|p−1)|Dun|dx �M.
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ForK ∈N, δ > 0, we have

K∑
k=1

( ∫
{2k−1δ�|un−ūn|�2kδ}

(
r ′(x)+ |Dūn| + |Dun|

) p(p−1−σ)
p−σ ∣∣D(un − ūn)∣∣ p

p−σ dx

+
∫

2k−1δ�|un|�2kδ

(
h(x)+ |Dun|p−1)|Dun|dx) �M.

So, for everyn ∈N, there exitsk(n) ∈ {1, . . . ,K} such that∫
{2k(n)−1δ�|un−ūn|�2k(n)δ}

(
r ′(x)+ |Dūn| + |Dun|

) p(p−1−σ)
p−σ ∣∣D(un − ūn)∣∣ p

p−σ dx

+
∫

2k(n)−1�|un|�2k(n)

(
h(x)+ |Dun|p−1)|Dun|dx � M

K
.

Takingδ andK such thatε = 2Kδ and thenεn = 2k(n)−1δ, we deduce from (3.17):∫
{|un−ūn|<δ}

∣∣D(un − ūn)∣∣pwn dx +
∫

{|un|<δ}
|Dun|p dx � C

M

K
+C12K+1δ+ 〈fn,ψεn(un)〉+On.

Let us pass to the limit in this inequality, for this purpose, sinceψεn(un) is bounded inW1,p
0 (Ω) by a constant which does not

depend onK nor inδ and|ψεn(un)|� 2εn, we can assume (it is true for a subsequence) that there existsu∗K,δ ∈W1,p
0 (Ω) such

thatψεn(un) converges weakly tou∗K,δ in W1,p
0 (Ω). Moreover,u∗k,δ is bounded inW1,p

0 (Ω) and satisfies|u∗K,δ |� 2Kδ. So

for everyK > 0, u∗
K,δ

converges weakly to zero inW1,p
0 (Ω), whenδ tends to zero. Thus, taking the limit, first inn, then inδ

and then inK , implies

lim
δ→0

limsup
n→∞

( ∫
{|un−ūn|<δ}

∣∣D(un − ūn)∣∣pwn dx +
∫

{|un |<δ}
|Dun|p dx

)
= 0. (3.18)

Let ρ, δ > 0 be, two parameters devoted to converge to zero, and considerϕρ ∈ D(Ω), 0 � ϕρ � 1 in Ω which pointwise
converges to 1 inΩ . Forq ∈ [1, p), we get∫

Ω

∣∣D(un − ūn)∣∣q dx

=
∫

{|un−ūn|<δ}∩{ρ�w}

∣∣D(un − ūn)∣∣q(wn
w

)q/p
dx +

∫
{|un |<δ}∩{w=0}

∣∣D(un − ūn)∣∣qϕρ dx

+
∫
Ω

∣∣D(un − ūn)∣∣q(1−
(
wn

w

) q
p

χ{ρ�w}∩{|un−ūn|<δ} − ϕρχ{|un|<δ}∩{w=0}
)

dx

� 1

ρ
q
p

( ∫
{|un−ūn|<δ}

∣∣D(un − ūn)∣∣pwn dx

) q
p |Ω|

p−q
q +C

( ∫
{|un|<δ}∩{w=0}

∣∣D(un − ūn)∣∣pϕρ dx

) q
p |Ω|

p−q
p

+
(∫
Ω

∣∣D(un − ūn)∣∣p dx

) q
p

(∫
Ω

(
1−

(
wn

w

) q
p

χ{ρ�w}∩{|un−ūn|<δ} − ϕρχ{w=0}∩{|un|<δ}
) p
p−q

dx

) p−q
q

.

Since{w = 0} is contained in{u = 0} (this is consequence of Theorem 2.2), (3.5) and (3.18), taking the limit in the above
inequality first whenn tends to infinity, then whenδ tends to zero and then whenρ tends to zero, we conclude thatun − ūn
converges strongly to zero inW1,q (Ω). ✷
Corollary 3.5. The sequencean(Dun) satisfies

an(Dun)⇀ a(Du) in Lp
′(
Ω,RM

)
. (3.19)
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Proof. By (iii ′) and (3.12),an(Dun)− an(Dūn) converges to zero inLr(Ω,RM), 1� r < p′. Sincean(Dun) is bounded in
Lp

′
(Ω,RM) andan(Dūn) converges weakly toa(Du) in Lp

′
(Ω,RM), we conclude (3.19). ✷

The following lemma replaces Lemma 6.6 in [5] (see also Lemma 2.5 in [2]) and permits to obtain a first representation of
the limit problem of (3.3).

Lemma 3.6.For everyϕ ∈D(Ω), ϕ � 0Cp-q.e. inΩ , we have

limsup
n→∞

(∫
Ω

∣∣D(un − ūn)∣∣pϕ dx +
∫
Ω

|un|pϕ dµn

)
�C

∫
Ω

|u|pϕ dµ. (3.20)

Proof. Letwn andw be respectively the solutions of problems (2.2) and (2.3). For everyn,m ∈N, we define

wn,m = wn

w ∨ 1/m
.

By Theorem 2.2(a), it is easy to show that there exitsψm ∈W1,p
0 (Ω,RM)∩L∞(Ω,RM) which is zeroCp-q.e. in{w < 1/m}

and such thatwψm, converges strongly tou inW1,p
0 (Ω,RM) ∩Lpµ(Ω,RM).

For everyn,m ∈N, we defineūn,m as the solution of the problem

−div an(Dūn,m)=−diva
(
D(wψm)

)
in W−1,p′(Ω,RM),

ūn,m ∈W1,p
0

(
Ω,RM

)
.

(3.21)

By Lemma 2.6 and sincewψm converges strongly inW1,p
0 (Ω), we easily have that for every compact setK ⊂ Ω ,

|∇ūn,m|pχK is equiintegrable (inn andm).
Forϕ ∈D(Ω), ϕ � 0 Cp-q.e. inΩ, we take

[
un −wn,mTm(ūn,m)

]
ϕ ∈W1,p

0

(
Ω,RM

)∩Lpµn(Ω,RM)
as a test function in (3.3). This gives

∫
Ω

an(Dun) :D
[
un −wn,mTm(ūn,m)

]
ϕ dx +

∫
Ω

an(Dun) :
([
un −wn,mTm(ūn,m)

]⊗∇ϕ)dx

+
∫
Ω

Fn(un)
[
un −wn,mTm(ūn,m)

]
ϕ dµn =

〈
fn,

[
un −wn,mTm(ūn,m)

]
ϕ
〉
,

(3.22)

where using that[un −wn,mTm(ūn,m)] converges weakly inW1,p
0 (Ω,RM) to zero whenn and thenm tends to infinity, it is

easy to see that the second and fourth terms are equal toOm,n. Thus, we have

∫
Ω

an(Dun) :D
[
un −wn,mTm(ūn,m)

]
ϕ dx +

∫
Ω

Fn(un)
[
un −wn,mTm(ūn,m)

]
ϕ dµn =Om,n. (3.23)
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This implies∫
Ω

an(Dun) :D(un − ūn)ϕ dx +
∫
Ω

Fn(un)unϕ dµn

=
∫
Ω

an(Dun) :D
[
wn,mTm(ūn,m)− ūn

]
ϕ dx +

∫
Ω

Fn(un)wn,mTm(ūn,m)ϕ dµn +Om,n

=
∫
Ω

an(Dun) :DTm(ūn,m)(wn,m − 1)ϕ dx +
∫
Ω

an(Dun) :D
[
Tm(ūn,m)− ūn,m

]
ϕ dx

+
∫
Ω

an(Dun) :D(ūn,m − ūn)ϕ dx +
∫
Ω

an(Dun) :
(
Tm(ūn,m)⊗ ∇(wn −w)

w ∨ 1
m

)
ϕ dx

+
∫

{w>1/m}
an(Dun) :

(
Tm(ūn,m)⊗∇w

) (w−wn)
w2

ϕ dx +m
∫

{w�1/m}
an(Dun) :

(
Tm(ūn,m)⊗∇w

)
ϕ dx

+
∫
Ω

Fn(un)wn,mTm(ūn,m)ϕdµn +Om,n.

(3.24)

Let us estimate the first term of the right-hand side of (3.24). It can be descomposed as∫
{0�w�1/m}

an(Dun) :DTm(ūn,m)(wn,m − 1)ϕ dx +
∫

{w>1/m}
an(Dun) :DTm(ūn,m)(wn,m − 1)ϕ dx, (3.25)

where from (3.5) applied tōun,m, the first term tends to zero whenn tends to infinity, for everym ∈N. The equintegrability of
|Dūn,m|pϕ and the convergence in measure of(wn,m−1)ϕχw>1/m to zero also implies that the second term in (3.25) is equal
toOn (use Egorov’s theorem), for eachm ∈N.

From the equiintegrability of|Dūn,m|pϕ we easily show∫
Ω

∣∣D(ūn,m − Tm(ūn,m))∣∣pϕ dx =Om,n,

and then, the second term in the right-hand side of (3.24) is equal toOm,n.
Using ūn − ūn,m as a test function in the difference of (3.4) and (3.21), we deduce∫

Ω

∣∣D(ūn − ūn,m)∣∣p dx =Om,n.

Thus, the third term in (3.24) is equals toOm,n. The fifth and sixth terms of (3.24) converge clearly to zero whenn tends to
zero for everym ∈N (use thatψm = 0 Cp-q.e. inw � 1/m).

Now, by (iii′) we have∣∣[an(Dun)− an(D(un − ūn))]D(un − ūn)∣∣ϕ
� γ ′

(
r ′(x)+ |Dun| +

∣∣D(un − ūn)∣∣) p(p−1−σ)
p−σ |Dūn|

σ
p−σ ∣∣D(un − ūn)∣∣ϕ, (3.26)

where from Lemmas 2.6 and 3.4, the right-hand side tends to zero inL1(Ω,RM) and then[
an(Dun)− an

(
D(un − ūn)

)] :D(un − ūn)ϕ→ 0 inL1(Ω,RM).
Analogously, we can prove(

an(Dun)− an
(
D(un − ūn)

))∇(wn −w)
w ∨ 1

m

ϕ→ 0 inL1(Ω,RM).
So, from (3.24) and the properties ofan andFn, we get∫

Ω

∣∣D(un − ūn)∣∣pϕ dx +
∫
Ω

|un|pϕ dµn
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� C

∫
Ω

[
h(x)+ ∣∣D(un − ūn)∣∣p−1] : |∇(wn −w)|

w ∨ 1/m

∣∣Tm(ūn,m)∣∣ϕ dx

+C
∫
Ω

|un|p−1 wn

w ∨ 1/m

∣∣Tm(ūn,m)∣∣ϕ dµn +Om,n

� C

(∫
Ω

∣∣D(un − u)∣∣pϕ dx +
∫
Ω

|un|pϕ dµn

) p−1
p

×
(∫
Ω

∣∣∇(wn −w)∣∣p |Tm(ūn,m)|p
(w ∨ 1/m)p

ϕ dx +
∫
Ω

|wn|p
(w ∨ 1/m)p

∣∣Tm(ūn,m)∣∣pϕ dx
) 1
p +Om,n,

where we have used that∇(wn − w) converges to zero in measure and then, that|∇(wn − w)| converges weakly to zero in
Lp(Ω,RM). Young’s inequality and Proposition 2.3 imply∫

Ω

∣∣D(un − ūn)∣∣pϕ dx +
∫
Ω

|un|pϕ dµn

� C

(∫
Ω

∣∣∇(wn −w)∣∣p |Tm(ūn,m)|p
(w ∨ 1/m)p

ϕ dx +
∫
Ω

|wn|p
(w ∨ 1/m)p

∣∣Tm(ūn,m)∣∣pϕ dx

)
+Om,n

= C
∫
Ω

Tm(wψm)
pϕ dµ+Om,n = C

∫
Ω

|u|pϕ dµ+Om,n.

This finishes the proof of (3.20).✷
Lemma (3.7) gives a first representation of the problem satisfied byu.

Theorem 3.7.Assume(3.1), (3.2) and (3.3). Then there exists aµ-measurable functionH ∈ Lp′µ (Ω,RM), such thatu is
solution of the variational problem

u ∈W1,p
0

(
Ω,RM

)∩Lpµ(Ω,RM),∫
Ω
a(Du) :Dzdx +

∫
Ω
Hzdµ= 〈f, z〉,

∀z ∈W1,p
0

(
Ω,RM

)∩Lpµ(Ω,RM ).
(3.27)

The functionH satisfies

|H |�C|u|p−1 µ-a.e. inΩ and (3.28)∫
Ω

Hwψ dµ= lim
n→∞

(∫
Ω

an
(
D(un − ūn)

) : (ψ ⊗∇(wn −w))dx +
∫
Ω

Fn(un)wnψ dµn

)
, (3.29)

for everyψ ∈W1,p
c (Ω,RM)∩L∞(Ω,RM).

Proof. Forψ ∈W1,p
c (Ω,RM)∩L∞(Ω,RM), we takewnψ as a test function in (3.3). This gives∫

Ω

an(Dun) :Dψwn dx +
∫
Ω

an(Dun) : (ψ ⊗∇w)dx +
∫
Ω

an(Dun) :
(
ψ ⊗∇(wn −w)

)
dx

+
∫
Ω

Fn(un)wnψ dµ= 〈fn,wnψ〉.
(3.30)

The strong convergence inW−1,p′ (Ω,RM) of fn, implies

〈fn,wnψ〉 = 〈f,wψ〉 +On, (3.31)
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and Corollary 3.5 easily gives∫
Ω

an(Dun) :Dψwn dx +
∫
Ω

an(Dun) : (ψ ⊗∇w)dx =
∫
Ω

a(Du)D(wψ)dx +On.

On the other hand, reasoning as in (3.26) (in the proof of Lemma 3.6), we get[
an(Dun)− an

(
D(un − ūn)

)] : [ψ ⊗∇(wn −w)]→ 0 inL1(Ω,RM ).
Therefore, by (3.30), we get∫

Ω

a(Du)D(wψ)dx +
∫
Ω

an
(
D(un − ūn)

) : [ψ ⊗∇(wn −w)]dx +
∫
Ω

Fn(un)wnψ dµn = 〈f,wψ〉 +On. (3.32)

In order to characterize the second term in (3.32) we use∫
Ω

∣∣an(∇(un − ūn))∣∣∣∣∇(wn −w)∣∣dx + ∫
Ω

∣∣Fn(un)∣∣|wn|dµn � C.

So, there exists a vector Radon measureν such that forψ ∈ Cc(Ω,RM), we have∫
Ω

ψ dν = lim
n→∞

(∫
Ω

an
(
D(un − ūn)

) : [ψ ⊗∇(wn −w)]dx +
∫
Ω

Fn(un)wnψ dµn

)
.

By (iv′), (C′), Hölder inequality,|∇(wn −w)| converging weakly to zero inLp(Ω), (2.8) and (3.20), we get∣∣∣∣∫
Ω

ψ dν

∣∣∣∣ �
∫
Ω

[
h+ β∣∣D(un − ūn)∣∣p−1]∣∣∇(wn −w)∣∣|ψ |dx +C ∫

Ω

|un|p−1wn|ψ |dµn +On

�C
(∫
Ω

∣∣D(un − ūn)∣∣p|ψ |dx + ∫
Ω

|un|p|ψ |dµn
) p−1

p
(∫
Ω

∣∣∇(wn −w)∣∣p|ψ |dx + ∫
Ω

w
p
n |ψ |dµn

) 1
p +On

�C
(∫
Ω

|u|p |ψ |dµ
) p−1

p
(∫
Ω

wp|ψ |dµ
) 1
p

.

Using the derivation theorem for measures (see [17,26]), it is easy to deduce that there exists aµ-measurable vector function
G= (G1, . . . ,GM) such that∫

Ω

ψ dν =
∫
Ω

Gψ dµ, ∀ψ ∈Cc
(
Ω,RM

)
and |G|�C|u|p−1w µ-a.e. inΩ.

Defining thenH =G/w ∈ Lp′µ (Ω,RM), we deduce thatH satisfies (3.28) and

lim
n→∞

(∫
Ω

an
(
D(un − ūn)

) : [ψ ⊗∇(wn −w)]dx +
∫
Ω

Fn(un)wnψ dµn

)
=
∫
Ω

ψ dν =
∫
Ω

Hwψ dµ,

∀ψ ∈Cc(Ω,RM). So, from (3.32) we get∫
Ω

a(Du)D(wψ)dx +
∫
Ω

Hwψ dµ= 〈f,wψ〉, (3.33)

for everyψ ∈W1,p
0 (Ω,RM) ∩ Cc(Ω,RM). By Theorem 2.2(a), we conclude thatu satisfies (3.27). Returning to (3.32), we

deduce that (3.29) holds forψ inW1,p
c (Ω,RM) ∩L∞(Ω,RM). ✷
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4. Dependence ofH with respect tou

As in the previous section, we considerun, u, fn andf which satisfy (3.1)–(3.3). We also considervn, gn, v andg such
that {

gn,g ∈W−1,p′(Ω,RM),
gn→ g inW−1,p′(Ω,RM), (4.1)


vn ∈W1,p

0

(
Ωn,R

M
)∩Lpµn(Ω,RM),∫

Ω
an(Dvn)Dzdx +

∫
Ω
Fn(vn)zdµn = 〈gn, z〉,

∀z ∈W1,p
0

(
Ω,RM

)∩Lpµn(Ω,RM ),
(4.2)

{
v ∈W1,p(Ω,RM)∩Lpµ(Ω,RM),
vn ⇀ v inW1,p

0

(
Ω,RM

)
.

(4.3)

As for un, we definev̄n ∈W1,p
0

(
Ω,RM

)
by−div an(Dv̄n)=−diva(Dv) inW−1,p′(Ω,RM ),

v̄n ∈W1,p
0

(
Ω,RM

)
.

(4.4)

By Theorem 3.7, there exits twoµ-measurable functionsH,H ′ ∈Lp′µ (Ω,RM), such thatu andv respectively satisfy∫
Ω

a(Du) :Dz+
∫
Ω

Hzdµ= 〈f, z〉, ∀z ∈W1,p
0

(
Ω,RM

)∩Lpµ(Ω,RM) and (4.5)

∫
Ω

a(Dv) :Dz+
∫
Ω

H ′zdµ= 〈g, z〉, ∀z ∈W1,p
0

(
Ω,RM

)∩Lpµ(Ω,RM). (4.6)

Our aim in the present section is to prove Lemma 4.2, where we estimate the difference ofH andH ′. First, we show:

Lemma 4.1.For everyϕ ∈D(Ω), we have

lim
n→∞

(∫
Ω

ân
(
D(un − ūn)

)
ϕ dx +

∫
Ω

F̂n(un)ϕ dµn

)
=
∫
Ω

Huϕ dµ, (4.7)

lim
n→∞

(∫
Ω

ãn
(
D(un − ūn),D(vn − v̄n)

)
ϕ dx +

∫
Ω

F̃n(un, vn)ϕ dµn

)
=
∫
Ω

(H −H ′)(u− v)ϕ dµ. (4.8)

Proof. Forϕ ∈D(Ω), we take(un − vn)ϕ as a test function in the difference of (3.3) and (4.2). This gives∫
Ω

ãn(Dun,Dvn)ϕ dx +
∫
Ω

[
an(Dun)− an(Dvn)

] : [(un − vn)⊗∇ϕ]dx +
∫
Ω

F̃n(un, vn)ϕ dµn

= 〈fn − gn, (un − vn)ϕ〉. (4.9)

In the second term of (4.9), we use thatan(Dun) and an(Dvn) respectively converge toa(Du) and a(Dv) weakly in
Lp

′
(Ω,RM). Using also the Rellich–Kondrachov’s compactness theorem, we get∫
Ω

[
an(Dun)− an(Dvn)

] : [(un − vn)⊗∇ϕ]dx =
∫
Ω

[
a(Du)− a(Dv)] : [(u− v)⊗∇ϕ]dx +On. (4.10)

For the fourth term of (4.9), we have〈
fn − gn, (un − vn)ϕ

〉= 〈f − g, (u− v)ϕ〉+On.
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The first term of (4.9) is the most difficult to estimate. We use∫
Ω

ãn(Dun,Dvn)ϕ dx

=
∫
Ω

[
an(Dun)− an(Dvn)

] :D(un − vn − ūn + v̄n)ϕ dx +
∫
Ω

[
an(Dun)− an(Dūn)

] :D(ūn − v̄n)ϕ dx

−
∫
Ω

[
an(Dvn)− an(Dv̄n)

] :D(ūn − v̄n)ϕ dx +
∫
Ω

[
an(Dūn)− an(Dv̄n)

] :D(ūn − v̄n)ϕ dx.

(4.11)

In the first term of the second member of (4.11) we use that(
an(Dun)− an

(
D(un − ūn)

)) :D(un − vn − ūn + v̄n)ϕ
is equiintegrable and by Lemma 3.4 pointwise converges in measure to zero. So, it converges strongly to zero inL1(Ω,RM).
Reasoning analogously with(

an(Dvn)− an
(
D(vn − v̄n)

)) :D(un − vn − ūn + v̄n)ϕ,
we get∫

Ω

[
an(Dun)− an(Dvn)

] :D(un − vn − ūn + v̄n)ϕ dx =
∫
Ω

ãn
(
D(un − ūn),D(vn − v̄n)

)
ϕ dx +On. (4.12)

For the second term of the right side of (4.11), we use thatan(Dun)− an(Dūn), converges weakly to 0 inLp
′
(Ω,RM) and

strongly inLr(Ω,RM) for 1 � r < p′ (use (iii′) and Lemma 3.4). Since the powerp of D(ūn − v̄n)ϕ is equiintegrable, the
Egorov’s theorem implies∫

Ω

[
an(Dun)− an(Dūn)

] :D(ūn − v̄n)ϕ dx =On, (4.13)

and analogously∫
Ω

[
an(Dvn)− an(Dv̄n)

] :D(ūn − v̄n)ϕ dx =On.

For the fourth term of the right-hand side of (4.11), taking(ūn − v̄n) as a test function in the difference of (3.4) and (4.4), we
easily get∫

Ω

ãn(Dūn,Dv̄n)ϕ dx =
∫
Ω

ã(Du,Dv)ϕ dx +On. (4.14)

So, from (4.11) we get∫
Ω

ãn(Dun,Dvn)ϕ dx =
∫
Ω

ãn
(
D(un − ūn),D(vn − v̄n)

)
ϕ dx +

∫
Ω

ã(Du,Dv)ϕ dx +On. (4.15)

So, (4.9), (4.10) and (4.15) give∫
Ω

[
a(Du)− a(Dv)] :D((u− v)ϕ)dx +

∫
Ω

ãn
(
D(un − ūn),D(vn − v̄n)

)
ϕ dx +

∫
Ω

F̃n(un, vn)ϕ dµn

= 〈f − g, (u− v)ϕ〉 +On.
(4.16)

On the other hand, using(u− v)ϕ as a test function in the difference of (4.5) and (4.6) we have∫
Ω

(
a(Du)− a(Dv)) :D((u− v)ϕ)dx +

∫
Ω

(H −H ′)(u− v)ϕ dµ= 〈f − g, (u− v)ϕ〉. (4.17)

From (4.16) and (4.17) we deduce (4.8). In order to obtain (4.7), it is enough to take in (4.8)vn = v̄n = v = 0. ✷
Lemma 4.2.The functionsH andH ′ satisfy the following inequalities
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(H −H ′)(u− v)� α|u− v|p, µ-a.e. inΩ and (4.18)

|H −H ′|� γ (Hu+H ′v)
p−1−σ
p

[
(H −H ′)(u− v)] σp , µ-a.e. inΩ. (4.19)

Proof. In order to obtain (4.18), we use (4.8) and the properties (ii) and (B) ofan andF̃n. Then, forϕ ∈D(Ω), ϕ � 0 inΩ ,
we get

α

∫
Ω

∣∣D(un − vn − ūn + v̄n)∣∣pϕ dx + α
∫
Ω

|un − vn|pϕ dµn �
∫
Ω

(H −H ′)(u− v)ϕ dµ. (4.20)

Let us estimate the left-hand side of (4.20). For that, we take a sequenceψm ∈ D(Ω), such thatwψm → u − v in

W
1,p
0 (Ω,RM) ∩Lpµ(Ω,RM) (use Theorem 2.2(a)). By convexity, we have∫

Ω

∣∣D(un − vn − ūn + v̄n)∣∣pϕ dx +
∫
Ω

|un − vn|pϕ dµn

�
∫
Ω

∣∣D(wnψm − u+ v)∣∣pϕ dx + p
∫
Ω

∣∣D(wnψm − u+ v)∣∣p−2
D(wnψm − u+ v) :Dzn,mϕ dx

+
∫
Ω

|wnψm|pϕ dµn + p
∫
Ω

|wnψm|p−2wnψm(un − vn −wnψm)ϕ dµn,

(4.21)

wherezn,m = un − vn − ūn + v̄n −wnψm + u− v.
By (2.4), we deduce∫

Ω

∣∣D(wnψm − u+ v)∣∣pϕ dx +
∫
Ω

|wnψm|pϕ dµn �
∫
Ω

|u− v|pϕ dµ+Om,n. (4.22)

On the other hand, for everym ∈N, we have that∣∣D(wnψm − u+ v)∣∣p−2
D(wnψm − u+ v)ϕ −

∣∣D(wnψm)∣∣p−2
D(wnψm)ϕ

pointwise converges a.e. and has ap′th power equiintegrable. So, it converges strongly inLp
′
(Ω,RM). Thus,∫

Ω

∣∣D(wnψm − u+ v)∣∣p−2
D(wnψm − u+ v) :Dzn,mϕ dx +

∫
Ω

|wnψm|p−2wnψm(un − vn −wnψm)ϕ dµn

=
∫
Ω

∣∣D(wnψm)∣∣p−2
D(wnψm) :D(un − vn −wnψm)ϕ dx +

∫
Ω

|wnψm|p−2wnψm(un − vn −wnψm)ϕ dµn

−
∫
Ω

∣∣D(wnψm)∣∣p−2
D(wnψm) :D(ūn − v̄n − u+ v)ϕ dx +Om,n.

(4.23)

By (2.9), we have∫
Ω

∣∣D(wnψm)∣∣p−2
D(wnψm) :D(un − vn −wnψm)ϕ dx +

∫
Ω

|wnψm|p−2wnψm(un − vn −wnψm)ϕ dµn

=Om,n.
(4.24)

Using that for everym ∈ N, |D(wnψm)|p−2D(wnψm) converges weakly inLp
′
(Ω,RM) and strongly inLr(Ω,RM) for

1 � r < p′ and thatD(ūn − v̄n − u+ v)ϕ converges weakly inLp(Ω,RM) and its powerp is equiintegrable, the Egorov’s
theorem gives∫

Ω

∣∣D(wnψm)∣∣p−2
D(wnψm) :D(ūn − v̄n − u+ v)ϕ dx =On, ∀m ∈N. (4.25)

Thus, (4.20), (4.21), (4.22), (4.23), (4.24) and (4.25), imply

α

∫
Ω

|u− v|pϕ dµ�
∫
Ω

(H −H ′)(u− v)ϕ dµ, ∀ϕ ∈D(Ω), ϕ � 0 inΩ.
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An easy application of the derivation measures theorem then gives (4.18).

Let us now prove (4.19). By (3.29) and Hölder’s inequality, for everyψ ∈W1,p
c (Ω,RM) ∩L∞(Ω,RM), we have∣∣∣∣∫

Ω

(H −H ′)wψ dµ

∣∣∣∣
�
∣∣∣∣∫
Ω

(
an
(
D(un − ūn)

)− an(D(vn − v̄n))) : [ψ ⊗∇(wn −w)]dx

∣∣∣∣+ ∣∣∣∣∫
Ω

(
Fn(un)− Fn(vn)

)
wnψ dµn

∣∣∣∣+On
� I

p−1
p

1 · I
1
p

2 +On,
(4.26)

with

I1 =
∫
Ω

∣∣an(D(un − ūn))− an(D(vn − v̄n))∣∣ p
p−1 |ψ |dx +

∫
Ω

∣∣Fn(un)− Fn(vn)∣∣ p
p−1 |ψ |dµn and

I2 =
∫
Ω

∣∣∇(wn −w)∣∣p|ψ |dx + ∫
Ω

|wn|p |ψ |dµn.

By (1.2), (3.12) and (C), we can write

I1 � γ
p
p−1

∫
Ω

(
ân
(
D(un − ūn)

)+ ân(D(vn − v̄n))) p−1−σ
p−1 ãn

(
D(un − ūn),D(vn − v̄n)

) σ
p−1 |ψ |dx

+ γ
p
p−1

∫
Ω

(
F̂n(un)+ F̂n(vn)

) p−1−σ
p−1 F̃n(un, vn)

σ
p−1 |ψ |dµn +On

� γ
p
p−1 I

p−1−σ
p−1

3 I

σ
p−1

4 +On,
with

I3 =
∫
Ω

(
ân
(
D(un − ūn)

)+ ân(D(vn − v̄n)))|ψ |dx + ∫
Ω

(
F̂n(un)+ F̂n(vn)

)|ψ |dµn and

I4 =
∫
Ω

ãn
(
D(un − ūn),D(vn − v̄n)

)|ψ |dx + ∫
Ω

F̃n(un, vn)|ψ |dµn.

From (4.7) and (4.8), we get

I1 � γ
p
p−1

(∫
Ω

(Hu+H ′v)|ψ |dµ
) p−1−σ

p−1 ·
(∫
Ω

(H −H ′)(u− v)|ψ |dµ
) σ
p−1 +On.

On the other hand, by (2.8) we have

I2=
∫
Ω

wpψ dµ+On.

Using in (4.26) the estimates obtained forI1 andI2 and applying the derivation measures theorem we easily deduce (4.19).✷

5. The homogenization and corrector results

In this section, we will obtain a representation theorem for the functionH which appears in Theorem 3.7. Indeed, from
Lemma 4.2, the pointwise values ofH(x) depend only on the pointwise values ofu(x), i.e., there existsF such that
H(x) = F(x,u(x)) µ-a.e. inΩ , but F is only defined on the pairs(x0, s0) such thats0 = u(x0), whereu is the limit of a
sequenceun which satisfies (3.3) for somefn which converges strongly inW−1,p′(Ω,RM) to a distributionf . The following
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lemma shows that the set of such(x0, s0) is dense in{w > 0} × RM . The result is analogue with Theorem 6.9 in [5] and has
a similar proof. So, we do not prove it.

Lemma 5.1.For everyq ∈QM and everym,n ∈N, we denote byqmn the solution of the problem
qmn ∈W1,p

0

(
Ω,RM

)∩Lpµn(Ω,RM),∫
Ω
an
(
Dqmn

)
Dv dx +

∫
Ω
Fn
(
qmn
)
v dµn =m

∫
Ω

[|wnq|p−2wnq − |qmn |p−2qmn
]
v dx,

∀v ∈W1,p
0

(
Ω,RM

)∩Lpµn(Ω,RM).
(5.1)

Then, there exists a subsequence ofn, still denoted byn, such that for everym ∈N, the sequenceqmn converges to a functionqm

weakly inW1,p
0 (Ω,RM). This sequenceqm converges towq strongly inW1,p

0 (Ω,RM) ∩ Lpµ(Ω,RM) and there exists
a µ-measurable functionQm, such thatqm satisfies

qm ∈W1,p
0

(
Ω,RM

)∩Lpµ(Ω,RM),∫
Ω
a
(
Dqm

)
v dx +

∫
Ω
Qmvµ=m

∫
Ω

[|wq|p−2wq − |qm|p−2qm
]
v dx,

∀v ∈W1,p
0

(
Ω,RM

)∩Lpµ(Ω,RM).
(5.2)

The sequenceQm converges strongly inLp
′
µ (Ω,R

M) to a functionQ.

Definition 5.2.We consider the subsequence ofn given by Lemma 5.1. Then, we defineF :Ω ×QM →RM by

F(x, q)=Q(x), ∀q ∈QM, µ-a.e.x ∈Ω.
By (3.28), (4.18) and (4.19) it is easy to show that for everyq1, q2 ∈QM andµ-a.e.x ∈Ω , we have

F(x,0)= 0, (5.3)(
F(x, q2)−F(x, q1)

)
(q2− q1)� α|q2− q1|pw(x)p, (5.4)∣∣F(x, q2)−F(x, q1)
∣∣�C(F(x, q1)q1+F(x, q2)q2

) p−1−σ
p

∣∣(F(x, q2)−F(x, q1)
)
(q2− q1)

∣∣ σp . (5.5)

From (5.5), we can extend by continuityF toΩ ×RM . We then defineF :Ω ×RM →RM by

F(x, s)=
{
F(x, s/w(x)) if w(x) > 0,
0 if w(x)= 0.

Analogously toan andFn, we respectively note bŷF :Ω ×RM →RM andF̃ :Ω ×RM ×RM →RM the functions:

F̂ (x, s)= F(x, s)s, F̃ (x, s1, s2)=
(
F(x, s1)− F(x, s2)

)
(s1− s2),

∀s, s1, s2 ∈ RM , µ-a.e.x ∈ Ω . For everys1, s2 ∈ RM andµ-a.e.x ∈ Ω , the functionF (as usual, we do not specify the
dependence onx) satisfies

F(0)= 0, (5.6)∣∣F(s2)−F(s1)∣∣�C(F̂ (s1)+ F̂ (s2)) p−1−σ
p

∣∣F̃ (s2, s1)∣∣ σp , (5.7)

F̃ (s2, s1)� α|s2− s1|p, ∀s1, s2 ∈RM, µ-a.e.x ∈Ω. (5.8)

Theorem 3.7 and estimate (4.19) give the following homogenization result for problem (3.3). The proof is similar to the
corresponding one of Theorem 2.1 in [2].

Theorem 5.3.We consider the subsequence ofn given by Lemma5.1 and the functionF given by Definition5.2. Then, for
every sequencefn ∈W−1,p′ (Ω,RM) which converges tof in W−1,p′ (Ω,RM), the solutionun of

un ∈W1,p
0

(
Ω,RM

)∩Lpµn(Ω,RM),∫
Ω
an(Dun) :Dv dx +

∫
Ω

Fn(un)v dµn = 〈fn, v〉,

∀v ∈W1,p
0

(
Ω,RM

)∩Lpµ(Ω,RM),
(5.9)
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converges weakly inW1,p
0 (Ω,RM) to the unique solutionu of

u ∈W1,p
0

(
Ω,RM

)∩Lpµ(Ω,RM),∫
Ω
a(Du) :Dv dx +

∫
Ω
F(u)v dµ= 〈f,v〉,

∀v ∈W1,p
0

(
Ω,RM

)∩Lpµ(Ω,RM).
(5.10)

To finish the paper, we give in the present section a corrector result (i.e., an approach in the strong topology of
Lp(Ω,MM×N)) of the gradient of the solutionsun of (5.9). We will use the following estimate.

Lemma 5.4. We consider the subsequence ofn given by Lemma5.1. Assumeun, vn ∈ W1,p
0 (Ω,RM) ∩ Lpµn(Ω,RM),

fn,gn ∈ W−1,p′ (Ω,RM), u,v ∈ W1,p
0 (Ω,RM) ∩ Lpµ(Ω,RM), f,g ∈ W−1,p′ (Ω,RM) such that(3.1)–(3.4), (4.1)–(4.4)

hold. Then

limsup
n→∞

(∫
Ω

∣∣D(un − vn − ūn + v̄n)∣∣pϕ dx +
∫
Ω

|un − vn|pϕ dµn

)
�C

∫
Ω

(|u| + |v|) p(p−1−σ)
p−σ |u− v|

p
p−σ ϕ dµ,

∀ϕ ∈D(Ω), ϕ � 0.

(5.11)

Proof. The result follows from (4.8), the properties (ii) and (B) ofan andFn, Theorem 5.3 and (C′) (applied to the functionF
which appear in Theorem 5.3).✷
Definition 5.5. We consider the subsequence ofn given by Lemma 5.1. For anym,n ∈ N and s ∈ RM , we define
Rmn :Ω ×RM →MM×N by

Rmn (x, s)=Dsmn −D(s̄n) a.e. inΩ, (5.12)

wheresmn is the unique solution of
smn ∈W1,p

0

(
Ω,RM

)∩Lpµn(Ω,RM),∫
Ω
an(Ds

m
n ) :Dv dx +

∫
Ω
Fn
(
smn
)
v dµn =m

∫
Ω

[|wns|p−2wns −
∣∣smn ∣∣p−2

smn
]
v dx,

∀v ∈W1,p
0

(
Ω,RM

)∩Lpµn(Ω,RM),
(5.13)

ands̄n is the unique solution of−div an(Ds̄n)=−div a(sw) inW−1,p′(Ω,RM),
s̄n ∈W1,p

0

(
Ω,RM

)
.

By Theorem 5.3, the sequencesmn converges to the unique solutionsm of
sm ∈W1,p

0

(
Ω,RM

)∩Lpµ(Ω,RM),∫
Ω
a
(
Dsm

) :Dv dx +
∫
Ω
F
(
x, sm

)
v dµ=m

∫
Ω

[|ws|p−2ws − |sm|p−2sm
]
v dx,

∀v ∈W1,p
0

(
Ω,RM

)∩Lpµ(Ω,RM).
Reasoning as in Lemma 5.1, we deduce

smn → sw inW1,p
0

(
Ω,RM

)∩Lpµ(Ω,RM).
Remark 5.6.The functionRmn (x, s) is measurable inx for s fixed but in general is not continuous ins for x fixed. Hence,Rmn
is not a Carathéodory function.
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The following result gives an approach inLp(Ω,MM×N) of the gradient of the solutionun of problem (3.3).

Theorem 5.7.Let n be the subsequence ofn given by Lemma5.1. Then, there exits a constantC > 0 which satisfies the
following property:

Considerfn ∈ W−1,p′ (Ω,RM) which converges strongly tof in W−1,p′ (Ω,RM) and defineun, u, ūn respectively
by (3.3), (5.10) and (3.4). Then, for every simple functionψ =∑l

i=1 siχKi with si ∈ RM , Ki ⊂ Ω compact andw = 0
µ-a.e. onKi ∩Kj , i �= j , we have

limsup
m→∞

lim
n→∞

∫
⋃l
i=1Ki

∣∣D(un − ūn)−Rmn (x,ψ)∣∣p dx �
∫

⋃l
i=1Ki

(|u| + |wψ |) p(p−1−σ)
p−σ |u−wψ |

p
p−σ dµ. (5.14)

Proof. Let s ∈ R given. Using the definitions (5.12) and (5.13) ofRmn and sm, Lemma 5.4 implies that for any function
ϕ ∈D(Ω), ϕ � 0, and anym ∈N, we have

limsup
n→∞

∫
Ω

∣∣D(ūn − smn )−D(u− s̄ mn )∣∣pϕ dx �C
∫
Ω

(|u| + |sm|) p(p−1−σ)
p−σ |u− sm|

p
p−σ ϕ dµ, (5.15)

wheres̄ mn is the solution of{−divan
(
Ds̄mn

)=−div an
(
Dsm

)
,

s̄ mn ∈W1,p
0 (Ω).

Using thatsm converges strongly tows in W1,p
0 (Ω,RM)∩Lpµ(Ω,RM), we easily deduce from (5.15)

limsup
m→∞

limsup
n→∞

∫
K

∣∣D(un − ūn)−Rmn (x, s)∣∣p dx � C

∫
K

(|u| + |sw|) p(p−1−σ)
p−σ |u− sw|

p
p−σ dµ (5.16)

for every compact setK ⊂Ω .
If now ψ =∑l

i=1 siχKi is the function which appears in the statement of Theorem 5.7, then, writing (5.16) forsi , Ki and
adding ini, we deduce (5.14). ✷
Remark 5.8.The meaning of Theorem 5.7 is that

Dun ∼Dūn +Rmn
(
x,
u

w

)
in Lp(Ω,RM), howeverRmn (x,u/w) is not well defined (see Remark 5.6). So, we need to write (5.14).

Analogously as it has been proved in [5], there are some properties, about the sequencean, as homogeneity (Proposition 5.9)
or linearity (Proposition 5.10) which are inherited by the functionsF anda in the limit problem. More exactly, we have:

Proposition 5.9.Letan and(Fn,µn) in the conditions in Section2. Let us also assume the following homogeneity conditions:

an(x,λξ) = |λ|p−2λan(x, ξ), ∀ξ ∈MM×N, ∀λ ∈R, a.e.x ∈Ω,
Fn(x,λs) = |λ|p−2λFn(x, s), ∀s ∈RM, ∀t ∈R, a.e.x ∈Ω.

Under these hypotheses, in Theorem5.3 the functionsa andF satisfy the same homogeneity conditions.

In the linear case, we analogously have:

Proposition 5.10.Let us consider now that the functionsan(x, ξ) are in the forman(x)ξ , wherean(x) are measurable functions
in Ω , valuated in the space of the linear functions inMM×N and satisfy: there exists two constantsα, γ > 0 such that

an(x)(ξ1− ξ2) : (ξ1− ξ2)� max

{
α|ξ1− ξ2|2, 1

γ

∣∣an(x)(ξ1− ξ2)∣∣2}, ∀n ∈N, ∀ξ1, ξ2 ∈MM×N, a.e.x ∈Ω.



C. Calvo-Jurado, J. Casado-Díaz / J. Math. Pures Appl. 81 (2002) 471–493 493

For a given sequenceµn ∈Mp
0 (Ω), we also assume that the functionsFn are linear in the second argument, i.e., of the form

Fn(x)s, wereFn areµn-measurable functions inΩ valuated in the space of the linear functions inRM and satisfy

Fn(x)(s1− s2)(s1− s2)� max

{
α|s1− s2|2, 1

γ

∣∣Fn(x)(s1− s2)∣∣2}, ∀n ∈N, ∀s1, s2 ∈RM, µn-a.e.x ∈Ω.
Under these hypotheses, it can be proved(see[5]) that the functionsF anda in the limit problem(5.10), satisfy the same

conditions of linearity with the same constants.
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