
FINAL MASTER PROJECT

Explainability and Fairness
in Machine Learning

Presented by:
Fátima del Pilar Villalba Pizarro

Supervised by:
DR. EMILIO CARRIZOSA PRIEGO

FACULTY OF MATHEMATICS
Statistics and Operational Research Department

Seville, June 2021





Contents

Abstract 5

Resumen 7

Introduction 9

Introducción 11

1. Random forests 13
1.1. Roots in CART . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.1.1. Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.1.2. Construction . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.1.2.1. Splitting criteria . . . . . . . . . . . . . . . . . . . 14
1.1.2.2. Stop-splitting criteria . . . . . . . . . . . . . . . . 14
1.1.2.3. Labeling terminal nodes . . . . . . . . . . . . . . . 14

1.1.3. Random Forests . . . . . . . . . . . . . . . . . . . . . . . . 15
1.1.3.1. Importance of the features . . . . . . . . . . . . . . 16

2. The importance of explainability 17

3. Explanation methods taxonomy 21
3.1. Categorization of the methods . . . . . . . . . . . . . . . . . . . . . 21
3.2. Categorization of LIME and SHAP . . . . . . . . . . . . . . . . . . . 23

4. Additive explanation models 25
4.1. Additive feature attribution methods . . . . . . . . . . . . . . . . . . 25

5. LIME 27
5.1. Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
5.2. Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
5.3. Optimization Problem . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3



4 Contents

6. SHAP 33
6.1. Shapley Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
6.2. Connection between Shapley values and additive feature attribution

methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
6.3. SHAP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

6.3.1. Unique solution . . . . . . . . . . . . . . . . . . . . . . . . . 37
6.3.2. SHAP values . . . . . . . . . . . . . . . . . . . . . . . . . . 38

6.4. KernelSHAP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
6.5. TreeSHAP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
6.6. Other variants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
6.7. SHAP interaction values . . . . . . . . . . . . . . . . . . . . . . . . 43
6.8. Comparing LIME-SHAP . . . . . . . . . . . . . . . . . . . . . . . . 44

7. Applications explanation models 45
7.1. SouthGermanCredit . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

7.1.1. Conclusions of SouthGermanCredit . . . . . . . . . . . . . . 57
7.2. COMPAS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

7.2.1. Real recidivism . . . . . . . . . . . . . . . . . . . . . . . . . 59
7.2.2. COMPAS recidivism . . . . . . . . . . . . . . . . . . . . . . 66
7.2.3. Conclusions of COMPAS . . . . . . . . . . . . . . . . . . . 70

7.3. Functional data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
7.3.1. Growth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
7.3.2. Tecator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
7.3.3. Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

8. Conclusions 89

Glossary 91

Bibliography 92



Abstract

Over the years, when speaking about prediction models, the focus has been set on
improving their accuracy, at the cost of loosing any comprehension of how the model
predicts. Consequently, it has also been lost the ability of knowing if the behavior of
the model is correct. Moreover, due to the fact that the addresses of the predictions
do not have information about how ethic or fair the model is when predicting, persons
become reticent to use such type of models. Therefore, in the last years there have
been developed investigations aiming to explain such predictions in order to make
them intelligible for humans, using techniques like LIME or SHAP, responsible for
explaining in an interpretable way what happens behind the prediction. This work
addresses this issue and reviews recent literature on the topic.
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Resumen

A lo largo de los años, en el ámbito de los modelos de predicción, el foco se ha
centrado en mejorar las predicciones realizadas por los modelos, perdiendo a cambio
toda comprensión a cerca de cómo el modelo realiza la predicción. La pérdida de com-
prensión conlleva además el desconocimiento del correcto funcionamiento del modelo,
así como reticencias a usar dicho modelo de las personas destinatarias de las predic-
ciones al no poseer información acerca de aspectos éticos y justos a la hora de realizar
las predicciones. Es por ello que en los últimos años se ha investigado cómo explicar
éstas para así hacerlas de nuevo intelegibles para el ser humano, desarrollando técni-
cas como LIME y SHAP, encargadas de exponer en una forma interpretable por el ser
humano lo que sucede detrás de la predicción. En este trabajo abordamos este tema, y
revisamos la literatura existente sobre el mismo.
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Introduction

In a world in constant evolution, it is important that predictive models are fast and
accurate. Consequently, they have become complex black-boxes, so that their inner
working is total opaque for humans. Nevertheless, humans are not just the responsible
for using these models to predict, they are also the receptors of such predictions. This
is the reason why speed and accuracy are not the only objectives to be considered in for
such a model. Behind such a prediction it is necessary to have an explanation support-
ing the prediction, offering guarantees of correctness and fairness. In this framework
the XAI (eXplainable Artificial Intelligence) has been developed in order to explain
predictions of black-boxes. Figure 11 shows the growing evolution of XAI according
to the number of articles that have been published since 2012, including terms related
to XAI( Interpretable Artificial Intelligence, XAI y Explainable Artificial Intelligence)
in the title, abstract or keywords.

Figure 1: Evolución explicabilidad

Motivated by the need of, not just making accurate predictions, but also explaining
1Figure from [5]
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them, in this text two relative novel techniques, called LIME and SHAP, will be ana-
lyzed. Both are local methods, i.e. methods that explain just a single instance; but in
fact, SHAP, as it will be seen in the practical implementation, also gives a global view,
explaining not just a single instance, but the whole model.

The text is structured as follows: The Chapter 1 is introduced as an auxiliary chap-
ter, that presents the random forests, as the model that will be used to take the predic-
tions that will be explained afterwards in Chapter 7. Then, in Chapter 2, it is exposed
the need and consequently the importance of explanation methods of prediction mod-
els. In Chapter 3, the taxonomy of the explanation methods, classifying them into three
categories, is exposed. Later on, in Chapter 4, the so-called additive feature attribution
methods are introduced as a concrete form of explanation methods. Particular cases of
additive feature attribution methods are exposed in Chapter 5 and 6, where LIME and
SHAP are developed, respectively. Finally, in Chapter 7, LIME and SHAP are imple-
mented in order to explain the predictions done by random forests for four different
data sets, two of which are functional data.



Introducción

En un mundo en constante evolución, es importante tener modelos de predicción
que realicen sus predicciones de forma rápida y precisa. Como consecuencia, los mo-
delos son cada vez más complejos, tanto que se han vuelto cajas negras cuyo funciona-
miento es totalmente opaco para el ser humano. Sin embargo, el ser humano, además de
ser el emisor de los datos que introduce en el modelo, también es, a su vez, el destinata-
rio de dichas predicciones. Esto conlleva que además de rapidez y precisión, se vuelva
indispensable que detrás de cada predicción haya una explicación interpretable por el
receptor, sobre la que se sustente el por qué de dicha predicción, aportando garantías
de que el modelo funciona de forma correcta y justa. En este marco se desarrolla la
XAI (inteligencia artificial explicable), que se encarga de explicar las predicciones del
modelo y que ha ido tomando relevancia en los últimos años. En la Figura 22 podemos
ver la evolución desde el año 2012 del número total de publicaciones, cuyo título, resu-
men y/o palabras clave hacen referencia a términos relacionados con la explicabilidad,
en particular para los términos Interpretable Arificial Intelligence, XAI y Explainable
Artificial Intelligence, viendo cómo han ido tomando relevancia.

Motivado por esa necesidad de, no solo predecir certeramente, sino entender las ba-
ses de la predicción, en este texto se plantean distintas técnicas recientes con este fin,
llamadas LIME y SHAP. Ambos métodos son locales, es decir, explican únicamente
una instancia en concreto, aunque si bien es cierto, como veremos en la implementa-
ción práctica, SHAP proporciona también una visión global, es decir, proporciona una
explicación del modelo y no solo de una instancia concreta.

El texto está estructurado de la siguiente forma: El Capítulo 1 es un capítulo auxi-
liar, en el que se presentan los bosques aleatorios, como modelo de predicción que se
usará en la parte práctica (Capítulo 7) para explicar, en base a los distintos métodos que
se expondrán en el texto, sus predicciones. Posteriormente, en el Capítulo 2, se plantea
la importancia que ha ido tomando la explicabilidad de los modelos de predicción y
su motivación. A continuación, en el Capítulo 3, se introducen los distintos métodos
de explicación que existen, en base a 3 categorías. En el Capítulo 4, se expondrán los
llamados métodos de atribución de características aditivas, entre los que se encuentran
distintos métodos de explicación como son LIME, que se desarrollará en el Capítulo 5,

2Imagen tomada de [5]
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Figura 2: Evolución explicabilidad

y SHAP, que se expondrá en el Capítulo 6. Finalmente, en el Capítulo 7, se implemen-
tarán las técnicas LIME y SHAP, para explicar las predicciones de bosques aleatorios
para 4 bases de datos distintas, de las cuales 2 son bases de datos funcionales.



Chapter 1

Random forests

In this text different methods for explaining prediction models will be exposed, and
in Chapter 7 they will be applied to a specific model, called random forests. Therefore
let us open a parenthesis and make an overview of random forests.

Random forests yield a compound of two fundamental elements, consisting of
an ensemble of decision trees sampled independently (but working together -forest-)
where randomness is applied at different points of the algorithm. Let us first under-
stand the way a single decision tree works, and then we will extend the analysis to an
ensemble of trees, i.e., to a random forest.

1.1. Roots in CART
The trees used in random forests are grounded on the decision trees presented in

1984 by Breimman and Friedman in "Classification and Regression Trees" (CART)
[7]. They predict following an if-then rule, and are therefore easily interpretable [9].
In what follows, we will expose the fundamentals of CART according to [7].

Let D = {(Xj, Y j)j=1,..,M} be the learning sample available in order to construct
the decision tree, where M is the number of observations, Xj ∈ X is a vector of
|N | variables, named measurement vector, in the measurement space X, and Y j is the

corresponding observation: from among R possible classes C =

{
C1, ..., CR

}
in case

of classification, or Y j ∈ R in regression. Let us see the structure of such a tree and
how to construct it.

1.1.1. Structure
The structure of a decision tree consists in a collection of nodes and branches

displaying a partition of D, such that the uppermost node is the original set, called

13



14 1.1. Roots in CART

root node t0, and the other nodes are terminal nodes, if they do not split, and non-
terminal nodes if they do split. Every time a node ti splits into H nodes (say they are
thi , h = 1, ..., H) , it is satisfied that ti = tHh=1t

h
i . We will focus on the trees with

H = 2, called binary trees.

1.1.2. Construction
1.1.2.1. Splitting criteria

When constructing the tree, the criterion of splitting must be fixed. The most com-
mon one for classification trees is the one called Gini Criterion and it consists in se-
lecting the split (i.e. as variable Xi for realizing the split) that reduces the impurity at
most, understanding as impurity, the probability of classifying wrongly, called by this
criterion Gini Index. Formally, the Gini Index of a node t is given by:∑

r 6=l

p(r | t)p(l | t) = 1−
∑
r

p2(r | t)

and the decrease in impurity that has to be maximized is:

∆i(u, t) = −
∑
r

p2(r | t) + pright
∑
r

p2(r | tright) + pleft
∑
r

p2(r | tleft)

where p(r | t) refers to the probability of assigning an item selected at random from
node t to class Cr, and p(l | t) expresses the probability of the object belonging to the
class Cl, u is the selected split, and pright, pleft are the proportion of items of node t
that are sent by the split u to the two resulting nodes tright and tleft, respectively.

In case of regression the split selected is the one the minimizes the residual sum of
squares.

1.1.2.2. Stop-splitting criteria

According to [7], when using individual decision trees, a tree must grow until all
terminal nodes are pure, i.e. until only one object has reached one (different) terminal
node and then prune upward, i.e., cut off nodes successively in order to select the
"optimum-sized" tree. Nevertheless, when constructing a decision tree for a random
forest, the tree will not be pruned.

1.1.2.3. Labeling terminal nodes

When doing classification, the terminal nodes are labeled assigning to the node in
question the class that share more items of the ones that achieve that node. When doing
regression, the node is labeled with the mean of the values of the items.



Chapter 1. Random forests 15

1.1.3. Random Forests

Once the single decision tree has been explained, it can be set the focus on the
whole forest [6], that can bee seen as an improvement when speaking about predictive
accuracy, as opposed to decision trees, but at the expense of becoming more complex
and less interpretable.

The technique used for constructing a random forest is called bootstrap-aggregating
and is schemed in Figure 1.1. Given a learning sample D, each tree that will conform
the forest is constructed doing a simple random sampling with repositioning. So, for
each tree, two new sets are obtained, called bootstrap and OOB (out-of-bag). The first
one is conformed by approximately 2

3
of items of D, and the second one, by the 1

3

of items remaining that do not appear in the bootstrap. The bootstrap is used to con-
struct the decision tree according to what is explained above (Section 1.1), taking into
account an additional aspect: the best split is selected, not from the total number of
variables available, but from mtry variables selected randomly from among the total.
The OOB is used as a validation set of the decision tree, giving the OOB-error, i.e. in
case of regression, the MSE, and in case of classification, the proportion of wrongly
classified items. Afterwards, the results of the different trees are aggregated, i.e., on
the one hand, the mean of the OOB-errors of all trees is computed, and so the whole
forest is validated, and on the other hand, further predictions are given, in regression
as the mean of the predictions given by all the trees, and in classification as the most
voted class over all the trees.

Figure 1.1: scheme random forests
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1.1.3.1. Importance of the features

Random forests are an example of prediction models that have evolved from a
simple interpretable model with a direct influence of the predictor variables at their
position at the tree to a complex one, loosing in interpretability. Consequently, random
forests need to be explained. Therefore, addressing the issue of giving an explanation
of random forests, there exist three commonly used techniques of measuring the global
feature importance:

1. Split count. This method counts how many times each features is selected by the
trees of the forest as responsible for the split. The higher the number of splits,
the more important the variable [36].

2. Mean Decrease Impurity (MDI). This technique averages the decrease in impu-
rity over all the nodes of the trees in the forest, where the variable is the one
selected for the splitting. The higher the value of MDI, the more important the
variable [29].

3. Mean Decrease Accuracy (MDA). This method measures the decrease in accu-
racy of the forest when permuting the values of the variable whose importance
wants to be measured, respect the original random forest. The higher the value
of MDA, the more important the variable [17].



Chapter 2

The importance of explainability

Over the years, machine learning has developed and increased it is importance
until becoming indispensable in many areas of today’s society. This development has
been focused on performing the accuracy of the models predictions. Nevertheless, the
improvement of prediction accuracy is not cost-free, it is at the expense of making
models ever more complex. It is said, that the models have developed from white-
boxes, to black-boxes. An illustration of what is understood under white- and black-
boxes is shown in Figure 2.1. While the white-box is transparent, and the structure is
clearly visible, the black-box is totally opaque, and the inner structure is not known
[26],[27],[5].

(a) white-box (b) black-box

Figure 2.1: Scheme of white- and black-boxes

The main consequence of using black-boxes instead of white ones, is the loss of
interpretability, i.e., of comprehensibility, of human understanding of what the "box"
is doing to predict [5],[32]. Although it may seem a not important question, since these
black-boxes have a high predictive accuracy, and they "just do it", due to the fact that
predictive models are used in several areas that have immediate effects on human life,
like medicine, finance, security, transportation, etc [5],[32],[33], understanding "what
happens behind" is an important task. In order to evince it, let us see the following

17
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example, schemed in Figure 2.2. Imagine a doctor is making the pacient’s diagnosis in
agreement with a model prediction. If that model is a white-box, the doctor knows how
the model is working, and consequently why that prediction was made. Nevertheless,
probably (not necessarily)1, the accuracy of the prediction will not be that high. In
contrast, if the model is a black-box, the prediction accuracy will increase, but the
doctor will not know the explanations supporting the output of the model, so: Could
the pacient feel safe in this situation?

Figure 2.2: Scheme of example doctor

The open-ended question of the above example brings out that humans are reticent
to non interpretable procedures [5] whose trustworthiness cannot be verified 2 but have
an immediate consequence on their life. The consequence is that if a human cannot
trust a model, it will not use it, because, although the lack of trustworthy does not im-
ply a lack of efficiency, efficiency does also not imply that it cannot be faulty [30].
An example is given in [31] where the authors trained a classifier that should clas-
sify images, depending on the animal appearing on them, in two classes: wolves and
huskies. Nevertheless they did not trained this model with random images, they did
that with 20 images such that, at every image where a wolf was appearing, it also
appeared snow in the background. So, when realizing further predictions, the model
used as principle criterion to distinguish between both classes if there was snow in the
background, but any aspect about the animals. The predictions were mainly correct,
because as test they also used images where the background of the wolves was also
snow. If the focus is set just on the accuracy of the model, it seems to be a good model,
but when the explanations of the model are exposed (predicting according to snow),
the model is revealed to be a "bad" model, that can fail and should not be trusted.

1In [32] it is discussed about Interpretable Machine Learning a term coined in the 1950’s based on
the idea of using inherently interpretable models, and it is highlighted that these type of models are not
necessary at odds with high predictive accuracy, focusing on the idea that sometimes black-boxes are
implemented unnecessarily.

2In [32] it is exposed that interpretable models do not necessary imply trustworthy, but they allow to
check if they are trustful.
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Furthermore, related with the possibility of failure, in many areas there exists a le-
gal aspect that demands "right to explanation", because there also exists the "right of
human intervention" [30].

Moreover, a model is expected to be "fair and ethical" [30]. Suppose a model
is used to predict the best applicant for a job. The prediction should not be taken
according to aspects like age, sex or religion, because these would not be ethical, bet
neither fair [8]. So if a candidate is refused, it has the right to ask "Why?", and get an
explanation, otherwise if there is no explanation of what the model is doing, the model
cannot be trusted to be fair and ethical, calling the model into question [30].

Therefore, like black-boxes make high accurate predictions, but fail on interpretabil-
ity, i.e., on making predictions justifiable [5],[30] based on their working , so that they
can be confirmed to be trustworthy [5],[27],[30], in around 2016 arises the XAI (ex-
plainable artificial intelligence) [32] with the aim of addressing the trade-off between
predictive accuracy and interpretability 3 [32],[24],[25],[5],[21], for the different pre-
dictive models that have been and will be developed over the years, like the ones of
Figure 2.3 [5].

Figure 2.3: Models accuracy vs. interpretability (evolution)

It is worth emphasizing the term appearing in XAI, explainable, since it should not
be confused with interpretable. Interpretable means that the model is comprehensible

3Some authors call this readability-performance trade-off or accuracy-comprehensibility trade-off
instead of accuracy-interpretability trade-off [30]
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or understandable for the human (a white-box), while explainable must be assimilated
as that it can be comprehensible, i.e., interpretable involves the concept of inherently,
while explainable implies that the model becomes interpretable after a certain analysis,
i.e., the explanation is interpretable. So, the explanation implies interpretability, but not
the other way around. Even though, both concepts are closely tied to the target audi-
ence, and therefore, to take full advantage of prediction models, the model should ei-
ther be interpretable/comprehensible for the target audience, or the explanations given
afterwards should be presented in a understandable way for them. Nevertheless, there
does not exist a formal definition of both concepts, and therefore, different authors
make different assumptions about the different meanings [30],[32],[5],[8].



Chapter 3

Explanation methods taxonomy

The aim of this work is to present two rather novel XAI techniques called LIME
[31] and SHAP [21]. Therefore, in this Chapter, we will overview the different ways of
categorizing explanations methods according to their properties and afterwards there
will be presented the classes in which these two methods, LIME an SHAP, fit in, in
order to get an overall picture of them, that let us explain them in a detailed way in the
Sections 5 and 6, respectively.

3.1. Categorization of the methods
In order to "explain"1 the predictions made by a model, there exist several methods,

that can be categorized according to three criteria as can be seen in Table 3.1.

Categorization 1 Categorization 2 Categorization 3
Intrinsic Post-hoc Global Local Model-specific Model-agnostic

Table 3.1: Categorizations of explanations methods

So, as it can be seen in Table 3.1 in blue, the first categorization distinguishes
between intrinsic and post-hoc, setting a differentiation of the point "When?" the in-
tepretability is obtained.

Definition 3.1.1. Intrinsic methods (also called Ante-hoc by some authors [8]) are
methods that obtain the interpretability at the same time that training the model, by
restricting the complexity of the model [26],[30].

1Here "explain" is referred to within inverted commas, because the categorization 1, entails a distinc-
tion between intrinsic and post-hoc methods, but since intrinsic means that the model is inherently inter-
pretable, according to the differentiation done in Chapter 2 of the terms explainable and interpretable,
when speaking of intrinsic methods, it should be used the term interpretation instead of explanation.

21



22 3.1. Categorization of the methods

Definition 3.1.2. Post-hoc methods are methods that obtain the interpretability of the
model analyzing the model after training it, providing explanations due to its outcomes
[8],[30].

For example, decision trees or linear models are simple models and the inter-
pretability of the models is obtained due to their structure [5],[8]. By contrast, random
forests do not have such simple structure, so a post-hoc analysis is needed, in order to
interpret, for example, making a feature permutation. Other models that need post-hoc
analysis are for example Support Vector Machines or Neural Networks [5].

It follows that achieving the interpretability in an intrinsic way, in fact means that
the interpretability relies intrinsically on the structure of the model, i.e. the model
is a white-box [12]. Therefore, explainability is grounded on post-hoc interpretabil-
ity, because the aim is to explain non-interpertable models, i.e. of black-boxes, since
"white-boxes" or transparent models are interpretable by their own structure and do
not suppose any challenge [5], i.e. when speaking about explanations (and not just
interpretation), post-hoc analysis is referred.

The second classification, that can be seen in Table 3.1 in red, refers to the question
"What? (is explained by the method)", the whole model or a single prediction.

Definition 3.1.3. Global methods are methods that explain the behavior of the model
on avarage for a given dataset [24], explaining the whole model [24].

Definition 3.1.4. Local methods are methods that explain the behavior of the model’s
prediction of a single instance [24].

So, when getting global explanations, the whole model can be trusted, but when
getting local explanations just the single prediction can be trusted [30]. Moreover,
global fidelity implies local fidelity, but not the other way around [31], understanding
under fidelity the degree of approximation to the behaviour of the model [16],[31].
The problem is that, getting global explanations is not an easy task. That is why, local
explanations is the minimum requested when speaking about explanations [31].

At last but not least, the third categorization distinguishes between two kinds of
methods, depending on the answer "How? (do they work)".

Definition 3.1.5. Model-Specific methods are methods that make the explanations ac-
cording to the inner structure of the specific model, so they can just be applied to a
certain model (class) [12],[30].

Definition 3.1.6. Model-agnostic methods are methods that make the explanations
just using the data and the predictions of the model, but not the inner structure of the
model, so they can be applied to any model [24], [30] .
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It is worth noting that intrinsic always implies model-specific, and that model-
agnostic methods are always post-hoc [26].

A particular techinque of model-agnostic methods is the one based on surrogate
models (for other techniques see [3]). The surrogate models are interpretable models
trained in order to replicate the behavior of the original non-interpretable model, i.e.,
approximating the predictions made by it, so the explanation consists on interpreting
the surrogate model [24], [27].

3.2. Categorization of LIME and SHAP
In what follows, the focus will be set on two particular explanations methods:

LIME and some variants of SHAP. Therefore let us first make a classification of these
methods according to the terms above explained in Table 3.2.

Classification 1 Classification 2 Classification 3
Method Intrinsic Post-hoc Global Local Model-specific Model-agnostic
LIME X X X

Kernel SHAP X X X
Linear SHAP X X X
Tree SHAP X X X

Table 3.2: Classification LIME and variants of SHAP according to the properties of
Table 3.1
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Chapter 4

Additive explanation models

In 2017 Scott M. Lundenberg and Su-In Lee [21] introduced a novel persepective
into the area of explaining model predictions "viewing any explanation of a model’s
prediction as a model itself". They termed such explanations as "explanation model".
Furthermore, they defined a special class of (post-hoc) local explanation methods
called additive feature attribution methods for methods with linear explanation mod-
els, where the explanation model, and therefore the explanation of the prediction is the
sum of real values that correspond to each input feature used by the prediction model.
In this class fit explanation methods like LIME (see Chapter 5), as well as the one
presented in [21] by themselves, SHAP (see Chapter 6).

4.1. Additive feature attribution methods
The aim is explaining locally a prediction model via an explanation model, i.e.

via an interpretable approximation of the prediction model. Let f : R|N | → R be the
original prediction model which is wanted to be explained and g the explanation model
and let x ∈ R|N | be the single instance that wants to be explained (local method), where
every dimension of |N | corresponds to an input feature, and f(x) the prediction of the
original model of that instance.

Observation 4.1.1. If f is a classification model, then f(x) represents the probability
of belonging to a certain class.

Next the additive feature attribution methods will be presented, but let us before
make a parenthesis in order to note that, although the input that wants to be ex-
plained is x ∈ R|N |, normally, explanation models do not work with x, but with
x′ ∈ {0, 1}|N ′| (note that |N | is not necessary equal to |N ′|), called simplified in-
put [21] or interpretable input [31], distinguishing this way between original and in-
terpretable/simplified representation, where the simplified maps to the original one
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through a mapping function x = hx(x′). Whenever z′ ≈ x′, then g(z′) ≈ f(hx(z′))
(local approximation) [21].

Definition 4.1.1. Additive feature attribution methods[21] are local methods that
have an explanation model that is a linear function of binary variables:

g(z′) = φ0 +

|N ′|∑
i=1

φiz
′
i (4.1)

where z′ ∈ {0, 1}|N ′|, |N ′| is the number of simplified input features, and φi ∈ R is the
effect attribute to each feature, so that the sum of the effect of all features approximates
the output of the original model.



Chapter 5

LIME

LIME [31] (Local Interpretable Model-agnostic Explanations) is, as its name im-
plies, a local and model-agnostic method that explains a single prediction f(x) of the
model f , using a linear explanation model g such as (4.1) in the proximity of x, i.e. it
is assumed local linearity in order to approximate f(x) with the model g.

Figure 5.1: Linear approximation in the neighborhood of x

Notation 5.0.1. In fact, LIME can have as explanation model any interpretable model,
not only linear models, but also for example decision trees. Nevertheless, due to the
good results the authors obtained in the experiments, explaining black-boxes just with
linear explanation models, the authors focused just on this type, leaving the door open
to investigate in further work using others.

5.1. Parameters
The aim now is to determine the weights of g, i.e., returning to (4.1), the values φi.

Therefore the following concepts are introduced:
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• G:= Class of interpretable models (liner models, decision trees,...). Due to
Note 5.0.1, in this work G is the class of linear models.

• Ω(g) := Complexity of g. This concept is used to penalize g being too complex.
As we assume linearity, complexity means number of non-zeros weights. The
concrete form selected in the implementation consists in limiting the number of
non-zero weights by a constant K.If K is small, the explanation model is more
interpretable, if K is high, the explanation model is more locally faithful.

• πx(z):= Local kernel. Proximity measure between an instance z to the input x.
This parameter is important because we are approximating locally. Normally,
the concrete form used for πx is:

πx(z) = e−
D(x,z)2

σ2 (5.1)

where D is a measure of distance between x and z (depending on the type of
input data, that can be text, images or tabular data, D is the cosine distance (text)
or the euclidean distance (otherwise)) and σ is the kernel-width [4] (normally
σ = 3

4

√
|N | for tabular data and 25 for textual data [4]). The value of σ is

responsable for the local fidelity, because, if it is too large, the weight given for
different instances is very similar (i.e., close and far away instances have the
same weight), but if it is too small, just a few points will be weighted high (i.e.,
just the ones too close have weight)

• L(f, g, πx):= Locality-aware loss. Measure of how unfaithful is g in aproxi-
mating f locally using πx. The used form of L is the locally weighted square
loss:

L(f, g, πx) =
∑
z,z′∈Z

πx(z)(f(z)− g(z′))2 (5.2)

5.2. Sampling
As it can be seen in Equation (5.2), L depends on the elements z ∈ Z and their

simplified representation, where Z is a dataset of perturbations of the instance that
needs to be explained (x or its simplified representation x′). The use of Z permits to
approximate the locality-aware loss, in a model-agnostic way, making no assumptions
of the original model f , because it let us know the local behavior of f , due to the fact
that, the model is a black box which inner working is not known, but the predictions
of other instances z can be obtained. This way, L is set in Equation (5.2), as the
difference between the predictions of f and the explanation model g for perturbed
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instances, weighting the distance between instances with πx, so that the ones in the
neighborhood are given a higher weight.

The way of getting the sample depends on the type of data available: Images, text
or tabular data. Let us see all three cases, and therefore the form of the original and the
simplified form of the data.

1. Images. Since in images the original representation x is given by the pixels
of the image (see Figure 5.2), this gives no much information, because isolated
pixels do not have any meaning. So, the simplified representation x′ is given
by "super-pixels"(see Figure 5.2(b)), i.e. by groups of pixels (grouped by the
Quick-Shift algorithm, although other algorithms could be used [35]), where 0
means that the super-pixel is off (shaded gray in the image) and 1 means it is on.
Notice that here the dimension of x′, |N ′|, is smaller than the one of x, |N |.
Therefore, in order to obtain the dataset of perturbed samples Z, it is sampled
around the simplified instance x′ drawing non-zero elements of x′ uniformly at
random (the number of the draws is also uniformly sampled), so that the non-
zero elements of the sampled input z′ form a subset of non-zero elements of
x′(see Figures 5.2(c),5.2(d)). Mapping the sample to the original representation
z = hx(z′), the prediction f(z) as well as the weight πx(z) are then obtained.
In the end, a whole dataset Z and the corresponding predictions and weights are
gotten.

(a) Original in-
put

(b) Simplified
input

(c) Perturbation (d) Perturbation

Figure 5.2: Scheme of sampling images.1

2. Textual data[23]. When using textual data, the original representation x are
word embeddings. Suppose in x there are |N ′| distinct words and denote them
by {w1, ..., w|N ′|}. The first step is to sample uniformly at random in {1, ..., |N ′|}
a number s. Then a subset of size s, S ⊆ {1, ..., |N ′|}, is sampled uniformly at
random. Then we get a new sampled instance z, by suppressing in x all the words

1Images by Marco Tubeiro, Sameer Singh and Carlos Guestrin (authors of
the original paper of LIME [31]) in https://www.oreilly.com/content/
introduction-to-local-interpretable-model-agnostic-explanations-lime/

https://www.oreilly.com/content/introduction-to-local-interpretable-model-agnostic-explanations-lime/
https://www.oreilly.com/content/introduction-to-local-interpretable-model-agnostic-explanations-lime/
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Instance in original space Simplified instance
She works as data scientist (1,1,1,1,1)
She as scientist (1,0,1,0,1)
works as (0,1,1,0,0)

Table 5.1: Example sampling text data

wi, ∀i ∈ S. The simplified instance z′ is then the binary vector, with z′i = 1 if the
word wi of x appears in z, and z′i = 0 otherwise. Therefore, the simplified input
of x is x′ = (1, ..., 1). This procedure is done until a whole dataset Z is gotten.
An example is given in Table 5.1, where the given instance is "She works as data
scientist", and the resulting perturbations are "She as scientist" and "works as".

3. Tabular data. When using tabular data it must be distinguished between quan-
titative or categorical features. Nevertheless, both have in common, in contrast
to images and textual data, that here a training set is required.

• Categorical2. When a feature is categorical, the sampling is bounded to
the frequency of the different classes of the training dataset. Say the i− th
feature is categorical. So xi corresponds to a class of the possible ones. The
simplified input takes the value 1, i.e x′i = 1. It will be then sampled xi
according to the frequency of each class obtaining different zi. If zi = xi,
i.e. the sample corresponds to the same class, then the simplified input is
z′i = 1, otherwise it is z′i = 0.
For example, suppose the i− th feature is Marital status and with the three
following classes: Married, Single and Divorced, with frequencies 0.5, 0.2
and 0.3, respectively. Say xi =Married, so x′i = 1 and any z′i = 1 just if
zi =Married. Sampling (for example 5 times) we get z1

i , ..., z
5
i ∈ Z and

their simplified inputs like in Table 5.2.

2Information given by Python with help(lime.limetabular) after from
lime.limetabular import LimeTabularExplainer

Pertubed instances in original space (zi) Perturbed instances in simplified space (z′i)
Divorced 1
Married 0
Single 0
Single 0

Divorced 1

Table 5.2: Example sampling categorical feature
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• Quantitative. Here we may distinguish two forms of sampling. The first
one, and recommended by the author, is discretizing the feature into he
empirical quantiles of the training set. The second one, consists in using the
original instance as the simplified instance itself (this time the simplified
representation is not binary).

a) Discretizing[15]. When a feature is numerical, the feature is dis-
cretized in agreement to the empirical quantiles of the training set.
The idea is to establish categorical features from the quantitative ones.
Therefore, let the i − th feature be quantitative. If xi has a value
between q̂k and q̂k+1, then the discrete representation of xi is k, so
that the simplified input is x′i = 1 and is interpreted as xi discretized
is k. Suppose there are in total p quantile-boxes (i.e bins picked by
the quantiles). Next step is to sample uniformly {1, ..., p}. Let s de-
note the value obtained. By sampling from a normal distribution (with
mean and standard deviation of the distribution of the training dataset)
truncated to the corresponding quantile-box s we get the i− th feature
of the searched sampled instances zi. The simplified representation z′i
takes the value 1 if zi falls into the same quantile-box as xi, and 0 oth-
erwise. Naturally, this is done for every quantitative feature in x.
For example, suppose the i− th feature is Age and the discretization is
done into quartiles, so p = 4. Let the quartiles be given, for example,
by q1 = 0, q2 = 15, q3 = 39, q4 = 56, q5 = 100 (see the notation is the
above explained and not the usual one for the indexes of quartiles), and
the original feature xi = 25. The simplified input is x′i = 1, meaning
that xi ∈ [q2, q3) and every perturbed instance z′i is 1 only if zi belongs
to the interval with extreme points q2 = 15 and q3 = 39, as xi, and 0
otherwise.

q1 q2 q3 q4 q5

0 15 39 56 100

instance in original space instance in simplified space
14 0
48 1
32 1
91 0
56 0

Table 5.3: Example sampling quantitative feature discretized



32 5.3. Optimization Problem

b) Without discretizing. If no discretizing is done, then the simplified
and the original representation of the i − th quantitative feature co-
incide (xi = x′i)

3. So, the perturbation is done, sampling from a
Normal(0, 1) and multiplying by the standard deviation and adding
back the mean (with mean and standard deviation of the distribution
of the training dataset). Nevertheless, this is not recommended by the
author of [31], Marco Tubeiro, because, the interpretation becomes
harder, since for example negative weights for negative features mean
positive contribution (double negatives are hard to think about).4

5.3. Optimization Problem
Once all above concepts are explained, let us expose how LIME gets the explanation
model. To find the values φi, i.e., to determine g, LIME considered the following
optimization problem:

arg min
g∈G

L(f, g, πx) + Ω(g) (5.3)

so that, the explanation model g that verifies Eq.(5.3), is the local explanation of f(x).

Due to the parameters selected in Section 5.1, solving the Equation (5.3) is in-
tractable. Therefore, the procedure used to do this minimization as an approximation,
called in [31] as K-LASSO, consists in fixing a number K number of non-zero weights
φi that should have the model and using LASSO regularization to select the corre-
sponding K features. Then the weights are learned via least squares. This way, going
back to Section 4.1, the weights here calculated of the explanation model represent the
effect attribute to each feature, so that, we have got an explanation of the prediction
f(x) that is interpretable.

3This is explained in the official blog of the author of [31] in https://github.com/
marcotcr/lime/issues/485

4This is expressed by Marco Tubeiro, author of [31], on the page https://github.com/
marcotcr/lime/issues/196, that corresponds to the comments of the author on the repository
of the lime package.

https://github.com/marcotcr/lime/issues/485
https://github.com/marcotcr/lime/issues/485
https://github.com/marcotcr/lime/issues/196
https://github.com/marcotcr/lime/issues/196


Chapter 6

SHAP

Another additive feature attribution method is SHAP (SHapley Additive exPla-
nations) [21]. This method is based on Game Theory concepts, specifically, on the
Shapley values. So let us first explain this concept.

6.1. Shapley Values
Shapley values [1] were introduced 1953 by Lloyd Shapley as part of the cooper-

ative Game Theory in an axiomatic ways, i.e. certain properties were proposed and
it was proved that only one value concept, the Shapley values, satisfied all properties
simultaneously, becoming the unique method to attribute fairly the payoff of a coop-
erative game to the players. Nevertheless, in order to make it more comprehensible let
us see first the definition of the Shapley values and then the properties fulfilled.

Definition 6.1.1. Let N ′ be a set of players of a game, S a subset of players, i the
i− th player and v : 2N ′ → R the set function, i.e. the worth of S, with v(∅) = 0, then
the Shapley value of the i− th player is:

φi(v) =
∑

S⊆N ′\{i}

|S|!(|N ′|!− |S| − 1)!

|N ′|!
(v(S ∪ {i})− v(S)) (6.1)

The term |S|!(|N ′|!−|S|−1)!
|N ′|! indicates the probability of the i− th player to incorporate

to S, while the term (v(S ∪ i)− v(S)) is the marginal contribution of the i− th player
when it incorporates to S. Therefore, the i − th Shapley value is the average of the
marginal contribution of the i− th player, over all the possible permutations the i− th
player can be part of (i.e. the order matters).

The properties that are only satisfied by Shapley values simultaneously are follow-
ing:
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34 6.1. Shapley Values

Property 6.1.1. Efficiency The total payoff of the game is shared among all |N ′| play-
ers:

v(N ′) =
∑
i∈N ′

φi(v)

Property 6.1.2. Symmetry If players i ∈ N ′ and j ∈ N ′ are symmetric, i.e. v(S ∪
{i}) = v(S ∪ {j}) ∀S ⊆ N \ {i, j}, then their payoff are the same: φi(v) = φj(v).

Property 6.1.3. Additivity If w is another set function, the payoff of the sum-game is
the sum of the payoffs of the single games:

φi(v + w) = φi(v) + φi(w)

Property 6.1.4. Null-player If the i − th player is a null player, i.e., v(S ∪ {i}) =
v(S) ∀S ⊂ N ′, i ∈ S, then φi(v) = 0

Let us see an example of Shapley values.

Example 6.1.1. Let N ′ = {1, 2, 3} be a set of 3 players, and the set function taking
following values:

v(S) =



0 if S = ∅
100 if S = {1}
125 if S = {2}
50 if S = {3}
250 if S = {1, 2}
350 if S = {1, 3} or S = {2, 3}
500 if S = {1, 2, 3}

Depending on the moment the player i comes to the coalition, the different possible
ordering of players are

1,2,3 1,3,2 2,1,3 2,3,1 3,1,2 3,2,1

So, according to these possible orderings, the marginal contributions are the ones
of Table 6.1.
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Marginal contribution i 1,2,3 1,3,2 2,1,3 2,3,1 3,1,2 3,2,1
1 100 100 125 150 300 150
2 150 150 125 125 150 300v(S ∪ {i})− v(S)
3 250 250 250 225 50 50

Table 6.1: Marginal contributions

Therefore, the Shapley values are:

φ1 =
∑

S⊆N ′\{1}

|S|!(|N ′|!− |S| − 1)!

|N ′|!
(v(S ∪ {1})− v(S))

=
0!(3− 0− 1)!

3!
(v(∅ ∪ {1})︸ ︷︷ ︸

100

− v(∅)︸︷︷︸
0

) +
1!(3− 1− 1)!

3!
(v({2} ∪ {1})︸ ︷︷ ︸

250

− v({2})︸ ︷︷ ︸
125

)

+
1!(3− 1− 1)!

3!
(v({3} ∪ {1})︸ ︷︷ ︸

350

− v({3})︸ ︷︷ ︸
50

) +
2!(3− 2− 1)!

3!
(v({2, 3} ∪ {1})︸ ︷︷ ︸

500

− v({2, 3})︸ ︷︷ ︸
350

)

=
1

6
(2100 + 125 + 300 + 2150) =

925

6

φ2 =
∑

S⊆N ′\{2}

|S|!(|N ′|!− |S| − 1)!

|N ′|!
(v(S ∪ {2})− v(S))

=
0!(3− 0− 1)!

3!
(v(∅ ∪ {2})︸ ︷︷ ︸

125

− v(∅)︸︷︷︸
0

) +
1!(3− 1− 1)!

3!
(v({1} ∪ {2})︸ ︷︷ ︸

250

− v({1})︸ ︷︷ ︸
100

)

+
1!(3− 1− 1)!

3!
(v({3} ∪ {2})︸ ︷︷ ︸

350

− v({3})︸ ︷︷ ︸
50

) +
2!(3− 2− 1)!

3!
(v({1, 3} ∪ {2})︸ ︷︷ ︸

500

− v({1, 3})︸ ︷︷ ︸
350

)

=
1

6
(2125 + 150 + 300 + 2150) =

1000

6

φ3 =
∑

S⊆N ′\{3}

|S|!(|N ′|!− |S| − 1)!

|N ′|!
(v(S ∪ {3})− v(S))

=
0!(3− 0− 1)!

3!
(v(∅ ∪ {3})︸ ︷︷ ︸

50

− v(∅)︸︷︷︸
0

) +
1!(3− 1− 1)!

3!
(v({1} ∪ {3})︸ ︷︷ ︸

350

− v({1})︸ ︷︷ ︸
100

)

+
1!(3− 1− 1)!

3!
(v({2} ∪ {3})︸ ︷︷ ︸

350

− v({2})︸ ︷︷ ︸
125

) +
2!(3− 2− 1)!

3!
(v({1, 2} ∪ {3})︸ ︷︷ ︸

500

− v({1, 2})︸ ︷︷ ︸
250

)

=
1

6
(250 + 250 + 225 + 2250) =

1075

6
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And it can be seen that φ1 + φ2 + φ3 = 925+100+1075
6

= 500 = v({1, 2, 3}).

6.2. Connection between Shapley values and additive
feature attribution methods

To establish a connection between this Game Theory concept and the additive fea-
ture attribution methods, the payoff of the game must be understood as the model
prediction, and the players as the input features. So, the total payoff, i.e., the predicted
value of an instance x, is sought to be distributed in a fair way, respecting Properties
6.1.1,6.1.2,6.1.3 and 6.1.4. Therefore, the simplified inputs z′ ∈ {0, 1}|N ′|, must be
understood as a representation of a coalition S ⊆ N ′, so that, if an entry is z′i = 1 it
means that the i− th feature is present, and if it is z′i = 0, the features is absent.

Game Theory Additive feature attribution method
Payoff (v) Prediction (f(x))

Players (N ′) Features (N ′)
Coalition of players (S) Coalition of features (z′)

Shapley values (φ) Contribution of each feature to the prediction (φ)

Table 6.2: Connections between Game Theory and additive explanation methods of
black boxes

6.3. SHAP
SHAP [21],[20] arises of the fact that there is only a unique solution in the class of

additive feature attribution methods satisfying the three following Properties 6.3.1,6.3.2
and 6.3.3.

Property 6.3.1. Local accuracy

f(x) = g(x′) = φ0 +

|N ′|∑
i=1

φix
′
i (6.2)

Property 6.3.1 expresses that the sum of the feature attributions and the output of the
original model agree. This property agrees with the property of efficiency of the Shap-
ley values (Property6.1.1).
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Property 6.3.2. Missingness

x′i = 0⇒ φi = 0 (6.3)

Property 6.3.2 indicates that, if a feature is missing , the feature attribution is zero, i.e.,
it is given no importance.

Property 6.3.3. Consistency Let fx(S) = f(hx(z′)) where S is the set of non-zero
indexes in z′. For any two models f and f ′:
if f ′x(S)− f ′x(S \ {i}) ≤ fx(S)− fx(S \ {i}) ∀S ⊆ N ′, then φi(f

′, x) ≤ φi(f, x).

Property 6.3.3 states that, if a model is changed, increasing the impact of a feature, the
attribution given to that feature will not decrease. In the appendix of [21] it is exposed
that this property implies the properties of linearity, null-player and symmetry of the
Shapley values (Properties 6.1.3,6.1.4 and 6.1.2).

6.3.1. Unique solution

That unique solution of the class of additive feature attribution methods , satisfying
Properties 6.3.1,6.3.2 and 6.3.3 is given by:

φi(f, x) =
∑

S⊆N ′\{i}

|S|!(|N ′| − |S| − 1)!

|N ′|!
(fx(S ∪ {i})− fx(S)) (6.4)

where S are all the possible coalitions of features (players as denoted in Section 6.1)
in N ′ not containing the i− th feature and |S| its size.1

These values φi are the Shapley values seen in Section 6.1. Hence, Game Theory
and additive feature attribution methods unify and present the unique additive feature
attribution method that is locally accurated and consistent, respecting also missingess.

1Due to the fact that fx(S) = f(hx(z
′)) in some papers like [21] it is used the notation fx(z

′) =
f(hx(z

′)) instead the above mentioned. It is worth mentioning it because the relation between both
notations emphasizes that the features forming the coalition S are the non-zero entries in the simplified
input z′, and therefore the size of S is the same as the number of non-zero entries in z′ that can be noted
as |z′|.
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6.3.2. SHAP values
The SHAP values [21] are defined as the Shapley values of a conditional expecta-

tion function of the original model, where:

fx(S) = f(hx(z′)) = E(f(z)|zS = xS) (6.5)

This way, due to the fact that Shapley values can refer to any set function, the
term SHAP values is used when refering to the specific case when the set function
is set as the conditional expectation. Behind this definition is that hx(z′) = zS , but
zS has missing values for the features not in S. For example, suppose the features
are N ′ = { age, high, weight }, and S = { age, high }. Then, zS would be of
the form zS = (20, 1.75, 55,missing). Therefore, in order to solve the problem of
missing values, fx(S) = f(hx(z′)) = f(zS) is approximated with E(f(z)|zS = xS).
Nevertheless, computing these values is too effortful. Therefore, the SHAP values
can be approximated assuming feature independence to the marginal expectation as
follows [2]:

fx(S) =f(hx(z′)) = E(f(z)|zS = xS) = E(f(zS̄, zS)|zS = xS)

=

∫
f(zS̄, xS)p(zS̄|zS = xS)dzS̄

≈︸︷︷︸
feature independece

∫
f(zS̄, xS)p(zS̄)dzS̄ = E(f(zS̄, zS)).

(6.6)

Moreover, assuming model linearity simplifies the expression to:

fx(S) = f(hx(z′)) = E(f(z)|zS = xS) ≈ E(f(zS̄, zS)) ≈︸︷︷︸
linearity

f(E(zS̄), zS). (6.7)

Summing up, SHAP values attribute to each feature the change in the expected
model prediction when conditioning on that feature, i.e., they indicate how to get from
E(f(z)) (called base value) to the prediction f(x), by summing the SHAP values. For
example, see Figure 6.1, and suppose we have got 3 features. In a) we see the 0, the
E(f(z)) and the prediction f(x). The value ofE(f(z)), as shown in b), is φ0. If we add
φ1 like in c), we end in E(f(z)|z1 = x1), i.e. φ1 = E(f(z)|z1 = x1)− E(f(z)) (here
S = feature1). In d) is also added φ2 = E(f(z)|z1,2 = x1,2)−E(f(z)|z1 = x1), and
at last at e), also φ3 = E(f(z)|z1,2,3 = x1,2,3) − E(f(z)|z1,2 = x1,2) is added, ending
at f(x), i.e., the sum of the φi gives the difference between E(f(z)) and f(x).

In Figure 6.1 just an order of adding the features is exposed. Nevertheless, if the
features are not independent or the model is non-linear, the order of adding features
matters, so the SHAP values are obtained averaging the φi over all orderings.
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Notation 6.3.1. Even though the marginal expectation is obtained by simplification
assuming feature independence, in [18] it is shown, making use of causal inference
that, in fact, the marginal expectation of Equation (6.6) is conceptually the right one,
and not an approximation, differentiating observational conditional expectation (the
one of Equation (6.5)) and what they call interventional conditional expectation that
leads to the marginal expectation. The original authors of SHAP [21], deepen in [11]
into this theme and say that, in general, there neither of the two options is the right
one, but it can be chosen the one or the other based on the application.
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Figure 6.1: SHAP values scheme
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6.4. KernelSHAP
KernelSHAP [21] is a model-agnostic method that combines LIME and Shapley

values. On the one hand, it is known that LIME (Chapter 5) finds an explanation mini-
mizing equation (5.3) and it is also known that LIME is an additive feature method. On
the other hand, it is also known that the unique solution fulfilling (4.1), and Properties
6.3.1,6.3.2,6.3.3 are the Shapley values. Therefore, Shapley values are the only pos-
sible solution of (5.3), satisfying Properties 6.3.1,6.3.2,6.3.3. Nevertheless, it must be
done the right choice of the terms in (5.3), in order this equation recovers the Shapley
values. This choice is given, instead of the values used by LIME in Chapter 5, by:

Ω(g) = 0 (6.8)

πx′(z′) =
|N ′| − 1(|N ′|

|S|

)
|S|(|N ′| − |S|)

(6.9)

where, S ⊆ N ′ is the set non-zero features in z′.

L(f, g, πx′) =
∑
z′∈Z

(f(hx(z′))− g(z′))2πx′(z′) (6.10)

As it can be seen above, L is calculated like in LIME over a set Z. The reason is
that the "best" would be to calculate it all over N ′, i.e. making all possible coalitions.
Nevertheless, the power set of N ′ is much too large. Therefore, KernelSHAP samples
coalitions of N ′ according to the probability distribution induced by the kernel (Eq.
6.9) [18]. In Figure 6.2 it can be observed for different values of |N ′| that, the Kernel
only takes high values when |S| is next to 0 or to |N ′|.

(a) |N ′| = 30 (b) |N ′| = 20 (c) |N ′| = 15

Figure 6.2: Kernel values for different |N ′|
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It is also worth mentioning that, when the coalition has not non-zero entries or
all entries are non-zero, i.e., if |S| = 0 or |S| = |N ′|, then πx(z′) = ∞ (this is the
reason why these values are not represented in Figure 6.2). Therefore, it is necessary
to impose the constraints φ0 = fx(φ) and f(x) =

∑|N ′|
i=0 φi.

Moreover, going back to Equation (6.6), Kernel SHAP approximates the integral
using the empirical distribution of the training set used to train the original model f ,
by [2]:

fx(S) = f(hx(z′)) ≈ 1

J

J∑
j=1

f(zj
S̄
, xS) (6.11)

where zk
S̄

, j = 1, .., J are samples of the training set.

The optimization problem is then solved using weighted least squares.

Notation 6.4.1. In LIME it was used as kernel function πx(z), but here the notation is
replaced by πx′(z′). This occurs because in LIME the distance between two instances
is calculated through the euclidean or the cosine distance, measured therefore in the
original space, meanwhile in KernelSHAP measures the proximity between instances
as proximity between coalitions in the simplified space. Nevertheless, both refer to the
proximity between the two instances, so it is just a notation question. In fact, [21],
notes both as πx′(z′).

6.5. TreeSHAP
TreeSHAP [20],[22] is a model specific method for computing the exact SHAP val-

ues for tree-based models. The TreeSHAP, does not calculate f(hx(z′)) as the approx-
imate marginal expectation, but as the conditional expectation. Originally this algo-
rithm derives from an algorithm that calculates the conditional expectationE(f(z)|zS =
xS) in O(TL|N ′|2|N ′|), ending up into a polynomial algorithm of O(TLF 2), where T
is the number of trees, L the number of terminal nodes (leaves), F the maximum depth
of any tree and |N ′| the number of features [22].

The algorithm of O(TL|N ′|2|N ′|) follows the next idea: First of all, Shapley values
are additive (Property 6.1.3), so when the tree-based model is a tree ensemble, the
SHAP values (remember they are Shapley values) are the average of the SHAP values
of the single trees. Secondly, the SHAP values for every single tree can be calculated,
calculating E(f(z)|zS = xS) as follows. Due to the fact that the only known values of
z are zS = xS , when z goes down the tree, i.e. when the tree is getting a prediction of z,
it can fall in several terminal nodes. Therefore, the scheme to obtain E(f(z)|zS = xS)
is: if the split feature is in S, then follow the decision path of z, and if the split feature
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is not in S, then take the weighted (due to the number of samples of the training set
matching the conditioning set S, that fall into each node, when going down the tree)
average of both branches. Hence, if S is formed by all features (|S| = |N ′|), the
expected value will coincide with the value of the only terminal node into which z can
fall; if S is formed by non features (|S| = 0), the expected value will be the weighted
average of all terminal nodes; and at least, if S is formed just by some features (|S| 6=
0, |N ′|), the expected value will be the weighted average of the terminal nodes that can
be reached by z due to zS = xS , so that there is no contradiction in the splits that end
up to that terminal nodes with the values of zS .

The improved algorithm that runs inO(TLF 2) used by TreeSHAP is similar to run
the O(TL|N ′|2|N ′|) algorithm simultaneously for all the subsets of S. For an indeep
review of the algorithm the reader is referred to [20] and [22].

6.6. Other variants
The above exposed variants of SHAP are the most used, KernelSHAP because it

is model agnostic and TreeSHAP because it deals with tree ensembles. Nevertheless,
there are other model-specific variants of SHAP like LinearSHAP which is used to
explain linear models, or DeepSHAP, used to explain DNN-models as exposed in [21].

6.7. SHAP interaction values
The Shapley values extend to the Shapley interaction index[13]. Same way the

SHAP values extend to the SHAP interaction values [20],[22], which represent the
local interaction effects by a matrix of size |N ′| × |N ′|, where the main effects are
on the diagonal and the interaction effects on the other elements of the matrix. They
represent the difference between the SHAP values for the i − th features when the
j − th feature is present and absent. They are calculated as:

Φi,j =
∑

S⊆N ′\{i,j}

|S|!(|N ′| − |S| − 2)!

2(|N ′| − 1)!
∇i,j(S), i 6= j (6.12)

where

∇i,j(S) = fx(S ∪ {i, j})− fx(S ∪ {i})− fx(S ∪ {j}) + fx(S) (6.13)

The main effects for the prediction are defined as the difference beteween the SHAP
values and the SHAP interaction values:

Φi,i = φi −
∑
i 6=j

Φi,j. (6.14)
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6.8. Comparing LIME-SHAP
The main differences between LIME and SHAP are:

1. LIME is model-agnostic whereas SHAP has a model-agnostic implementation
(KernelSHAP) but also model-specific variants (TreeSHAP, LinearSHAP, DeepSHAP
etc.)

2. SHAP values are fair, guaranteeing perfectly distributed effects.

3. SHAP values explain the difference between the prediction an the global average
prediction, while LIME explains the difference between the prediction and the
local average prediction [2].

Moreover when focusing on LIME and KernelSHAP, the parameters used in LIME
are heuristically chosen while in KernelSHAP they are chosen in order to recover the
Shapley values. Therefore complexity measure used in KernelSHAP is set to zero, and
the proximity measure does not use a distance measure as in LIME, but measures the
proximity according to the features "present" and "absent" in the coalitions.

Nevertheless, both methods are additive feature attribution methods that explain
locally the prediction model, giving an explanation that is interpretable. An imple-
mentation of both methods is exposed in Chapter 7.



Chapter 7

Applications explanation models

In this Chapter, the already seen methods will be used with four tabular data sets,
called SouthGermanCredit1, COMPAS2, growth3 and tecator4, the last two,
of functional data.

The procedure will be as follows with the different data sets: The available data
will be divided in 70% training set, 30% test set. With the training set, the prediction
model, a random forest, will be constructed. Then it will be aimed to explain according
to LIME, KernelSHAP and TreeSHAP the predictions done by the forest of instances
in the test set. The whole implementation is done in Python.

7.1. SouthGermanCredit
The first database under study is SouthGermanCredit. This data set consists

of 1000 instances, that correspond to 1000 credits from a bank in southern Germany,
with a binary response variable, that determines if the credit risks are good (1) or
bad (0), and 20 explanatory variables, 3 of them quantitative and 17 categorical. The
explanation variables are shown in Table7.1.

Table 7.1: Explanation variables of SouthGermanCredit

Variable Description Classes (when categorical)

laufkont status

1 : no checking account
2 : ... <0 DM
3 : 0<= ... <200 DM
4 : ... >= 200 DM / salary for at least 1 year

1Available on the UCI Machine Learning Repository
2Available on https://github.com/propublica/compas-analysis
3Available in R in the fda.usc package
4Available in R in the fda.usc package
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Variable Description Classes (when categorical)
laufzeit duration —

moral credit history

0 : delay in paying off in the past
1 : critical account/other credits elsewhere
2 : no credits taken/all credits paid back duly
3 : existing credits paid back duly till now
4 : all credits at this bank paid back duly

verw purpose

0 : others
1 : car (new)
2 : car (used)
3 : furniture/equipment
4 : radio/television
5 : domestic appliancesw
6 : repairs
7 : education
8 : vacation
9 : retraining
10 : business

hoehe amount —

sparkont savings

1 : unknown/no savings account
2 : ... <100 DM
3 : 100 <= ... <500 DM
4 : 500 <= ... <1000 DM
5 : ... >= 1000 DM

beszeit employment duration

1 : unemployed
2 : <1 yr
3 : 1 <= ... <4 yrs
4 : 4 <= ... <7 yrs
5 : >= 7 yrs

rate installment rate

1 : >= 35
2 : 25 <= ... <35
3 : 20 <= ... <25
4 : <20

famges marital status and sex

1 : male : divorced/separated
2 : female : non-single or male : single
3 : male : married/widowed
4 : female : single

buerge other debtors
1 : none
2 : co-applicant
3 : guarantor

wohnzeit present residence

1 : <1 yr
2 : 1 <= ... <4 yrs
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Variable Description Classes (when categorical)
3 : 4 <= ... <7 yrs
4 : >= 7 yrs

verm property

1 : unknown / no property
2 : car or other
3 : building soc. savings agr./life insurance
4 : real estate

alter age —

weitkred other installment plans
1 : bank
2 : stores
3 : none

wohn housing
1 : for free
2 : rent
3 : own

bishkred number of credits

1 : 1
2 : 2-3
3 : 4-5
4 : >= 6

beruf job

1 : unemployed/unskilled - non-resident
2 : unskilled - resident
3 : skilled employee/official
4 : manager/self-empl./highly qualif. employee

pers people liable
1 : 3 or more
2 : 0 to 2

telef telephone
1 : no
2 : yes (under customer name)

gastarb foreign worker
1 : yes
2 : no

With the above explained dataset a classification random forest is trained. Next step
is to get the explanations for the predictions that the forest does for single instances of
the test set. It is worth mentioning before going on that the whole analysis is done from
the point of view of "probability of classifying as class 1", i.e. f(x) is the probability
of classifying x as class 1.

Figures 7.3 to 7.8 expose the results for five different instances of the test set, ex-
plained by KernelSHAP, TreeSHAP and LIME. The SHAP graphics show the base
value, the output value and the SHAP values of the different features sorted into two
colors, pink and blue, depending on if the feature pushes (like a force -this type of plot
is called force plot-) up the output value (SHAP value positive) from the base value,
i.e. forces to class 1, or if it pushes down the output value (SHAP value negative), i.e.
forces to class 0, respectively. Additionally, they are ordered from bigger to lower con-
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tribution. The LIME graphic shows in Right, the real prediction of the forest (f(x)),
in Intercept the intercept φ0 of the explanation model g and in Prediction
local the prediction done by g, that is the sum of the intercept and the contribution
values attributed to each feature φi, and that can be seen on the central graphic. The
features in the graphic are sorted from top to bottom, from bigger effect to lower effect.
The ones in orange contribute pushing the prediction up, and the blue ones down, and
therefore, the corresponding contribution values must be set negative when summing
all φi to the intercept φ0, to get the local prediction. On the table it can be seen the
values of the features. It is worth to mentioning that the quantitative features have been
discretized into quartiles.

So let us analyze in deeper the results given in Figures 7.4 to 7.8. For every given
instance, the results offered by all three explanation methods are very similar, although
they differ at some aspects.

LIME for all the displayed instances attributes the feature laufkont the highest
effect on the prediction, making the class 4 (status≥ 200 DM) responsible for pushing
the prediction to class 1 (Figures 7.3 and 7.4), and classes 1 and 2 (no checking account
or status < 0DM , respectively) responsible for pushing the prediction down to class
0 (Figures 7.5,7.6,7.7 and 7.8). The immediately features with the highest effects are
sparkont and laufzeit. In the case of sparkont, the classes 4 and 5 (savings
between 500 and 1000 DM, and savings over 1000 DM, respectively) rise the output
value to class 1 (Figures 7.3 and Figures 7.6), while class 1 (unknown or no savings)
implies a lowering of the output value (Figures 7.4,7.5 and 7.7,7.8). The instance in
Figure 7.7 is the only one of the available ones where the feature laufzeit looses
completely the effect on the output, in pursuit of the variable moral with category
1 (critical account other credits) that becomes the second feature with highest impact
on the output, lowering it. The rest of the contribution is distributed over many other
variables, so that any of these variables has a really high effect, of which the most
outstanding are the already mentioned moral, or other like hoehe ,verw, famges
or alter.

When analyzing the graphics of SHAP the explanations mostly agree with LIME
and among both variants of SHAP. The principal result is that the features that had an
effect of pushing up the prediction value in LIME, in SHAP also have a contribution of
rising the output or they do not contribute (φi = 0), but they do not lower the output,
i.e. the corresponding SHAP values are not negative. Furthermore, the most important
variable for all explained instances in Figures 7.3 to 7.8 is laufkont. Nevertheless,
SHAP mostly rests importance to sparkont and laufzeit, although they still stay
between the most important ones, among the ones we find also now moral, hoehe
,verw, famges or alter.

So far just individual instances have been analyzed, getting local explanations.
Nevertheless, SHAP offers the possibility of using all the local explanations of the test
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set together so that, via combining the local explanations, it can be obtained a global
explanation of the behavior of the predictions model, retaining local faithfulness [22].
In Figure 7.9 there are shown 4 graphics that correspond to TreeSHAP. Each graphic is
a force plot, such as the ones of Figures 7.3 to 7.8, where pink means the feature rises
the output value to 1 and blue, that the feature lowers it. Nevertheless, this time the
force plot corresponds not to an individual instance, but the force plots of all instances
in the test set are rotated 90 degrees and put together. In particular in Figure 7.9, in-
stead of showing the effect of all the variables together, just four features have been
selected, and even more, disaggregated into four different graphics. These features are
laufkont, moral, age and gastarb, i.e. the one we identified in the individual
plots in Figures 7.3 to 7.8 to be the most important, two of the importants, and one that
has be considered to not having contribution effects. When oberving Figure 7.9, this is
confirmed, and even more laufkont pushes up the value when it is class 4 or 3 and
pushes it down when it is of class 1 or 2. In Figure 7.10 the same graphics are shown
for KernelSHAP, and they turn out to be very similar to the ones of TreeSHAP.
Sorting the features by the sum of the SHAP values over the whole test set, the
overview of the most important features for the model are obtained, as in Figure 7.1
where it can be seen the mean of the absolute SHAP value for each feature.

(a) TreeSHAP (b) KernelSHAP

Figure 7.1: Global view of important features according to SHAP
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It follows from Figure 7.1 that as already expected the most important variable
is laufkont followed by laufzeit and sparkont, and the non important ones
are gastarb and bishkred. TreeSHAP and KernelSHAP give approximately the
same order in the ranking, permuting at most three positions among the non important
ones, or one position among the important ones.

At least let us take a view on Figure 7.2, where in addition to the ranking of the
features, all the instances in the training set are represented for each feature with the
corresponding SHAP value and colored depending on the value of the feature. For
categorical features with many categories this gives no information, but for categorical
features that have ordinal meaning or for quantitative features this is useful to deter-
mine which classes or values of the variable are responsible for positive or negative
SHAP values. Therefore take a look on the most important variables laufkont,
laufzeit and sparkont. When laufkont has a high value, i.e. the status of the
account is high, the SHAP value is positive, while, for low values, i.e. low status of
the account, the SHAP value is negative. For the quatitative feature laufzeit, the
low values are the ones that increase the output value. And at least, for the variable
sparkont, alike for laufkont , high values, i.e. having high savings, the SHAP
values are positive, otherwise negative.
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(a) TreeSHAP (b) KernelSHAP

Figure 7.2: Global view of important features according to SHAP
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7.1.1. Conclusions of SouthGermanCredit
When analyzing the constructed random forest with LIME, KernelSHAP and Tree-

SHAP it stands out that all three methods conclude similar results for the local predic-
tions of individual instances, giving the major effect to laufkont. Furthermore, all
three criteria coincide in deciding whether the feature pushes down or up the predic-
tion. In addition, SHAP provides a global view by putting all the local explanations
of the instances in the test set, ranking laufkont as the most important variable for
the model, followed by laufzeit and sparkont. High values of sparkont and
laufkont mean high positive SHAP values, i.e. the predictions depend mostly on
the saved money and the money in the account.
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7.2. COMPAS

The second data set is called COMPAS (Correctional Offender Management Pro-
filing for Alternative Sanctions). This dataset is a collection of different features for
7214 criminal defendants in Broward County, Florida, that aim to predict the recidi-
vism. This data set stems from the use of an algorithm called COMPAS in Wisconsin
that is used, as a black-box, to predict whether the criminal will or will not re-offend.
After sentencing 2016 an individual for high risk of recidivism, this algorithm gener-
ated high controversies [10]. Therefore, the authors of [19] collected the data set which
will be used in this section, where it must be noticed that one of the variables repre-
sents if the individual really re-offended in the following two years, and another of the
collected variables represents what the COMPAS algorithm predicted. They analyzed,
as well as in [34], whether the COMPAS algorithm predicts in an "unfair" way due to
racial, age or sex based aspects.

In this section, it will be analyzed, on the one hand, an explanation according
to LIME and SHAP of a random forest trained with the real variable of recidivism
as response variable and, on the other hand, an explanation also according to LIME
and SHAP of a random forest, but this time trained with the COMPAS prediction as
response variable. The explicative variables that will be used from the given data set
are represented in Table 7.2.

variable Classes (when categorical)

c_charge_degree
0 : Felony
1 : Misdemeanor

race

0 : African-American
1 : Asian
2 : Caucassian
3 : Hispanic
4 : Native-American
5 : Other

age_cat
0 : between 25 and 45
1 : over 45
2 : under 25

sex
0 : Female
1 : Male

priors_count —

Table 7.2: Variables in COMPAS
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7.2.1. Real recidivism
As already mentioned, the first analysis will be done using as response variable the

variable of real recidivism (is_recid) in the following two years. This variable is
binary with classes 0 (did not re-offend) and 1 (did re-offend).

As well as was done with the Credit, we will first take a look at predictions for
individual instances via KernelSHAP, TreeSHAP and LIME and afterwards, induce a
global overview with SHAP. Notice that here f(x) also gives the probability of x to
correspond to class 1, and consequently prediction values (probability) next to 1 mean
that the instance x is predicted to re-offend (class 1) and next to 0 mean that the in-
stance x is predicted to not re-offend. (class 0).
The Figures 7.14 to 7.19 show the explanations of the predictions of the random for-
est for six individual instances, where the first three instances were predicted by the
random forest to not re-offend (class 0) and the three last ones to re-offend (class
1). Let us first go in deep into LIME explanations. For all six instances, the feature
priors_count is selected as the one that induces most effect on the prediction. For
the first three (Figures 7.14,7.15 and 7.16) the feature takes low values, and the feature
contributes to lower the output, i.e. to take the prediction to class 0. For the last three
(Figures 7.17,7.18 and 7.19) , the number of priors_count is high, over 5, and
therefore this feature contributes rising the prediction value in the direction of 1. The
next two features that effect most the output are sex and age_cat. In case the feature
sex takes the category 1, i.e. male, it can be observed that the effect is pushing up the
output to re-offend (Figures 7.14,7.15,7.17 and 7.18), while when it takes the category
0, i.e. female, the effect is pushing down the output to no re-offend (Figure 7.16). For
the feature age_cat, when it takes the value 0 or 1, i.e ages between 25 and 45 or
age over 45, respectively, the effect is to push down in direction to class no re-offend,
the output (Figures 7.14,7.15,7.17,7.18 and 7.19), while age_cat=2, i.e. age under
25, pushes up the output in direction to class 1 (Figure 7.16). The variables race and
c_charge_degree are the variables that contribute less to the predictions, although
they also have some effect. When race takes the value 0, i.e. African-American, the
feature pushes the output to class re-offend (Figures 7.16 and 7.17), while all the other
classes push it down. For c_charge_degree, when the class is 0, i.e. felony, it
pushes up the prediction, while class 1, i.e. misdemeanor, pushes it down. Never-
theless, it is worth to emphasize that the contribution of this two features is very low,
especially compared to priors_count contribution (the first have always values φi

around 0.01, while the second has values around 0.13 or even .33.

When doing the explanations with SHAP the analysis results as follows. For the
instances of Figures 7.15 to 7.19, the variable priors_count is identified as a
variable with high effect, as well as identified LIME. In fact, for the mentioned in-
stances except for the one in Figure 7.16, where priors_count shares the first
place in importance with age_cat, and in 7.15 in the TreeSHAP version, where
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many variables are equaled in effect, the feature priors_count is considered the
most important. Furthermore, the variable age_cat stays as in LIME as one of the
features that follow priors_count in importance in most of the Figures. Nev-
ertheless, together with age_cat, LIME positioned in most of the given instances
sex mostly as important as age_cat, but SHAP (Kernel and Tree) lower its ef-
fect, and gives the variable race a higher effect, specially in the instance of Figure
7.14, where it is adjudicated the highest effect (remember this is the instance we left
out in the beginning when saying that SHAP considered in most of the given instances
priors_count as the feature with most effect). The variable c_charge_degree
is also considered by both SHAP variants as the one that influences less the prediction
of the given instances. It is worth mentioning that, while in LIME some patterns were
observed relating the class of the feature with the direction in which it pushes the out-
put, in SHAP, for the given instances, it cannot be identified such patterns and there-
fore it will be needed to take a global overview such of the one done in the data set
SouthGermanCredit. Nevertheless, what can be concluded is that, locally, LIME
and SHAP differ for some instances when speaking about the second to last most influ-
ent features, but both sentence mostly the same feature as most important. In addition,
the local results of KernelSHAP and TreeSHAP do not agree at all, as happened with
SouthGermanCredit, but they mostly agree, indeed for all given instances except
for the one of Figure 7.15.

Let us now take a global view putting all the results of SHAP for the instances in the
test set together. When ranking the features like in Figure 7.11, according to the mean
of the absolute SHAP values over the whole test set, the feature placed with the highest
SHAP value is, as expected, priors_count. With a SHAP value wide below, the
feature that follows it is age_cat, and also wide below, the next feature is race.
The last two features are sex and c_charge_degree according to TreeSHAP, and
the other way around according to KernelSHAP. Nevertheless, both last features have,
on average, approximately the same SHAP values.

(a) TreeSHAP (b) KernelSHAP

Figure 7.11: Global view of important features according to SHAP
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(a) TreeSHAP (b) KernelSHAP

Figure 7.12: Global view of important features according to SHAP

When representing the SHAP values for each feature for every instance in the test
set, colored by the feature value, we get the Figure 7.13, where the results obtained
are very similar for Tree and KernelSHAP: High values of priors_count imply
positive SHAP values, where the instances are distributed between SHAP value=0.2
and 0.5, i.e., the effect of this feature taking high values is mostly the highest, and
taking low values imply negative SHAP values, but the instances are grouped around
SHAP value=−0.15, what means that the effect is not that high as for high values. This
captures what we have already seen in Figures 7.18 to 7.19: SHAP not always states
priors_count as the most important one. In order to get a deeper understanding
of this feature let us take a look at Figure 7.13(a), where it can be observed the SHAP
value of this variable for the different values of the feature, colored by the variable
race. As it can be seen, in addition to what already explained, most of the instances
of high priors_count correspond to race=African-American, and therefore the
SHAP-value of African-American at priors_count is higher than for other races.
Nevertheless, going back to Figure 7.13, for the variable race there are no clear pat-
terns, but it is worth mentioning that the blue values are grouped around the zero on
the positive side of the SHAP values, i.e. when the feature race has a low value, and
remember the lowest class of race is 0=African American, the SHAP value of race
is zero or positive but very low, i.e. the random forest does, according to SHAP, not
attribute high SHAP values, and therefore not effects pushing the prediction to class
of re-offend, to African American. Let us next analyze the behavior of the variable
age_cat with categories: 0 (the age is between 25 and 45), 1 (age is over 45), and
2 (age is under 25). According to the graphic, the blue points correspond to class 0,
the lilacs to class 1 and the red ones to class 2. It follows that when the individuals
are under 25 the corresponding SHAP value is positive, i.e. the young is hold account-
able for recidivism; when they are between 25 and 45 the SHAP value is next to zero or
negative, but in absolute terms, very small; and when they are over 45, the SHAP value
is negative, i.e. the maturity pushes the prediction into the direction of no recidivism.
For the variable sex it is worth mentioning that, when it takes the class female, the
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(a) Dependence features priors_counts and race (b) Dependence features c_charge_degree and
priors_counts

Figure 7.13: Dependencies of features according to TreeSHAP

corresponding SHAP value is negative or a low positive value, while when it takes the
class male, the value is around zero or a low positive value, i.e. in general the category
female is responsible for pushing down the output value or it is not attributed effect,
while the category male is responsible for pushing thinly the output value to the class
re-offend, or it is not attributed effects. At least, the feature c_charge_degree is
only attributed effects when it takes the class misdemeanor. Nevertheless, depending
of the instance it pushes the output up or down. Figure 7.13(b), shows the the re-
lation of c_charge_degree with the feature priors_count and stays that the
higher SHAP values for c_charge_degree=misdemeanor correspond to instances
where the number of priors_count are very high, while the low ones, correspond
to instances where the number of priors_count are intermediate.

Figures 7.21 and 7.20 display the force plots for all instances in the test set, for
KernelSHAP and TreeSHAP, respectively, disaggregated by features, restating what is
explained above, variable by variable.
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7.2.2. COMPAS recidivism
The second analysis done with the COMPAS data set consists in constructing the

random forest using this time, as response variable, the variable that expresses the pre-
diction of COMPAS algorithm of re-offending the criminals. Indeed, the predictions
done with COMPAS are leveled as : low, medium and high risk of recidivism. Never-
theless, in order to make possible a comparison with Section 7.2.1, the level low has
been set as no risk of recidivism (class 0) and classes medium and high are set as risk
of recidivism (class 1).

LIME results in Figures 7.23 to 7.28 indicate that, as well as in Section 7.2.1,
the feature priors_count is given, in most of the Figures the highest (in abso-
lute terms) SHAP value (just in Figure 7.25 it is ranked as the second one with a
SHAP value =0.28, very close to the first one that has SHAP value =0.30) , and there-
fore, identifying it as the feature with most effect of rising, when its value is over 5
(Figures 7.26,7.27,7.28) or lowering in other case the output value (Figures 7.23,7.24,
7.25). Nevertheless, while in Section 7.2.1, the next two most important features were
on most of the local predictions age_cat and sex, when using COMPAS predic-
tions as response variables, age_cat is still one of them but instead of sex we
have race. This time also just age_cat=2, i.e. age under 25 and race=0, i.e
African-American, rise the output value in direction of class 1, re-offend. The features
c_charge_degree and sex are attributed low values, in absolute terms, and do
not effect much the output. Moreover, the above discussion can be mostly transposed
to the results obtained by KernelSHAP and TreeSHAP, where the ranking for each in-
stance is very similar to the one of LIME and, except for the instance of Figure 7.27,
where the methods differ a bit, the features effect in the same direction as exposed by
LIME.

Moreover, when observing the global view given by TreeSHAP (the one given
by Kernel is not exposed because it is very similar to the one of TreeSHAP) of Fig-
ure 7.22, the discussion above is reaffirmed globally. The most important feature is
priors_count followed by age_cat and race. Additionally it can be deduced
that when priors_count is high, the corresponding SHAP value is also high, and
correspondingly when it is low, as already happened in Section 7.2.1. As well as hap-
pened in Section 7.2.1, for the feature age_cat, the SHAP values of this variable is
positive when age_cat=2, i.e. age under 25, mostly zero when age_cat=0, i.e age
between 25 and 45, and negative when age_cat=1, i.e. age over 45. Nevertheless
is worth mentioning that, this time, there is no overlapping, and all three zones are
clearly separated. For the feature race, it can be observed that all races effect with a
negative SHAP value, except for race=0, i.e. African-American, that produce posi-
tive SHAP values contributing to class of re-offend. It is worth mentioning that while
in Section 7.2.1, the blue values were grouped around the zero on the positive side
of the SHAP values, but with low values, in Figure 7.22, most of these instances are
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grouped around the SHAP value=0.1, and although it is not a high value, it is higher
than the values attributed in Section 7.22, evidencing that race=African-American
pushes the prediction to the class of re-offending, specially comparing to all the other
races that obtained, not even SHAP value=0, but low negative SHAP values. For the
feature c_charge_degree, the instances with class misdemeanor have a low (in
absolute terms) negative SHAP value, while the ones with class felony have a low
positive SHAP value, while in Section 7.2.1 felony was no attributed effect and for
misdemeanor there were no clear patterns. At least, for the feature sex, the males are
grouped around the zero, while the females are on both sides.

Figure 7.22: Global view TreeSHAP COMPAS
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7.2.3. Conclusions of COMPAS
Both constructed random forests, one with the response variable of real recidivism,

and the other with the response variable of COMPAS algorithm, do their prediction
based mostly on priors_count. Nevertheless, not the whole effect is attributed
to this variable, and the variable c_charge_degree is not attributed much effect,
by any of the two models. The remaining variables are sex, age_cat and race
but a fair model should never predict based on sex, age or race aspects. Both models
attribute "globally" lower effects to this variable than to priors_count but not al-
ways zero. In both cases the ranking in variable importance is after priors_count,
age_cat, race, c_charge_degree and sex (except for TreeSHAP in the ran-
dom forest with the real response values that exchange c_charge_degree with
sex). For the variable age_cat the pattern is clear in both cases: persons under
25 will re-offend, persons between 25 and 45 are not attributed any effects and being a
person over 45 is a mitigating in terms of predicting recidivism. Nevertheless, although
the variable race is labeled in both cases as the third most influential, the model with
the real recidivism attributes zero or low effects aggravating the possibility of recidi-
vism when being African-American, while the other races lower this probability. The
second model, with the COMPAS algorithm variable, sets higher effects aggravating
the possibility of recidivism when being recidivism than the first model, and considers
an attenuating being of any other race. For both models the sex is not very influen-
tial, although the one with the real values consider that males have a higher probability
of re-offending than females. Although c_charge_degree is not given much im-
portance, the model with the COMPAS algorithm values identifies having committed
a felony as an aggravating for recidivism, while the first model does not identify any
clear patterns.

As can be seen in the above discussion, explaining prediction models like the ran-
dom forests used for the COMPAS data set has an important role in fairness. It has
exposed that the forest, especially the second one, attribute effects to age and race.
Therefore it is important to know the explanations given by methods like LIME or
SHAP, in order to be able to determine if the prediction is reasonable, or whether the
assumptions of the model are not fair or right. It follows also that the features used by
the model should be different. For instance, instead of race, it should be studied a new
model using other variables like, incomes, job, etc.
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7.3. Functional data
In this section, it will be analyzed the explanations of two random forests, each for

a different data set of functional data, called growth and tecator.

As explained in Chapter 1, for using random forests we need a sample D of M
observations, where for each observation a pair (Xj, Y j) is associated, where Xj is
a vector of |N | variables. Nevertheless, the scenario when using functional data is,
for each observation, a pair (Xj, Y j), where Xj is a Riemann integrable function
Xj : [0, L] → R. In order to operate with this function, Xj must be discretized
into |N | points (l1, ..., l|N |) of the interval [0, L] (for each observation j, the sequence
(l1, ..., l|N |) used must be the same one). After the discretization the new scenario is the
initially desired where for each observation, there is a pair (Xj, Y j), adding that the
variables correspond with concrete instant of time (or length or height etc. depending
of the units of the interval).

7.3.1. Growth
The first data set of functional data under study is growth. The data set consists

on 93 individual, 39 of which are boys and 54 girls, for which the height from the age
1 to 18 has been collected, i.e. the height is the function X over the interval [1, 18].
Indeed, the function of the height has been discretized into 31 ages (not equidistant).
The growth data set has been used first to train (70% of the set) a random forest that
classifies the individuals into boy (1) or girl (0), and then to explain the predictions
that the forest does to the instances of the test set (30% of the set) using TreeSHAP
and LIME using as variables the discretization of three different functions:

• Original function

• First derivative

• Second derivative

Additionally the global view given by SHAP has been compared to the results of MDI.

Figures 7.32 to 7.35 show the explanation of individual instances by SHAP and
LIME when using the original function, the first derivative or the second derivative as
explanatory variables. Figures 7.32 and 7.33 correspond to girls of the test set, and
Figures 7.34 and 7.35 to boys. As it can be seen, except for when using the second
derivative in Figure 7.34(c), the random forests classify correctly each individual. Let
us now see the explanations of such predictions according to LIME. For the original
function, for any instance, the most important ages are the ones between 16 and 18,
although ages between 11 and 13 do also influence. It can be observed that for the given
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Age 11 11.5 12 12.5 13 16 16.5 17 17.5 18
q1 131.6 133.5 135.6 137.6 139.5 152.3 152.6 153.2 153.5 153.6
q2 143.7 146.1 148.6 151.7 155.0 164.8 165.1 165.4 165.5 165.6
q3 147.7 150.5 153.8 157.0 158.9 169.8 170.5 171.1 171.8 172.5
q4 151.3 154.5 158.1 161.5 165.3 176.1 178.1 178.5 178.5 178.7
q5 170.2 173.5 176.0 177.3 178.3 190.7 191.3 191.7 192.2 192.8

Table 7.3: Quartiles of most important ages for instances in Figures 7.32 to 7.35 ac-
cording to notation used in Section 5.2

Figures, for ages 11 and 13, when the height takes a value between q3 and q4 or between
q4 and q5 the contribution of the features is lowering the output value in direction to
class girl (0), while for ages between 16 and 18, when the height is between q3 and
q4 or between q4 and q5 the contribution of the features is rising the output value in
direction to class boy (1), and the responsible for lowering the output are the heights
under q3. The values of qk, k = 1, .., 5 for the most important ages are given in Table
7.3. Additionally it can be followed that for the local instances of the referred Figures,
the ages in the same ranges have similar influence. SHAP results are very similar.
Furthermore, same ages mostly influence the output into the same direction in both
methods.

Using the first derivative of the function instead of the function itself, the results
given by LIME and SHAP are mostly equal, identifying ages approximately between
13 and 16 as the responsible for pushing down or up the final output, i.e. although
the height is different for girls and boy at the ages of 16 to 18 and 11 and 13, so that
these ages are the most significant for classifying according to the age, the change in
the height is different for girls and boys in the ages between 13 and 16. For the second
derivative approximately the ages between 11 and 16 are identified for every mentioned
instance as significant by SHAP and LIME.

When taking a look at the global view given by SHAP, the above exposed results for
the given instances can be extrapolated to the whole test set. Figures 7.29(b), 7.30(b)
and 7.31(b) show the mean of the SHAP values for each variable over the whole test
set. There can be identified different mountains and valleys, where the mountains
correspond approximately with the ranges as identified as important above. In fact,
for the original function (Figure 7.29(b)) the features identified as important are ages
between 11 and 13 and between 15.5 and 18.

For the first derivative (Figure 7.30(b)) there is just one mountain between ages
12.25 to 16.25. At least, the second derivative (Figure 7.31(b)) show that the important
ages are the ones between 12.75 and 16.25. Consequently, it can be deduced that
for this data set of functional data the ages identified as important by the global view
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(a) MDI (b) SHAP

Figure 7.29: Global view of important features according to MDI and SHAP

of SHAP are grouped in ranges, so that, similar ages have the same effect on the
prediction.

(a) MDI (b) SHAP

Figure 7.30: Global view of important features according to MDI and SHAP: first
derivative
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(a) MDI (b) SHAP

Figure 7.31: Global view of important features according to MDI and SHAP: second
derivative

Moreover, in Figures 7.29 to 7.31 show in (a) the MDI values for the different ages
in all three cases: original function, first derivative and second derivative. It can be
observed that the results are very similar to the ones obtained by the global view of
SHAP in Figures 7.29 to 7.31(b), because in all three cases the same age-ranges are
identified as (un)important. Nevertheless, MDI just gives a global vision of the model
while SHAP is able also to submit local explanations.
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(a) Original function

(b) First derivative

(c) Second derivative

Figure 7.32: Girl number 21
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(a) Original function

(b) First derivative

(c) Second derivative

Figure 7.33: Girl number 31
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(a) Original function

(b) First derivative

(c) Second derivative

Figure 7.34: Boy number 10
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(a) Original function

(b) First derivative

(c) Second derivative

Figure 7.35: Boy number 31
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7.3.2. Tecator

At last but not least, it is used the data set of functional data tecator in order
to construct a random forest and then explain its predictions with LIME and SHAP
and also to compare the obtained results with the MDI values. Analog as done with
growth, three different random forests are going to be constructed: one with the
original data, one with the first derivative and a last one with the second derivative.

The main difference to the already done experiments is that, this one is not a classi-
fication problem, but a regression problem. The predictions of the forest are therefore
not a probability between 0 or 1, but a real value. The data set represents the results ob-
tained on 215 meat pieces of an analysis with a food and feed analyzer, called tecator.
The response variable is given by the percentages of fat of the meat piece. The explana-
tory variables correspond to 100 discretization points of the function Absorbances for
the different Wavelenghts in the interval [850nm, 1050nm]. So, when using the orig-
inal data, such 100 values are the ones used. For the first and second derivatives, the
function of the absorbance is differentiated (once and twice, respectively) using the
discretization, obtaining 99 and 98 variables, respectively.

Figures 7.39 to 7.43 expose the result of individual instances according to Ker-
nelSHAP and to LIME, allowing to establish a comparison of local explanation of
both methods and between the cases (a), (b) and (c). First of all, observe that, the
individual predictions of the random forests using the first and the second derivative
are approximately equal, while the prediction of the random forest using the original
function differs in at least a 2% of fat with the lowest prediction of the forests of the
derivatives (except for Figure 7.41) and for example in Figure 7.43, even in over a 8%.

Due to the fact that the number of variables used is very high, taking a first look
at Figures 7.39 to 7.43 may seem there cannot be stated any similarities or patterns.
Nevertheless, taking a look in depth it follows that the by SHAP given higher SHAP
values (is absolute terms) features for the first and second derivative mainly agree with
the ones that have higher values (in absolute terms) according to LIME, identifying
features in the range of Deri43 to Deri45 as important in case of the fist derivative,
and in the ranges of 2_Deri30 to 2_Deri41 and 2_Deri95 to 2_Deri98 in case of the
second derivative. For the original function, the features differ, i.e. it cannot be iden-
tified most of the variables set as important by the one method between the important
set by the other one, but there are always variables next to X40 and next to X98 iden-
tified as important by both methods, i.e. not exactly the same ones but close features
(here it can be spoken about distance between variables because they correspond to the
discretization of the absorbance function for concrete wavelengths).
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(a) MDI

(b) SHAP

Figure 7.36: Global view MDI and SHAP
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(a) MDI

(b) SHAP

Figure 7.37: Global view MDI and SHAP according to first derivative
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(a) MDI

(b) SHAP

Figure 7.38: Global view MDI and SHAP according to second derivative
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Let us next analyze the global view given by SHAP in Figures 7.36 to 7.38 (b).
As happened with growth, the variables are grouped in valleys and mountains, so
that variables that are (un)important correspond to close wavelengths. In particular,
in case of using the original function the features that are important, are X36 to X44
and X95 to X100, and in a lesser degree, X1 to X16. In case of the first derivative
there are two clearly mountains, corresponding to the variables Deri35 to Deri39 and
Deri43 to Deri46. All the other variables have, on average, a SHAP value next to zero.
For the second derivative, there are also two mountains corresponding to 2_Deri38 to
2_Deri42 and 2_Deri94 to 2_Deri98.

When comparing the SHAP results of Figures 7.36 to 7.38 (b) to the ones of MDI
in Figures 7.36 to 7.38 (a) it stands out that, both methods identify the same ranges as
(un)important in all three cases.

7.3.3. Conclusions
When using functional data, LIME and SHAP give the same importance for local

explanations to variables that correspond to close instants of time in case of growth
and close wavelengths in case of tecator. Moreover explanations are mainly simi-
lar for both methods, although they can differ. Additionally, the global view of SHAP
identifies the valleys and mountains that can be guessed from the few exposed lo-
cal predictions, sentencing that features in the same range are equally (un)important.
Moreover, the results obtained agree with the one submitted by the method based on
measuring the impurity MDI.
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(a) Original function

(b) First derivative

(c) Second derivative

Figure 7.39: Instance 0
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(a) Original function

(b) First derivative

(c) Second derivative

Figure 7.40: Instance 12
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(a) Original function

(b) First derivative

(c) Second derivative

Figure 7.41: Instance 15
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(a) Original function

(b) First derivative

(c) Second derivative

Figure 7.42: Instance 55
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(a) Original function

(b) First derivative

(c) Second derivative

Figure 7.43: Instance 60



Chapter 8

Conclusions

Along this text it has been emphasized the need of explanations supporting predic-
tions, because this is the way of ensuring their correctness and fairness, making sure
that the model takes ethical decisions, and does not make any assumptions do to ethnic,
sex, marital status or any other bias.

Therefore, several explanations methods have been developed, and due to their na-
ture they can be categorized according to three criteria: When is the interpretability
obtained? (intrinsic or post-hoc), What is explained? (global or local) and How do
they obtain the explanation? (model-specific of model-agnostic). The ones presented
in the text, LIME and SHAP fit in the categories of post-hoc and local, but differ in
the third category, because LIME is model-agnostic, but SHAP has different variants,
among which highlight a model-agnostic one, KernelSHAP and also a model-specific
one, TreeSHAP. Moreover, both, LIME and SHAP, fit in the class of additive feature at-
tribution methods, i.e., the explanation given by these methods is the sum of real values
that represent the contribution of each feature, rising or lowering the output value from
a base value, that in SHAP represents the global average prediction, while in LIME it
represents the local average prediction. Furthermore, SHAP is based on the Shapley
values, so it is the only additive feature attribution method where the attributions made
to each feature fulfill the Shapley values properties of efficiency, symmetry, additivity
and null-player. In addition, the KernelSHAP implementation is based on LIME like
exposed in Chapter 6.

The different methods have been used to explain predictions of random forests
in case of classification as well as of regression in Chapter 7 using the data sets
SouthGermanCredit, COMPAS and the sets of functional data growth and tecator.
The results obtained emphasized that, in most of the cases, the local explanations given
by LIME, KernelSHAP and TreeSHAP are very similar, especially when attributing
importance to the most important variables, although they are not exactly equal. So,
on the one hand, although KernelSHAP is not exact as TreeSHAP for tree models, it
is a good approximation, and on the other hand, although KernelSHAP can be seen in

89
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some way as an improvement of LIME, because it connects LIME with the Shapley
values, adding its properties, LIME results are not far away. Moreover, SHAP offers
the possibility of no only working in a local framework, but also obtaining a global
view putting the results of all predictions together.

This way, as well as local as global it is obtained that the random forest used with
SouthGermanCredit to predict if giving a credit to a person implies or not risk,
gives a major effect to the variable laufkont, and a lower effect to features like
famges (marital status and sex) or gastarb (foreign worker), so it can be deduced
that the local predictions, as well as the whole model, are not discriminatory.
The explanations of the random forests used for COMPAS in order to predict if a person
will or will not re-offend, using as response variables the real recidivism and afterwards
the predictions of the COMPAS algorithm, show that in both cases the most important
variable is priors_count, but also in both cases, there is attributed some effect to
variables like sex age or race, especially when using the predictions of the COMPAS
algorithm. This example stands out how important it is, to know the explanation be-
hind the prediction, because they are not necessary fair, and that the choose of features
to use with a model is also important, because instead of race, perhaps it should be
used variables like incomes, job, etc.
At last but not least, the experiments with the data sets growth and tecator em-
phasize that according to global view of SHAP the (un)important variables are grouped
together, i.e. not concrete "instants" of time or space are important, but intervals, so
that, variables that are (un)important are close to each other, forming this way moun-
tains (the important ones) and valleys (the unimportant ones). Moreover, these results
are very similar in case of the random forest for the given by MDI. Furthermore, locally
the results of SHAP and LIME do also mostly agree.



Glossary

Symbols Definition
D learning sample
M number of observations in D

N set of features
|N | number of features in N
N ′ set of features in the simplified space
|N ′| number of features in N ′

X measurement space
Xj j − th sample of N variables of D
Xj

i i− th features of Xj

Y j j − th observation of D
C set of classes
R number of possible classes
Cr class r of C
ti node i
H number of nodes a nodes splits into
p(r|t) probability of an observation to be of class Cr subject to having reached node t
u split
δi(v, t) decrease in impurity by splitting node t by split v
f prediction model
g explanation model
x original input to be explained
x′ simplified input in binary space
hx mapping function from simplified space to original space
z perturbation of x
z′ perturbation of x′

Z set of perturbed instances
φ coefficients of g

in SHAP they are the SHAP values
G class of interpretable models
Ω(g) complexity of g
πx(z) local kernel, proximity measure
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between x and z
D distance measure
σ kernel-width
L locality-aware loss
qk quartiles
S set of non-zero entries in z′ (coalition)
|S| size of S
v(S) set function, pay-off
fx(S) = f(hx(z′))
zS vector z where the entries equal to 1

are the ones of S
zS̄ vector z where the entries equal to 1

are the ones not in S
T number of trees
F maximum depth
L number terminal nodes
Φi,j interaction value of features i and j
∇i,j assistant function in Φi,j
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