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Abstract— Neuromorphic systems are a viable alternative 
to conventional systems for real-time tasks with constrained 
resources. Their low power consumption, compact hardware 
realization, and low-latency response characteristics are the 
key ingredients of such systems. Furthermore, the event-based 
signal processing approach can be exploited for reducing the 
computational load and avoiding data loss due to its inherently 
sparse representation of sensed data and adaptive sampling time. 
In event-based systems, the information is commonly coded by 
the number of spikes within a specific temporal window. However, 
the temporal information of event-based signals can be difficult 
to extract when using rate coding. In this work, we present a 
novel digital implementation of the model, called time difference 
encoder (TDE), for temporal encoding on event-based signals, 
which translates the time difference between two consecutive 
input events into a burst of output events. The number of output 
events along with the time between them encodes the temporal 
information. The proposed model has been implemented as a 
digital circuit with a configurable time constant, allowing it 
to be used in a wide range of sensing tasks that require the 
encoding of the time difference between events, such as optical 
flow-based obstacle avoidance, sound source localization, and gas
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source localization. This proposed bioinspired model offers an
alternative to the Jeffress model for the interaural time difference
estimation, which is validated in this work with a sound source
lateralization proof-of-concept system. The model was simulated
and implemented on a field-programmable gate array (FPGA),
requiring 122 slice registers of hardware resources and less than
1 mW of power consumption.

Index Terms— Digital design, event-based processing, neuro-
morphic systems, spiking neuron, time difference encoder (TDE).

I. INTRODUCTION

MODERN computers are based on the von Neumann
architecture. Over the years, developments in traditional

computing technologies have been focused on increasing the
speed of computation. Unfortunately, the central processing
unit (CPU) speed achieved does not match the memory access
speed (leading to the so-called von Neumann bottleneck [1]),
and the gap has increased exponentially over the years [2].
Furthermore, Moore’s law might come to an end in the next
years due to physical constraints, such as increasing ther-
mal noise [3]. These developments have triggered increasing
research efforts for the design of alternative computational
architectures, which may complement and augment traditional
von Neumann machines.

An interesting architecture is a human brain, which can
compute complex correlations in real time with approximately
100 billion neurons and more than 100 trillion synapses
while consuming only 20 W [4]–[6]. Given the ability of the
brain and the fundamentally different substrate (asynchronous
operation, colocalization of memory and computation, full
parallelism, and so on), neural computation is a promising
source of inspiration. The capability to make complex deci-
sions in real time by means of limited sensory data poses
the basis for the development of a new generation of edge
computing devices [7]. To this end, researchers have aimed
at modeling specific parts of the brain with artificial neural
networks (ANNs). For doing so, neural connectomics and
neurophysiological data acquired from biology have been
studied intensely to extract the most important characteristics
of neural computation. These findings led to the creation of
various artificial synapse and neuron models at different levels
of abstraction. In this context, the spiking approach observed
in the nervous system can offer considerable advantages
in terms of latencies, power consumption, and compactness
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provided by a digital implementation optimized for the target
task [8]. Representative examples of commonly used spiking
neuron models are the leaky integrate-and-fire (LIF) and the
Izhikevich models, which have already been implemented in
field-programmable gate array (FPGA) [9]–[11], other digital
circuits [7], [12], and also analog circuits [13].

The communication between neurons is carried out by
means of voltage pulses (known as spikes), which is the dom-
inant mode of information transfer in the vertebrate nervous
system. The nervous system is excited with external stimuli
through the senses, such as vision and hearing. However, this
sensory information is in the analog domain and needs to be
encoded into the spike domain. For this task, two main coding
schemes can be found in the literature. The first one, called
rate coding [14], [15], encodes the information in the number
of spikes fired over a time period. This value is also known
as the firing rate and can be used for simple signal classifica-
tion [16]. The second one, where the information is encoded
in the time between two consecutive spikes, is called temporal
coding [17]. This temporal encoding exists in spiking neural
networks (SNNs) [18], where the information is encoded using
pulse rate or time interval between pulses, and it can also be
found in most event-based sensory processing stages and other
applications. For instance, it is used in reservoir computing
systems [19], sensory preprocessing in SNNs, and encoding
of fast visual stimuli through the latency to first spike (LFS)
coding [20].

Precise timing of spikes can also be used for general
purpose computation. Lagorce et al. [21] proposed a general
framework for computing every known mathematical function
using a neural architecture. This framework makes use of
precise timing, transmission delays, and synaptic diversity. The
precise time interval between two spikes is used to represent
the value of variables. The minimum and maximum interspike
interval (ISI) and an elementary time step are fixed in this
framework.

The temporal responses of different neuron populations to
a dynamic input stimulus provide spatiotemporal information,
which is self-contained in their output spike trains. In addition,
time difference, or signal temporal correlation between spike
trains of consecutive neurons within a network, contains
relative information about the nature of the stimulus, which
can be useful for complex postprocessing tasks, such as object
tracking and autonomous navigation [22].

A recently proposed model that computes temporal depen-
dencies in SNNs is the spiking elementary motion detector
(sEMD) [22]. In that work, the sEMD model consisted of
two parts: an event-based vision sensor as input and the
time difference encoder (TDE) as a sensory preprocessing
unit. The TDE unit translates the time difference between
two events into a burst of output spikes. Both the number
of output spikes and the duration of the burst produced by
the model directly reflect the temporal correlation of two
input signals, and it is inversely proportional to the time
difference. Milde et al. developed an analog complementary
metal-oxide-semiconductor (CMOS) implementation of the
TDE, characterized its performances on silicon, and applied
it to the encoding of optical flow (OF). The TDE model

has already been used for processing visual [23], auditory,
and olfactory information. Its universal applicability has great
potential for inspiring innovative preprocessing for SNNs,
especially supporting closed-loop neuromorphic systems with
low latency requirements.

This wide range of possible applications poses a challenge
in terms of time resolution and scalability. Time resolution in
analog circuits is constrained by the size of the capacitors.
Therefore, for high time constants applications, large capaci-
tors would be needed. Furthermore, mismatch problems and
parameter setting difficulties may appear due to the analog
nature of the implementation. In this work, a generic, event-
based, digital implementation of the TDE model is presented.
Its time resolution is configurable by means of a clock divider,
covering a time range from nanoseconds to seconds. More-
over, the model can be deployed on FPGA-based platforms.
This computational platform suits the integration of SNNs
very well due to its highly parallel, low-latency nature. This
TDE implementation facilitates the development of complex
and reconfigurable neuromorphic networks receiving input
from event-based sensors, such as bioinspired retinas [24]
and cochleas [25]–[28]. Finally, the TDE’s performance was
evaluated in simulation by characterizing its response to syn-
thetic input stimuli and also to real-world recordings from a
neuromorphic auditory sensor (NAS).

The main contributions of this work include the following.

1) The digital TDE model implementation as an alternative
of the analog version for event-based real-time neuro-
morphic applications with different time constants.

2) The simulation and full characterization of the pro-
posed model, verifying the basic cases and analyzing
its response for complex input stimuli.

3) The deployment into an FPGA-based board, thus having
flexibility for further designs, with a power consumption
of less than 1 mW for each TDE unit and allowing up
to 400 units in basic FPGA chips.

4) A proof of concept of a sound source lateralization
task using the proposed model, where the events were
received in real time from an NAS, providing a new
alternative to the state of the art of sound source local-
ization systems.

The article is organized as follows. Section II details the
operating principles of the TDE model based on the original
model, as well as its design constraints. Section III shows the
digital architecture of the model and describes how it works.
Section IV presents the full characterization results of the pro-
posed model. Finally, in Section V, the results are compared
with the original model, and its usability is discussed.

II. TDE MODEL OPERATING PRINCIPLE

The TDE model [22] translates the temporal difference
between two input events into a short burst of output digital
pulses. It comprises two inputs: the facilitatory pulse (faci) and
the trigger synapse (trig), as well as one spiking output shown
in Fig. 1(a). When an event arrives at the facilitatory input,
an exponentially decaying facilitatory variable is generated,
called gain. If an event enters the trigger synapse shortly
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Fig. 1. Theoretical behavior representation of the TDE model based on the
model proposed by Milde et al. [22]. (a) TDE schematic with facilitatory (fac)
and trigger (trig) input and spiking output. (b) Case one: small positive time
difference between facilitatory and trigger spikes leads to a high number of
output spikes (out). (c) Case two: large positive time difference leads to no
output spikes. (d) Case three: negative time difference leads to no output
spikes. (e) Number of TDE output spikes in dependence of time difference
�t between two input events (gain: gain factor, epsc: exponential postsynaptic
current, and mem: membrane potential).

after (i.e., small time difference �t), as shown in Fig. 1(b),
an excitatory postsynaptic current (EPSC) is produced. In this
process, the amplitude of the EPSC depends proportionally
on the facilitatory variable value, i.e., on the gain factor.
Therefore, the EPSC’s amplitude decreases with increasing
time difference [see (1)]. The trigger synapse projects onto
an LIF neuron that integrates the postsynaptic currents in
its membrane potential (Vmem) [see (2)]. Every time Vmem

reaches the spiking threshold τspike, a digital output pulse is
released. The number of spikes generated is antiproportional
to the time difference between the two input spikes [see
Fig. 1(e)]. When the time difference between the facilitatory
and the trigger pulses is long, the gain value at the time of
arrival of the trigger signal is not high enough to generate an
EPSC. Thus, no spikes are generated. In the case of a negative
time difference [an event arrives first at the trigger synapse and
then at the facilitatory input, as shown in Fig. 1(d)], with no
output spikes being produced. Therefore, the TDE is direction-
selective

Ie2 = Ie2 + (we2 × Ie1) (1)
dV

dt
= 1

Cm
×

(
Ie − (Ilk − Ii ) ×

(
1 − e

−V
Ut

))
. (2)

As introduced in Section I, both the number of spikes within
the burst and the burst duration depend on the time difference
between the input pulses. The detection time range of the
analog CMOS TDE implementation ranges from 10 ns up to
hundreds of milliseconds, according to [22]. This range can
be tuned by adjusting the LIF neuron’s parameters in order to
detect the timing differences more precisely in an accurate
spectrum, thus obtaining different TDE response profiles.
Those profiles are known as tuning curves, which represents
the neuron responses against the time difference between
the facilitatory and the trigger input pulses. Furthermore,

a nonlinear behavior of the tuning curves was expected to be
obtained from the analog CMOS TDE implementation due to
the transistors; however, a linear profile was observed. Milde
et al. highlighted in [22] that the nonlinear response was
manifested at the population response level and in the temporal
evolution of the ISI distribution within a burst. This feature
was taken into account for the digital model design proposed
in this work, since it determines the way in which the temporal
modules are implemented.

III. ARCHITECTURE AND IMPLEMENTATION

The proposed architecture is shown in Fig. 2. There are two
event-based inputs: the facilitatory input (“facilitatory”) and
the trigger input (trigger). In addition, four configuration sig-
nals are available to set the model’s parameters: the facilitatory
weight, called “detection_time,” which defines the maximum
time difference that the model is able to encode, i.e., the time
during which the gain value is nonzero; the gain factor that
influences the trigger synaptic weight (“tau”); the gain factor
that influences the spike generation process (“weight”); and the
decay time factor (decay) of the EPSC signal value. As output,
there is a single event-based signal (“spike”), which is the
spike fired by the encoder. Beyond those signals, the system
is governed by the system clock signal (“clock”).

Both control- and event-based signals have 1-bit width.
Internal data lines, as well as the “detection_time” signal, have
n-bit width, with n being a generic parameter of the model
denoted by “NBITS.” The rest of the data lines has m-bit
width, with m being also a generic parameter of the model
denoted by “LOG2NBITS,” which represents the result of the
log2 N B I T S. By default, the “NBITS” value is set to 16;
thus, “LOG2NBITS” is set to 4. Data width plays a key role
in the model behavior since it defines the timing resolution and
affects the output response due to the implementation details
of the spike generator module.

By following the schematic presented by Milde et al. [22],
the proposed architecture was divided into three compu-
tational blocks: the gain generation, the EPSC generation,
and the spike generation, as shown in Fig. 2 in red, blue,
and green, respectively. A phenomenological design strategy
was followed to implement the digital TDE model in order
to avoid the computation of differential equations. There-
fore, no floating-point operations were employed. Instead,
integer values were used. This approach was successfully
adopted in Frenkel et al. [10], where linear operations were
performed, thus reducing both the hardware cost and the model
complexity.

A. Gain-Generator Block

When an event is received at the facilitatory synapse,
an exponentially decaying signal is generated (called gain).
The decay time constant and the input synaptic weight deter-
mine the maximum time in which the facilitatory synapse
current is not zero, i.e., the maximum time difference that
the TDE is able to detect. In addition, if more than one event
arrives at the facilitatory input consecutively, while the gain
is higher than zero, the resulting gain value is the sum of
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Fig. 2. Detailed block diagram of the TDE digital architecture. It is composed of three main blocks: gain-generator block (red), EPSC-generator block
(blue), and spike-generator block (green). Synchronous modules are indicated by squared corner blocks with a small triangle, while asynchronous modules
are indicated with rounded corner blocks. The spike arrow is a 1-bit width signal, where events are either received as input or sent as output. Control arrows
are also 1-bit width, and they act as flags. Finally, data arrows can be either n-bit or m-bit width, being used for the internal communication between blocks
and also for loading configuration values.

the remaining gain value and the new gain value generated
due to the input event. Therefore, a feedback mechanism
is needed. In order to prevent the overflow effect, the gain
block saturation level is controlled by the GAIN_GEN_SAT
parameter.

The decaying signal was implemented as a decreasing linear
function by means of a countdown timer with preload value
(represented by the timer_0 module in Fig. 2). The preload
value establishes the initial configuration of the timer, i.e., the
amount of time that the timer is activated. Thus, this temporal
window restricts the maximum time difference that the model
is able to encode. The input signal “detection_time” sets that
value, and it can be updated in real time.

The feedback feature is achieved by internally appending
an adder to the timer where its inputs are the timer’s output
and the aforementioned “detection_time” signal value, and the
output is the timer’s load value. Therefore, for each rising edge
of the time reference signal “tr_tick,” the timer_0 module is
updated according to the following:
timer_0[k]

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

timer_0[k − 1] + d_t if faci == 1

GAIN_GEN_SAT if satu == 1

timer_0[k − 1] − 1 if timer_0[k − 1] > 0

0 otherwise

(3)

where timer_0[k] is the timer’s output value at the time
reference tick k, k – 1 is the previous time reference tick,
d_t is the unsigned integer constant value defined by the
“detection_time” signal, faci corresponds to the “facilitatory”
input signal, and satu is a flag that is activated when the
condition (timer_0[k − 1] + d_t) >= GAIN_GEN_SAT is
true.

Two clock domains were used to implement the digital
TDE model. The main clock signal, as defined in Fig. 2
as “clock,” governs the control processes of the sequential
blocks, as well as the input events’ detection and the output

events’ generation. Furthermore, a second clock signal, called
“tr_tick,” is provided as a time reference tick in order to
allow the model to operate with different time scales, thus
achieving an operational time range between nanoseconds
and seconds. With this, the model acquires enough flexibility
to be used along with a wide set of neuromorphic sensors,
which can operate at different time resolutions. No internal
clock generator was implemented. Instead, an external con-
figurable clock frequency divider is needed when a TDE
module is instantiated. When multiple instances of a TDE
unit are present, a shared clock frequency divider can be used
rather than a single one per unit, thereby reducing the overall
hardware resources’ consumption and increasing the number
of units that can fit into a design.

While, in the standard LIF neuron model [29], each synapse
outputs a postsynaptic current that integrates onto the mem-
brane potential, the TDE facilitatory block generates a gain
factor that regulates the trigger synapse weight. Therefore,
to cover this feature in the proposed architecture, two mecha-
nisms were implemented. First, the timer_0 output is weighted
by the input signal “tau” in such a way that the timer value is
either right or left shifted by “tau” positions. The shift oper-
ation was implemented according to the Barrel shifter [30],
represented as follows:

d_out =
{

d_in ∗ 2n_pos if l_r == 0

d_in/2n_pos if l_r == 1
(4)

where d_out is the output value, d_in is the input data, n_pos
is the number of positions to shift the input data, and l_r is for
selecting whether the signal has to be shifted either to the left
or to the right. Since this is a combinational circuit, the output
result is available at the same clock cycle, and thus, sequential
blocks are not required for the synchronization. The computed
value is then fed as input of timer_1, which generates the
EPSC signal, acting as the trigger synapse weight.

Second, timer_0’s output value is weighted by the input
signal “weight” also through a Barrel shifter module. In this
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Fig. 3. Gain-generator block output example. First, the block receives
a single facilitatory event. Immediately after, timer_0 is loaded with the
“detection_time” signal’s value. The output value of timer_0 decreases by
one unit for each time reference tick, which was set to microseconds. Since
the “weight’s” value was set to 1 (meaning that the timer’s value is left shifted
by one position), the shift_1’s output value is twice the value of timer_0.
Then, the block receives multiple facilitatory events in order to show the
accumulative behavior. The add_0 plot shows the value that is used as input
for the spike-generator block. In this case, its value matches the shift_1’s value
since no trigger event was received.

case, the result influences the spike generation process in such
a way that it controls the number of spikes to be generated
and, therefore, the precision of the encoding.

The shifted value is read by the spike generator block when
a trigger pulse is detected. Based on the operating principles
of the TDE model, as detailed in Section II, it can be deduced
that the ratio of the number of spikes to the duration of the
whole burst is proportional to the time difference between
the facilitatory input and the trigger input. For short time
differences, the model will produce many output spikes over a
longer time bin, and for long time differences, it will produce
fewer spikes but in a shorter time bin.

A register is included to store the last value used as input
for the spike generator. Thus, it can be used as feedback value
to be added to the gain value, increasing the final gain value
and, therefore, increasing the output spike rate. Equation (5)
describes the gain feedback register, as identified in Fig. 2 as
reg_0

reg_0 =

⎧⎪⎨
⎪⎩

d_in if trigger == 1

0 if timer_0[k] == 0

reg_0 otherwise

(5)

where reg_0 is the value stored by the register, d_in is the last
value loaded on the spike generator block, trigger corresponds
to the input signal trigger, and timer_0[k] is the timer’s output
value at the time reference tick k. This register is reset to zero
when the timer_0 reaches zero, and it can also be disabled if
needed.

Conceptually, it can be affirmed that the gain value influ-
ences both the temporal aspect (through the tau factor) and
the amplitude aspect (through the weight factor) of the
TDE response. Fig. 3 shows a response example of the
gain-generator block when both single and multiple facilitatory
inputs are provided.

B. EPSC-Generator Block

Similar to the gain factor generation, when an incom-
ing event is detected at the trigger’s input by the analog

implementation from [22], an exponentially decaying signal
is generated, known as EPSC. In the field of neuroscience,
the EPSC is defined as the current coming from an artificial
synapse that integrates onto a neuron’s membrane potential.
The amplitude of the EPSC is proportional to the gain signal
due to the influence of the facilitatory block over the trigger
synaptic weight [22]. Thus, the smaller the arriving time
difference (�t) between the facilitatory and trigger events,
the higher the gain factor, and therefore, the higher the
amplitude of the trigger synaptic current.

Consequently, if a trigger pulse is detected without any
previous facilitatory pulse, no EPSC current is generated since
the gain factor is zero, as shown in Fig. 1(c). Nevertheless,
if a trigger pulse is detected shortly after a facilitatory pulse
(i.e., low �t), an EPSC current proportional to the gain signal
value at that time is generated. The generated EPSC current
is high enough to generate spikes when it is integrated onto
the membrane potential, as shown in Fig. 1(b). Equivalently,
if a trigger pulse is detected long after the facilitatory pulse
(i.e., large �t), the resulting EPSC current may not be enough
to produce output spikes, as shown in Fig. 1(c).

Multiple events can arrive at the trigger synapse, while the
gain factor is higher than zero, thus producing an accumulated
EPSC current signal. The resulting signal is the sum of the
left over EPSC current value and the left overweighted gain
current value. Therefore, a feedback circuit is needed to limit
the output current. The feedback value tends to decrease due to
the decaying gain factor. However, a high input spike rate may
saturate the EPSC current generation. This saturation level is
set by the TDE generic parameter EPSC_GEN_SAT.

Following the same implementation principle of the gain
generator block, the EPSC decaying signal was implemented
as a decreasing linear function also by means of a countdown
timer with preload value, identified as timer_1 in Fig. 2.
In this case, we can affirm that the preload value is the
remaining time to zero of the gain-generator block timer
(timer_0), i.e., the gain current signal is zero. In order to
maintain the synchronization with the gain generator block,
the timer_1 module is updated at every rising edge of the
time reference signal “tr_tick” according to the following:
timer_1[k]

=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

timer_1[k − 1]+(
timer_0[k − 1]

/
2tau

)
if trigger == 1

EPSC_GEN_SAT if satu == 1

timer_1[k − 1] − 1 if timer_1[k − 1] > 0

0 otherwise

(6)

where timer_1[k] is the timer’s output value at the time
reference tick k, k – 1 is the previous time reference tick,
tau is a factor to weight timer_0’s output value, timer_0[k –
1] is timer_0’s output value at the previous time reference tick,
trigger corresponds to the input signal trigger, and satu is a
flag that is activated when the condition (timer_1[k − 1] +
(timer_0[k − 1] × 2tau)) >= EPSC_GEN_SAT is true.

As previously mentioned, the trigger timer determines the
output spike burst duration in the same way the EPSC synaptic
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current decay in [22] is set by a voltage parameter. This
synaptic current is injected into the neuron that integrates the
current until it generates a spike as soon as the membrane
potential rises above its threshold. Therefore, the neuron is
able to produce spikes, while the EPSC signal is higher than
zero. In addition, the number of generated spikes is directly
proportional to the EPSC signal duration and, thus, inversely
proportional to the time difference between the facilitatory and
trigger input spikes.

In the proposed design, the value that is loaded in timer_1
(i.e., in the EPSC generator) is called the remaining time
to zero. This value influences the spike-generator block in
two similar aspects. First, the spike generator block is active,
i.e., producing spikes, while the EPSC value is higher than
zero. Thus, it acts as an enable signal. Moreover, the remaining
time to zero is used to handle the temporal evolution of the
spike-generation process in order to mimic the ISI increment
of the original analog TDE model [22] by exploiting a feature
of the exhaustive synthetic spikes generator models proposed
in [14] and implemented in [31] and [32].

The temporal evolution can be adjusted by the factor
“decay,” which weights the timer_1’s output also by means of a
Barrel shifter module identified in Fig. 2 as shift_2. The timer’s
value decreases by one unit for each “tr_tick” rising edge.
With this factor, we can scale the decreasing speed, allowing
us to obtain a different range of values, although preserving
the time bin, i.e., the activation time of the spike generator
module. Further details about the effect of this parameter are
discussed in Section III-C.

Due to the implementation details of the spike-generator
block, the generated EPSC signal needs to be inverted, thus
obtaining an incremental signal instead of a decreasing signal.
This transformation can be achieved by storing the reference
value and periodically subtracting the original value every time
it is updated. In this case, the reference value corresponds
to the preload value of timer_1 when a pulse is detected
at the trigger input, and the original value is the timer_1’s
output value. A generic register, denoted by reg_1 in Fig. 2,
was added to the proposed architecture, and its behavior is
described as follows:

reg_1 =
{

timer_1[k] ∗ 2decay if trigger == 1

reg_1 otherwise
(7)

where reg_1 is the value stored by the register, decay is the
factor that weights the timer_1 value, and trigger corresponds
to the trigger input signal.

Note that the trigger signal is latched to let the timer
load the preload value and output the correct value, which
takes one clock cycle of the main clock signal (“clock”).
This latched trigger signal is shared by reg_1, reg_0, and the
spike_generator_0 modules to keep the synchronization and
operate with the precise values.

The output of the subtractor module, whose output ranges
from zero to reg_1’s output value, is then used as input of
the spike-generator module, which generates spikes accord-
ing to both the add_0’s output value and the sub_0’s out-
put value, i.e., the gain factor value and the EPSC factor
value, respectively. Fig. 4 shows a response example of the

Fig. 4. EPSC-generator block output example. First, the model is stimulated
with a single facilitatory event before the first trigger event. Then, the current
value of shift_1 is loaded in timer_1. The accumulative effect is also shown
when multiple triggers are received. The sub_0 module generates an increasing
signal, which is used as the clock divider value for the spike generator block.

Fig. 5. EU-SSG block diagram. A complete description of both the
implementation and the behavior of this module is presented in [31].

EPSC-generator block when both single and multiple trigger
inputs are provided after the arrival of a single facilitatory
event.

C. Spike-Generator Block

In the presence of an input facilitatory spike and an input
trigger spike, a burst of output spikes is produced by the
spike generator block. As detailed in Sections III-A and III-
B, both the amplitude and the duration of the burst depend
on the generated gain factor and the generated EPSC factor,
respectively. In contrast to the LIF neuron, which integrates the
presynaptic current into the membrane and produces a spike
if the membrane potential reaches a threshold, an event-based
unsigned integer-to-spike converter was implemented based on
the model implemented by Jimenez-Fernandez et al. [31].

This converter, called exhaustive unsigned synthetic spikes
generator (EU-SSG), takes an unsigned integer value as input
and produces a burst of spikes where both the number of
output spikes and their distribution over time are proportional
to the input value. Similar to the synaptic current integration
process, which polarizes the membrane, producing a mem-
brane potential, the EU-SSG implements an up counter that
increases its value every time a pulse is detected, as shown
in Fig. 5 as up_counter. Then, the output of the counter is
processed by the exhaustive synthetic method (ESM) block,
which determines the integration method. Finally, analogous to
the comparison between the firing threshold and the membrane
potential, the counter’s output value and the input data are
compared, and a spike is fired only when both values are equal.

To generate the pulse according to the desired output firing
rate (expressed in spikes per second), a clock frequency divider



7

module is used, identified as clk_freq_div in Fig. 5. It has 
two input signals: the system clock ”clock” signal and the
“clk_div” signal, which is the clock frequency division factor; 
and one output signal, i.e., the clock enable “ce” signal, which 
generates a pulse when corresponding.

By combining both the input value and the clock frequency 
divider value of the spike generator block properly, the desired 
behavioral output response of the original TDE model can be 
achieved. Analytically, the EU-SSG’s output firing rate for a 
given input value was obtained in the following:

f (d_in) = Fclock ∗ d_in

2n(clk_div + 1)
(8)

where f is the spike generator’s output firing rate (expressed
in spikes per second), d_in is the input value to be converted
to spikes, the constant Fclock is the system clock frequency
(in Hz), n is data width, and clk_div is the internal clock
frequency divider value.

Although (8) is almost identical to the one defined in [31],
there is a difference in the component 2n , due to the fact that,
in the original model, the sign is taken into account (2n−1

is used instead), while, in (8), the unsigned version is used.
However, the number of bits selected to represent the input
value does not affect the maximum firing rate achievable by
the EU-SSG block. d_in is the maximum value that can be
represented with n bits, which is 2n . In that case, if d_in is
replaced in (8), the maximum output firing rate is expressed
as follows:

fmax = Fclock

(clk_div + 1)
(9)

where fmax is the spike generator’s output maximum firing
rate, the constant Fclock is the system clock frequency (in
Hz), and clk_div is the internal clock frequency divider value.
Therefore, the output firing rate only depends on both the
system clock frequency and the clock frequency divider value.
Since the maximum generating frequency is independent of the
number of bits used to represent the values, this parameter can
be set up according to the desired time resolution, thus bene-
fiting the resource saving and allowing the implementation of
a larger number of TDE units.

Two particular differences can be highlighted from this
spike-generator block compared to the LIF neuron model.
First, the EU-SSG block does not implement any refractory
period. Therefore, the spikes can be produced through con-
secutive clock cycles. Instead, the clock frequency divider
value needs to be adjusted in order to achieve the desired
output spikes distribution. Second, the spike generator does
not stop producing spikes. If the input value is higher than
zero, the spike generator continues generating spikes. To stop
the spike generation process, a clear input signal “clear” was
added to the EU-SSG block, which resets its internal registers
to zero. This control line is activated by the comparator cmp_1
when the EPSC’s timer output value reaches zero, meaning
that the EPSC synaptic current is zero, and therefore, there is
no current to integrate.

According to the architecture shown in Fig. 2, the EU-SSG
input data (“d_in”) correspond to the TDE gain value.

Fig. 6. Operation example of the proposed model. The detection time was
set to 700 μs; the tau value was set to 0; the weight value was set to 4; and
the decay value was set to 2. The main clock was set to 50 MHz, the time
reference tick was set to 1 MHz, and the data width was set to 16. The �t
value between the facilitatory event and the first trigger event is 200 μs, while
the �t value between the facilitatory event and the second trigger event is
400 μs.

This signal depends on the current value of timer_0, which
determines the detection time. The multiplication factor also
controls the number of spikes to generate, as well as the last
input value loaded into the generator. Thus, the gain block’s
output signal, and, therefore, the “d_in” signal, can be defined
as follows:

d_in = reg_0 + (
2weight ∗ timer_0

)
(10)

where d_in is the spike generator input value, reg_0 is the
value stored in the register defined by (5), weight represents
the timer_0 factor, and timer_0 is the timer value defined
by (3).

In the same way, the EU-SSG clock divider value
(“clk_div”) corresponds to the TDE EPSC value. It depends
on the current value of timer_1, which, in turn, depends on
timer_0 and shift_0, according to (6). In addition, the timer_1’s
value is weighted to control the output firing rate and the ISI
variation. Therefore, the EPSC block’s output value can be
defined as follows:

clk_div = reg_1 − (
2decay ∗ timer_1

)
(11)

where clk_div is the spike generator input value, reg_1 is the
value stored in the register defined by (7), decay represents the
timer_1 factor, and timer_1 is the timer value defined by (6).

A behavioral example of the proposed model is shown
in Fig. 6. The first row shows the input events differentiated by
colors and following the color code used in Fig. 1: red color for
the facilitatory event and blue for the trigger event. The second
and third rows represent the evolution of the gain and EPSC
timers over time, respectively. The fourth row illustrates the
“d_in” signal value loaded into the spike generator block, and
the fifth row represents the clock divider value of that block.
Finally, the sixth row shows the output spikes produced in the
presence of the shown input stimuli.

When an event is detected at the facilitatory input, the gain
timer is initialized according to its detection time value. For
each time reference tick, the gain timer decreases its value.
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Fig. 7. RTL simulation for twelve basic cases of the TDE model with a time resolution of microseconds. Following the color code, red is related to the
facilitatory, blue is related to the trigger, and green is related to the spike generator. (A) Single facilitatory spike. (B) Single trigger spike. (C) Single trigger
spike before the single facilitatory spike. (D) Single facilitatory single trigger �t = 0. (E) Single facilitatory single trigger short �t . (F) Single facilitatory
single trigger medium �t . (G) Single facilitatory single trigger long �t . (H) Single facilitatory single trigger very long �t . (I) Single facilitatory multiple
triggers. (J) Multiple facilitatory single triggers. (K) Multiple facilitatory multiple triggers. (L) Saturation.

As soon as an event is detected, the current value of the gain
timer is loaded into the EPSC timer. Concurrently, that value
is weighted and loaded into the spike generator as input data.
Therefore, the spikes begin to be generated.

At this moment, the clock divider value of the spike
generator is set to zero, thus producing the spikes at the
maximal firing rate. For each time reference tick, the EPSC
timer decreases its value, and the clock divider value of
the spike-generator block is updated to a higher value. This
causes a decrement in the output firing rate and, consequently,
an increment of the ISI between two consecutive output events.

When another spike is detected at the trigger input, the cur-
rent value of the facilitatory timer is added to the current value
of the trigger timer. The input data of the spike generator block
are updated, and the clock divider value is set to zero. This
leads to a reset of the internal counter of the spike-generator
block, which leads to an update of the ISI value according to
the new input value. The TDE produces spikes until the EPSC
timer reaches zero, when the internal stop signal is enabled.
A more exhaustive behavioral analysis of the TDE response
to both simple and complex stimuli is presented in Section IV.

IV. ANALYSIS AND RESULTS

Three test scenarios were considered in order to validate and
analyze the proposed model. First, a behavioral simulation was
performed for the most common input stimulus combinations.
The results were cross-validated with the results presented in
the reference work [22]. Once validated, the model was ana-
lyzed and characterized by carrying out different experiments,
where the ISI distribution and the number of output spikes
were measured. Second, a single TDE unit was synthesized for
an FPGA platform. The output spikes obtained from the FPGA
were measured using an oscilloscope and recorded using a
computer. Quantitative comparison was carried out between
the simulation and the deployed version of the TDE unit.
Third, a proof of concept of a sound source lateralization
system was designed and tested using a population of TDE
units.

A. Simulation

Since the TDE model has two inputs, many different input
event combinations can occur. It is important to study each of
these scenarios since they will directly affect the behavior of
the model and its response. With the aim of verifying whether
the behavior of the proposed model matches the expected
output, 12 cases were simulated. For this experiment, a single
TDE unit was instantiated, with 100 μs as detection time, a tau
value of 0, a gain value of 5, a decay value of 1, and a value
of 256 for both facilitatory and trigger saturation. In addition,
the time resolution was set to microseconds. Fig. 7 presents
the response of the TDE unit when being excited by twelve
different sequences of input events.

Fig. 7(A) and (B) depicts simple examples where either a
single facilitatory or trigger event is received by the TDE unit.
No events were produced at the output. However, while the
gain signal started being generated in Fig. 7(A), as a response
to the facilitatory event, the trigger signal remained at zero
in Fig. 7(B) since no facilitatory event was received before.
Indeed, this effect can also be seen in Fig. 7(C), where the
trigger event is received just a few microseconds before the
facilitatory event. The same response of the model is obtained
when both events arrive at the TDE unit at the same time,
as shown in Fig. 7(D).

When a facilitatory event is presented at the TDE’s input
before the trigger event, the TDE’s response is inversely
proportional to the time difference (also called �t) between
them. Fig. 7(E)–(G) shows the output events generated by the
TDE unit for short, medium, and long �t values, respectively.
As can be seen, the number of output events decreases
with higher �t values, while the ISI increases, matching the
expected behavior. When �t is higher than the detection time
[Fig. 7(H)], the resulting response is the same as having
Fig. 7(A) first and then Fig. 7(B), meaning that no events
are generated at the output.

The proposed model was also simulated and evaluated in
the presence of more realistic input patterns. In a real-world
application, the input events are not received one by one.
Instead, a continuous rate of events can be injected into the
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input. Fig. 7(I) and (J) shows the TDE model response when 
multiple facilitatory or trigger events are received at the input 
for a single opposite event.

On the one hand, Fig. 7(I) shows how the EPSC signal is 
incremented by a value proportional to the remaining time
to zero of the gain signal with the arrival of the second 
trigger event, following (6). The first burst produced contains 
more events with lower ISI, whereas the opposite happens
in the second burst. On the other hand, Fig. 7(J) shows how 
the gain signal is incremented by the detection time value 
when the second facilitatory event arrives according to (3). 
This alters the response of the simple case shown in Fig. 7(F), 
generating a burst with a higher number of events.

When many consecutive facilitatory-trigger pairs with �t
lower than the detection time parameter are received, the accu-
mulated EPSC/gain signal values increase. Thus, after some
time, the signals saturate according to the saturation parameter.
At the saturation level, the TDE output firing rate is considered
maximal, and its behavior can be estimated by using (9).
We can affirm that the saturation parameter limits the TDE
response, and its value would have to be set depending on the
application and the related statistics of the input stimuli.

In this regard, the behavioral validation of the proposed TDE
model shown in Fig. 7 has been proven to act in accordance
with the reference model [22] in terms of both performance
and requirements. Moreover, cases that were not evaluated
in the original model were also reported in order to fully
characterize the proposed model.

After the behavioral validation, more precise timing analysis
of the TDE response was carried out. In [22], this study was
performed by investigating the ISI distribution within a burst
for six different �t values. The ISI was calculated as ISIn =
tn − tn−1, where tn is the timestamp of the nth event. The
authors reported that the obtained results matched the expected
nonlinear response in the temporal evolution of the ISI within
a burst.

The same test was done in order to verify that the nonlinear
ISI variation feature was also achieved by the proposed model;
14 facilitatory-trigger pairs of events with different �t values
were used as input stimuli. Two TDE units were configured to
work at different time scales by setting the time reference tick
to microseconds and milliseconds, respectively. Fig. 8 presents
the results obtained from simulations with a time reference
tick in the scale of microseconds, instantiating a TDE unit
with 700 μs as detection time, 0 as tau, 4 as weight, and
2 as decay. Similarly, Fig. 9 presents the results obtained from
the simulations, although setting the time reference tick to
milliseconds, instantiating a TDE unit with 70 ms as detection
time, 0 as tau, 0 as weight, and 3 as decay.

Similar to the analog CMOS implementation, nonlinear
profiles can be clearly observed in all the cases shown in both
Figs. 8 and 9. These profiles were obtained by using exclu-
sively linear operations and circuits, thus avoiding explicit
circuitry for generating exponential behaviors. This feature
allows reducing the needed resources and, therefore, increasing
the total number of TDE units that can be instantiated into
an FPGA or application-specific integrated circuit (ASIC).
When the �t value is almost equal to the configured detection

Fig. 8. TDE ISI response for a facilitatory-trigger pair with different �t
values for a microseconds resolution configuration. Note that the smallest �t
value used was not zero (no output events would be produced) but 20 ns (one
clock cycle).

Fig. 9. TDE ISI response for a facilitatory-trigger pair with different �t for
a milliseconds’ resolution configuration with a detection time of 70 ms.

time (e.g., above 550 μs for microseconds and 55 ms for
milliseconds), the produced output events are not enough to
represent the characteristic curve that cases with lower �t
presented. On the other hand, the first output event pairs seem
to have the same ISI value for most �t values (specifically
for lower �t values). These ISI values cannot be correctly
appreciated in the plot since, according to the global clock,
the precision of the minimum time difference is in the order
of nanoseconds, and the Y -axis of the plot is represented in
milliseconds.

The time scale set by the time reference tick affects not
only the ISI curves, which has a better and more regular
distribution for the millisecond time reference, but also the
number of output events produced. This effect is caused by
the combined use of both clock domains in the spike generator
module, where the time reference clock is used to manage the
inputs and the global clock is used to produce the events.

Another simulation was carried out in order to prove the
variation in the number of output events generated by the TDE
unit using both different time references and detection times.
The results are depicted in Figs. 10 and 11 for microsecond
and millisecond time references, respectively.

Note that the peak located at �t = 300 μs (as shown
in Fig. 10) is caused by the implementation of the spike
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Fig. 10. Number of TDE output spikes over �t variation for microsecond
time reference tick.

Fig. 11. Number of TDE output spikes over �t variation for millisecond
time reference tick.

generator module since the conversion from an integer value to
a spike stream has an intrinsic error. This error is maximal at
that time in this particular example, and it is deeply analyzed
in [32]. Due to the timing resolution used in Fig. 11, even if
the error exists, the peak cannot be appreciated.

The characteristic curve that relates the number of out-
put events produced by the TDE with respect to the �t
value between its facilitatory and trigger inputs is known as
the tuning curve. By varying the parameters’ values of the
TDE unit, its tuning curve can be adjusted. Therefore, it is
possible to have a set of TDE units with different tuning
curves.

This feature allows configuring a TDE population with
different tuning curves responding to different input patterns or
using the population response as a global response. Unlike the
tuning curve test carried out in [22], in which all the neurons
shared the same parameters, we conducted a similar test with
different TDEs configurations.

Table I summarizes the values used for each TDE unit
within the population created for this test. The population size
is four units. All the units share the saturation value, set to
3000 for both the gain and EPSC signals, as well as the tau
value, which was set to zero.

The time difference of the two input events was varied from
20 ns to 750 μs for the microsecond time reference, with a
20-μs step size. Similarly, the relative timing was varied from
20 ns to 75 ms for the millisecond time reference, with a
5-ms step size. The results obtained from the simulations are
depicted in Figs. 12 and 13.

TABLE I

PARAMETERS OF THE TDE POPULATION

Fig. 12. Individual TDE tuning curves and population tuning curve for
microseconds’ time reference tick.

Fig. 13. Individual TDE tuning curves and population tuning curve for
milliseconds’ time reference tick.

Both figures show the effect of the different tuning para-
meters in the output response of the TDE units. The TDE0’s
tuning curve presents a noticeable slope, meaning that it has
a high output firing rate in a short time bin. On the contrary,
the TDE1’s tuning curve has an almost flat slope, which means
that it produces fewer spikes but in a longer time period.

The tuning curves in Figs. 10 and 11 look practically
linear. These tuning curves show a comparable behavior to
the analog model, which is considered nonlinear for large
temporal differences and linear for small time differences
by Milde et al. [22]. The global behavior of the popula-
tion, calculated as the sum of the output events for each
TDE unit for each �t value, fits an exponential curve. For
the microseconds’ time reference, the obtained exponential
fitting curve had R2 = 0.87 with root-mean-square error
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Fig. 14. Block diagram of the setup for real-time measurements’ acquisition.

(RMSE) = 14.61. For the milliseconds’ case, the R2 value
was 0.93 with RMSE = 42.24.

The spike generator intrinsic error directly affects the
exponential approximation although the fitting curve can be
considered acceptable taking into account that a nonlinear
profile was obtained by using exclusively linear modules.

B. Field-Programmable Gate Array

After simulating the proposed model, analyzing and vali-
dating its behavior, a TDE population was deployed into an
FPGA-based device in order to verify the results obtained in
the simulation using a hardware platform. Fig. 14 depicts the
setup used for this test. The upper part describes in detail
the implemented design deployed into the FPGA. Two timers
with periodic interruptions were used to generate both the
facilitatory and trigger events. The time reference tick was
set to microseconds, and the �t value was fixed to 100 μs,
having a wait time of 1 s between two consecutive stimulus
generations. The population size was set to four in order to
maintain the same architecture as in the simulation. Therefore,
a read only memory (ROM) module was added for storing the
population parameters, which were the same as those presented
in Table I for the microseconds case. Finally, an events’
monitor was connected to the population output to collect the
events and send them to the computer by using an address-
event representation (AER) protocol.

The lower part of Fig. 14 describes the two approaches used
to measure the population response directly from the hardware.
On the one hand, an oscilloscope was used to both measure
and visualize the output events from the TDE3. Fig. 15 shows
a screenshot with the captured events, where the increment
of the ISI over time can be appreciated. On the other hand,
a computer running jAER [33] was used to visualize and save
the population output events in real time.

In addition to the behavioral simulation, a postsynthesis sim-
ulation and a postimplementation simulation were performed.
The behavioral simulation was used as a reference and com-
pared to the simulation results, as well as the measurements
from the oscilloscope and the events collected by the events’

Fig. 15. Output spikes captured by using an oscilloscope.

Fig. 16. Comparing the TDE response from different measurement sources.

TABLE II

HARDWARE RESOURCES UTILIZATION FOR DIFFERENT FPGA DEVICES

monitor. The output of TDE3 was used to compute the Pearson
correlation value [34] for a quantitative comparison.

The results are plotted in Fig. 16, showing a high correlation
level (0.99 as the lowest value) and having the greatest
differences in the later spike pairs. This could be caused by
the inherent sampling error of the devices used. Nevertheless,
the high correlation degree demonstrates that the TDE behav-
ior does not change when it is deployed into an FPGA-based
hardware in real time.

The resources needed by a single TDE unit were estimated
for three different FPGA chips. In addition, the maximum
number of TDE units that can be instantiated on each of them
was reported. Table II summarizes all estimations. In addition,
a high-level resource consumption comparison can be carried
out between the analog implementation and the digital imple-
mentation. The former uses four capacitors for implementing
the temporal decay of the signals, whereas the latter uses
three timers instead. The difference lies in the absence of the
refractory period in the proposed digital version.
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Fig. 17. Detailed block diagram of the FPGA top module for the proof of concept, containing both the NAS and the TDE populations.

Finally, a power consumption study was carried out for
the XC6SLX150T chip, which was also used for all the
measurements and real-time experiments in this work. First,
a set of switching activity interchange format (SAIF) files was
used for a realistic and precise estimation, where a single
TDE unit was stimulated with a simple pair of facilitatory and
trigger events. The reported power consumption was less than
1 mW with a static power consumption of 98% (intrinsic to the
FPGA). Then, the system power consumption was measured
directly from the real hardware setup by measuring the power
consumption in two different cases: 1) when the board was
programmed and the reset signal was active (553.6 mW) and
2) when the board was programmed, the reset signal was
not active, and an input events pair was sent (555.1 mW).
Therefore, the measured power consumption for a TDE unit
was approximately 1.5 mW, having a deviation of 0.5 mW
with respect to the simulation estimation.

For comparison purposes, the power consumption of a
single analog CMOS TDE implementation in the XFAB
XP018 technology was estimated by means of a circuit simula-
tion. The static power consumption amounts to 1.4 nW, while
the dynamic power consumption increases with the TDE’s
output spiking frequency, reaching approximately 500 μW at
500 Hz.

C. Real-Time Neuromorphic Application

The applicability of the proposed TDE model was evaluated
by means of a proof-of-concept application. In the work pre-
sented in Milde et al. [22], the proof of concept was focused
on a neuromorphic application using visual information gen-
erated by event-based cameras. In this work, a real-time sound
source lateralization application for FPGA was implemented
using the NAS.

Briefly defined, the sound source lateralization is consid-
ered as the capability to identify where the sound source
is by using only binaural cues [35]. Different neuromorphic
approaches to solve this task have been proposed in the last
two decades [36]–[39]. Simplifying the concept, we will con-
sider the sound source lateralization as the ability to determine
whether the sound is on the left, on the middle, or on the right.

For this task, the same binaural cues that are commonly used
for sound source localization [interaural time difference (ITD)
and interaural level difference (ILD)] can be used. A binaural
sensor is needed in order to be able to capture those cues. The
NAS, as proposed in [26], is a neuromorphic sensor capable of
decomposing the input sound from a pair of microphones into
its frequency components, emulating the human cochlea. The
general NAS architecture is depicted in Fig. 17 (top). Since it
is an event-based sensor, its output is encoded as events; thus,
the information is coded not only in the number of output
spikes but also in the relative time between them. Only the
ITD cue was used in the proof-of-concept application due to
the timing nature given by the proposed TDE model.

The position of a sound source in space can be encoded
by the temporal difference between the arrival of the sound
waves at the ipsilateral side and the contralateral side. This
time difference is known as the ITD. According to the speci-
fications of the TDE model, an output response is exclusively
produced if the incoming facilitatory event arrives before the
incoming trigger event. Thus, two TDE populations were
needed to perform the sound source lateralization task: one
for detecting when the sound source is located at the left of
the reference (the microphones pair) and one for detecting
when the sound source is located at the right. Although the
auditory information used was the same, thus containing the
same temporal information, it projects onto the two TDE
populations in an opposite way. The network architecture is
shown in Fig. 17 (bottom), and the parameters values used for
the TDE units’ configuration were the same as those presented
in Table I for the microseconds’ time reference. Therefore,
the individual tuning curves, as well as the population tuning
curve, correspond to the plot shown in Fig. 12.

The test scenario was designed as follows: first, a virtual
room of 10 m × 10 m × 2 m was created, using the room
impulse response (RIR) generator [40] software tool. A pair
of directional microphones were placed in the center of the
room, imitating the human’s ears disposition in a regular head,
and at a height of 1 m over the floor. Then, three sound
sources were placed at −90, 0, and +90◦ with respect to the
microphones pair, corresponding to the left, front, and right
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Fig. 18. Raster plot of the output events from the TDE population
and normalized overall activity. The plots were generated using pyNAVIS
tool [42]. TDEs 0—3 (left population) correspond to indices 0–3 in Table I,
and TDEs 4–7 (right population) also correspond to indices 0–3 in the same
table. Therefore, TDE 0 and TDE 4 use the same configuration and so on.

TABLE III

COMPARISON OF A SINGLE NEURON IMPLEMENTATIONS USING AN FPGA.
ZERO SLICE REGISTERS USED MEANS THAT A MEMORY WAS USED TO

STORE THE NEURON STATE

positions, respectively, with a separation of 2 m. The sound
sources generated a pure tone beep of 500 Hz, with a duration
of 0.5 s, every second.

Regarding the auditory sensor, a 64-frequency-channel, bin-
aural NAS with a frequency range from 22 Hz to 22 kHz was
generated using the OpenNAS tool [41]. The output events
from frequency channel number 33 were used as input of the
TDE population since the center frequency of its associated
event-based bandpass filter was set to 502.38 Hz.

The sound was sent from the computer to the FPGA
in real time, and the TDE population’s output events were
collected in a computer by using jAER. The results obtained
from the real-time experiments are shown in Fig. 18. Top
and bottom plots show the response of the TDE populations
when the sound source was placed on the very left and very
right positions (high ITD values), respectively. As expected,
most of the activity was produced by the corresponding TDE
population (left and right, respectively). The maximum overall
activity was found in those TDE units with higher detection

time (TDE 3 for the left-hand side and TDE 7 for the right-
hand side). On the contrary, TDE 0 and 4 barely presented
any activity due to their low value for the detection time.

The center plot shows the response of both populations
when the sound source was placed in front of the microphones
pair. In this case, all the instantiated TDE units produced
output events as a response to the low ITD value inherent to
the input stimuli. The small asymmetry in the overall response
can be explained by the fact that the integrated interchip
sound (I2S) protocol samples the input sound sequentially.
Therefore, left and right samples provided to the left and
right cochleas as input are slightly different, thus producing
different spike activity at the filter’s output. This activity
could be postprocessed in order to extract more precise spatial
information of the sound source.

V. DISCUSSION AND CONCLUSION

In this work, we presented a digital implementation of the
TDE model. The full project code is open-source and pub-
licly available on GitHub (https://github.com/dgutierrezATC/
TDE_vhdl). This event-based design encodes temporal dif-
ferences into a burst of events. A phenomenological design
strategy was followed in order to implement the TDE behavior
with reduced design complexity. The proposed implementa-
tion needs 179 lookup tables (LUTs) and 140 registers. The
comparison in Table III shows that the phenomenological
design approaches use fewer FPGA resources since the design
complexity is reduced.

The simulation data presented here faithfully reproduce the
behavior reported in [22], where also a phenomenological ana-
log implementation approach was followed. Once simulated,
the model was deployed into an FPGA-based device in order
to characterize its response in a real-time platform. Although
the proposed model is also suitable to be implemented in a full
custom ASIC, an FPGA-based platform was considered due to
its reconfigurability, fast, and affordable prototyping workflow.
This allows creating custom TDE populations with different
parameters and scaling up the population’s size if needed,
which is not possible in neither analog nor digital ASIC, unless
specified at design time with high silicon overhead.

Another advantage of the FPGA TDE implementation is the
wide temporal resolution range that it offers. It can be adjusted
to different temporal domains by setting a few integer values
depending on the specific applications, such as sound source
localization (microseconds), vision (milliseconds), or odor
localization (seconds). Since some neuromorphic systems,
such as the SpiNNaker [12] board, only provide a milliseconds
resolution by default, the digital TDE supports the application
to tasks that require a higher temporal resolution, as the
sound source localization example provided in this work.
Furthermore, the FPGA implementation does not suffer from
the mismatch problem common in analog CMOS circuits.

However, it is also important to mention that, unlike the
analog implementation, the model is not fully asynchronous.
This feature forces the model to have clock signals, thus
increasing the static power consumption due to the switching
currents. Therefore, the reported power consumption of the
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proposed model is significantly higher (less than 1 mW)
compared to the few microWatts of power consumption for
low output spike frequencies (measured in CADENCE using
XFAB XP018 technology) given by the subthreshold operation
level in which the analog version works.

In this work, a proof of concept of a sound source lateral-
ization application was presented to evaluate the usability and
performance of the proposed TDE model with realistic input
stimuli. The use of the TDE model for sound source later-
alization represents an efficient alternative to the biologically
inspired Jeffress model [46]. The latter consists of an array
of coincidence detector neurons with variable delay lines. The
coincidence detector with a delay most similar to the signal’s
ITD indicates the sound source location with its dominant
response. Since the TDE model encodes temporal differences
in a frequency-coding manner, only two TDE’s (one left and
one right) are needed to encode the full range of sound source
angles. Therefore, the hardware resources needed to imple-
ment this approach will be less compared to other state-of-the-
art alternatives. Nevertheless, the combination of TDEs with
different facilitatory time constants leads to an exponential
population response, increasing the model’s accuracy.

As demonstrated in Section IV-C, we can distinguish
between at least three different sound source angles in the
horizontal plane using the TDE’s spiking frequency with
four units for each side. Moreover, the output of the TDE
population could be sent to other neuromorphic processors
(e.g., Loihi [7] or SpiNNaker [12]) to further improve the
localization accuracy by using an SNNs. This work pro-
poses a novel FPGA implementation of the TDE, which,
due to its modular structure, can be adopted by the neuro-
morphic research community and seamlessly integrated with
event-driven sensors to support the investigation of novel
algorithms for bioinspired sensing.
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