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Abstract: In this paper, the Extended Half-Power Exponential (EHPE) distribution is built on the basis
of the Power Exponential model. The properties of the EHPE model are discussed: the cumulative
distribution function, the hazard function, moments, and the skewness and kurtosis coefficients.
Estimation is carried out by applying maximum likelihood (ML) methods. A Monte Carlo simulation
study is carried out to assess the performance of ML estimates. To illustrate the usefulness and
applicability of EHPE distribution, two real applications to COVID-19 data in Chile are discussed.
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1. Introduction

Nonnegative data sets are quite usual in different scientific fields. To carry out in-
ference for these kinds of data, models of continuous distributions with a nonnegative
support are required. In this sense, we can cite the following models: Half-Normal (HN),
Right Half Bimodal Normal (RHBN) (Alavi [1]), the Generalized Gamma (Meeker and
Escobar [2]), Truncated Positive Normal (Gómez et al. [3]), Slash Truncated Positive Normal
(Gómez et al. [4] ), Truncated Skewed Bimodal Normal (Sharifipanah et al. [5]), Extended
generalized half-normal (Duarte Sánchez et al. [6]), Extended generalized half-normal with
progressive type-I interval censoring (Ahmadi and Yousefzadeh [7]), Gamma-Exponential
(Kudryavtsev and Shestakov [8]). In a more general setting, families of distributions with
nonnegative support can be found, in which the model is built on the basis of given proba-
bility density functions symmetric around zero, f0. In this sense, we highlight the seminar
paper by Elal-Olivero et al. [9]. Specifically, let Y be a continuous random variable (rv)
with support in (−∞, ∞) and probability density function (pdf) f0 symmetric about zero,
satisfying that E[Y2] = k < ∞. Then, Elal-Olivero et al. [9] proposed to obtain a family of
nonnegative continuous distributions, X, whose pdf is given by:

fX(x; α, δ) =
2
δ3

(
αδ2 + x2

α + k

)
f0

( x
δ

)
, x ≥ 0, (1)

where α > 0 is a shape parameter, and δ > 0 is a scale parameter.
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If f0 = φ, where φ denotes the pdf of the N(0, 1) distribution, then the Extended
Half-Normal (EHN) distribution, proposed in [9], is obtained, whose pdf is:

fX(x; α, δ) =
2
δ

(
α + (x/δ)2

α + 1

)
φ
( x

δ

)
, x ≥ 0. (2)

The EHN model was studied in depth in Elal-Olivero et al. [9]. The aim of this paper
is to introduce a new model of distributions based on (1) and taking as f0, the pdf of the
Power Exponential (PE) distribution, PE(β), which was introduced in Subbotin [10]. Recall
that the pdf of a PE(β) distribution is:

f0(y) = c exp
{
−1

2
|y|2/(β+1)

}
, y ∈ (−∞, ∞), β > −1 , (3)

where the normalising constant c = c(β) is:

c =
1

Γ
(

1 + β+1
2

)
21+ β+1

2

. (4)

Moreover, for the PE(β) model, k = k(β) = E[Y2] is:

k =
21+βΓ

(
3(1+β)

2

)
Γ
(

1+β
2

) . (5)

The PE(β) model has received a great deal of interest in papers dealing with robust
inference, such as Box [11] and Box et al. [12]. Its statistical properties can be seen, for
instance, in Nadarajah [13]. Details about its use as a prior robust in Bayesian Statistics are
given in Choy and Walker [14]. We highlight that, in the PE(β) model, the kurtosis coeffi-
cient depends on β. The PE(β) model includes the normal and the Laplace distribution,
along with other symmetric distributions around zero with lighter or heavier tails than the
normal distribution. So, our proposal will be to obtain a new model, called the Extended
Half-Power Exponential (EHPE), by using (1) and (3), which will be more flexible for its
kurtosis than the EHN distribution, and moreover, it contains the EHN as a particular case.
As for the outline of this paper, in Section 2, the EHPE distribution is defined, and its
properties are studied: pdf and cumulative distribution function (cdf), reliability and hazard
functions, moments, and skewness and kurtosis coefficients. In Section 3, the estimation of
the parameters is discussed by using the maximum likelihood (ML) method. In Section 4,
a Montecarlo simulation study is carried out, which shows the good asymptotic behaviour
of ML estimates. In Section 5, two applications to COVID-19 data are given. It will be
shown there that this model can be used to describe nonnegative asymmetric data with
light or heavy tails. Section 6 is devoted to the final conclusions about our study.

2. EHPE Distribution

In this section, the EHPE distribution is introduced. Its pdf and cumulative distribution
function (cdf) are given, along with some properties of interest in reliability and survival
analysis, such as the reliability and hazard function. The section is completed with the
study of moments, which allow us to study the skewness and kurtosis.

2.1. Probability Density Function

Proposition 1. Let X ∼ EHPE(α, δ, β). Then, the pdf of X is given by:

fX(x; α, δ, β) =
2c
δ3

(
αδ2 + x2

α + k

)
exp

{
−1

2

( x
δ

)2/(1+β)
}

, x ≥ 0, (6)
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where α > 0, δ > 0 and β > −1 are parameters of this model. On the other hand, c and k are
features of the PE(β) model, which were introduced in (4) and (5), respectively.

Proof. By applying (1) and taking into account the expression for the pdf of the Power
Exponential distribution, PE(β), given in (3), the result proposed in (6) is obtained.

Remark 1 (Interpretation of parameters in (6)). α > 0 is a shape parameter, δ > 0 is a scale
parameter, and it will be seen in Corollary 2 that β > −1 is a parameter mainly related to the
skewness and kurtosis of EHPE model.

By construction, the following models are particular cases for the EHPE distribution:

• EHPE (α, δ, β = 0) ≡ EHN (α, δ);
• EHPE (α→ ∞, δ, β = 0) ≡ HN (δ);
• EHPE (α = 0, δ = 1, β = 0) ≡ RHBN (2).

Figure 1 summarizes the relationships among the EHPE and the particular cases
previously cited.

EHPE(α, δ, β)

α=0, δ=1, β=0

!!

β=0

}}

β=0, α→∞

��

EHN(α, δ)
α=0, δ=1 //

α→∞

!!

RHBN(2)

HN(δ)

Figure 1. Particular cases for the EHPE distribution.

In the next proposition, we highlight that (6) can be expressed as a mixture of two half
densities. This result is useful to interpret the parameters in Figure 2.

Proposition 2. Let X ∼ EHPE(α, δ, β).

1. The pdf of X can be written as a mixture of two half densities:

fX(x; α, δ, β) =
α

α + k
f1(x; δ, β) +

k
α + k

f2(x; δ, β), x ≥ 0, (7)

where

f1(x; δ, β) = 2
1
δ

f0

( x
δ

)
, x ≥ 0, (8)

f2(x; δ, β) = 2
x2

kδ2 f0

( x
δ

)
, x ≥ 0. (9)

The pdf’s given in (8) and (9) are the half pdf’s built from f0(x) and ( x2

k ) f0(x), respectively.
2. If α→ ∞, then

lim
α→∞

fX(x; α, δ, β) = f1(x; δ, β) .

3. If α→ 0+, then
lim

α→0+
fX(x; α, δ, β) = f2(x; δ, β) .
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(a) pdf of EHPE (α, δ = 1, β = −0.75)
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(b) pdf of EHPE (α, δ = 1, β = −0.5)
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(c) pdf of EHPE (α, δ = 1, β = 0)
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(d) pdf of EHPE (α, δ = 1, β = 0.25)
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(e) pdf of EHPE (α, δ = 1, β = 1)
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(f) pdf of EHPE (α, δ = 1, β = 1.25)

Figure 2. EHPE (α, 1, β) pdf’s for different values of α and β. In all panels, α = 0.1 (black),
α = 0.5 (red), α = 2 (green), and α = ∞ (blue). As for β value: (a) β = −0.75, (b) β = −0.5,
(c) β = 0, (d) β = 0.25, (e) β = 1, and (f) β = 1.25.

Proof.

1. The expression given in (7) is immediate from (6). Note that f2(·) given in (9) is a

half-density, since x2

kδ2 f0
( x

δ

)
is a pdf symmetrical to about zero.

Moreover, 2. and 3. are immediate from (7).

Remark 2. In Figure 2, plots for the pdf in the EHPE (α, δ, β) model for different values of α > 0
and β > −1 are given (δ = 1). It can be seen in [14] that for −1 < β < 0, the tails of the
PE(β) distribution are more platykurtic than the normal ones. To asses the effect of this fact on
the EHPE model, the values β = −0.75 and β = −0.5 are considered in Figure 2, panels (a) and
(b), respectively. As for α, its values vary from α = 0.1 (black), 0.5 (red), 2 (green), and ∞ (blue).
In this way, (a) and (b) panels show the effect of considering −1 < β < 0, an increasing value of β,
and for fixed β, the effect of increasing the value of α.

Panel (c) is devoted to β = 0. Recall that, in this case, the PE(β) distribution reduces to the
N(0, 1) and the EHPE to the EHN [9].

On the other hand, for β > 0, the tails in PE(β) distribution are more leptokurtic than the
normal ones, see [14]. The positive values of β are considered in panels (d), (e), and (f). The effect of
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increasing the β value (and for a fixed β, to increase the value of α), can be appreciated there. It is
also worth highlighting that the case β = 1 corresponds to the EHPE distributions built from the
Laplace or double exponential model, PE(1).

In all panels, it can be appreciated, that increasing the value of α, a higher coordinate in the
origin is obtained for the pdf.

Remark 3. (a) Note that the results given in Proposition 2, along with plots in Figure 2, show
that by applying (1), it is possible to obtain a plethora of pdf’s whose shapes varying from f2 to f1
depending on the value of α ≥ 0.

(b) Also note that if α = 0, then fX reduces to f2.

2.2. Some Properties

Next, the cdf of X ∼ EHPE (α, δ, β) is obtained. Recall that this function is defined as
FX(x) = P[X ≤ x].

Proposition 3. Let X ∼ EHPE(α, δ, β). Then, the cdf of X is given by:

FX(x; α, δ, β) =
α

α + k
FW

( x
δ

)
+

2β+1

(α + k)Γ
(

β+1
2

) γ

(
3(β + 1)

2
,

1
2

( x
δ

)2/(β+1)
)

, x ≥ 0, (10)

where FW(·) is the cdf of a nonnegative rv W with pdf fW(x) = 2 f0(x), x ≥ 0, and γ(a, x) is the

lower incomplete gamma function, γ(a, x) =
∫ x

0
ta−1e−tdt.

Proof.

FX(x) =
∫ x

0

2cα

δ(α + k)
exp

{
−1

2

( y
δ

)2/(1+β)
}

dy +
∫ x

0

2c
δ(α + k)

( y
δ

)2
exp

{
−1

2

( y
δ

)2/(1+β)
}

dy

Making the change of variable, δt = y, we have that:

FX(x) =
α

α + k

∫ x/δ

0
2c exp

{
−1

2
t2/(1+β)

}
dt +

2c
α + k

∫ x/δ

0
t2exp

{
−1

2
t2/(1+β)

}
dt.

Note that the first integral is the cdf of the nonnegative rv W with pdf fW(x) = 2 f0(x),
for x ≥ 0. As for the second integral, changing the variable, u = 1

2 t2/(1+β), the lower
incomplete gamma function is obtained, γ(a, x) =

∫ x
0 ua−1e−udu, with a > 0.

Proposition 4. Let X ∼ EHPE(α, δ, β). Then:

(i) The reliability function, R(t), of X is given by:

R(t) = 1− α

α + k
FW

(
t
δ

)
− 2β+1

(α + k)Γ
(

β+1
2

) γ

(
3(β + 1)

2
,

1
2

(
t
δ

)2/(β+1)
)

, t > 0 .

(ii) The hazard function, h(t), of X is given by:

h(t) =
(αδ2 + t2)exp

{
− 1

2
( t

δ

)2/(1+β)
}

δ32
(β−1)

2 (1 + β)
{

Γ
(

β+1
2

)[
(α + k)− αFW

( t
δ

)]
− 2β+1γ

(
3(β+1)

2 , 1
2
( t

δ

)2/(β+1)
)} , (11)

t > 0 .

Remark 4. Plots for the reliability and hazard function are given in Figure 3 for several values of α
and β, (δ = 1). Although the hazard functions in Figure 3 are increasing functions of t, we point
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out that other shapes are also possible. For instance, for α = δ = 1, β = 1 or β = 2, h(t) is first
decreasing and later increasing.

0.0 0.5 1.0 1.5 2.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

t

R
(t
)

a = 0.1

a = 0.5

a = 2

a = infty

(a)

0.0 0.5 1.0 1.5

0.
0

0.
5

1.
0

1.
5

t
h(
t)

EHPE(0.1, 1, - 0.1)

EHPE(0.3, 1, 0.5)

EHPE(0.5, 1, 0.8)

(b)

Figure 3. Reliability and hazard function for different values of α and β: (a) R(t) of EHPE (α, δ = 1,
β = −0.75); (b) h(t) of EHPE (α, δ = 1, β).

In next proposition, we prove that the cdf in a EHPE model can be expressed as a
mixture of two gamma cdf’s.

Proposition 5. Let X ∼ EHPE(α, δ, β). Then, the cdf of X can be written as:

FX(x; α, δ, β) =
α

α + k
F1

(
1
2

( x
δ

)2/(1+β)
)
+

k
α + k

F2

(
1
2

( x
δ

)2/(1+β)
)

, (12)

where F1(·) is the cdf of a Gamma G
(

1+β
2 , 1

)
distribution, and F2(·) is the cdf of a Gamma

G
(

3(1+β)
2 , 1

)
distribution.

Proof. Recall (10). Changing variable u = 1
2 t2/(1+β) in FW

( x
δ

)
, after some algebra, we

have that:

FW

( x
δ

)
=
∫ x/δ

0
2c exp

{
−1

2
t2/(1+β)

}
dt =

1

Γ
(

1+β
2

) γ

(
1 + β

2
,

1
2

( x
δ

)2/(1+β)
)

. (13)

It can be seen in Abramowitz and Stegun [15] that the cdf of a Gamma distribution,
Ga(a, 1), denoted as P(a, x) can be obtained as:

P(a, x) =
1

Γ(a)

∫ x

0
ta−1e−tdt =

1
Γ(a)

γ(a, x), x > 0, a > 0 . (14)

Therefore, by applying (14), (13) can be obtained as:

FW

( x
δ

)
= F1

(
1
2

( x
δ

)2/(1+β)
)

,
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where F1(·) is the cdf of a Gamma G
(

1+β
2 , 1

)
distribution. As for the second summand

in (10), taking into account that γ(a, x) = Γ(a) P(a, x) , and the expression of k = k(β),
given in (5), (12) is obtained.

Remark 5.

1. The result given in Proposition 5 is similar to the one given in [9] for the EHN distribution.
2. The fact that the EHPE cdf can be expressed as a mixture of gamma cdf’s may motivate the use

of this model as a competitor of Rayleigh type models such as those introduced in [16,17].

2.3. Moments

The moments of the EHPE distribution are given in the next proposition.

Proposition 6. Let X ∼ EHPE(α, δ, β). Then, the nth moment of X, where n is a positive integer,
is given by:

µn = E[Xn] =
δn

(α + k)Γ
(

β+1
2

) [αMn(β) + Mn+2(β)], (15)

with Mn = Mn(β) = 2
n(β+1)

2 Γ
(
(1+n)(β+1)

2

)
.

Proof. Let W with fW(x) = 2 f0(x) for x ≥ 0. Then, the nth moment of W is:

E[Wn] =
Mn(β)

Γ
(

β+1
2

) . (16)

By noting that

E[Xn] =
αδn

α + k
E[Wn] +

δn

α + k
E[Wn+2],

and using (16), (15) is obtained.

Corollary 1. If X ∼ EHPE(α, δ, β), then:

1. µ1 = E[X] = δ

(α+k)Γ
(

β+1
2

) [αM1(β) + M3(β)];

2. µ2 = E
[
X2] = δ2

(α+k)Γ
(

β+1
2

) [αM2(β) + M4(β)];

3. µ3 = E[X3] = δ3

(α+k)Γ
(

β+1
2

) [αM3(β) + M5(β)];

4. µ4 = E[X4] = δ4

(α+k)Γ
(

β+1
2

) [αM4(β) + M6(β)];

5. The variance of X, V[X] = E[X2]− E2[X], is:

V[X] =
δ2

(α + k)Γ
(

β+1
2

)
αM2(β) + M4(β)− (αM1(β) + M3(β))2

(α + k)Γ
(

β+1
2

)
.

Corollary 2. Let X ∼ EHPE(α, δ, β). Then, the skewness coefficient, (
√

β1), and the kurtosis
coefficient, (β2), are given by:

√
β1 =

(α + k)2Γ2
(

β+1
2

)
[αM3 + M5]− 3(α + k)Γ

(
β+1

2

)
[αM1 + M3][αM2 + M4] + 2[αM1 + M3]

(α + k)2Γ2
(

β+1
2

)[
αM2 + M4 − [αM1 + M3]

2
]3/2

β2 =
(α + k)3Γ3

(
β+1

2

)
[αM4 + M6]− 4(α + k)2Γ2

(
β+1

2

)
[αM1 + M3][αM3 + M5] + 3[αM1 + M3]

2A

(α + k)2Γ2
(

β+1
2

)[
αM2 + M4 − [αM1 + M3]

2
]2
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where A = 2(α + k)Γ
(

β+1
2

)
[αM2 + M4]− [αM1 + M3]

4.

Remark 6. The expressions for the skewness and kurtosis coefficients given in Corollary 2 are
obtained by using:

√
β1 =

µ3 − 3µ1µ2 + 2µ3
1

(µ2 − µ2
1)

3/2
y β2 =

µ4 − 4µ1µ3 + 6µ2
1µ2 − 3µ4

1
(µ2 − µ2

1)
2

.

Remark 7. Proposition 6 shows that the moments of EHPE distribution basically depend on
moments of the PE(β) model. Plots for the skewness and kurtosis coefficients of EHPE distribution
are given in Figure 4 for different values of α and β parameters. In this figure, the effect of the β
parameter can be seen. A greater value of β produces a higher value of the skewness and kurtosis
coefficients. This fact can also be appreciated in Tables 1 and 2.

Table 1. Skewness coefficient in EHPE (α, 1, β) model for different values of α and β.

β
α −0.75 −0.50 0 0.25 1 1.25

0.1 −0.5595 −0.1769 0.3932 0.6145 1.1413 1.2892
0.5 −0.2531 0.0181 0.4284 0.5932 1.1043 1.2659
1 −0.0976 0.1650 0.5545 0.6783 1.0840 1.2464
2 0.0156 0.2841 0.7167 0.8377 1.0892 1.2295
4 0.0849 0.3598 0.8553 1.0204 1.1654 1.2440
6 0.1102 0.3871 0.9111 1.1110 1.2586 1.2867
∞ 0.1637 0.4428 0.9952 1.2529 2.0000 2.2523

Table 2. Kurtosis coefficient in EHPE (α, 1, β) model for different values of α and β.

β
α −0.75 −0.50 0 0.25 1 1.25

0.1 2.7332 2.6261 3.0323 3.4161 4.9681 5.5913
0.5 2.0975 2.2571 2.8550 3.2508 4.8661 5.5223
1 1.9847 2.2254 2.9018 3.2661 4.7849 5.4553
2 1.9633 2.2767 3.1238 3.4932 4.7275 5.3719
4 1.9722 2.3437 3.4287 3.9369 4.8335 5.3400
6 1.9820 2.3735 3.5847 4.2270 5.0630 5.4131
∞ 2.0043 2.4446 3.8688 4.8437 9.0000 10.8975
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Figure 4. (a) Skewness coefficient for EHPE (α, δ = 1, β) model and (b) Kurtosis coefficient for
EHPE (α, δ = 1, β) model.
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3. Inference

In this section, classical inferential results in the EHPE distribution are given. ML
estimators are discussed in depth.

3.1. ML Estimation

Let X1 . . . , Xn be a sample from EHPE (α, δ, β). The log-likelihood function for θ = (α, δ, β)
is given by:

`(θ) = n log(2c)− 3n log(δ)− n log(α + k)− 1
2

n

∑
i=1

( xi
δ

)2/(1+β)
+

n

∑
i=1

log(αδ2 + x2
i ). (17)

Taking the first derivatives of (17) with respect to the components of θ, after some
algebra, the likelihood equations are:

1
n

n

∑
i=1

δ2

αδ + x2
i

=
1

α + k
, (18)

2α

n

n

∑
i=1

(
α +

x2
i

δ2

)−1

+
1

n (1 + β)

n

∑
i=1

( xi
δ

) 2
(1+β)

= 3, and (19)

1
n

n

∑
i=1

( xi
δ

)2/(1+β)
log
( xi

δ

)
= (1 + β)2

(
k0

α + k
− c0

c

)
, (20)

where c0 and k0 denote the derivatives with respect to β of c = c(β) and k = k(β), which
were introduced in (4) and (5). As for the likelihood Equations (18)–(20), they can be
solved by using numerical methods, such as the Newton–Raphson procedure, to obtain
ML estimators, θ̂ = (α̂, δ̂, β̂). Other maximisation techniques could also be applied, which
directly maximizes the log-likelihood function; for instance, the method proposed in
McDonald [18].

3.2. Observed Fisher Information Matrix

The asymptotic variance of ML estimators, θ̂ = (α̂, δ̂, β̂), can be estimated from the
Fisher information matrix, given by I(θ) = −E

[
∂2`(θ)/∂θ∂θ>

]
with `(θ) given in (17).

Recall that, under regularity conditions:

I(θ)1/2
(

θ̂− θ
) D→ N3(03, I3), as n→ +∞, (21)

where D stands convergence in distribution and N3(03, I3) denotes the standard trivaria-
te normal distribution. Moreover, I(θ) can be obtained from the matrix −∂2`(θ)/∂θ∂θ>,
whose elements are given by Iαα = −∂2`(θ)/∂α2, Iαδ = −∂2`(θ)/∂α∂δ, and so on. Explicitly,
we have:

Iαα =
n

∑
i=1

δ4

(αδ2 + x2
i )

2
− n

(α + k)2 ,

Iαδ = −
n

∑
i=1

2δ

αδ2 + x2
i
+

n

∑
i=1

2αδ3

(αδ2 + x2
i )

2
,

Iαβ =
n k0

(α + k)2 ,

Iδδ = −3n
δ2 − 2α

n

∑
i=1

x2
i − αδ2

(αδ2 + x2
i )

2
+

(3 + β)

δ2(1 + β)2

n

∑
i=1

( xi
δ

)2/(1+β)
,

Iδβ =
1

δ (1 + β)2

n

∑
i=1

( xi
δ

)2/(1+β)
+

2
δ(1 + β)3

n

∑
i=1

( xi
δ

)2/(1+β)
log
( xi

δ

)
,

Iββ =
2

(1 + β)3

n

∑
i=1

log
( xi

δ

)( xi
δ

)2/(1+β)
[

1 +
1

1 + β
log
( xi

δ

)]
+

n
α + k

[
k00 −

k2
0

(α + k)

]
− n

c

[
c00 −

c2
0
c

]
,
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where c00 and k00 denote the derivatives of c0 and k0 with respect to β, respectively. In
practice, it is not possible to obtain the expected value of previous expressions. So, the co-
variance matrix of ML estimators, I(θ)−1, is estimated by I(θ̂)−1, where I(θ̂) denotes the
observed information matrix, which is obtained by evaluating the previous derivatives at
the ML estimators θ̂, i.e.:

I(θ̂) = −∂2`(θ)/∂θ∂θ>|θ=θ̂. (22)

The asymptotic variances of α̂, δ̂, and β̂ are estimated by the diagonal elements of
I(θ̂)−1, and their standard errors by the square root of asymptotic variances. So, by using
(21) and (22), approximate confidence intervals for the parameters can be given. Asymptotic
confidence intervals follow from these results. For instance, an approximate confidence
interval for α with confidence level (1− γ), 0 < γ < 1, would be:(

α̂− z1−γ/2s.e.(α̂), α̂ + z1−γ/2s.e.(α̂)
)

where z1−γ/2 denotes the quantile of order 1− γ/2 in the N(0, 1) distribution, and s.e.(α̂)
is the standard error of α̂.

4. Simulation Study

In this section, a Monte Carlo simulation study is carried out to illustrate the behaviour
of ML estimators. For the sample size n, the values n = 100, 200 and 500 are considered;
without loss of generality δ = 1; for α =0.1 and 0.2; and for β = −0.3, 0 and 0.1. For every
combination of α, δ and β, 1000 samples of size n are generated from the EHPE (α, δ, β)
model. To generate random numbers of X ∼ EHPE (α, δ = 1, β) an acceptance–rejection
technique is proposed, which proceeds as follows:

Step 1. Simulate Y from pdf g;
Step 2. Simulate U ∼ Uni f orm(0, 1);

Step 3. If U ≤ f (Y)
c g(Y) define X = Y. Otherwise, repeat Step 1.

For −1 < β < 0, g is taken as the pdf of an EHN (α, δ = 1) distribution introduced
in [9], which corresponds to the EHPE model with β = 0. On the other hand, for 0 < β < 1,
g is the pdf of an EHPE (α, 1, β = 1) model. In both settings, c is taken as the maximum
value of f (y)

g(y) . For every sample, the ML estimates are obtained by applying Newton–
Raphson algorithm. As initial values to start the MLE recursion algorithms, the estimate of
parameter α̂0 in the EHN distribution, δ̂0 = 1 and β̂0 = 0 are taken. In Table 3, the empirical
bias, the mean of the standard errors (SEs) and the root of the empirical mean squared
error (RMSE) are given for the estimators of the parameters. Note that, although the ML
estimators are biased, the bias decreases when the sample size increases. The SEs and
RMSEs also decrease with the sample size. These facts suggest that the ML estimators are
consistent. Moreover, approximate confidence intervals to 95% level were obtained, by us-
ing the asymptotic distribution of ML estimators. Their empirical coverage probabilities
(CP) have also been included in Table 3. In this table, it can be appreciated that, in general,
the performance is good.
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Table 3. Empirical bias, SE, RMSE and 95% CP for the ML estimates of α, δ and β in the EHPE
distribution with different combinations of parameters (case true δ = 1).

True Value n = 100 n = 200 n = 500
α β par. bias SE RMSE CP bias SE RMSE CP bias SE RMSE CP

0.1 −0.3 α 0.01 0.08 0.08 0.93 0.01 0.05 0.05 0.94 0.00 0.03 0.03 0.93
δ 0.03 0.19 0.19 0.92 0.02 0.13 0.14 0.93 0.00 0.08 0.09 0.94
β −0.02 0.16 0.17 0.91 −0.01 0.12 0.12 0.94 −0.00 0.07 0.07 0.94

0 α 0.01 0.11 0.10 0.98 0.00 0.06 0.06 0.94 0.00 0.04 0.03 0.94
δ 0.07 0.29 0.31 0.92 0.03 0.20 0.21 0.94 0.01 0.12 0.12 0.94
β −0.03 0.23 0.23 0.91 −0.02 0.15 0.16 0.92 −0.00 0.10 0.10 0.94

0.1 α 0.01 0.10 0.09 0.96 −0.00 0.06 0.06 0.93 0.00 0.04 0.04 0.93
δ 0.06 0.29 0.30 0.92 0.03 0.19 0.20 0.94 0.01 0.12 0.13 0.92
β −0.12 0.22 0.26 0.84 −0.11 0.15 0.19 0.83 −0.10 0.10 0.14 0.77

0.2 −0.3 α 0.03 0.16 0.19 0.90 0.01 0.08 0.09 0.94 0.00 0.05 0.05 0.96
δ 0.03 0.22 0.24 0.89 0.02 0.15 0.17 0.92 0.01 0.10 0.10 0.94
β −0.02 0.19 0.20 0.90 −0.01 0.13 0.14 0.91 −0.00 0.08 0.08 0.94

0 α 0.01 0.14 0.14 0.92 0.00 0.08 0.09 0.93 0.00 0.05 0.05 0.94
δ 0.07 0.32 0.34 0.92 0.03 0.23 0.22 0.94 0.02 0.14 0.15 0.94
β −0.03 0.25 0.25 0.91 −0.01 0.17 0.17 0.94 −0.01 0.11 0.11 0.94

0.1 α 0.02 0.16 0.19 0.94 0.02 0.16 0.28 0.93 0.01 0.05 0.05 0.95
δ 0.07 0.32 0.36 0.90 0.04 0.23 0.24 0.94 0.01 0.14 0.15 0.94
β −0.12 0.25 0.29 0.84 −0.12 0.17 0.21 0.85 −0.10 0.11 0.15 0.82

5. Applications

In this section, two real applications are given. The aim is to compare the EHPE
model with other competing models. Specifically, the EHPE model is compared to the EHN
distribution introduced in (2) and the Slash Truncation Positive Normal (STPN) distribution
introduced in Gómez et al. [4], whose pdf is:

fY(y; α, δ, β) =
β

δΦ(α)

∫ 1

0
wβφ

(yw
δ
− α
)

dw, (23)

where y > 0, δ > 0, β > 0 and α ∈ R.

5.1. Application 1

A real dataset related to COVID-19 in Chile is considered. Specifically, the data
represent the incidence rate per 10,000 inhabitants affected by the virus without symp-
toms during the second quarter of 2020. These data were recorded from April 29 (see
https://coronavirus.mat.uc.cl, accessed on 23 January 2022 ). For interested readers, the
dataset is given in Appendix A.1. In Table 4, the following descriptive summaries are pro-
vided: sample size, sample mean, sample variance, sample skewness and sample kurtosis
coefficient. We highlight that we obtained a low value for the sample kurtosis coefficient,
b2 = 2.615, which suggests that a distribution with flexible values for this coefficient, such
as the EHPE can be used to model this dataset.

The estimates of parameters and their standard errors, in parentheses, are provided in
Table 5 for the models under consideration, along with criteria based on the maximized
likelihood to compare these models. The standard errors have been obtained from the
square root of the diagonal elements in the inverse of the observed information matrix.
As for the measurements to compare models, the Akaike Information Criterion (AIC) [19]
and Bayesian Information Criterion (BIC) [20] are considered. Both criteria penalize the
maximized likelihood function by the excess of parameters in the model. From values in
Table 5, it can be concluded that the EHPE model provides the best fit to this dataset.

https://coronavirus.mat.uc.cl
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Table 4. Descriptive statistics for data in Application 1.

n X S2 √
b1 b2

Incidence rate 63 0.208 0.006 −0.360 2.615

Table 5. Estimated parameters and their standard errors (in parentheses) for the EHPE.

Estimated EHPE EHN STPN

α 0.069 (0.066) 0.001 (0.063) 0.076 (0.008)
δ 0.250 (0.028) 0.128 (0.007) 2.677 (0.294)
β −0.627 (0.116) - 40.04 (71.082)

AIC −142.257 −132.029 −139.509

BIC −135.828 −125.600 −133.080

Figure 5 compares the fit provided by the models under consideration, whereas in
Figure 6, the empirical cdf is plotted along with the cdf estimated for the EHPE model. We
highlight the good agreement existing between both cdf’s.
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Figure 5. Fit of the distributions for the incidence rate of COVID-19 data set.
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Figure 6. Empirical (black) and fitted EHPE (blue) cdf for the incidence rate of COVID-19 in dataset 1.
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5.2. Application 2

In this second application, the data considered are also related to COVID-19 in Chile.
Specifically, it is the incidence rate per every 10,000 inhabitants affected by COVID-19,
with and without symptoms, in the first two months of the pandemic, these data were
recorded starting on 2 March 2020 (see https://coronavirus.mat.uc.cl, last accessed on
23 January 2022). The dataset is explicitly given in Appendix A.2. For this dataset, again,
the performance of the EHPE model is analyzed in comparison with the EHN and STPN
models. Descriptive summaries are given in Table 6, where a high sample kurtosis coeffi-
cient is observed, which suggests the use of a heavy-tailed distribution such as EHPE.

Table 6. Descriptive statistics for data in Application 2.

n X S2 √
b1 b2

Incidence rate of COVID-19 62 0.169 0.024 1.445 6.611

Table 7 shows the estimated parameters and their standard errors for the three models
under consideration. Based on AIC [19] and BIC [20] criteria, the EHPE model provides a
better fit to this data.

Table 7. Estimated parameters and their standard errors (in parentheses).

EHPE EHN STPN

α 106.709 (60.098) 4289.033 (968.649) 0.375 (0.443)
δ 0.005 (0.001) 0.228 (0.020) −1.747 (2.723)
β 2.258 (0.173) - 9.505 (32.835)

AIC −106.739 −89.094 −90.955

BIC −100.357 −84.840 −84.573

In Figure 7, the fit provided by the models under consideration is compared. The em-
pirical cdf and the cdf estimated for the proposed EHPE model are plotted in Figure 8.
Again, the results are satisfactory.
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Figure 7. Fit of the distributions for the incidence rate of COVID-19 in the second data set.
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Figure 8. Empirical (black) and fitted EHPE (blue) cdf for the incidence rate of COVID-19 in dataset 2.

6. Conclusions

In this paper, the EHPE distribution has been introduced. This is a new continuous
model with positive support, which can be considered more general than the EHN dis-
tribution. We highlight its flexibility in the kurtosis coefficient, which allows us to model
datasets with lower and greater kurtosis than three. Due to this fact, it can be useful for
modelling nonnegative data presenting these values. Its properties are studied in depth,
with emphasis on those of interest in reliability. The estimation of parameters has been
studied from a theoretical and computational point of view. Finally, the model is applied
to two real datasets related to COVID-19. These applications are of interest due to the
challenging nature of these data. We point out that this application should be considered
from a descriptive point of view; that is, the aim is to describe these datasets. All computa-
tions have been carried out by using R software [21]. As future research in this model, we
propose to spread out the range of applications and the study of their theoretical properties.
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Appendix A

In this appendix the data sets used in the applications are provided.
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Appendix A.1. Dataset Used in Application 1

0.14225558 0.06145441 0.05860930 0.10299304 0.06600659 0.05917832
0.03186525 0.07909410 0.10811424 0.11835664 0.13827242 0.13713438
0.12632296 0.10185500 0.28906334 0.20370999 0.22191871 0.17810399
0.18720834 0.14794580 0.23955840 0.22248773 0.24240351 0.23500622
0.17013767 0.20826217 0.26573342 0.19688172 0.21167630 0.29930574
0.19346759 0.27540680 0.22362577 0.22134968 0.18265617 0.23045404
0.27995898 0.23728231 0.20370999 0.36701940 0.26118125 0.18550128
0.29077041 0.28849432 0.30556499 0.30727205 0.32434272 0.27483778
0.29304650 0.24866275 0.21793555 0.34084437 0.23785133 0.33799926
0.22703991 0.19119150 0.15022189 0.24069644 0.23500622 0.24240351
0.22874697 0.24581764 0.19232954

Appendix A.2. Dataset Used in Application 2

0.0005690223 0.0000000000 0.0011380446 0.0005690223 0.0005690223
0.0011380446 0.0017070670 0.0028451116 0.0011380446 0.0034141339
0.0056902232 0.0056902232 0.0102424018 0.0079663125 0.0460908081
0.0256060045 0.0210538259 0.0591783215 0.0523500537 0.0586092992
0.0540571206 0.0648685447 0.1001479287 0.1251849109 0.0933196609
0.1729827860 0.1701376744 0.1308751341 0.1763969199 0.1644474512
0.1667235404 0.2122453262 0.1894844333 0.2412654647 0.1763969199
0.1957436789 0.1712757190 0.2446795986 0.2424035093 0.3010128085
0.2424035093 0.1627403842 0.1775349646 0.2230567504 0.2025719468
0.3038579201 0.2532149334 0.2719926701 0.2037099914 0.2384203531
0.1849322548 0.2640263576 0.2936155183 0.2810970272 0.3141003219
0.2691475585 0.2742687594 0.3141003219 0.4381471882 0.5052918222
0.5604869875 0.8119948540

References
1. Alavi, S.M.R. On a new bimodal normal family. New J. Stat. Res. Iran. 1998, 8, 163–175. [CrossRef]
2. Meeker, W.; Escobar, L. Statistical Methods for Reliability Data; Wiley & Sons: New York, NY, USA, 1998.
3. Gómez, H.J.; Olmos, N.M.; Varela, H.; Bolfarine, H. Inference for a truncated positive normal distribution. Appl. Math. J. Chin.

Univ. 2018, 33, 163–176. [CrossRef]
4. Gómez, H.J.; Gallardo, D.I.; Santoro, K.I. Slash Truncation Positive Normal Distribution and its Estimation Based on the EM

Algorithm. Symmetry 2021, 13, 2164. [CrossRef]
5. Sharifipanah, N.; Chinipardaz, R.; Parham, G.A.; Arellano-Valle, R.B. Flexible families of symmetric and asymmetric distributions

based on the two-piece skew normal distribution. Commun. Stat. Theory Methods 2019, 50, 2281–2305. [CrossRef]
6. Sánchez, J.J.D.; da Luz Freitas, W.W.; Cordeiro, G.M. The extended generalized half-normal distribution. Braz. J. Probab. Stat.

2016, 30, 366–384.
7. Ahmadi, K.; Yousefzadeh, F. Estimation for the parameters of generalized half-normal distribution based on progressive type-I

interval censoring. Commun. Stat. Simul. Comput. 2015, 44, 2671–2695. [CrossRef]
8. Kudryavtsev, A.; Shestakov, O. The Estimators of the Bent, Shape and Scale Parameters of the Gamma-Exponential Distribution

and Their Asymptotic Normality. Mathematics 2022, 10, 619. [CrossRef]
9. Elal-Olivero, D.; Olivares-Pacheco, J.F.; Gómez, H.W.; Bolfarine, H. A New Class of Non Negative Distributions Generated by

Symmetric Distributions. Commun. Stat. Methods 2009, 38, 993–1008. [CrossRef]
10. Subbotin, M. On the law of frecuency of errors. Math. Sb. Hall. 1923, 31, 296–301.
11. Box, G. A note on regions for tests of kurtosis. Biometrika 1953, 40, 465–468. [CrossRef]
12. Box, G.; Tiao, G. Bayesian Inference in Statistical Analysis; Addison-Wesley: Reading, UK, 1973.
13. Nadarajah, S. A generalized normal distribution. J. Appl. Stat. 2005, 32, 685–694. [CrossRef]
14. Choy, S.T.B.; Walker, S.G. The extended exponential power distribution and Bayesian robustness. Stat. Probab. Lett. 2003,

65, 227–232. [CrossRef]
15. Abramowitz, M.; Stegun, I.A. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables; Dover: New York,

NY, USA, 1964.
16. Rivera, P.A.; Barranco-Chamorro, I.; Gallardo, D.I.; Gómez, H.W. Scale Mixture of Rayleigh Distribution. Mathematics 2020, 8, 1842.

[CrossRef]

http://doi.org/10.18869/acadpub.jsri.8.2.163
http://dx.doi.org/10.1007/s11766-018-3354-x
http://dx.doi.org/10.3390/sym13112164
http://dx.doi.org/10.1080/03610926.2019.1664585
http://dx.doi.org/10.1080/03610918.2013.842590
http://dx.doi.org/10.3390/math10040619
http://dx.doi.org/10.1080/03610920802361381
http://dx.doi.org/10.1093/biomet/40.3-4.465
http://dx.doi.org/10.1080/02664760500079464
http://dx.doi.org/10.1016/j.spl.2003.01.001
http://dx.doi.org/10.3390/math8101842


Mathematics 2022, 10, 942 16 of 16

17. Barranco-Chamorro, I.; Iriarte, Y.A.; Gómez, Y.M.; Astorga, J.M.; Gómez, H.W. A Generalized Rayleigh Family of Distributions
Based on the Modified Slash Model. Symmetry 2021, 13, 1226. [CrossRef]

18. MacDonald, I.L. Does Newton-Raphson really fail? Stat. Methods Med. Res. 2014, 23, 308–311. [CrossRef] [PubMed]
19. Akaike, H. A new look at the statistical model identification. IEEE Trans. Autom. Control 1974, 19, 716–723. [CrossRef]
20. Schwarz, G. Estimating the dimension of a model. Ann. Stat. 1978, 6, 461–464. [CrossRef]
21. R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria,

2021. Available online: https://www.R-project.org/ (accessed on 23 January 2022).

http://dx.doi.org/10.3390/sym13071226
http://dx.doi.org/10.1177/0962280213497329
http://www.ncbi.nlm.nih.gov/pubmed/24837788
http://dx.doi.org/10.1109/TAC.1974.1100705
http://dx.doi.org/10.1214/aos/1176344136
https://www.R-project.org/

	Introduction
	EHPE Distribution
	Probability Density Function
	Some Properties
	Moments 

	Inference
	ML Estimation
	Observed Fisher Information Matrix

	Simulation Study
	Applications
	Application 1
	Application 2

	Conclusions
	
	Dataset Used in Application 1
	Dataset Used in Application 2

	References

