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4.1 Introduction

Cooperation is a key issue in Ad Hoc and sensor networks (Wireless Ad Hoc Sensor Networks, 
WAdSN) for several reasons. Usually ad-hoc and sensor networks are two concepts related to 
networks consisting of wireless nodes. Our approach in this chapter considers that these nodes 
have common features such as tiny size, low computational and storage resources and low 
autonomy (understood as battery lifetime). Frequently, these nodes can acquire information from 
the environment via different sensors and can interact with it through actuators.

The term ad hoc refers to a type of network configuration associated with broad networks, such 
as WiFi. However, this type of network faces different challenges that are not covered in this 
chapter.

The rapid development of low-cost Micro-Electro-Mechanical-Systems has led to a sharp 
increase in the use of these devices in several fields such as home automation, industry, health, 
biology, and so on. The number of potential applications is huge. However, the design of these 
applications is subject to important constraints: power consumption, limited storage, limited 
computing capacity, low data rate, and so on.

A typical scenario for application could be summarized as follows: Nodes are spread out during 
deployment and each device has a limited radio range. Nodes have different roles assigned to 
them: data source, data sink and gateway.

Two different paradigms exit when trying to identify the main objective of such a network. 
The classical approach assumes that the main purpose of the network is to transport data from 
the sources to the sinks (which we could name data transport paradigm). Data often needs more 
than one hop to reach the sink node. As there is no network manager (ad hoc approach), nodes 
have to collaborate to form routes through which data can be transmitted. Once the data reaches 
the sinks, a base station (usually a personal computer) processes the collected information. In this 
paradigm, cooperation is limited to an exchange of information. In contrast, the new approach
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considers the network as a whole. In this way, although nodes may have low resources they can

store, process and send small pieces of information. So, cooperation is understood as a distributed

way of achieving an objective, like in a colony of ants. The main characteristics are: only local

computations are involved, no global knowledge is assumed (except for the common objective),

no centralized control is needed, and scalability is relatively easy to achieve [55]. In this second

approach, cooperation becomes a much more important issue (cooperative paradigm).

Collaboration can be established in such a network in pursuit of different goals, as detailed in

in the following text.

Time synchronization, calibration and localization are topics that can be studied under the

new approach of cooperation in wireless sensor networks. Every node has its own clock that

sets the rhythm the microprocessor has to follow. Usually these clocks have limited precision,

and microprocessors tolerate changes in the time measurement to work correctly. If there is no

external time reference the network has to create the rules to define a global clock, so that nodes

can synchronize their clocks estimating and compensating clock skew and offset. These rules

could be designed in a cooperative way, enabling all network nodes to exchange synchronization

messages. Calibration could be approached in the same way. Given that a physical magnitude is

measured by a network of sensors, they can cooperate themselves to reach a given calibration

accuracy. In this sense, localization also uses measured data where the nodes need to match

cooperatively. Synchronization, localization and calibration are discussed in Section 4.2.1.

Having to manage data routes in the whole network is a problem that can also be solved with

cooperative methods. Routing can be understood from the point of view of power consumption.

Nodes have to cooperate to achieve a common trade-off: data delivery versus energy expenditure.

Radio transmission is the process that uses most energy in the network. Reducing the number of

packets that are transmitted is one of the strategies that we can follow to extend network lifetime.

The selection of the path that the packets have to follow is directly related to the number of

packets that are used in the task of delivering information. In Section 4.2.2 we study an example

that shows how power consumption can be reduced by managing the quality of the radio links

involved in data transmissions. The quality of the radio links is estimated by the nodes using

Artificial Neural Networks. This information is exchanged in a cooperative way to dynamically

decide packet flow. The effect that this behaviour produces is similar to that of the blood flow

in a human body. There is no central control; the decision about where the blood has to flow is

taken by all the arteries and veins.

Other issues that are studied under the paradigm of cooperative networking are data aggre-

gation and data fusion. Several examples of applications based on these topics are described in

Section 4.2.3 to illustrate the usefulness of cooperative networking.

Having discussed why cooperation is needed in WAdSN, we shall then look at how cooperation

can be implemented. Wireless sensor nodes can cooperate among themselves in many different

ways in pursuit of the common goal. Researchers have proposed a wide array of mechanisms

for implementing cooperation, such as multi-agent intelligent systems (MAS), neural networks,

middleware systems, and so on. These techniques are covered in Section 4.3.

Finally, Section 4.4 presents a summary of the chapter, focusing on future lines of research

into cooperation in ad hoc and sensor networks.

4.2 Why Could Cooperation in WAdSN be Useful?

4.2.1 Time Synchronization, Localization and Calibration

Observation of a physical phenomenon requires the specification of the time and location of

occurrence, with a measure of how confident we can be about the observation. Therefore, if a
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Wireless Ad Hoc Sensor Network (WAdSN) is used for this observation, nodes must know their

own position and the time, as well as being able to refer their output to a well-defined scale. This

is the main argument for providing WAdSNs with localization, synchronization and calibration

techniques. However, there are many other reasons why these techniques may be useful.

For instance, location information may not only be used to stamp a given measure; it may also

be a requirement in many sensor network applications: tracking of mobile vehicles or animals;

monitoring of elderly and disabled people in residencies; support for navigation, logistics and

inventory management, and so on. In these cases, localization can be seen as a service: some

nodes provide location information and others require this service to determine their locations

or in turn to provide location based services or perform location-aware functions. On the other

hand, when a node provides a measure with location information, data fusion techniques can

reduce traffic and energy consumption. For instance, data aggregation can be used to combine

the information coming from a number of sensors in the same area (i.e. temperature) to provide

more meaningful information (i.e. forest fire alarm). Data aggregation requires the nodes to be

positioned with a level of accuracy that depends on the application.

Time synchronization is particularly important in wireless sensor networks. One of the most

important reasons is energy saving. Data communication is the major source of energy expen-

diture (much higher than sensing or data processing [7]), and in data communication there are

four major sources of energy waste [57]:

• Collision: colliding packets must be discarded and therefore waste energy. Retransmissions

also increase energy consumption.

• Overhearing: when a node picks up packets that are destined to other nodes.

• Control packet overhead: as sending and receiving control packets also consumes energy.

• Idle listening: i.e., listening to receive possible traffic that is not sent.

The energy consumed by idle listening may be of the same order of magnitude as the energy

required for receiving [57], [31]. As WAdSNs are characterized by low data rates, according to

the node features we have assumed in this chapter, nodes can be in idle mode for most of the

time and therefore idle listening becomes the major source of energy waste in WAdSNs. Nodes

should be kept awake the minimum time required to exchange data to save energy. There is often

only specific time periods of interest. Nodes should be synchronized to perform the observation

within these time periods, and then switch off the radio during the inactive periods.

Collisions also waste energy, and this is one of the drawbacks of contention-based MAC

(Medium Access Control) mechanisms. Usually, protocols based on reservation and scheduling

are preferred when energy consumption is the main concern. For instance, a TDMA (Time

Division Multiple Access)-based MAC allows energy saving because it avoids collisions, reduces

overhead and eases the implementation of the duty cycle of the radio. Of course, TDMA protocols

require tight time synchronization.

It is true that some WAdSNs may use contention-based MACs provided they transmit with

low power and low data rate, so that the probability of collision is very low. For instance, this is

the case of the beaconless mode of the IEEE 802.15.4 protocol (the basis of the ZigBee standard)

which is essentially an unslotted CSMA/CA mode. However, this simple solution presents several

drawbacks. For instance, when any node is mobile (i.e. not fixed), the beaconless mode is not

suitable because there is no periodical communication with the coordinator node, so the mobile

node may assume its association although it may have lost the link with the coordinator [59]. On

the other hand, the 802.15.4 protocol includes a beacon-enabled mode where a so-called ZigBee

Coordinator (ZC) periodically transmits beacon frames that establish a superframe structure. In

this superframe, devices may transmit using a slotted CSMA/CA medium access, with an optional
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Contention-Free Period (CFP). Even if these CFPs are not used, the periodic transmission of

beacons provides a way of synchronizing all nodes. It is also possible to change the duty cycle

to achieve low power consumptions: the device, upon receiving the first beacon, gets current

superframe structure and thus knows when to activate its receiver for the next beacon (just a

bit earlier to save power). The device periodically enables its radio to receive the beacon frame,

performs the required transmissions and then switches off the radio during the inactive period.

With mobile devices in the beacon-enabled mode, if a node does not receive a predetermined

number of beacon frames then it considers itself as an ‘orphan’ node, beginning a realignment

procedure to be associated again with a coordinator. Therefore, generally speaking, when there

are energy and/or timing requirements the right choice is the beacon-enabled mode which means

that nodes are time synchronized.

A distributed alternative to the 802.15.4 beacon enabled mode is S-MAC [57], where instead

of a central coordinator, neighbouring nodes coordinate their sleep schedules. The so-called

‘coordinated sleeping’ requires each node to maintain a schedule table that stores the schedules

of its neighbours. This way they know their neighbours’ scheduled listen time and they exchange

their schedules within these periods. This is a good example of how collaborative methods can

be used not only to reduce energy waste but also control overhead and latency.

There are many other uses of time synchronization. For instance, at lower layers tight time

synchronization may also be fundamental for increasing data rates (short bit times) or enhancing

noise immunity (as in the frequency hopping mechanism). At higher layers, data fusion requires

synchronization for two tasks: time scheduling and time stamping. The first is needed when the

nodes coordinate to perform cooperative communications. The second is commonly used when

data is fused taking into account the collecting instant; for example, to perform event detection,

tracking, reconstruction of system’s state for control algorithms, off line analysis, and so on.

These issues will be further discussed in the following sections.

There is a close relationship between calibration, time synchronization and localization in

wireless sensor networks. Calibration can be broadly defined as the mapping of the output of

a sensor to a well-defined scale, which as pointed out in [47] includes time synchronization

as a special case simply considering the hardware clock as a sensor whose output has to be

mapped to a timescale. Localization is also closely connected to synchronization [44] and by

extension to calibration. Localization is usually performed measuring angle-of-arrival (AoA),

time-difference-of-arrival (TDOA) or Received Signal Strength (RSS), and in any case it also

entails mapping one physical magnitude to a well-defined scale to infer the node position. Of

course, RSS based localization systems require careful calibration of the receivers. Furthermore,

some of these localization methods are based on the measurement of time of flight or difference

of arrival time of a signal so they require synchronized time. For instance, in [36] a location

system is described where the position is obtained by measuring the time of flight of ultrasonic

signals sent by the ‘beacons’. These beacons must be synchronized so that the ultrasonic signals

are sent by the beacons at the same time. In a sense, the opposite is also true: synchronization

accuracy depends on the relative location of the nodes. If nodes are located too far away from

each other, multiple hops are needed to connect them so synchronization messages suffer from

higher delays and these delays decrease synchronization accuracy [37].

Differences in time synchronization, localization and calibration (SLC for short in what

follows) do not stop similar techniques and algorithms being transferred among the three. For

instance, unlike other physical variables time is not bounded, so the time difference between two

sensors will also grow unbounded unless periodic time synchronization is performed. However, it

should be noted that this is also the case with calibration and localization in many wireless sensor

networks. Obviously, if nodes are mobile or simply their position changes because of the effect

of environmental changes (wind, rain, etc.), periodic location information has to be exchanged
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among the nodes to perform localization. Similarly, although calibration of conventional sensors

is usually performed only once before operation, periodical calibration may also be required.

The reason is that changes in environmental parameters during the lifetime of typically low-cost

sensors may affect their operation [47]. This may be especially important in the case of mobile

sensors or in safety critical applications. It is for all these reasons that we present in this chapter

a unified discussion of synchronization/localization/calibration (SLC). The three share the same

classes identified by [47], for instance:

• External vs. internal: If SLC information is provided by an external node, then we say that

the SLC is external. For instance, a GPS (Global Positioning System) receiver obtains its

position or absolute time from external sources. Calibration is external if the output of all

sensors map to a given scale [47]. For internal calibration, the only thing that is needed is for

all nodes to output the same value (at least within a given interval) if they are exposed to the

same stimulus, but not necessarily equal to what an external sensor would output. Similarly,

internal localization or synchronization only tries to maintain consistency among the nodes,

but without conforming to an absolute position or time. In some applications, this internal SLC

could be limited to a subset of the nodes (for instance, those observing a given phenomenon),

or could have different precision requirements in different subsets.

• Continuous vs. on demand: Continuous SLC means that nodes try to maintain synchroniza-

tion, localization and calibration at all times. This approach is not very efficient in WAdSN

especially in terms of energy consumption. On demand SLC is much more appropriate in

this case, particularly because the system does not waste energy in SLC during the long idle

periods. On demand SLC may be:

– Event-triggered: when the event has occurred the node is synchronized/located/calibrated.

– Time triggered: periodically or when an external node sends the order to perform the SLC.

Due to the uncertainty of delays in a WAdSN, especially with multi-hops, this order may

be anticipated: nodes receive the order to take the sample at some future time (of course,

this requires nodes to be synchronized).

• Master-slave vs. peer to peer: Usually, two kinds of nodes are considered; ‘masters’ that

know their time and/or location (which we call ‘reference nodes’) and ‘slaves’ that must

estimate their location and/or time by some algorithm (‘common nodes’). Reference nodes

(sometimes called ‘anchors’ [35] or ‘beacons’ [14]) can obtain their coordinates from an

external system (such as GPS) or simply act as a time or location reference for the other

nodes. This would be the case of an internal SLC, where only relative time or location

information is required. Some algorithm must be used for the common nodes to estimate

their SLC information based on the known information from the reference nodes. However,

note that sometimes reference nodes are not required, especially with internal SLC. In these

cases (most of which are time synchronization protocols), peer-to-peer solutions offer more

flexibility but are more difficult to control.

A recent survey of localization techniques is [35]. When all common nodes are at one-hop

distance from a sufficient number of reference nodes, then localization techniques do not require

nodes to cooperate. They can simply use some signal measuring system to infer the distance

between the reference node(s) and the common node (or the element to be located). As mentioned

before, they simply use methods based on measuring Angle Of Arrival (AoA), Time Difference

Of Arrival (TDOA) or Received Signal Strength (RSS). Once the distance is obtained, multilat-

eration is used to obtain the coordinates of the element to be located. Redundant measurements

are needed to cope with difficulties such as non-line of sight errors [14]. Less accurate methods

exist that are not based on these measurement techniques. For instance, in [12] a node estimates
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its position as the centroid of the coordinates of the reference nodes that are within its communi-

cations range. Of course, this simple solution requires high node density and regular topologies,

and in any case it can only provide a coarse estimation. More complex algorithms are described

in [10] and [35].

However, cooperative algorithms are more useful for common nodes that are not necessarily

at one-hop distance. For instance, in [41] all reference nodes flood messages with their location,

and these messages, which are propagated hop-by-hop, include a hop-count so that each receiver

can record their hop-count distance to the reference nodes. When another reference node receives

this message, it computes the mean one-hop distance using the known location of both reference

nodes and the hop-count. This one-hop estimation is sent back to the network so that common

nodes can estimate their actual distance to reference nodes from their own hop-count.

As for time synchronization, cooperation is more important as the clock skew (differences

in the frequencies of the nodes’ clocks) and drift (differences in the rate at which frequen-

cies change) increase over time even in static WAdSNs. Many different techniques for clock

synchronization exist, and they include all the classes discussed above: external vs. internal syn-

chronization, continuous vs. on demand, Master-slave vs. peer-to-peer, and so on. [53], [47].

Regarding cooperation, it is also interesting to distinguish between methods where there is a

sender transmitting the current clock values to the receiver as timestamps (sender-to-receiver)

and methods where synchronization messages are broadcast so that all receivers receive the

message at approximately the same time (receiver-to-receiver). According to Maróti et al., the

most significant delays when transmitting messages over a wireless link are those from the send,

receive and access processes [38]. Sender-to-receiver protocols like TPSN (Timing-sync Pro-

tocol for Sensor Networks) or the Flooding Time Synchronization Protocol (FTSP) avoid the

indeterminism of these delays working at the MAC (Medium Access Control) layer to precisely

timestamp messages, which is not always possible when using standard or complex protocols.

In receiver-to-receiver methods, the use of reference broadcast messages eliminates the time

uncertainty introduced by the send and access processes and sets a temporal reference shared by

all the nodes.

One of the best known receiver-to-receiver synchronization methods is MBS [17]. Elson and

Estrin propose a post-facto synchronization method; that is, a method that performs synchroniza-

tion only when it is needed [16]. The scattering method they propose does not give a common

time reference to the broadcast sender; it only synchronizes receivers. However, several authors

point out the need for setting a network time to propagate the synchronism over a multi-hop

network using broadcasts [17], [42]. Thus, nodes in broadcast domain need to cooperate by shar-

ing timing information among them to determine the global network time (GNT). This makes

them non-usable in large networks because the amount of data exchange required is huge [23].

On the other hand, Multi-hop Broadcast Synchronization protocol [37] is a receiver-to-receiver

synchronization scheme that nonetheless obtains a GNT working at the application layer. In

this protocol each reference broadcast informs about the timestamp of the previous one. This

way message exchanging is minimized, being similar to other sender-to-receiver methods, which

makes MBS suitable for large multi-hop networks.

Finally, works on calibration in WAdSNs are very scarce. Römer et al. [47] discuss external

and internal calibration methods. Collaboration among nodes is important mainly in internal

methods such as Collaborative In-Place Calibration (CIC) [13]. It is interesting to note that in

this method location, synchronization and calibration are again closely related. For instance,

nodes need to be synchronized. Node location is also important, as CIC begins with collocated

pairs of nodes that are calibrated against each other.

A final comment is that SLC in cooperative wireless sensor networks can be seen from two

different points of view: as we have shown, cooperation is needed to perform SLC. Many of
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the previously discussed algorithms are based on collaboration among nodes. On the other hand,

SLC is often needed to perform cooperation. For instance, in dense WAdSNs nodes that are

close to each other may be redundant from a routing point of view. The network can then be

partitioned into a grid, with some active nodes assuming the role of grid ‘leaders’ while others

are kept asleep except for periodical wake-ups to communicate with the active nodes. This way

nodes in sleep mode save energy. Active and asleep nodes cooperate by alternating their roles to

prevent active nodes from running out of energy. Some of these algorithms need nodes to know

their position to select which neighbouring nodes will take the role of grid leaders [56].

4.2.2 Routing

The need for connectivity among nodes introduces the routing problem. There are several reasons

that make routing in wireless sensor networks a challenge:

• First, a global addressing scheme, as in Internet Protocol, cannot be maintained. This is because

the network is formed by a huge number of nodes. Furthermore, sensors are deployed in such

a way (ad-hoc) that self-configuration techniques are required.

• Second, the data usually flow from several sources to a few number of sinks.

• Third, the nodes provide highly correlated information. So, the implementation of data aggre-

gation and fusion techniques is required. We’ll raise this problem in Section 4.2.3.

Due to these features, routing in WAdSN has traditionally been studied as a problem that

could be solved by solutions based on distributed systems. In other words, collaboration among

nodes is needed to route data.

In the following we shall focus our approach to the routing problem on the need for a multi-

hop scheme to let data travel from a source to a destiny. The paths the packets have to follow can

be established based on a specific criterion. Possible criteria can be a minimum number of hops,

minimum latency, maximum data rate, minimum error rate, etc. For example, imagine that all the

nodes wish to have a path to route data to the base station. In this situation, the problem could

be solved by a technique called network backbone formation. In general, sensor networks do

not use node addresses. In contrast, sensor locations could be used to solve the routing problem,

as seen in Section 4.2.1. Another approach to routing is to query all sensor nodes matching a

certain criterion instead of utilizing individual node addresses; this is discussed in Section 4.3.1.

An example to enhance this solution is based on the introduction of artificial intelligence

techniques in the WAdSNs: expert systems, artificial neural networks, fuzzy logic and genetic

algorithms. Although there are many authors who have proposed the introduction of different

AI techniques in several applications over WAdSNs [51], [28], [54], only a few (e.g. [6]) have

considered the possibility of implementing an AI technique inside a sensor node. Due to the

processing constraints we have to consider in a sensor node, the best suited of all these techniques,

is the self-organizing-map (SOM). This kind of artificial neural network is based on the self

organization concept.

The network backbone formation has been studied in mathematics as a particular discipline

called Graph Theory , which studies the properties of graphs. A directed graph G is an ordered

pair G := (V, A) with V , a set of vertices or nodes, vi , and A, a set of ordered pairs of vertices,

called directed edges, arcs, or arrows. An edge vxy = (x, y) is considered to be directed from x

to y; where y is called the head and x is called the tail of the edge.

In 1959, E. Dijkstra proposed an algorithm that solves the single-source shortest path problem

for a directed graph with nonnegative edge weights. In our wireless sensor network we assume

that all the links are symmetrical, in the sense that if a node A can reach a node B, then the node
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B can reach the node A. With these kinds of links, we can model our network as an undirected

graph G := (V, E).

Barbancho et al. [9] propose a modification of Dijkstra’s algorithm to form the network

backbone, with the minimum cost paths from the base station or root, r , to every node in

the network. The proposed algorithm is named Sensor Intelligence Routing, SIR. In Dijkstra’s

algorithm the graph has arrows and in SIR the graph has edges. Every edge between nodes vi and

vj has a weight, wij , and it is easy to prove that wij = wj i . The distance from the base station

to a node vi is named d(vi). The set of nodes which are successors or predecessors of a node

vi is denoted by Ŵ(vi), and is defined in this way: Ŵ(vi) = {vj ∈ V |(vi, vj ) ∈ E}. If we denote

a path from the root node to a node vk by p, we can define Ŵp(vj ), if vj ∈ p, as the subset of

nodes which are predecessors or successors of node vj . It is also assumed that V = {r, vi}i and

that there is a subset of V, T , defined as T := V −{r}. With this terminology, the SIR algorithm

can be described as detailed in Table 4.1.

In the first step, every node is assigned an initial cost to reach the sink. In the following steps

this cost is updated depending on the neighbourhood. The algorithm ends when there are no

more possible updates.

Once the backbone formation algorithm has been designed, a way of measuring the edge

weight parameter, wij , must be defined. On first approach it could be assumed that wij can be

modelled with the number of hops. According to this assumption, wij = 1 ∀ i, j ∈ R, i �= j .

However, let us imagine that we have another scenario in which the node vj is located in a noisy

environment. The collisions over vj can introduce link failures increasing power consumption

and decreasing reliability in this area. In this case, the optimal path from node vk to the root node

may be p’, instead of p. Modification of wij is required to solve this problem. The evaluation

of the quality of service (QoS) in a specific area can be used to modify this parameter.

The traditional view of QoS in communication networks is concerned with end-to-end delay,

packet loss, delay variation and throughput. Several authors have proposed architectures and

integrated frameworks to achieve guaranteed levels of network performance [8], [48]. However,

other performance-related features, such as network reliability, availability, communication secu-

rity and robustness are often neglected in QoS research. The definition of QoS requires some

enlargement if we want to use it as a criterion to support the goal of controlling the network.

Table 4.1 Network Backbone Formation Algorithm

Set up phase:

d(r) = 0

Step 1: d(vi) =

{

wri if vi ∈ Ŵ(r)

∞ if vi /∈ Ŵ(r)

Ŵp(vi) =

{

r if vi ∈ Ŵ(r)

0 if vi /∈ Ŵ(r)

Find a vj ∈ T such as d(vj ) = min{d(vi)|vi ∈ T }
Step 2:

Do T = T − {vj }

∀ vi ∈ T ∩ Ŵ(vi) calculate ti := d(vj ) + wji
Step 3:

If ti < d(vi) do d(vi) = ti

If |T |> 0 go to step 2
Step 4:

If |T | = 0 stop
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This way, sensors participate equally in the network, conserving energy and maintaining the

required application performance. What is sensor network QoS? Iyer and Kleinrock proposed

in [25] a definition of sensor network QoS based on sensor network resolution. They define

resolution as the optimum number of sensors sending information toward information-collecting

sinks, typically base stations. Kay and Frolik defined sensor network QoS in terms of how many

of the deployed sensors are active [30]. The same idea is discussed in [43] by Perillo et al., and

in [46] by Rakocevic et al.

Barbancho et al. [9] uses a definition based on three types of QoS parameters: timeliness, pre-

cision and accuracy. Due to the distributed feature of sensor networks, our approach measures the

QoS level in a spread way, instead of an end-to-end paradigm. Each node tests every neighbour

link quality with the transmissions of a specific packet named ping. With these transmissions

every node obtains mean values of latency, error rate, duty cycle and throughput. These are the

four metrics we have defined to measure the related QoS parameters.

Once a node has tested a neighbour link QoS, it calculates the distance to the root using

the obtained QoS value. Expression 4.1 represents the way a node vi calculates the distance to

the root through node vj , where qos is a variable whose value is obtained as an output of a

neural network.

d(vi) = d(vj ) · qos (4.1)

According to this strategy, data from source nodes travels through dynamic paths, avoiding the

regions with the worst quality of service levels.

4.2.3 Data Aggregation and Fusion

Data fusion is an analogous procedure to the human cognitive process. This procedure is like a

set of multidisciplinary techniques with the objective of integrating data from several sensors.

The main goal of this integration is to produce a relevant output that identifies the state of

the phenomenon being studied. In this sense data fusion could be understood as a connection

between a sensory layer and a reaction layer.

The Joint Directors of Laboratories (JDL), an organism that belongs to the Department of

Defense of the United States of America has defined a process model to describe the data fusion

process. The model has five levels [20]:

• Level 0: Source preprocessing. Data is standardized on this level. This process is executed on

the data acquisition hardware associated with the sensor. This could be called pre-fusion. On

this level every sensor is provided with independent data from other sensors.

• Level 1: Object refinement. The data is identified with an entity. This entity is understood as

an application which is being carried out. For example: a medical diagnosis.

• Level 2: Situation refinement. The results obtained with the last level are evaluated according

to the speed of data processing. If the speed is too low, data aggregation algorithms have to

be carried out to increase the speed.

• Level 3: Impact assessment. The phenomenon is studied with the acquired data. This study

intends to predict the performance of the phenomenon in the future.

• Level 4: Process refinement. General refinement in real time.

• Level 5: Cognitive refinement. On this last level, the human interprets the results obtained by

the data fusion processing. This way possible error can be detected.

Data fusion has been considered in wireless sensor networks as a mechanism for reducing

the number of packets transmitted among sensors. This reduction consequently entails lower
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Figure 4.1 Different routing approaches: (a) address-centric routing and (b) data-centric routing.

average network power consumption. In such a network, the information obtained by a node

and the nodes that belong to its neighbourhood is often redundant and highly correlated. In

this scenario, it makes sense to process data locally instead of sending it to a central station

for processing.

Routing is a problem that needs to be borne in mind when considering data delivery to sinks.

Conventional address-centric routing finds the shortest routes from sources to sinks. However

this approach does not provide an optimal solution. Better energy and bandwidth efficiency are

obtained with the data-centric routing approach. It considers data aggregation along a route with

multiple sources and one sink. This approach is particularly efficient in scenarios where the

sources are located close to one another and far away from the sink [32]. This comparison is

depicted in Figure 4.1. In the address-centric routing approach, source 1 chooses the path through

node C to deliver data to the sink with the minimum numbers of hops. At the same time, source

2 chooses the path through node B following the same criterion. The total amount of hops and

the number of packets travelling through the network are 9. In the data-centric routing approach,

source 1 chooses the path through node B. In this approach the node between A and B relays

and aggregates data from sources 1 and 2. Consequently only seven hops are required for data

delivery. Research into data aggregation and fusion can be split into three categories:

• Research based on the fusion function. The main goals are to suppress redundancy and

estimate a system parameter [34].

• Research based the system architecture. The main goal is to determine how many data

aggregators must be used in the wireless sensor network and where.

• Research based on trade-off and resources. This research focuses on several trade-off,

such as energy vs. estimation accuracy, energy vs. aggregation latency and bandwidth vs.

aggregation [49].

The following is an example of an application in which fusion can bring these three categories

into play:

The South of Spain is home to one of the largest wildlife reserves in Europe: the National Park of

Doñana which covers a huge area of about 520 km2. It has a variety of ecosystems: Mediterranean

forest, marshland, wetlands, dunes, beaches, and so on. Doñana is a wildlife reserve protected by the

Spanish Government; it is an area that has seen little human interference through history. Nowadays

no-one can enter Doñana without special permission. As a result, it is a privileged scenario for

studying populations of wild animals and plants.

The international scientific community has been conducting research in Doñana for over 50 years.

Biologists have traditionally deployed different kinds of sensors to gather information about natural
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phenomena such as vegetation stress, water levels of the aquiferous system, growth of animal popu-

lations, etc. These sensors are usually connected to a data-logger that stores data for a period of time.

Nowadays the Park has a WiFi infrastructure that provides connections to an intranet from every part

of the Park. This way, it is possible to access an environmental variable in real time. For example,

anyone can observe online the ultraviolet irradiation at Santa Olalla’s lake through the information

provided by the Doñana Biological Station, EBD [1].

The deployment of wireless sensor networks in this Park has increased the number of information

sources. Consequently data fusion and aggregation techniques are needed to manage such a huge

amount of data. The solution that is being implemented is based on the integration of computa-

tional intelligence in the wireless sensor nodes. Some approaches to this integration are described in

Section 4.3.3.

In our approach every node executes an artificial neuronal network to estimate the water level

in flood zones. This task is performed once a day. The neural network is a Self-Organized Map

(SOM) trained with historical data obtained by the EBD over several years. The SOM receives data

from environmental sensors installed in the node (level 0, source preprocessing according to the JDL

definition of fusion) and produces an output that identifies the state of the water level with a neuron

at the output layer of the SOM (level 1, object refinement). This procedure constitutes a data fusion

technique that suppresses the redundancy at the estimation of the system parameter, that is, the water

level in the flood zone under study (level 3, impact assessment, and level 4, process refinement).

A node processes this information in the following way. If the state is different to the state estimated

the day before, the node notifies this event to a base station. If the state is equal to the state obtained the

day before, the node sends no information. This way the nodes waste neither energy nor bandwidth.

In this situation we have a case of research based on trade-off and resources: energy vs. estimation

accuracy.

Hence the nodes are deployed over a flood zone, and every node produces its own estimation; it is

clear that there will be several estimations spread over the sensor network. Some nodes will change

their daily estimation with a higher frequency than others. Consequently the former will produce

more traffic than the latter. As the information is sent to a base station using multihop protocols

based on IEEE 802.15.4 standard, this information needs to be aggregated. At this point a second

fusion technique is implemented to determine how many data aggregators must be used in the wireless

sensor network and where. The use of aggregators enhances the speed of data processing (level 2,

situations refinement).

Once the base station receives the aggregated data, it sends it to the EBD through the intranet

network (WiFi and Internet). At the EBD the biologists interpret the results obtained by the sensor

networks and evaluate the accuracy (level 5, cognitive refinement).

This application example illustrates the cooperative activities performed by all the nodes in

the network towards a common goal, that is, the estimation of the water level of a flood zone.

From the individual tasks developed at each node to the communications between them, all the

activities constitute a cooperative networking scheme.

4.3 Research Directions for Cooperation in WAdSN

A set of network devices is a system that could be quite hard to manage if only the physical and

MAC layers are implemented. As we mentioned above, aspects such as time synchronization,

calibration and location are fundamental for implementation in a WAdSN. In this sense, routing,

data aggregation and fusion can also be understood as fundamental. Obviously the upper layers

of the network stack are the proper place for implementation. Therefore cooperation networking,

as we have seen in the previous section, must be implemented in these upper layers. There

are many different ways of doing this and we will discuss some of them in the following
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subsections. In particular, we will look at some of the current approaches that may facilitate the

implementation of cooperation in WAdSN.

4.3.1 Middleware for WAdSN

All the nodes in a wireless sensor network have to run a program written in a specific program-

ming language. Compatibility problems may arise if the executable code of this program runs in

different hardware platforms to the network nodes. The use of operating systems solves part of

these problems, bringing a hardware abstraction that makes it slightly easier to write programs

(the program can be written in the same language for all network nodes but, if different hardware

and/or operating systems are used, it would be diffcult to create a source code without incompat-

ibilities between the different versions of hardware, compilers and operating systems). Moreover,

additional problems arise when different networking technologies are used to communicate the

nodes of the system (imagine for instance that one set of tiny nodes coexists with another set of

more powerful nodes, all running the same program), or when one client/server architecture has

to be developed in a simple way.

These problems, specific to distributed systems, can be solved by adding an additional layer

between applications and operating system: the middleware (Figure 4.2). This layer provides

a common interface for communicating clients and services, methods for service discovering

(how to know if there are services in the network), service description (how to know what it

does), service control (how to use it), and even a common language for developing applications,

services and clients. Sharing of services is a good way of performing collaboration among nodes

in a WAdSN. Furthermore, the unified view that the middleware provides allows the system to

be considered as a single system and not just as the sum of a (high) number of sensor nodes.

There are several middleware architectures that meet these requirements:

• Distributed Tuples: offers abstraction for distributed tuples. Examples: L2IMBO, LINDA.

• Remote Procedure Call: abstraction of external procedure invocation: Java Remote Method

Invocation, Modula-3, XML-RPC, .NET Remoting.

• Message-Oriented Middleware: message queue abstraction for messages between distributed

applications. Examples: Advanced Message Queuing Protocol, Java Message Service.

System 1

Distributed App

Middleware

Operating System
1

System 2

Distributed App

Middleware

Operating System
2

Figure 4.2 Middleware in distributed systems.
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• Object Request Broker: remote object management abstraction allows using remote objects

as if they were in the user’s own space. Examples: DCOM, CORBA, COM.

But, why should we have to do these things with a WAdSN? In a way, a WAdSN can be seen

as a distributed system. It has a relatively large set of computational nodes that work together

to perform a specific task: for instance gathering environmental information and sending it to

a central node for processing. But this vision can be interpreted in another way: each network

sensor performs a service that offers actions such as reading the environmental values obtained

in the sensors, reset, calibration, and an event subscription that advises clients if a sensor reading

changes. At the same time, nodes like the central node mentioned above can be clients of these

services and conduct operations in the service of the sensors/actuators.

The use of middleware has until now been restricted to large systems where resource restric-

tions have not been a problem and the networking technologies used have been very fast,

homogeneous and reliable. However, in WAdSN, the resources (memory and computing power)

are very limited, the small batteries of sensor nodes impose limits on data communications and

operating systems and hardware platforms are very heterogeneous. This heterogeneity may sim-

ply be due to the fact that the system is made up of relatively simple sensor nodes plus a number

of central nodes with larger resources and better capabilities. In addition, this new layer imposes

the use of more memory for programs, more computation power requirements, and more energy

wasted in communications due to the protocols used to maintain client-server architecture (for

example, the protocol for service discovering requires more messages to be sent between nodes).

Thus, the design principles of a middleware oriented towards WAdSN have to be quite different

to a ‘standard’ middleware for these reasons. We must also consider the nature of applications

implemented in this kind of system [22]:

• Distributed by nature.

• Limited by low machine resources.

• Focused on energy saving.

• Dynamic availability and quality of data collected from the environment.

• Constrained applications quality of services.

So, the design principles of WAdSN middleware could be summarized as follows [58]:

• Data-centric: focused on supporting distributed data requests.

• Distributed and collaborative algorithms.

• Support of data aggregation.

• Lightweight.

• Cluster based architecture: the whole system is a set of clusters, each of which consists of

several sensor nodes and one head node responsible for cluster coordination.

• Virtual-machine abstraction and (preferably) a common language to specify the applications

in the whole system, regardless of the operating system and hardware platform.

Nowadays, some implementations of middleware can be accommodated in WAdSN, and they

follow the above-mentioned principles.

• Cougar [11] and SINA [26]: both provide a distributed database interface to query WAdSN

data in a SQL-like style. Energy saving policies are implemented to make the queries at the

lowest power consumption. SINA has a cluster-based architecture.
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• AutoSec [21]: provides access to sensor network’s resources for control and data. This imple-

mentation takes into account the quality of service of each query launched to the system,

adapting the data collecting strategies to the sensor network.

• DSWare [33]: very similar to AutoSec, is capable of maintaining clusters of nodes and

obtaining information from them transparently to provide reliable measurements regardless

of network failures.

• IMPALA [33]: proposes asynchronous event-based methods for WAdSN to implement a multi-

agent system. Agents can move through the network depending on the system’s requirements.

• MILAN [22]: designed to help in the development of portable applications, its applications

are capable of adapting to changes in network topology and energy constraints. It supports a

cluster-based architecture where the system itself identifies the clusters to meet the applica-

tion’s requirements, the energy consumption and the desired bandwidth. MILAN is not only

an intermediate layer between applications and network/operating system layer: it extends into

the network layer to control certain policies related to obtaining the optimum performance at

minimum consumption.

• Mires [52]: implemented under TinyOS/NESC, this middleware offers a message oriented

architecture (with publish/subscription to data services) that complies with the traditional

middleware for large and distributed systems. Adaptations for WAdSN are made, such as

routing features and data aggregation.

• COCA [15]: Cross-Layer Cooperative Caching is a cluster-based middleware that provides

data caching and management services to the applications in Ad-Hoc networks. Although not

specifically oriented towards WAdSN, it shows how the very important issue of data caching

could be implemented in a cooperative way, and many of their results may also be useful for

WAdSNs.

As we can see, there are several solutions for implementing a middleware in a WAdSN.

However, there is still work to be done [29], [58]. Middleware solutions have no solid definition of

functionality. As we saw above, the extension of the middleware layer and the functionalities

of each one are different and it is not possible to extract a common set of functionalities from

all of them. Support for inclusion of time and location of measurement extracted from the

environment is not present in these implementations and this is a very important feature within

this type of network. Proactivity has been widely considered and marks a trend to follow for

future implementations. The whole system must take actions before an important event occurs.

It must look for changes in the network topology, QoS, and other aspects to adapt the whole

system before things go wrong.

However, one of the most interesting advances in the middleware systems of the future will

be the increased capabilities of future sensor nodes. Moore’s Law guarantees growths in speed,

resources and cost. In the future it may be possible to apply middleware solutions currently used

in large systems to these nodes, making the absolute integration of wireless networks within

Internet a near reality, an idea that has been pursued for several years, since the researchers at

MIT defined the term The Internet of Things.

4.3.2 Multi-Agent Systems in WAdSN

In the previous section we looked at the advantages of using a middleware framework: Easy to

program in several hardware platforms at a time; abstraction of network and operating system

services; easy to discover and use resources scattered in the network and (desirably for WAdSN

middleware) control and automatic adaptation of the whole system to network constraints.

Middleware therefore, empowers the capabilities of systems that use WAdSN together with
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other hardware platforms, integrating WAdSN nodes in a unique distributed system and mak-

ing it possible for programs (or services) operating within the system to run, communicate and

use all the system’s resources regardless of which hardware is being used and which network

technology has to be used to communicate with them.

The only diffculty with these frameworks is to obtain an implementation lightweight enough

to be fitted into the very constrained hardware of a WAdSN node. If we may overcome this, the

following step is to include certain degree of intelligence in WAdSN.

Knowing that an agent is an entity located in one environment, capable of performing flexible

and autonomous actions to achieve its goals [27], how can this concept be applied to WAdSN?

Initially, the application of agents was a technology designed to implement a kind of ‘life’ in a

system to solve complex algorithms; like in a machine with lots of small programs coexisting

with each other. The rules for interacting, surviving and evolving in this ‘world’ led to the

solution of the problem in a collaborative fashion. The following evolution in this technology

was to scatter agents between various machines, creating a system consisting of several machines,

each containing one or more agents. In both cases, we are talking about ‘multi-agent system’

(MAS) but the more recent evolution allows the migration of agents between machines to meet

the system’s computational requirements (Figure 4.3).

If these machines all have the same hardware and software architecture, the only remaining

problem for the implementation of multi-agents is the issue of establishing the migration and

communication mechanisms between machines. But, when heterogeneity in hardware and soft-

ware exists, the middleware framework becomes a necessary solution for multi-agent systems

technology. Several middleware solutions provide a hardware abstraction and a common lan-

guage for defining and describing applications regardless of hardware implementation so, with

one of them, the creation of a multi-agent system is solved. However, implementing mobility

in agents requires another type of capability that the majority of middleware solutions (except

for IMPALA) do not have. Every agent system requires a platform providing an identification

service, mobility, communication, and so on.

System 1 System 2

System 4System 3

Agent 1

Agent 2

Agent 4

Agent 5
Agent 6

Agent 3

Migration on
demand

Figure 4.3 The concept of multi-agent system.
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This approach is implemented in a WAdSN through a set of agents that reside in the nodes

of the WAdSN [45]. These agents can interact with other agents and gather information about

the environment (for example: try to classify the information) or another important aspect of

the system (for example: they can be aware of routing tasks in the WAdSN to minimize energy

consumption). They can take actions based on the information gathered, communicate with other

agents in the system, and move from one sensor to another if required. These agents and their

actions are supported by a middleware architecture that guarantees [39], [5]:

• Local services: agents can access local resources through the platform.

• Agent discovery and maintenance: detection of agent in the neighbourhood. Also, agents must

be initiated and stopped when required.

– Agent = code + data + state + meta-information.

• Common language: for defining and describing agents.

• Reactivity: capability to detect and react to changes in the environment.

• Asynchronous operation: agents must react to changes in the environment. This operation

mode can save energy in WAdSN.

• Autonomy: agents can control their own actions.

• Communications: with other agents, regardless of where they are.

• Collaboration and cooperation: agents must be capable of processing information provided by

other agents.

• Mobility: capability to migrate between nodes.

This set of features seems quite large for a WAdSN node. There are implementations for multi-

agent systems that operate in medium-large machines (as in middleware, the set of protocols and

functionalities required is large and so, therefore, is the footprint).

FIPA [2] defined a reference architecture for MAS but it is too large to be included in WAdSN.

However, this architecture must be taken into account because it is the base of some ‘standard-

ized’ frameworks of MAS. LEAP is an example of one of these frameworks. It is a lightweight

version of FIPA architecture but not light enough for WAdSN because it is implemented in Java.

Another implementation is the above-mentioned IMPALA [33], which enables application

modularity, adaptability to network failures and reparability in WAdSN under an asynchronous

operation mode. Agilla [18] is a framework that supports code mobility of agents written in a

high-level code. Data communications are made based on a shared tuple space. MASIF [3] is a

set of interfaces for promoting interoperability and mobility of agents in distributed systems but

it cannot be implemented in WAdSN because of its large footprint and resource consumption (it

is based on CORBA).

4.3.3 Artificial Neural Networks in WAdSN

Nowadays, neural networks cover a wide spectrum of applications: they can be used when

no algorithm exists to solve a specific task, but the solution can be expressed on the basis

of a rich set of input examples. Another application area of artificial neural networks (ANN)

is the classification of information and pattern recognition (as in weather forecasting, etc.) or

when algorithms are incapable of solving a problem. There are several reasons for using ANN:

high robustness against noise, malfunctions or even failure; easy to parallelize and distribute;

and lightweight.

Basically, the concept of artificial neuron is an entity whose output is defined as a function

of a set of weighted inputs (from each of the inputs, see Figure 4.4). The weights of each input

define the interaction between neurons so, with a low weighted input coming from a neuron,
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Figure 4.4 Model of an artificial neuron.

it seems that there is almost no interaction with it. This output can be codified as a number

within a range (for example: 0–1) or as a series of spikes distributed in time. In the latter case,

we are talking about Spiking Neurons [40], [19]. The frequency of the spike train or the space

between spikes (these are two methods of coding outgoing information in this type of neural

network) defines the neuron’s excitation level, or state. Of course, the same coding system is

also used in the neuron’s inputs. Therefore, the output function is defined as a weighted function

of neuron’s incoming pulse trains, allowing the building of layers of interconnected neurons to

work together. Spiking neural networks is a more realistic way of implementing a neural system

because the way this type of neuron runs is closer to the natural entities that they try to imitate.

Neurons are organized in layers and usually, one neuron from layer i has an input to all

neurons in layer i − 1. In this case, we can talk about feed-forward ANN (Figure 4.5), where

information is spread from input to outputs. In the event of any layer i spreading information

to layer i − k; k > 0, the ANN can be classified as a recurrent ANN (Figure 4.6). In an ANN,

there must be an input layer and a (sometimes is the same) output layer. Multiple layers can

Layer 1
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Figure 4.5 Example of a 3-layer feed-forward ANN.
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Output

Layer 2

Layer 1

Layer 0

Figure 4.6 Example of a 3-layer recurrent ANN.

be placed between them, forming a multilayer ANN. The stage prior to operating with an ANN

is the learning procedure. During this stage, the weight of each neuron takes its final value

through a process in which a known input is presented to the ANN and the weights of neurons

are modified to achieve the desired output at ANN’s output layer. There are several classes of

learning procedures: supervised, not supervised and reinforcement. When the ANN has finally

been configured, each ANN neuron executes its output function only when there is any change

in input values. This algorithm is usually simple and fast.

How can an ANN be implemented in a WAdSN? Bearing in mind the similarity between

neurons and sensor nodes, one may think that the only way to implement an ANN is to assign

one neuron to each node in the network. This way, the neurons implemented in the WAdSN

will be the neurons of the input layer. Further layers could be implemented in a more powerful

network, where the information processing can be finished without exhausting the resources of

the WAdSN. The ANN built in this way would be valid for pattern recognition, data classification

or predictions from the input data. An example of this kind of implementation can be seen in [24].

Another type of implementation of ANN in WAdSN is to keep a complete ANN within

each network node. This way, each network node has a trained ANN to solve autonomously

a specific problem related to some aspect of the WAdSN. For example, [9] use this type of

implementation to solve the problem of routing optimization. In [6] ANN and genetic algorithms

are used to solve two important problems in WAdSN: sensor self-calibration and the insertion

of new nodes in runtime. Basically, each node has a complete ANN that can be trained by a

genetic algorithm once it is inserted in the network. The genetic algorithm is used to contrast

the output of the ANN (that classifies the outputs of the sensor) with an ideal value extracted

from a lookup table. This way, a node can be inserted at anytime in the network and the genetic

algorithm will adjust the ANN of this node based on its inputs. Finally, spiking neural networks

are the subject of intense research efforts to implement bio-inspired devices where information

flows in spike trains transported by AER buses (Address Event Representation). One example

of these kinds of devices can be found in [50]. In this project, the chain of bio-inspired devices

is connected by wire and instead of focusing on low power consumption the system has been

designed as a prototype to demonstrate the suitability of these devices for certain tasks. In [60],

[4] neuro-inspired devices and wireless sensor networks are combined to offer a fast and low

power detection device (each one implemented by spiking neural networks) and a persistent and

low-cost form of communication (each WAdSN node is responsible for its sensor communicating

with a central node that collects and processes all the information provided by the sensors) that

enables the system to work for long periods of time without maintenance.
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4.4 Final Remarks

Throughout this chapter cooperation in wireless ad-hoc and sensor networks (WAdSN) has been

shown as a collaborative action which network nodes are involved in. According to the Open

System Interconnection model, OSI, proposed by the International Organization for Standard-

ization, ISO, the development of cooperation could be understood as being located between the

application and low level layers (physical and link layer).

Time synchronization, localization and calibration (SLC) are services that cooperation must

provide. Consequently, there needs to be some mechanism to allow the provision of these ser-

vices. As explained in Section 4.3.1, this mechanism works as a container of cooperation services,

allowing their implementation in a consistent manner. These services may include not only SLC,

but also data caching, data management, etc. With middleware, cooperation services can be

implemented and accessed by the application regardless of the hardware or network technology

being used.

The use of Multi-Agent Systems (MAS) is another approach to network cooperation. Several

implementations of MAS over WAdSN are being carried out by different research groups, as

explained in Section 4.3.2. In some ways MAS could also be understood as a middleware.

Middleware and multi-agent systems are concepts that have been created bearing in mind other

kinds of networks. For this reason current implementations of them are complex and hardly fea-

sible over ad hoc and sensor networks. However, the adaptation of MAS and middleware to these

special networks will change the current conception of cooperation in WAdSN. Conceptually it

is possible to adapt them. So, we are faced with the challenge of adapting current solutions to

the case of resource and energy limited nodes that communicate in an ad-hoc fashion, providing

at the same time scalability, reliability and dynamic adaptation to the environment.
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