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Abstract 

Background:  Early detection of clusters of pathogens is crucial for infection prevention and control (IPC) in hospi-
tals. Conventional manual cluster detection is usually restricted to certain areas of the hospital and multidrug resist-
ant organisms. Automation can increase the comprehensiveness of cluster surveillance without depleting human 
resources. We aimed to describe the application of an automated cluster alert system (CLAR) in the routine IPC work 
in a hospital. Additionally, we aimed to provide information on the clusters detected and their properties.

Methods:  CLAR was continuously utilized during the year 2019 at Charité university hospital. CLAR analyzed micro-
biological and patient-related data to calculate a pathogen-baseline for every ward. Daily, this baseline was compared 
to data of the previous 14 days. If the baseline was exceeded, a cluster alert was generated and sent to the IPC team. 
From July 2019 onwards, alerts were systematically categorized as relevant or non-relevant at the discretion of the IPC 
physician in charge.

Results:  In one year, CLAR detected 1,714 clusters. The median number of isolates per cluster was two. The most 
common cluster pathogens were Enterococcus faecium (n = 326, 19 %), Escherichia coli (n = 274, 16 %) and Enterococ-
cus faecalis (n = 250, 15 %). The majority of clusters (n = 1,360, 79 %) comprised of susceptible organisms. For 906 alerts 
relevance assessment was performed, with 317 (35 %) alerts being classified as relevant.

Conclusions:  CLAR demonstrated the capability of detecting small clusters and clusters of susceptible organisms. 
Future improvements must aim to reduce the number of non-relevant alerts without impeding detection of relevant 
clusters. Digital solutions to IPC represent a considerable potential for improved patient care. Systems such as CLAR 
could be adapted to other hospitals and healthcare settings, and thereby serve as a means to fulfill these potentials.
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Background
Infection prevention and control (IPC) is a corner-
stone of quality management and ensuring the safety of 
patients in hospitals [1, 2]. Principal objectives of IPC are 
preventing healthcare-associated infections and reduc-
ing pathogen transmission [3–5]. To achieve these objec-
tives, timely detection of and effective mitigation against 
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healthcare-associated outbreaks are imperative. Health-
care-associated outbreaks frequently are the result of an 
uncontrolled spread of pathogens within a healthcare 
facility [6–8]. Consequently, early detection of pathogen 
spread (i.e. clusters) is a prerequisite for effective out-
break management and containment.

Conventionally, cluster detection in hospitals is a labo-
rious manual process that requires substantial invest-
ment of time and human resources [9]. In most German 
hospitals, cluster detection falls into the responsibility of 
IPC staff that often has limited resources available. As a 
result, cluster monitoring is usually confined to certain 
“risk areas” within a hospital (e.g. intensive care units, 
transplant units, neonatology) and to pathogens with 
specific attributes (e.g. multidrug resistant organisms 
(MDROs)). This restrictive approach results in a signifi-
cant “blind spot” and possible negligence of susceptible 
organisms and non-critical areas of a hospital that can 
be equally affected by outbreaks. Another deficit of the 
current manual approach is the frequently arbitrary defi-
nition of what constitutes a cluster. In many cases, sub-
jective criteria are applied, such as a certain number of 
isolates in a defined period, without considering the con-
text and the endemic level of a pathogen.

Automated cluster alert systems offer an opportunity 
to improve current practices in cluster detection [10–12]. 
They can serve as a way to establish hospital-wide clus-
ter surveillance of a broad range of pathogens that can 
be both MDROs and susceptible organisms. Contrary to 
current practices, automated cluster alert systems pre-
sent possibilities to detect clusters in a reproducible and 
objective manner [13, 14]. Despite increasing the amount 
of data processed, alert systems could reduce the work-
load for IPC staff by automating certain steps in the clus-
ter detection workflow and thereby save time and human 
resources.

This study presents data from and experiences with 
an automated cluster alert system that was incorporated 
into the daily routine IPC work of a tertiary care hospital 
in Germany. The objectives of this study were to describe 
the use of the automated cluster alert system by the local 
IPC team in a clinical routine setting, as well as to pro-
vide an overview about the clusters detected and their 
properties from a one-year period of continuous use.

Methods
Setting
Charité university hospital is a tertiary care hospital 
with over 3,000 patient beds that is located at three 
separate sites in Berlin, Germany. The IPC team con-
stitutes of IPC nurses and physicians that are jointly 
responsible for the detection of nosocomial clusters 
and coordinating mitigation efforts when relevant 

clusters are detected. Owing to healthcare-associated 
outbreaks in the past, a decision was made to develop 
an automated cluster alert system to improve cluster 
detection and pathogen surveillance. The system was 
named CLAR (cluster alarm system), introduced into 
the IPC work of the hospital in November 2017, and 
following various adjustments, successively incorpo-
rated into the routine work in 2018. In the year 2019, 
the system was continuously in use and only underwent 
marginal changes. We therefore decided to focus our 
analyses on the data generated during that period.

Hospitals in Germany are required by the German Pro-
tection Against Infection Act to collect surveillance data 
on healthcare-associated infections and certain patho-
gens [15]. Since the data utilized by CLAR were collected 
in alignment with this regulation, ethical approval and 
informed consent were not required.

Overview of the functions of the automated cluster alert 
system
CLAR reviewed and analyzed routinely collected 
microbiological and patient-related data (e.g. patient 
movement) that converged and were stored in a data 
warehouse. CLAR utilized data of the previous two 
years from the data warehouse to calculate a baseline for 
every included pathogen at every hospital ward. Daily, 
this baseline was compared to data from a period of the 
previous 14 days. By employing six different algorithms, 
CLAR evaluated whether the number of detected iso-
lates at a ward during the previous 14 days exceeded the 
two-year baseline. The algorithms utilized for this pur-
pose were normal distribution prediction intervals (PI-
NV), Poisson distribution (PI-POI) and score prediction 
intervals (PI-SCORE) for interval prediction, early aber-
ration reporting system (EARS) and negative binominal 
CUSUMs (NBC) for statistical process control, and Far-
rington algorithm for statistical modelling. The specif-
ics of the applied algorithms as well as their utilization 
within the data warehouse have been described in a pre-
vious publication [11]. Where available, resistance profile 
data of pathogens were included and only isolates, for 
which the intervals of the minimum inhibitory concen-
tration for tested antibiotics overlapped, were consid-
ered. Where resistance information was not available, 
isolates of any phenotype were considered. If the baseline 
was exceeded, CLAR generated an alert email that was 
sent to the responsible IPC physician for review. From 
10 to 2019 onwards, all alerts were labelled as either rel-
evant or non-relevant by the IPC physician in charge. 
Relevance in this context denoted that the alert triggered 
measures (e.g. further investigation, IPC training, geno-
typing, outbreak management) at the respective ward.
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Eligibility of pathogens and isolates
The following pathogens or groups of pathogens were 
considered by CLAR, both for generating the two-year 
baseline and for evaluating the previous 14 days: Acine-
tobacter baumannii, Clostridioides difficile, Citrobacter 
spp., Escherichia coli, Enterococcus faecalis, Enterococcus 
faecium, Enterobacter spp., Klebsiella spp., Pseudomonas 
aeruginosa, Staphylococcus aureus, Salmonella spp. and 
Serratia spp. Additionally, all pathogens cultivated from 
blood cultures were included. To place a focus on noso-
comial clusters, only isolates that were sampled at least 
two days after admission to the ward were included. A 
separate rule for blood cultures also considered isolates 
sampled prior to the second day after admission. Copy 
strains (i.e. the same pathogen was detected in the same 
patient multiple times) were excluded for a duration of 
90 days.

Data analysis
Alerts generated by CLAR between 1 and 2019 and 
31 December 2019 were included in the analyses. Only 
alerts pertaining to in-patient areas of the hospital and 
alerts pertaining to a single ward were included. For 
every alert, the number of detected isolates, type of path-
ogen and resistance information, sampling material, and 
ward at which the alert occurred were recorded. For data 
presentation in this article, wards were separated into 
adult intensive care units (ICUs), adult non-ICUs and 
neonatal and pediatric (NEOPED) units. Sampling mate-
rials were distinguished into clinical (e.g. blood culture, 
wound swab) and screening (e.g. rectal swab) isolates.

When presenting data concerning the clinical relevance 
of alerts as assessed by the IPC physician, only alerts for 

which this information was recorded (10 July 2019 – 31 
December 2019) were considered. Alerts during this 
period, for which no assessment of relevance was docu-
mented (missing data), were excluded from the analysis 
focusing on alert relevance. Differences regarding the rel-
evance of alerts were tested by univariable analysis using 
a two-sided Chi-squared test. Analyses were conducted 
with OpenEpi [16]. A p-value of less than 0.05 was con-
sidered statistically significant.

Results
Overview
A total of 1,009,051 patient days were generated at Char-
ité university hospital in the year 2019, 822,021 of which 
pertained to adult non-ICUs, 85,269 to adult ICUs, and 
101,761 to NEOPED units. During the observed period, 
CLAR detected 1714 clusters for which an alert notifica-
tion was generated, which is equivalent to 1.7 alerts per 
1,000 patient days. Alert occurrence per 1,000 patient 
days was 1.2 for adult non-ICUs, 7.4 for adult ICUs, and 
1.2 for NEOPED units.

Almost all clusters that were detected (n = 1603, 94 %) 
contained at least one clinical isolate, while 6 % (n = 111) 
clusters solely included screening isolates. Around 21 % 
(n = 354) of all detected clusters included at least one 
multidrug resistant isolate, while 79 % (n = 1360) of clus-
ters contained only susceptible pathogens. The majority 
of detected clusters comprised of three or less isolates 
(n = 1456, 85 %). The average and median number of iso-
lates per alert was 2.7 and 2 respectively. When stratify-
ing by ward type, similar distributions concerning the 
number of isolates per alert were observed. Table  1 

Table 1  Clusters detected by the automated cluster alert system in the year 2019

Stratification by cluster size (number of isolates) and ward type. ICU intensive care unit

Cluster size All wards Adult non-ICUs Adult ICUs Neonatal/pediatric wards
Number (%) or
Value

Number (%) or
Value

Number (%) or
Value

Number (%) or
Value

All 1714 (100) 966 (100) 628 (100) 120 (70)

2 1026 (59.9) 592 (61.3) 364 (58.0) 70 (58.3)

3 430 (25.1) 247 (25.6) 160 (25.5) 23 (19.2)

4 150 (8.8) 81 (8.4) 57 (9.1) 12 (10)

5 52 (3.0) 22 (2.3) 21 (3.3) 9 (7.5)

6 33 (1.9) 12 (1.2) 16 (2.5) 5 (4.2)

7 9 (0.5) 2 (0.2) 7 (1.1) 0 (0)

8 10 (0.6) 6 (0.6) 3 (0.5) 1 (0.8)

>8 4 (0.2) 4 (0.4) 0 (0) 0 (0)

First quartile 2 2 2 2

Median 2 2 2 2

Third quartile 3 3 3 3
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summarizes the frequency of detected clusters stratified 
by cluster size and type of ward.

Microorganisms
The highest number of alerts generated were due to clus-
ters of E. faecium (n = 326, 19 %), E. coli (n = 274, 16 %) 
and E. faecalis (n = 250, 15 %). When differentiating by 
ward type, differences were observed concerning the 
pathogens most frequently found in clusters. Adult non-
ICUs (total number of alerts: 966) yielded a similar path-
ogen distribution, with clusters of E. faecium (n = 212, 
22 %), E. faecalis (n = 212, 22 %) and E. coli (n = 193, 20 %) 
being the most commonly detected. While E. faecium 
(n = 112, 18 %) was also the most commonly detected 
cluster pathogen in adult ICUs (total number of alerts: 
628), clusters of coagulase-negative staphylococci and 
Gram-negative pathogens were detected more frequently 
than in non-ICUs. Clusters detected in NEOPED units 
(total number of alerts: 120) were revealed to have a dif-
ferent pathogen distribution than clusters in adult wards. 
E. faecium and E. faecalis jointly only accounted for 4 % 
(n = 5) of the clusters found, while S. aureus (n = 46, 
38 %), Klebsiella spp. (n = 25, 21 %) and Enterobacter spp. 
(n = 17, 14 %) were the most commonly detected cluster 
pathogens. Table 2; Fig. 1 illustrate the pathogen distribu-
tion of clusters detected by CLAR in relation to the ward 
type.

Relevance of alerts
From 10 to 2019 onwards, the relevance of alerts was sys-
tematically documented by IPC physicians. Between 10 
and 2019 and 31 December 2019, CLAR generated 924 
alerts (54 % of all alerts in 2019). For 906 (98 %) of these 
924 alerts documentation of relevance assessment was 
performed. Overall, 589 (65 %) of alerts assessed were 
deemed non-relevant. Conversely, 317 (35 %) alerts were 
classified as being clinically relevant and triggered fur-
ther cluster-related investigations or measures.

When comparing the characteristics of relevant and 
non-relevant alerts, various differences were noted. Rele-
vant alerts tended to contain a greater number of isolates 
then non-relevant alerts. The percentage of alerts with 
more than three isolates was significantly higher in the 
group of relevant alerts (24 %) than non-relevant alerts 
(18 %) (p = 0.02). Relevant alerts pertained significantly 
more often to ICUs (51 %) than alerts deemed non-rele-
vant (31 %) (p < 0.01). For non-ICUs, an inverse relation 
was seen. Regarding the correlation between pathogen 
and alert relevance, diverse results were observed. While 
the percentage of Klebsiella spp. and Enterobacter spp. 
clusters detected by CLAR was significantly higher in the 
group of relevant alerts in comparison to non-relevant 
alerts, it was significantly lower for clusters of Entero-
coccus spp., coagulase-negative staphylococci and E. 
coli. No significant differences were observed between 

Table 2  Clusters detected by the automated cluster alert system in the year 2019

Stratification by pathogen and ward type. CNS coagulase-negative staphylococci, ICU intensive care unit

Pathogen (-group) All wards Adult non-ICUs Adult ICUs Neonatal/
pediatric 
wards

Number (%) Number (%) Number (%) Number (%)

All 1714 (100) 966 (100) 628 (100) 120 (70)

Enterococcus faecium 326 (19.0) 212 (21.9) 112 (17.8) 2 (1.7)

Enterococcus faecalis 250 (14.6) 212 (21.9) 35 (5.6) 3 (2.5)

Staphylococcus aureus 204 (11.9) 101 (10.5) 57 (9.1) 46 (38.3)

CNS 185 (10.8) 77 (8.0) 103 (16.4) 5 (4.2)

Escherichia coli 274 (16.0) 193 (20.0) 72 (11.5) 9 (7.5)

Klebsiella spp. 182 (10.6) 77 (8.0) 80 (12.7) 25 (20.8)

Pseudomonas aeruginosa 135 (7.9) 42 (4.3) 92 (14.6) 1 (0.8)

Enterobacter spp. 64 (3.7) 12 (1.2) 35 (5.6) 17 (14.2)

Serratia spp. 23 (1.3) 2 (0.2) 14 (2.2) 7 (5.8)

Clostridioides difficile 43 (2.5) 31 (3.2) 11 (1.8) 1 (0.8)

Candida spp. 13 (0.8) 3 (0.3) 10 (1.6) 0 (0)

Acinetobacter baumannii 6 (0.4) 0 (0) 2 (0.3) 4 (3.3)

Citrobacter spp. 4 (0.2) 2 (0.2) 2 (0.3) 0 (0)

Streptococcus spp. 2 (0.1) 2 (0.2) 0 (0) 0 (0)

Proteus spp. 1 (0.1) 0 (0) 1 (0.2) 0 (0)

Micrococcus spp. 1 (0.1) 0 (0) 1 (0.2) 0 (0)

Clostridium perfringens 1 (0.1) 0 (0) 1 (0.2) 0 (0)



Page 5 of 9Aghdassi et al. BMC Infect Dis         (2021) 21:1075 	

relevant and non-relevant alerts with regards to whether 
an alert contained at least one clinical isolate or at least 
one MDRO. A detailed illustration of the comparison 
between relevant and non-relevant alerts can be found in 
Table 3.

Discussion
The automated cluster alert system implemented at 
Charité university hospital was continuously used in the 
year 2019 and steadily generated cluster alerts during this 
period. Unlike most other studies focusing on automated 
cluster detection [17–19], the data presented in this arti-
cle, stem from real-life routine utilization in a large hospi-
tal and were collected prospectively. Data from routinely 
used automated cluster alert systems are scarce, thus, it 
was our intention to delineate the experiences with our 
system in order to reduce this knowledge gap.

By taking into account baseline information on patho-
gen occurrence from the previous two years, which was 
then compared to the number of isolates of a specific 
pathogen during the previous 14 days, CLAR was based 

upon objective and reproducible criteria. Since cluster 
detection in our hospital before the implementation of 
CLAR was not systematized in an equal manner, it is not 
possible to specify the exact number of clusters that were 
detected in the years prior to CLAR utilization. How-
ever, based on our own experiences, we can confidently 
state that this number was considerably lower than the 
number of clusters detected by CLAR in the year 2019. 
The high number of clusters detected by CLAR indi-
cates a high degree of sensitivity. The majority of clusters 
detected by CLAR were caused by susceptible organisms. 
Manual cluster detection, on the other hand, is conven-
tionally focused on MDROs [20, 21], which could be a 
reason that the number of clusters detected by CLAR 
in 2019 was higher than the number detected by man-
ual detection in previous years. Our findings illustrate, 
however, that omitting susceptible organisms from clus-
ter surveillance can result in missing many potentially 
relevant clusters. From July 2019 onwards, alerts were 
evaluated by IPC physicians concerning their clinical rel-
evance. The proportion of alerts with at least one MDRO 

Table 3  Clusters detected by the automated cluster alert system in the year 2019 with assessment of relevance by infection control 
physicians (n = 906)

P-values were calculated using two-sided Chi-squared test. Sampling materials were distinguished into clinical (e.g. blood culture, wound swab) and screening (e.g. 
rectal swab) isolates. Univariable analysis of characteristics. CNS coagulase-negative staphylococci, ICU intensive care unit, n.a. not applicable, NEOPED neonatology 
and pediatrics

Parameter Property Relevant alerts Non-relevant alerts Significance
Number (%) Number (%) p-value (two-tailed)

Cluster size (number of isolates) All 317 (100) 589 (100) n.a.

2 154 (48.6) 312 (53.0) 0.23

3 86 (27.1) 173 (29.4) 0.53

>3 77 (24.3) 104 (17.7) 0.02

Ward type All 317 (100) 589 (100) n.a.

Adult non-ICU 131 (41.3) 377 (64.0) <0.01

Adult ICU 162 (51.1) 184 (31.2) <0.01

NEOPED 24 (7.6) 28 (4.8) 0.11

Pathogen(-group) All 317 (100) 589 (100) n.a.

Enterococcus spp. 86 (27.1) 206 (35.0) 0.02

Staphylococcus aureus 34 (10.7) 59 (10.0) 0.83

CNS 25 (7.9) 123 (20.9) <0.01

Escherichia coli 29 (9.1) 100 (17.0) <0.01

Klebsiella spp. 70 (22.1) 43 (7.3) <0.01

Pseudomonas aeruginosa 23 (7.3) 33 (5.6) 0.40

Enterobacter spp. 15 (4.7) 11 (1.9) 0.02

Other 35 (11.0) 14 (2.4) <0.01

Cluster includes at least one clinical isolate All 317 (100) 589 (100) n.a.

Yes 290 (91.5) 557 (94.6) 0.10

No 27 (8.5) 32 (5.4) 0.10

Cluster includes at least one multidrug resistant isolate All 317 (100) 589 (100) n.a.

Yes 75 (23.7) 137 (23.3) 0.96

No 242 (76.3) 452 (76.7) 0.96
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among all relevant alerts was almost identical to the pro-
portion of alerts with MDROs among all non-relevant 
alerts (24 % vs. 23 %). This demonstrates that the higher 
number of alerts with susceptible organisms was not just 
“debris data” that yielded no clinical value, but substan-
tially contributed to IPC practice in our hospital.

Another aspect that confirms the high sensitivity of 
CLAR is the fact that the majority of clusters detected 
consisted of a rather low number of isolates (i.e. two or 
three). Although the proportion of larger cluster (i.e. 
over three isolates) was significantly higher among rel-
evant than non-relevant alerts, a considerable number 
of detected clusters with only two or three isolates were 
deemed relevant by IPC physicians, and in some cases 
measures were taken to mitigate the spread of the patho-
gen. Given that even large outbreaks initially begin with 
a small number of cases, it is conceivable that some of 
these small clusters that were detected early might have 
resulted in larger outbreaks, had they not been brought 
to the attention of the IPC team by CLAR. Neverthe-
less, it has to be acknowledged that around two thirds 
of all alerts with relevance assessment were deemed 

non-relevant. Therefore, alert specificity is an important 
point for improvement of CLAR. This aspect is particu-
larly important since the workload and time invested into 
evaluating non-relevant alerts might distract from ade-
quately focusing on relevant alerts.

Since CLAR employed pathogen specific rules, we 
were able to collect data on the types of pathogens and 
pathogen-groups that accounted for the highest number 
of clusters. E. faecium and E. faecalis as well as E. coli 
clusters were the most frequently identified, reinforcing 
evidence that these pathogens are commonly causing 
nosocomial outbreaks [22, 23]. The differences that were 
revealed by distinguishing between different types of 
wards, illustrate that the likelihood of pathogens to clus-
ter is not the same hospital-wide, but varies by patient 
population and type of care. The observation that Gram-
negative bacteria, such as Klebsiella spp., Enterobacter 
spp. and Serratia spp. can be particularly problematic in 
pediatric and neonatal settings is in alignment with data 
from previous publications [24, 25].

Conventional cluster detection places a focus on 
patients in ICUs and other critical areas of a hospital 

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

NEOPED

Adult ICUs

Adult non-ICUs

All wards

ENTF SAU CNS ESCOL KLEB PSEA ENTB OTH
Fig. 1  Clusters detected by the automated cluster alert system in the year 2019. Stratification by pathogen and ward type. CNS coagulase-negative 
staphylococci, ENTB Enterobacter spp., ENTF Enterococcus faecium and Enterococcus faecalis, ESCOL Escherichia coli, ICU intensive care unit, 
KLEB Klebsiella spp., NEOPED neonatology and pediatrics, OTH other pathogens, PSEA Pseudomonas aeruginosa, SAU Staphylococcus aureus 
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[26]. Our findings revealed that this focus is to a cer-
tain extent justified, as the number of alerts per 1,000 
patient days was much higher in adult ICUs compared to 
other ward types and the percentage of ICU alerts that 
were deemed relevant was significantly higher than for 
non-ICU alerts. However, a considerable proportion of 
non-ICU alerts were classified as relevant, highlighting 
that non-ICUs should not be neglected when conduct-
ing cluster surveillance. The fact that during a period of 
roughly six months over 300 alerts were deemed relevant, 
represents a remarkable finding. When extrapolated to a 
one-year period at a 3,000-bed hospital, we can estimate 
that around 20 relevant alerts per 100 patient beds might 
occur annually.

Statistical analysis yielded diverse results considering 
the association of alert relevance and type of pathogen. 
Since the data available were only from a one-year period 
and in some cases only included a low number of isolates, 
these findings should be interpreted with caution. How-
ever, the high percentage of clusters of Klebsiella spp. and 
Enterobacter spp. among relevant alerts reinforce expe-
riences that Gram-negative bacteria can be particularly 
challenging in the practice of IPC in an acute care hos-
pital. Healthcare-associated infections caused by Gram-
negative bacteria have been described as a concern to 
patient safety [27]. Automated cluster alert systems can 
serve as a tool for early detection of such infections.

The comprehensive approach of CLAR that includes 
susceptible organisms and monitors cluster occurrence 
in all wards of a hospital may show its true merit in situ-
ations when human healthcare resources are scarce or 
need to be re-allocated. The COVID-19 pandemic has 
demonstrated how quickly human resources can become 
scarce and how demands on employees can change 
[28]. To have a robust, autonomous system in place that 
ensures a continuous and steady quality of cluster moni-
toring could be a great advantage in such situations.

Digital solutions for streamlining workflows in the 
practice of medicine in general, and IPC more spe-
cifically, have gained recognition in recent years [29]. 
Regarding automated cluster detection however, poten-
tials of digitalization are not yet fulfilled. Successful 
applications of automated cluster alert systems, such as 
CLAR at all three sites of Charité university hospital, 
may serve as an incentive for other hospitals to establish 
similar systems. Furthermore, data generated and evalu-
ated by automated cluster alert systems such as CLAR, 
may facilitate the exchange of data between institutions 
as well as the transfer of information from hospitals to 
public health organizations. CLAR was implemented at a 
hospital that had established routines regarding the prac-
tice of IPC at the time of the implementation. We con-
sider the pre-existence of a dedicated IPC department 

and IPC-related processes to be a prerequisite for the 
successful implementation of any automated cluster alert 
system.

Various limitations have to be acknowledged when 
interpreting the data. CLAR identified clusters by com-
paring a 14-day period to a baseline that was established 
by analyzing data of the previous 2 years. Outbreaks that 
have occurred during these two years might have artifi-
cially increased the baseline in some cases. To counter-
act this potential confounder, six different algorithms 
were employed in order to compensate for possible out-
break-related baseline distortions. Although copy strains 
were eliminated by CLAR, in  situations where clusters 
gradually increased in size (e.g. n = 2 on day one; n = 3 
on day four), multiple alerts might have been generated 
that contained identical isolates. Therefore, the num-
ber of clusters detected by CLAR cannot be uncritically 
equated with clustering events at a ward. Moreover, it is 
important to recognize that not all clusters detected by 
CLAR likely represented nosocomial transmissions, but 
in some cases rather might have been attributable to ran-
dom fluctuations in pathogen occurrence at a ward. In 
order to verify whether isolates in clusters detected by 
CLAR were genetically identical and thus likely attribut-
able to transmission events, genome sequencing would 
be necessary. The relevance assessment of alerts was 
done at the discretion of the IPC physician in charge for 
the ward that the alert pertained to. The IPC physicians 
at Charité university hospital during that time were a 
diverse group of professionals at different stages of their 
training. Despite regular team meetings where questions 
about CLAR were discussed and alerts were worked on 
jointly to ensure a high degree of consistency, individual 
differences in how alert data were evaluated could repre-
sent a confounder.

Conclusions
The automation of cluster detection offers great poten-
tials for the practice of infection control. The automated 
cluster alert system in use in our hospital represents a 
viable alternative to conventional manual cluster detec-
tion and was able to identify a high number of alerts that 
were deemed relevant by IPC physicians. Automated 
cluster alert systems can help detecting healthcare-asso-
ciated clusters early and thereby serve as an effective 
tool to prevent the uncontrolled spread of pathogens in 
a hospital. Particularly clusters of susceptible pathogens 
that might otherwise not be noticed early, were detected 
reliably by the automated cluster alert system. We con-
sider the ability of our alert system to detect even small 
clusters that deviate from the baseline for a pathogen 
at a ward to be a great benefit for patient safety. How-
ever, potentials for improvement remain regarding the 
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specificity of alerts. A target for future developments 
must therefore be to reduce the number of non-relevant 
alerts without impeding the detection of clinically rel-
evant clusters. Further research is required to reconcile 
these two objectives.
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