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Abstract. This paper is concerned with long-time dynamics of semilinear
wave equations defined on bounded domains of R3 with cubic nonlinear terms

and locally distributed damping. The existence of regular finite-dimensional

global attractors established by Chueshov, Lasiecka and Toundykov (2008)
reflects a good deal of the current state of the art on this matter. Our con-

tribution is threefold. First, we prove uniform boundedness of attractors with

respect to a forcing parameter. Then, we study the continuity of attractors
with respect to the parameter in a residual dense set. Finally, we show the exis-

tence of generalized exponential attractors. These aspects were not previously

considered for wave equations with localized damping.

1. Introduction. This paper is concerned with long-time dynamics of semilinear
wave equations of the form

∂2
t u−∆u+ a(x)g(∂tu) + f(u) = εh(x) in Ω× R+,

u = 0 on ∂Ω× R+,

u(0) = u0, ∂tu(0) = u1 in Ω,

(1)

defined in a bounded domain Ω of R3 with smooth boundary ∂Ω. We consider this
problem with three distinguished features, namely, locally distributed damping,
nonlinearity with critical Sobolev growth and external force with a parameter ε.
Here critical Sobolev growth means that |f(u)| growths at most like |u|3. As we
will see, for a variety of a, f, g, h, problem (1) has a unique finite energy solution in
C(R+,H), where H = H1

0 (Ω)× L2(Ω). Then the solution operator of (1) defines a
C0-semigroup {Sε(t)}t≥0 on H.

The existence of global attractors for wave equations with critical nonlinearity
was firstly established by Arrieta, Carvalho and Hale [1]. They proved the existence
of regular attractors in a framework of linear full damping ∂tu, that is, with a(x) = 1
and g(s) = s. Later, the existence of global attractors for wave equations with
locally distributed damping was established by Feireisl and Zuazua [11]. They
considered a nonlinear damping term a(x)g(∂tu) localized in a collar of Ω, that is,
the support of a(x) contains ω = Ω∩O, where O is some open neighborhood of ∂Ω
in R3. The question of whether such attractors have finite fractal dimension was
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finally established by Chueshov, Lasiecka and Toundykov [8]. There, existence of
regular finite dimensional attractors was proved for a more general damping region
ω, satisfying an observability condition (see Figure 1). Both damping regions ω in
[8, 11] satisfy the geometric control condition (GCC) which asserts that every ray
of geometric optics within Ω must reach the control region. See Figure 2 and e.g.
[4, 24, 25].

Figure 1. The sign of (x− x0) · ν(x) allows us to divide ∂Ω into
an uncontrollable part ΓU and a controllable part ΓC , where x0

serves as an observer.

The results in [1, 8, 11] consider problem (1) with external force h = 0. Our
objective is to assume h ∈ L2(Ω) and study continuity aspects of attractors with
respect to the parameter ε ∈ [0, 1]. We also study the existence of exponential
attractors.

The main contributions of the present paper are summarized as follows.
(a) The existence of attractors Aε for the system (H, Sε(t)), defined by (1), can

be justified with [8]. However, since the damping term is in general effective only
on a neighborhood of ∂Ω, it is not easy to estimate the size of a bounded absorbing
set. In other words, given an initial value z in a bounded set B ⊂ H, show the
existence of a constant Cfh > 0, independent of B, such that

‖Sε(t)z‖H ≤ CBe−γt + Cfh, ε ∈ [0, 1], t ≥ 0. (2)

Such an estimate would promptly show that attractors Aε are uniformly bounded.
Indeed, in [8] the authors showed dissipativeness of the system by exploring its
gradient structure combined with a unique continuation theorem [29]. In [11], the
authors proved existence of a bounded absorbing set by using a contradiction ar-
gument combined with a unique continuation theorem [27], without showing an
estimate like (2). Here, in Theorem 3.2, we prove that attractors Aε are bounded
uniformly with respect to ε ∈ [0, 1].

(b) Once proved that attractors Aε are uniformly bounded, we can apply a recent
result by Hoang, Olson and Robinson [16] to study the continuity of ε 7→ Aε with
respect to the Hausforff metric. Then, we prove that Aε is continuous on any ε ∈ J ,
a dense residual subset of [0, 1]. In addition, we show that upper-semicontinuity of
Aε with respect to the parameter holds for all ε ∈ [0, 1]. See Theorems 4.1 and 4.2.
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These results were not considered before for waves equations with locally distributed
damping.

(c) We recall that an exponential attractor for a system (H, S(t)) is a compact
setM⊂ H that is forward invariant, has finite fractal dimension, and exponentially
attracts bounded sets of H. Exponential attraction means that for any bounded set
D, there exists a constant γD > 0 such that

lim
t→+∞

eγDtdistH(S(t)D,M) = 0,

where distH represents the Hausdorff semi-distance in H (e.g. Eden et al [10]). In
general, establishing existence of exponential attractors for nonlinear wave equations
is a difficult task. Indeed, most results are related to parabolic like equations.
However, we shall prove the existence of so-called generalized exponential attractors
(cf. Chueshov and Lasiecka [6]). This differs from the former one by requiring that

the attractor have finite fractal dimension in a possibly larger space H̃ containing
H. See Theorem 5.1.

Figure 2. The control region ω satisfies (GCC). Any ray of geo-
metric optics inside Ω hits ω.

2. Well-posedness and global attractors. Our study is based in part on the
results presented in [8] concerned with problem (1), with h = 0, in the energy space

H = H1
0 (Ω)× L2(Ω).

The norm in H is given by

‖(u, v)‖2H = ‖∇u‖22 + ‖v‖22,

where ‖ · ‖p denotes Lp(Ω)-norms. The existence of strong solutions is placed in

H1 = (H2(Ω) ∩H1
0 (Ω))×H1

0 (Ω).

We shall freely use standard notations and properties of Sobolev spaces as in e.g.
[13, 28].
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2.1. Assumptions. Let Ω be a bounded domain of R3 with smooth boundary ∂Ω.
We consider nonlinear structural forces f ∈ C2(Ω) satisfying

|f ′′(s)| ≤ cf (1 + |s|), s ∈ R (3)

and

lim sup
|s|→∞

f(s)

s
> −λ1, (4)

where λ1 > 0 is the principal eigenvalue of the Laplacian operator −∆ with Dirichlet
boundary condition. With respect to the damping term, we assume g ∈ C1(R) with
g(0) = 0 and such that

g(s)s ≥ 0 and m ≤ g′(s) ≤M, s ∈ R, (5)

for some constants m,M > 0. For the external force we take

h ∈ L2(Ω). (6)

Finally, for the control/damping region we assume there exists a point x0 ∈ R3 \Ω
such that a (uncontrolled) part of the boundary

ΓU = {x ∈ ∂Ω | (x− x0) · ν(x) ≤ 0}

is nonempty, where ν denotes the outward normal vector on ∂Ω. We also define an
open connected (controlled) part of ΓC of ∂Ω that satisfies ΓC ∪ΓU = ∂Ω, possibly
overlapping (see figure 1). Then we can define the control/damping region

ω = {x ∈ Ω |dist(x,ΓC) ≤ δ}, (7)

for some δ > 0. Finally we take a ∈ L∞(Ω), nonnegative, such that for some a0 > 0,

a(x) ≥ a0 on ω. (8)

Remark 1. (a) The boundedness of g′(s) in the assumption (5) is not necessary
for global existence. As shown in [8], this is essential for the proof that attractors
have finite fractal dimension. (b) We observe that ω constructed in (7) satisfies the
geometric control condition (GCC). See figure 2.

2.2. Well-posedness. We can write problem (1) as a Cauchy problem

∂tU + AU + FU = H, U(0) = [u0, u1]>, (9)

defined in H, where

U =

[
u
∂tu

]
, A =

[
0 −Id
−∆ a(x)g(·)

]
, F =

[
0 0
f(·) 0

]
, H =

[
0

εh(x)

]
,

and D(A) = H1.

Theorem 2.1 (Well-posedness [8]). Suppose that hypotheses (3)-(8) are satisfied
and ε ∈ [0, 1]. Then we have:

1. If (u0, u1) ∈ H then problem (1) has a unique solution

u ∈ C(R+;H1
0 (Ω)) ∩ C1(R+;L2(Ω)).

2. If (u0, u1) ∈ H1, then above solution has stronger regularity

u ∈ C(R+;H2(Ω) ∩H1
0 (Ω)) ∩ C1(R+;H1

0 (Ω)).
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3. Let us denote the solution operator by Sε(t). Then given T > 0 and a bounded
set B of H, there exists a constant CBT > 0 such that

‖Sε(t)z1 − Sε(t)z2‖H ≤ CBT ‖z1 − z2‖H, (10)

for all t ∈ [0, T ] and z1, z2 ∈ B.

Remark 2. (a) Theorem 2.1 is a known result. A detailed proof with h = 0 is
presented in [8]. Since the external force h = h(x) is not time-dependent it does
not change the arguments in [8]. Essentially, under the hypotheses, A is maximal
monotone in H, and F is locally Lipschitz in H since the nonlinear perturbation
f(u) is locally Lipschitz from H1

0 (Ω) to L2(Ω). (b) The continuity estimate (10)
shows that solution operator Sε(t) is a C0-semigroup on H.

We end this subsection with some remarks on the energy of the system. Given
any solution u ∈ C(R+;H1

0 (Ω)) ∩ C1(R+;L2(Ω)) of problem (1) we define its total
energy by setting

Eε(t) =
1

2
‖(u(t), ∂tu(t))‖2H +

∫
Ω

F (u(t)) dx− ε
∫

Ω

h(x)u(t) dx,

where F (u) =
∫ u

0
f(r) dr.

Lemma 2.2. There exist positive constants ν1, c1, c2, depending on f and h, such
that

ν1‖(u, ∂tu)‖2H − c1 ≤ Eε ≤ c2(1 + ‖(u, ∂tu)‖4H), ∀ ε ∈ [0, 1]. (11)

In addition,
d

dt
Eε = −

∫
Ω

a(x)g(∂tu)∂tu dx, ∀ ε ∈ [0, 1]. (12)

Proof. The proof is standard. Indeed, the first and second inequalities in (11) follow
from assumptions (4) and (3) respectively, for any ε ∈ [0, 1]. We sketch a proof of
the first inequality since it will be used some times. Indeed, from assumption (4)
we can choose δ > 0 (small) such that lim inf f(s)s−1 ≥ −(λ1− δ) as |s| → ∞. This
implies the existence of a constant kF > 0 such that

F (s) ≥ −λ1 + δ

2
s2 − kF , ∀ s ∈ R.

Then ∫
Ω

F (u) dx ≥ 1

2

(
−λ1 + δ

λ1

)
‖∇u‖22 − kF |Ω|.

From this we infer the first inequality in (11) by taking ν1 = δ/(2λ1). To obtain
the energy estimate (12) we integrate first equation of (1) multiplied by ∂tu.

Remark 3. Since the energy Eε(t) is not increasing, using (11) we can estimate
‖Sε(t)z‖H by the size of initial value ‖z‖H. In particular, all solution trajectories
with initial value in a bounded set B remain uniformly bounded. Indeed,

‖Sε(t)z‖2H ≤
1

ν1
(Eε(0) + c1)

≤ 1

ν1

(
c2
(
1 + ‖z‖4H

)
+ c1

)
,

independently of ε ∈ [0, 1].
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2.3. Global attractors. In this section we recast the main result in [8] on the
existence of regular finite dimensional attractors for critical waves with locally dis-
tributed damping. We recall that a global attractor for a system (X,S(t)), where X
is a complete metric space and S(t) is a C0-semigroup, is a nonempty fully invariant
compact set A ⊂ X that attracts bounded sets of X. The fractal (box-counting)
dimension of a compact set A is defined

dimX
f (A) = lim sup

r→0

ln(Nr)

ln(1/r)
,

where Nr is the minimal number of closed balls B(0, 2r) necessary to cover A. See
e.g. [3, 13, 19, 28] or [6, Chapter 7].

Theorem 2.3 (Global attractors [8]). Suppose that hypotheses (3)-(8) are satisfied
and ε ∈ [0, 1]. Then:

1. The dynamical system (H, Sε(t)) corresponding to problem (1) possesses a
global attractor Aε with finite fractal dimension.

2. Let Nε denote the set of stationary solutions of the problem (1). Then we
have

Aε = Wu(Nε),

the unstable manifold emanating from the stationary points.
3. The attractor Aε has higher regularity H1 and its full trajectories (u(t), ∂tu(t)),
t ∈ R, satisfy

‖(∂tu(t), ∂2
t u(t))‖H ≤ Q(‖Aε‖H), (13)

where Q(·) is a generic increasing positive function not depending on ε or on
a particular trajectory.

Remark 4. The proof the theorem, with h = 0, was presented in [8]. Since
h is an autonomous perturbation, the proof of the theorem with h follows with
same methods and arguments. Firstly, it is shown that the system has a gradient
structure. This is done by using a unique continuation theorem in [12, 29]. Then,
a difficult part is to show asymptotic regularity/compactness of the system. To
this end, new observability inequalities, trough Carleman estimates [12, 20, 21], are
obtained in order to prove a stability inequality. For the reader’s convenience we
shall prove the gradient structure in Lemma 3.1 below.

Remark 5. After the apparition of [8], Blair, Smith and Sogge [5] proved new
Strichartz type estimates for wave equations on manifolds with boundary. This
provided new tools to study wave equations in bounded domains of R3 with quintic
nonlinearities (rather than cubic). With respect to wave equations with locally dis-
tributed damping, Joly and Laurent [17] considered linear damping and sub-quintic
nonlinearities (|f(x, u)| ≈ |u|5−δ). Their results were presented in a formalism of
Riemannian geometry, assuming that the control region ω satisfies (GCC) only. To
establish existence of global attractors, they proved a proper unique continuation
theorem based on the one by Robbiano and Zuily [26], that requires f = f(x, u) to
be analytic. In the framework of [17], regularity and fractal dimension of attractors
are open questions. We refer the reader to, e.g. [7, 9, 18, 22, 23, 30] for some recent
works on attractors for wave equations with cubic and quintic nonlinearities.
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3. Uniformly bounded attractors. In this section we prove that global attrac-
tors Aε given by Theorem 2.3 are uniformly bounded with respect to ε ∈ [0, 1]. We
recall that a mapping Ψ : H → R is called a strict Lyapunov function for a system
(H, S(t)) if the functional Ψ(S(t)z) is non-increasing with respect to t ≥ 0, for any
z ∈ H. Moreover, if Ψ(S(t)z) = z for all t ≥ 0, then z is a fixed point of S(t). A
dynamical system is called gradient if it possesses a strict Lyapunov function.

Lemma 3.1 (Gradient system [8]). Suppose that hypotheses of Theorem 2.1 hold.
Then the total energy Eε(t) is a strict Lyapunov functional.

Proof. We sketch a proof for the reader’s convenience. Let us define

Ψε(Sε(t)z) :=
1

2
‖(u(t), ∂tu(t))‖2H +

∫
Ω

F (u(t)) dx− ε
∫

Ω

h(x)u(t) dx, (14)

where (u(t), ∂tu(t)) is the solution of problem (1) with initial data z. From (12) we
see that Ψε(Sεv(t)z) is non-increasing. Now, if Ψε(Sε(t)z) is stationary for some z,
it follows that ∫

Ω

a(x)g(∂tu)∂tu dx = 0, t ≥ 0.

Using (5) we infer that∫
ω

|∂tu|2 dx = 0 and

∫
Ω

a(x)|g(∂tu)|2 dx = 0, t ≥ 0.

In particular, for any T > 0,

∂tu = 0 a.e. in ω × (0, T ) and a(x)g(∂tu) = 0 a.e. in Ω× (0, T ).

Therefore, the semiflow Sε(t)z = (u(t), ∂tu(t)) is a solution of
∂2
t u−∆u+ f(u) = εh(x) in Ω× (0, T ),

u = 0 on ∂Ω× (0, T ),

∂tu = 0 in ω × (0, T ),

u(0) = u0, ∂tu(0) = u1 in Ω× (0, T ).

By density arguments, we can assume (u, ∂tu) is a strong solution in H1 and then,
differentiating the equation and putting w = ∂tu, we obtain

∂2
tw −∆w + f ′(u)w = 0 in Ω× (0, T ),

w = 0 on ∂Ω× (0, T ),

w = 0 in ω × (0, T ).

(15)

Upon (15) we apply a unique continuation theorem which is compatible with the
geometric conditions of ω (e.g. [12, Theorem 2.2]) to conclude that w = ∂tu = 0
over Ω× R+. Therefore z = (u0, 0) is a fixed point of Sε(t).

Theorem 3.2. Under the hypotheses of Theorem 2.3, there exists a constant R > 0
such that

Aε ⊂ B(0, R), ∀ ε ∈ [0, 1]. (16)

In addition, there exists a constant CR > 0 such that

‖(∂tu(t), ∂2
t u(t))‖H ≤ CR, ∀ε ∈ [0, 1], t ∈ R, (17)

for any full trajectory {(u(t), ∂tu(t)) | t ∈ R} that belongs to Aε.
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Proof. From Lemma 3.1 we know that system (H, Sε(t)) is gradient by taking the
energy functional as a Lyapunov function (14).

Next, we recall a property of gradient systems that asserts the following: if A is
the global attractor of a gradient system with Lyapunov function Ψ, and bounded
set of stationary points N , then sup{Ψ(z) | z ∈ A} ≤ sup{Ψ(z) | z ∈ N}. See e.g.
[6, Remark 7.5.8]. In our context, we have

sup{Ψε(z) | z ∈ Aε} ≤ sup{Ψε(z) | z ∈ Nε}, (18)

where Nε denotes the set of fixed points of Sε(t).
Now, we observe that Nε must be uniformly bounded. Indeed, if z ∈ Nε then

z = (u, 0) where u is a weak solution of the stationary problem

−∆u+ f(u) = εh(x) in H1
0 (Ω).

Using assumption (4) and Poincaré inequality we obtain a constant C > 0 such that

‖∇u‖22 =

∫
Ω

(εh− f(u))u dx ≤ 1

2
‖∇u‖22 + C(1 + ‖h‖22).

Therefore ‖∇u‖2 ≤ Cfh for some constant Cfh > 0, independently of ε ∈ [0, 1].
This shows that Nε is uniformly bounded with respect to ε. In particular, taking
into account the definition of Ψε in (14) and the second inequality in (11), we see
that

Ψε(z) ≤ c2(1 + C4
fh), ∀ z ∈ Nε, ∀ ε ∈ [0, 1].

On the other hand, using the first inequality in (11), we see that

ν1‖z‖2H − c1 ≤ Ψε(z), ∀ z ∈ Aε, ∀ ε ∈ [0, 1].

Combining last two estimates with (18) we obtain the uniform bound (16) by taking
R2 = ν−1(1 + c1 + c2 + c2C

4
fh). Finally, taking CR = Q(R), we see from (13) that

estimate (17) holds.

Remark 6. We note that from (16), taking R0 > R, the ball B = B(0, R0) is a
bounded absorbing set of (H, Sε(t)), uniformly on ε. Given a bounded set B ⊂ H,
there exists a entrance time tB > 0 such that Sε(t)B ⊂ B, if t ≥ tB , for any
ε ∈ [0, 1].

4. On the continuity of attractors. Let Aλ be a family of global attractors for
a system (X,Sλ(t)), where λ belongs to a complete metric space Λ. We say that
Aλ is upper semicontinuous on λ0 ∈ Λ if

lim
λ→λ0

distX(Aλ,Aλ0) = 0,

where distX(A,B) = supa∈A infb∈B d(a, b) denotes the Hausdorff semi-distance in
X. Analogously, if we commutate Aλ and Aλ0

in the above limit, then we say that
Aλ is lower semicontinuous on λ0 ∈ Λ. Then Aλ is continuous on λ0 ∈ Λ if

lim
λ→λ0

dX(Aλ,Aλ0
) = 0,

where dX(A,B) = max
{

distX(A,B),distX(B,A)
}

is the Hausdorff metric in X.
While it is more or less standard to check upper semicontinuity of attractors for

a large class of dissipative systems, the proof of lower semicontinuity is much more
involving (cf. [14, 15]).

We shall use a recent result by Hoang, Olson and Robinson [16] on the continuity
of attractors with respect to a parameter. Their results extend earlier ones by Babin
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and Pilyugin [2]. Accordingly, let Sλ(t) be a family of parametrized semigroups
defined on X, with λ in a complete metric space Λ. Assume that

(c1) The system (X,Sλ(t)) has a global attractor Aλ for every λ ∈ Λ,
(c2) There exists a bounded set B ⊂ X such that Aλ ⊂ B for every λ ∈ Λ,
(c3) For t > 0, Sλ(t)x is continuous in λ, uniformly for x in bounded subsets of X.

Then Aλ is continuous on all λ ∈ J where J is a “residual” set dense in Λ. See [16,
Theorem 5.2].

Theorem 4.1 (Continuity on a residual dense subset). In the context of Theorem
2.3 there exists a set J dense in [0, 1] such that Aε is continuous with respect to any
parameter ε0 ∈ J , that is,

lim
ε→ε0

dH(Aε,Aε0) = 0, ∀ ε0 ∈ J. (19)

Proof. We shall apply [16, Theorem 5.2] to the context of Theorem 2.3. Then above
assumption (c1) holds. The assumption (c2) also holds because of the uniform
bound (16) in Theorem 3.2. It remains to prove condition (c3).

Let B be a bounded set of H. Given ε1, ε2 ∈ [0, 1] and z ∈ B, let us denote

Sε1(t)z = (u(t), ∂tu(t)) and Sε2(t)z = (v(t), ∂tv(t)).

Then w = u− v is a solution of
∂2
tw −∆w + a(g(∂tu)− g(∂tv)) + f(u)− f(v) = (ε1 − ε2)h in Ω× R+,

w = 0 on ∂Ω× R+,

w(0) = ∂tw(0) = 0 in Ω,

and consequently we have

1

2

d

dt
‖(w, ∂tw)‖2H =

∫
Ω

(f(v)− f(u))∂tw dx−
∫

Ω

a(g(∂tu)− g(∂tv))∂tw dx

+ (ε1 − ε2)

∫
Ω

h∂tw dx. (20)

By assumption (3) we know that |f ′(s)| ≤ C(1 + |s|2) for some C > 0. Then,∫
Ω

(f(v)− f(u))∂tw dx ≤ C(1 + ‖u‖26 + ‖v‖26)‖w‖6‖∂tw‖2

≤ C(1 + ‖∇u‖42 + ‖∇v‖42)‖∇w‖22 + ‖∂tw‖22.

From Remark 3, ‖∇u‖42 + ‖∇v‖42 are uniformly bounded, and hence there exists a
constant CB > 0 such that∫

Ω

(f(v)− f(u))∂tw dx ≤ CB‖(w, ∂tw)‖2H.

The assumptions (5) and (8) imply that

−
∫

Ω

a(g(∂tu)− g(∂tv))∂tw dx ≤ 0.

Also,

(ε1 − ε2)

∫
Ω

h∂tw dx ≤ |ε1 − ε2|2‖h‖22 + 4‖(w, ∂tw)‖2H.

Inserting above three estimates into (20) we obtain

d

dt
‖(w, ∂tw)‖2H ≤ C0‖(w, ∂tw)‖2H + |ε1 − ε2|2‖h‖22,
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where C0 = C0(B, f, h) > 0 is independent of ε1, ε2. Then Gronwall inequality
yields

‖(w, ∂tw)‖2H ≤ eC0t‖(w(0), ∂tw(0)‖2H + C0(et − 1)|ε1 − ε2|2‖h‖22.

Since ‖(w(0), ∂tw(0)‖H = 0, we finally see that

‖Sε1(t)z − Sε2(t)z‖H ≤
√
C0(et − 1)‖h‖2|ε1 − ε2|, t > 0,

which shows (c3). As a conclusion, by applying [16, Theorem 5.2], there exists a
dense set J ⊂ [0, 1] such that (19) holds. This ends the proof.

Theorem 4.2 (Upper semicontinuity). In the context of Theorem 2.3 the family of
global attractors Aε is upper semicontinuous with respect to parameters ε in [0, 1],
that is,

lim
ε→ε0

distH(Aε,Aε0) = ε0, ∀ ε0 ∈ [0, 1]. (21)

Proof. We argue by contradiction following [14]. Suppose that Aε is not upper
semicontinuous at ε0 ∈ [0, 1]. Then from (21) there exists δ > 0 and sequences
εn → ε0 and zn0 ∈ Aεn such that

inf
y∈Aε0

‖zn0 − y‖H ≥ δ, ∀n ∈ N. (22)

Since the global attractors Aε are also characterized as

Aε = {z(0) | z is a bounded full trajectory of Sε(t)},

let zn = (un, ∂tun) be a bounded full trajectory of Aεn such that zn(0) = zn0 . Then
by (17) in Theorem 3.2, we see that

(un, ∂tun) is bounded in W 1,∞(R,H1). (23)

From classical compactness arguments, we deduce the existence of a pair (u, ∂tu) ∈
C(R;H1), such that, up to a subsequence,

(un, ∂tun)→ (u, ∂tu) in C([−T, T ];H), ∀T > 0. (24)

Moreover, by (23) and (24), it follows that

sup
t∈R
‖(u(t), ∂tu(t))‖H <∞.

We claim that z = (u, ∂tu) is a bounded full trajectory of the limiting semi-flow
Sε0(t). Now, it is enough to show that z is a full bounded trajectory for the problem
(1) with ε = ε0, that is,

∂2
t u−∆u+ a(x)g(∂tu) + f(u) = ε0h(x), a.e. t ∈ R. (25)

Indeed, since (un, ∂tun) satisfies the equation

∂2
t un −∆un + a(x)g(∂tun) + f(un) = εnh(x), n ∈ N, (26)

we can proceed as in the verification of (c3) in Theorem 4.1 to conclude that (25)
is the limit of (26) as n→∞. This is possible because, for any n ∈ N, the control
conditions in the damping region ω remains the same. Therefore

z(0) ∈ Aε0 and lim
n→∞

‖zn0 − z(0)‖H = 0,

which contradicts (22).
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5. Generalized exponential attractor. The objective of this section is to prove
the existence of a generalized fractal exponential attractor for the dynamic system
associated with problem (1). Let X be a Hilbert space. Formally, cf. [6, Defini-
tion 7.4.4], a generalized (fractal) exponential attractor for a system (X,S(t)) is a
compact set Aexp ⊂ X that attracts exponentially bounded sets of X, is forward

invariant, and have finite fractal dimension in a larger space X̃ ⊇ X. Our result
reads as follows.

Theorem 5.1. Under the hypotheses of Theorem 2.3, the system (H, Sε(t)) asso-
ciated to problem (1) possesses a generalized exponential attractor.

The proof of Theorem 5.1 will be completed at the end of this section. It needs
the following abstract result.

Theorem 5.2. ([6, Theorem 7.4.2]) Let M be a closed bounded set of a separable
Hilbert space H and suppose that V : M →M is a Lipschitz mapping. In addition,
suppose there exist compact seminorms n1 and n2 on H such that

‖V1v1 − V v2‖ ≤ η‖v1 − v2‖+K(n1(v1 − v2) + n2(V v1 − V v2)),

for any v1, v2 ∈ M , where 0 < η < 1 and K > 0 are constants. Then, for any
θ ∈ (η, 1) there exists a positively invariant compact set Aθ ⊂ M , of finite fractal
dimension, satisfying

distM (V kM,Aθ) ≤ rθk, k ∈ N,

for some r > 0.

Remark 7. To apply Theorem 5.2 in the context of problem (1) we shall apply
rather technical arguments. They rely on some results of [8] mainly related to
Carleman estimates in order to absorb some lower order terms generated by, for
instance, the integral ∫

Ω

(f(u)− f(v))(∂tu− ∂tv)dx.

We shall recover some of theses estimates in Lemma 5.3 below.

Remark 8. (Notations for Section 5) In what follows, we will be in the context
of Theorem 2.3. To simplify notations, without loss of generality, we take ε = 1
and S(t) instead S1(t). Given two initial data (u0, u1) and (v0, v1) in a bounded set
B ⊂ H, we shall use notation

(u(t), ∂tu(t)) = S(t)(u0, u1) and (v(t), ∂tv(t)) = S(t)(v0, v1).

Putting w = u− v we write

E(t) =
1

2
‖(w(t), ∂tw(t))‖2H.

From Remark 6, S(t) possesses a bounded absorbing set B, which can be assumed
closed and forward invariant. Moreover, CT , CBT and CBT will denote several
positive constants with obvious meaning.

Lemma 5.3. ([8, Proposition 6]) Given T > 0 sufficiently large, there exist con-
stants σ ∈ (0, 1) and CT > 0 such that

E(T ) + CT

∫ T

0

E(t)dt ≤ σE(0) + CBT sup
t∈[0,T ]

‖w(t)‖22 + CTΥ, (27)
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where

Υ =

∫ T

0

∣∣∣∣∫ t

0

∫
Ω

(f(u)− f(v))∂tw dxdτ

∣∣∣∣ dt+

∫ T

0

∣∣∣∣∣
∫ T

s

∫
Ω

(f(u)− f(v))∂tw dxdτ

∣∣∣∣∣ ds
+

∣∣∣∣∣
∫ T

0

∫
Ω

(f(u)− f(v))∂tw dxdτ

∣∣∣∣∣ . (28)

Lemma 5.3 allows us to prove the following key estimate.

Lemma 5.4. Let B be a closed positively invariant bounded absorbing set of the
system (H, S(t)). Then, there exist positive constants CBT and σ ∈ (0, 1) such that

E(s+ T ) ≤ σE(s) + CBT sup
τ∈[0,T ]

‖w(s+ τ)‖22, s ≥ 0. (29)

Proof. Firstly, we see that given ν > 0,∣∣∣∣∫ t

s

∫
Ω

(f(u)− f(v))∂tw dxdτ

∣∣∣∣ ≤ ν(E(s) + E(t)) + CBν sup
τ∈[s,t]

‖w(τ)‖22

+ ν

∫ t

s

‖∇w‖22 dτ, 0 ≤ s ≤ t, (30)

for some constant CBν > 0. This estimate is analogous to the one in [8, Proposition
8]. The only difference is that trajectories (not necessarily complete) are bounded
in B instead within attractor A.

Then, in view of definition of Υ in (28), we have from (30),

Υ ≤ νCT (E(0) + E(T )) + CBTν sup
τ∈[0,T ]

‖w(τ)‖22 + νCT

∫ T

0

E(t)dt,

for certain CBTν > 0. Then, taking ν > 0 small enough, the estimate (27) becomes

E(T ) ≤ σ∗E(0) + CBT sup
t∈[0,T ]

‖w(t)‖22,

with σ∗ ∈ (0, 1) and some constant CBT > 0. Since B is closed forward invariant,
we obtain for any s ≥ 0,

E(s+ T ) ≤ σ∗E(s) + CBT sup
t∈[0,T ]

‖w(s+ t)‖22,

which shows (29).

Now, we are in a position to consider Theorem 5.2 in our context. Given T > 0,
large enough, we define

V = H×W (0, T ), (31)

where

W (0, T ) = {w ∈ H1(0, T ;L2(Ω)) | ‖w‖W = ‖(w, ∂tw)‖L2(0,T ;H) <∞}.

It is clear that

‖(w(0), ∂tw(0))‖2V = ‖(w(0), ∂tw(0))‖2H +

∫ T

0

‖(w(t), ∂tw(t))‖2H dt. (32)

Additionally we define

BT = {(z0, S(t)z0) | z0 ∈ B, t ∈ [0, T ]} ⊂ V,
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where B is a closed invariant bounded absorbing set as in Lemma 5.4, and define
V : BT → V by setting

V (z0, S(t)z0) = (S(T )z0, S(T + t)z0).

Lemma 5.5. Under above definitions we have:

1. Let BT be a bounded subset of BT . Then there exists a constant CBT > 0 such
that

‖V U1 − V U2‖V ≤ CBT ‖U1 − U2‖V , (33)

for any U1, U2 ∈ BT .

2. There exist constants KT > 0 and σ ∈ (0, 1) such that, for any

Z1 = (u(0), ∂tu(0), u(t)) and Z2 = (v(0), ∂tv(0), v(t)) in BT ,

‖V Z1 − V Z2‖V ≤ σ‖Z1 − Z2‖V

+KT

(
sup

s∈[0,T ]

‖w(s)‖L2(Ω) + sup
s∈[0,T ]

‖w(T + s)‖L2(Ω)

)
, (34)

where w = u− v.

3. The mapping V possesses a positively invariant compact set AT ⊂ BT , of
finite fractal dimension, and

distV(V kBT ,AT ) ≤ rqk, k ∈ N, (35)

for some r > 0 and q ∈ (0, 1).

Proof. The Lipschitz condition (33) follows from (10) and (31). To prove (34), we
integrate (29) over s ∈ [0, T ] and add it to (29), obtaining

E(T ) +

∫ 2T

T

E(T ) ≤ σ

(
E(0) +

∫ T

0

E(s)ds

)
+ 2TCBT sup

τ∈[0,2T ]

‖w(τ)‖22.

From definition of norm (32) we see (34).
To prove the last statement we apply Theorem 5.2 with M = BT , H = V. Indeed,

we note that sups∈[0,T ] ‖ · ‖2 defines a compact seminorm in V. In addition, since B
is closed forward invariant, we have V BT ⊆ BT . Then Theorem 5.2 grants (35).

For the next lemma we define the ultra-weak phase space

H−1 = L2(Ω)×H−1(Ω).

Lemma 5.6. Let B be a closed forward invariant bounded absorbing set. Then
there exist a constant CBT > 0 such that

‖S(t1)z − S(t2)z‖H−1 ≤ CBT |t1 − t2|, t1, t2 ∈ [0, T ], z ∈ B. (36)

Proof. The Cauchy problem (9) implies that

‖∂tU(t)‖H−1
≤ ‖AU(t)‖H−1

+ ‖FU(t)‖H−1
+ ‖H‖H−1

≤ C (‖AU(t)‖H + ‖FU(t)‖H + ‖H‖H) .

Now, since F is locally Lipschitz and B is bounded, the estimate (10) implies that

‖AU(t)‖H + ‖FU(t)‖H + ‖H‖H ≤ CBT ,
for some constant CBT > 0. Since U(t) = S(t)z, we see for 0 ≤ t1 ≤ t2 ≤ T ,

‖S(t2)z − S(t1)z‖ ≤
∫ t2

t1

‖∂tU(s)‖H−1
ds ≤ CBT |t2 − t1|,
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which implies (36).

Proof of Theorem 5.1. For T > 0 large enough, we obtain from (35),

distV(V kBT ,AT ) ≤ rqk, k ∈ N,
for some r > 0 and q ∈ (0, 1). In particular,

distH(S(kT )B,PAT ) ≤ rqk, k ∈ N, (37)

where P : V → H is the projection of AT over the first component, that is,

PAT = {z0 ∈ B | (z0, S(t)z0) ∈ AT , t ∈ [0, T ]}.
It is clear that PAT is a compact set in H and S(T )PAT ⊆ PAT . Moreover,

dimHf PAT ≤ dimVfAT <∞, (38)

We define the compact set in H (candidate to exponential attractor)

Aexp :=
⋃

t∈[0,T ]

S(t)PAT .

Then, by construction S(t)Aexp ⊆ Aexp. In addition, from (10) and (37) we see
that

distH(S(t)B,Aexp) ≤ Ce−γt, t ≥ 0,

for some C, γ > 0. It remains to show that Aexp has finite fractal dimension in
some space containing H. We shall use Lemma 5.6.

Let us define a mapping

F : R×H → H−1 such that F(t, z) = S(t)z, t ≥ 0.

Then we have
Aexp = F([0, T ]× PAT ).

We claim that F is Lipschitz restricted to [0, T ]×PAT . Indeed, taking into account
that PAT ⊂ B, estimates (10) and (36) imply that,

‖F(t1, z1)−F(t2, z2)‖H−1 ≤ ‖S(t1)z1 − S(t1)z2‖H−1 + ‖S(t1)z2 − S(t2)z2‖H−1

≤ CBT ‖z1 − z2‖H + CBT |t1 − t2|
≤ L‖(t1, z1)− (t2, z2)‖R×H,

for some L > 0. This proves the claim. Now, since Lipschitz mapping does not
increase fractal dimension (e.g. [10, Proposition C.1]), we conclude that

dim
H−1

f Aexp ≤ dimR×H
f ([0, T ]× PAT )

≤ 1 + dimHf PAT .

Then from (38) it follows that dim
H−1

f Aexp < ∞. Thus, Aexp is a generalized

exponential attractor for (H, S(t)) with finite fractal dimension in H̃ = H−1. This
completes the proof of Theorem 5.1.
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