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UNIVERSIDAD DE SEVILLA

Abstract
Departamento de Arquitectura y Tecnología de Computadores

Doctor of Philosophy

Deep Learning-based Computer-Aided Diagnosis systems: a contribution to
prostate cancer detection in histopathological images

by Lourdes Durán López

In this work, novel computer-aided diagnosis systems for medical image
analysis focusing on prostate cancer are proposed and implemented. First, the
histopathology of prostate cancer was studied, along with the Gleason Grading
System, which measures the aggressiveness of a tumor through different patterns
with the purpose of driving therapies dealing with this disease. Furthermore,
a study of Deep Learning techniques, particularly focusing on neural networks
applied to medical image analysis, was conducted.

Based on these studies, a Deep Learning-based system to detect malignant
regions in gigapixel-size whole-slide prostate cancer tissue images was proposed
and developed, which is able to report spatial information of the malignant
areas. This solution was evaluated in terms of performance and execution time,
obtaining promising results when compared to other state-of-the-art methods.
Since the implemented system locates malignant regions within the image
without providing a global class, a custom Wide & Deep network was developed
to report a slide-level label per image. The proposed system provides a
fast screening method for analyzing histopathological images. Next, a neural
network was proposed to assign a specific Gleason pattern to the malignant
areas of the tissue. Finally, with the purpose of developing a global computer-
aided diagnosis system for prostate cancer detection and classification, the
three aforementioned subsystems were combined, allowing a complete analysis
of histopathological images by reporting whether the sample is normal or
malignant, and, in the last case, a heatmap of the malignant areas with their
corresponding Gleason pattern.

The studied algorithms were also used for other medical image analysis
tasks. The performance of these systems were evaluated, discussing the obtained
results, presenting conclusions and proposing improvements for future works.
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Chapter 1

Introduction

Life expectancy has increased significantly since the 20th century. According to
the World Health Organization (WHO), it has been increased worldwide by five
years on average since 2000, reaching 72 years old. This has become the fastest
increase on life expectancy since 1960 (Gulland, 2016). The causes of mortality
differ depending on the country and gender. On average, women tend to live
longer than men in all countries, even in the most remote regions where access
to healthcare is more difficult, as in the case of poor countries (Verbrugge et al.,
1987).

This increase in life expectancy can be due to certain factors (Roser et al.,
2013). One of the most important reasons in many cases is the evolution of
medical treatments that have revolutionized the world of medicine. On the
other hand, discovering new previously-unknown diseases and the way in which
they can be diagnosed have also been key aspects in this regard. Finally, the
application of therapies that prevent the most deadly diseases or delay age-
related disorders have also contributed to welfare and longevity (Stearns and
Koella, 2008). Therefore, modern medicine has been crucial to improve both life
expectancy and quality of life, and, consequently, people live longer nowadays.
However, the fact of living longer has caused other age-related disease to increase
significantly in recent years (Brown, 2015). This is the case of cancer, the second
most frequent cause of death with more than 9 million deaths worldwide in 2017,
followed by cardiovascular diseases, with around 18 million cases (Ritchie and
Roser, 2018; You and Henneberg, 2018). It is estimated that a 20% of men and
a 17% of women will develop a tumor in their lifetime, while one out of eight
men and one out of eleven women will die from this disease, although this is not
applicable for all regions (Bray et al., 2018).

The International Agency for Research on Cancer determined that in 2018
there were a total of 18.1 million cases of cancer around the world (World Health
Organization, 2018). Europe accounts for 23% of the total worldwide cancer
cases and 20% of the deaths, with only 9% of the world’s population. America
accounts for 21% of the incidence and 14% of the deaths, with 13% of the world’s
population. Africa, with almost 500 million more inhabitants than Europe,



4 Chapter 1. Introduction

accounts for less than 6% of the cases. According to the Catalan Institute of
Oncology (Barcelona, Spain), in more developed societies, life expectancy tends
to be higher and, consequently, there is a higher incidence of cancer. On the
other hand, in less developed countries, life expectancy is lower, mainly due
to their scarce medical resources. This leads to infections, such as HIV/AIDS
and malaria, being the most common cause of death (Lozano et al., 2012), and,
therefore, less cancer cases are reported.

Detecting cancer at an advanced stage is a negative factor in the prognosis.
Early diagnosis leads to a higher survival rate in cases of cancer such as breast,
cervix, lung, stomach, prostate, liver and bladder (Ott et al., 2009). Early detection
is possible in the majority of cancers. If a cancer is diagnosed early and treated
appropriately, the chance of survival beyond 5 years is greater than when it is
detected at a later stage. According to Cancer Research UK, cancer stages are
based on the size of the tumor and how far has it spread through other parts of the
body. The earlier the stage of the tumor is, the more treatment alternatives exist
and the more effective they are (American Society of Clinical Oncology, 2019).

Advances in medical imaging techniques have significantly improved cancer
detection and diagnosis (Wagner Jr and Conti, 1991). In order to identify and
diagnose diseases, imaging technology are commonly used, which aid specialists
to make a medical decision and monitor the response to therapy. In the traditional
approach, physicians examine and inspect medical images in order to search
for abnormalities and then make a decision. The diagnosis obtained in this
time-consuming laborious process could be biased by factors including fatigue,
the experience of the specialist and the intra-observer variation (Reiner and
Krupinski, 2012). These, together with other many factors, lead to an inherent
inter-observer variability among specialists that could be refined by means of
other alternative approaches (Gomes et al., 2014; Mesquita et al., 2010; Krieger
et al., 1994; Baldin et al., 2015).

Thanks to the advances in computer science and the emergence of new
computer technologies, the field of medical image processing has experienced
an exponential growth in the last decades (Shung et al., 2012). With the
development and implementation of algorithms for medical image analysis,
Computer-Aided Diagnosis (CAD) systems emerged as a new alternative to the
traditional approach (Kim et al., 2011). The purpose of CAD systems is to assist
doctors in the interpretation of medical images, providing a second opinion to
support the diagnosis. The development of CAD systems has become one of the
main research topics in different hospitals and research centers (Doi, 2007), as it
has allowed to improve the accuracy and robustness of the diagnosis reported by
specialists, as well as to reduce the response time of the diagnosis.

Artificial Intelligence (AI), and, in particular, Deep Learning (DL)
algorithms, have grown in popularity inside the biomedical image analysis field
(Altaf et al., 2019; Razzak et al., 2018; Santos et al., 2019). These algorithms
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are able to automatically extract relevant features from input images, using that
information to identify certain patterns and perform a computer-based diagnosis.
Convolutional Neural Networks (CNNs), which are one of the most popular
neural networks in DL, are widely used for image analysis in several fields (Li
et al., 2020b), including biomedical image analysis (Anwar et al., 2018). This type
of neural network is specialized in extracting complex features from images by
applying a set of processing layers after training them in a supervised manner.
These features are then combined to perform a prediction and report a final
decision.

In this work, a novel computer-aided diagnosis system for cancer detection
in digitized histopathological images is proposed and implemented. Particularly,
this study is focused on prostate cancer (PCa) classification in image samples
obtained from prostate biopsies. The developed global CAD system is divided
into different subsystems: first, the input image is analyzed in search for
malignant tissue regions, which are then used to perform a global classification
of the image. After this, deeper features are obtained from each malignant area
in order to categorize them into the different PCa patterns based on the Gleason
Grading System. The proposed CAD system could play an important role to
aid pathologists, providing a fast and accurate second opinion when analyzing a
histopathological image.

1.1 Motivation

Although life expectancy has increased over the years thanks to advances
in medicine, certain diseases, such as cancer, are still a problem nowadays.
According to WHO, it is one of the leading causes of death worldwide, and
its rate of cases is expected to increase by 70% in 20 years (Zarocostas, 2010).
Detecting cancer as early as possible is a key factor, since time directly affects
the development of this disease. It is demonstrated that the later the cancer is
detected, the lower the survival rate of the patient will be (Hiom, 2015; Hawkes,
2019). Therefore, an early diagnosis is crucial to increase the probability of
beating cancer. To this regard, CAD systems could be of great importance in
order to speed up the diagnosis, and also to serve as a second opinion to aid
physicians when making a decision. In this context, this work aims to contribute
to the fight against cancer, particularly focusing on PCa, which is one of the most
common diagnosed cancers among men (Ferlay et al., 2019).

Currently, there are many researchers studying the application of the
aforementioned systems to automatically diagnose PCa. However, this field is
still in an early stage of development and, to the best of the author’s knowledge,
it has not been applied yet to real-case scenarios, including hospitals and other
medical centers. In this regard, this Thesis aligns with different tasks of a
regional research project called "Prototipo de dispositivo médico de apoyo al
diagnóstico de cáncer de próstata mediante teorías de clasificación de imagen



6 Chapter 1. Introduction

con Deep Learning (PROMETEO)" (AT17_5410_USE). This project is carried out
by the Robotics and Technology of Computers Lab. (RTC, TEP-108), to which the
author belongs, and Vitro S.A., one of the main private companies in Spain in the
distribution and production of In Vitro Diagnostic reagents, platforms and related
services, including pathology. The aim of this project goes beyond developing
a CAD system for PCa detection, also looking for implementing this idea in
medical centers in order to contribute and serve as a support to pathologists.

1.2 Prostate cancer

Cancer is a disease caused when cells divide uncontrollably and spread into
surrounding tissues (Ruddon, 2007). Cancer cells have the ability to infiltrate and
destroy normal body tissue, and it is due to this reason that cancer is one of the
most deadly diseases. It is originated by mutations (modifications of the genetic
sequence) in key genes that control normal cell growth and division (Stratton
et al., 2009). These DNA mutations may be caused by different reasons including
age as one of the most important factors (Aunan et al., 2017; De Magalhães, 2013).
Over time, a number of mutations may occur in a single cell, allowing it to divide
and grow in a way that becomes a cancer.

PCa occurs when some prostate cells mutate and begin to multiply
uncontrollably. These may also spread from the prostate to other parts of the
body causing metastasis. PCa commonly spreads to the bones and lymph nodes,
although it can also spread to the lungs, bladder, and liver (Saitoh et al., 1984).

1.2.1 A biological introduction to the prostate

The prostate is the largest accessory reproductive gland of the male genital
system (Lee et al., 2011). Classically described as “walnut-shaped", it measures
about 2×3×4 cm in thickness, length and width, respectively, and weighs around
30 grams, although its size is affected by age (Zhang et al., 2013). This gland
resides inside the pelvis cavity.

The prostate’s main function is to produce seminal fluid, which, together
with sperm cells from the testicles, fluid from the seminal vesicles and the
secretions released by other glands, constitutes semen (Dixon et al., 1999). This
seminal fluid protects, maintains and helps transport sperm, which is crucial for
fertility in men. In addition, the prostate’s muscles ensure that semen is pressed
into the urethra and released outside during ejaculation.

1.2.1.1 Prostate anatomy

This gland is located behind the base of the penis, in front of the rectum and
below the bladder. Figure 1.1 shows the location of the prostate inside the
male reproductive system and its surrounding organs. The excretory ducts in
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the prostate gland flow into the urethra, which is surrounded by the prostate
and carries urine and semen through the penis. The prostate is enveloped by
a capsule of connective tissue which contains several smooth muscle fibers and
elastic connective tissue. During ejaculation, these muscle cells contract, forcing
the fluid that has been deposited in the prostate out into the urethra.

FIGURE 1.1: Position of the prostate within the male reproductive system.

The prostate is divided into three anatomic zones: central, transitional and
peripheral zone (Selman, 2011).

• The central zone surrounds the ejaculatory ducts and corresponds to
approximately the 25% of the prostate volume. The ducts of the glands
from the central zone are obliquely emptying in the prostatic urethra, thus
being rather immune to urine reflux.

• The transitional zone surrounds the urethra, comprising approximately
5-10% of the prostate volume. It is the most central area of the gland,
circumscribing the distal end of the preprostatic urethra (proximal to the
seminal colliculus; where the ejaculatory and prostatic ducts pierce the
posterior wall of the prostatic urethra) to a point just proximal to the
ejaculatory ducts and the central zone’s apex.

• The peripheral zone is the outermost region of the prostate gland and makes
up the main body of it (approximately 65%). It encircles the central zone
posteroanteriorly and most of the transitional zone. With the exception of
the anterior portion of the prostatic urethra, the peripheral zone contains
most of the tube.
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Together with the three aforementioned zones, some specialists also consider
a fourth zone, called the fibromuscular stroma, which is situated anteriorly in the
gland and contains the part of the prostatic urethra that is not enclosed within
the peripheral zone. Figure 1.2 depicts the four zones of the prostate and their
location within the gland.

FIGURE 1.2: Close-up look at the prostate gland, highlighting its four main
zones.

1.2.1.2 Prostate histology

The prostate consists of around 30 to 50 tubulo-alveolar glands which release the
seminal fluid to the urethra through the excretory ducts (Wetter and Vogl, 2016;
Hassan et al., 2013). These glands present a convoluted morphology, therefore,
their secretory alveoli appear irregular and vary in size.

Normal glands have lumina inside (space of a tubular structure) lined by a
variable-height epithelium (tissue made up of one or more layers of cells joined
together). The main epithelial cell type is a tall cylindrical secretory cell with
prominent, basal, rounded nucleus and clear cytoplasm. The activity of these
secretory cells influences the cellular height. More activity induces higher cells,
whereas, less activity makes cells cuboidal or nearly flat. At the base of the
epithelium of the glands, basal cells are located, corresponding to, approximately,
the 10% of a gland. These are small, round, with scant cytoplasm and large
irregular nuclei, and they are estimated to be the stem cells of the prostate
(Schalken and Leenders, 2003). Glands are enclosed in stroma (connective tissue
that normally separates individual glands), which contains smooth muscle, blood
vessels and ducts, among others.

Lumen may contain spherical prostatic concretions called corpora amylacea,
which are formed by solidification of prostatic secretions. The number of
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concretions increases with age, although this increment varies between persons
(Hassan et al., 2013). Figure 1.3 presents a section of a tissue image which contains
normal tissue together with a zoomed region of a prostatic gland to highlight its
main parts.

Gland

Stroma

Corpora 

amylacea

Lumina

Epithelium

Gland

FIGURE 1.3: Histological image of an extracted prostatic tissue section,
highlighting its main parts.

The peripheral and central zones contain the majority of glandular tissue
(peripheral zone: 70% of glandular tissue; central zone: 25% of glandular tissue),
while the transitional zone contains the minor portion (5% of glandular tissue)
(Bhavsar and Verma, 2014). On the other hand, glands are not present in the
fibromuscular stroma zone (Weinreb et al., 2016).

1.2.1.3 Prostate physiology

The main function of the prostate is the secretion of prostatic fluid, which,
together with secretions from the seminal vesicles and sperm, constitutes
approximately the 30% of semen. The prostatic secretion is an alkaline liquid that
neutralizes vaginal acid content, provides nutrients and transports the sperm.
The most prominent protein components contained in prostatic secretion are
Prostatic Acid Phosphatase (PAP), Prostate Binding Protein (PBP) and Prostate-
Specific Antigen (PSA) (Dixon et al., 1999). In addition, a high concentration of
zinc is also found, which is densely presented in spermatozoon’s head, and may
contribute to chromatin stability (Björndahl and Kvist, 2011).

PSA is a serine protease secreted from the prostatic epithelium into the
secretory ducts, whose physiological function is to liquefy semen in ejaculate.
It is a relevant biomarker for the diagnosis of some prostatic pathologies, such
as PCa, since PSA is predominantly released in prostatic secretion and, thus,
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only a very small amount (approximately 4 ng/mL) circulates in the blood under
normal conditions (Velonas et al., 2013).

The slightly alkaline character of prostatic fluid may be important for ovum
fertilization since sperm is relatively acidic due to the presence of citric acid
among other important components, which, consequently, may inhibit sperm
fertility. Additionally, alkaline prostatic fluid helps neutralize female vaginal
secretions, which are acidic (pH of 3.5 to 4), and may prevent sperm from
achieving optimal motility (pH in the range of 6 to 6.5) (Guyton and Hall, 2006).

1.2.2 Epidemiology

According to GLOBOCAN, PCa is the second most frequently diagnosed cancer
among men, with more than 1.2 million cases, and the fifth leading cause of
cancer death in men with around 350000 deaths in 2018 (Ferlay et al., 2019).
It is the most common cancer among men in more than half of the world’s
countries (105 of 185), particularly in the Americas, Northern and Western
Europe, Australia/New Zealand, and most of Sub-Saharan Africa (Bray et al.,
2018). Moreover, this cancer is the leading cause of cancer death among men in 46
countries, notably in Sub-Saharan Africa and the Caribbean. Figure 1.4 presents
the global statistics of both worldwide incidence and mortality rates for 36 type
of cancers, including PCa, considering 185 countries.

PCa death rates have been declining in several countries such as those in
Northern America, Oceania, Northern and Western Europe, developed Asian
countries and the United States. This fact has been attributed to earlier diagnosis
and improved treatment, which has resulted in a genuine postponement of death
for some men with metastatic cancer (Bray et al., 2018).

According to WHO, there will be an increase of PCa cases worldwide,
with 1017712 new cases being estimated for 2040. Most of these cases will be
registered in Africa, Latin America, the Caribbean and Asia, and appear to be
related to an increased life expectancy (Rawla, 2019).

1.2.3 Causes

Based on epidemiological observations, five main risk factors of PCa have
been identified. A risk factor is anything that increases a person’s likelihood
of developing cancer. While risk factors directly influence the probability of
producing cancer, they do not imply its development1. Thus, people with several
known risk factors could may never develop any cancer, whereas, in other
cases, other people that do not have any associated risk factor could contract the
disease. The main risk factors of developing PCa are age, race, genetic, hormonal,
environmental and infectious factors.

1https://www.cancer.net/navigating-cancer-care/prevention-and-healthy-
living/understanding-cancer-risk (accessed on June 30, 2021)
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FIGURE 1.4: Diagram showing cancer incidence and mortality rates in
males in 2018. Top: pie charts for incidence and mortality rates for the
ten most common cancers among men. Bottom: world map representing
the most frequent cancers among men for each country. Image taken from

GLOBOCAN 2018 (Bray et al., 2018)

• Age

As it was mentioned, age is the major risk factor for the development of any
kind of cancer. Therefore, the risk of PCa increases with age, particularly
in people with more than 50 years old. More than 64% of PCa cases are
diagnosed in 65-years-old men or older, and 23% in men older than age 75
years (Bechis et al., 2011).

• Race

There has been wide variation in the reported incidence of clinical PCa
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among different ethnic groups (Pienta and Esper, 1993). The incidence of
clinical PCa is low in Asian men and higher in Scandinavian men, according
to both incidence and mortality statistics. However, it is unclear if these
differences are based on life expectancy, diet, socioeconomic status, genetic
or environmental factors (Pienta and Esper, 1993).

• Hormonal factors

Several researchers have studied how hormonal factors may be considered
as a relevant factor in the development of PCa (Bostwick et al., 2004).
These suggest that PCa growth rates are greatly influenced by androgens
(Bostwick et al., 2004). This theory is based on different reasons, including
that this disease has not been observed in eunuchs (Wu and Gu, 1991),
where, due to the castration, a total androgen suppression is made. In
addition, it has been proved that PCa can be induced in rats by chronic
administration of estrogens and androgens (Ozten et al., 2019). Moreover,
some studies suggest that elevated concentrations of testosterone may
increase PCa risk, although results have been inconsistent (Bostwick et al.,
2004).

• Environmental factors

Several environmental factors, such as diets exceeding in regular amounts
of animal fat (Fleshner et al., 2004), the exposure to vehicle exhaust fumes
and air pollution (Parent et al., 2013), have also been identified to be
promoters of PCa. Furthermore, endocrine disrupting chemicals (EDCs),
which can be defined as environmental agents that positively or negatively
alters hormone activity, has raised awareness. It has been observed
that EDCs elicit effects on estrogen, androgen, and/or thyroid activities
(Bostwick et al., 2004).

• Genetic factors

One of the significant risk factors for the development of PCa is the presence
of this disease in the family health history. Some cases of hereditary PCa are
caused by inherited mutations in particular genes, such as BRCA1, BRCA2,
and HOXB13, which have been associated with more aggressive disease
and poor clinical outcomes (Castro and Eeles, 2012; Ewing et al., 2012). Men
with mutations in these genes have a high risk of developing PCa during
their lifetimes.

• Infectious agents

It has been suggested that sexually transmitted infectious agents, and
the subsequent inflammation, may be an important risk factor in the
pathogenesis of PCa (Sutcliffe, 2010; Caini et al., 2014). Among the sexually
transmitted infections, gonorrhea, syphilis and human papillomavirus
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infection (HPV) are considered to be highly related to the development of
this disease (Taylor et al., 2005).

1.2.4 Diagnosis procedure

Digital Rectal Examination (DRE) is the primary test for the initial clinical
assessment of the prostate (Borley and Feneley, 2009). A DRE of the prostate
allows physicians to know, in the majority of cases, if the prostate is normal or if
it presents an abnormality. These abnormalities could be caused by the growth of
a tumor, such as when the gland is larger, presents a nodule, or if there is a loss
of definition of the anatomical shape.

Then, a PSA analysis is performed as a screening method for the
investigation of an abnormal result on DRE (Borley and Feneley, 2009). This
test measures the concentrations of PSA in the blood. As it was previously
mentioned, this biomarker is a substance produced by the prostate that can be
found in increased amounts on men who have PCa. However, it is a test that
is not conclusive, since there are two situations to take into account. Firstly, in
more than 20% of cases of PCa, the PSA does not increase, and, secondly, in a
very high percentage of men, an elevated PSA is detected, particularly as they
get older, without the presence of PCa (Velonas et al., 2013). For this reason, this
test is usually complemented with an ultrasound, a biopsy of the prostate, or both
(National Collaborating Centre for Cancer (UK), 2008).

The biopsy consists in extracting small tissue samples of the prostate (Borley
and Feneley, 2009). It is the most reliable test to confirm or exclude the presence
of cancer. Transrectal ultrasound is used to guide and insert a thin, hollow needle
through the wall of the rectum into certain areas of the prostate gland. Then,
the needle is used to remove a cylinder of tissue (core), usually one centimeter
long and 2 millimeters wide, which is sent to a pathologist for examination.
This technique is called core needle biopsy and it is the main method used to
diagnose PCa (Kwast et al., 2003; Renshaw, 1997). Several biopsy samples are
extracted from different areas of the prostate. Different studies suggest that 10
to 12 cores are optimal to have a representative sample of the gland where the
cancer’s involvement could be seen (Presti Jr, 2003).

After the tissue is extracted during a biopsy, pathologists inspect and
examine the obtained samples. However, direct observation under the
microscope does not allow the pathologist to observe the morphological
characteristics of the cells within the tissue. Therefore, these tissue samples
are processed in a laboratory by using specific stains to enhance the contrast of
biological structures.

One of the most popular staining methods used in histology and diagnostic
medicine is Hematoxylin and Eosin (H&E) stain (Chan, 2014). H&E is the
combination of two histological stains: hematoxylin and eosin. Hematoxylin
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stains acidic (basophilic) structures in blue and purple colors, such as cell nuclei,
due to its cationic or basic behaviour, while eosin stains basic (acidophilic)
components in pink color due to its anionic or acidic nature, such as cells’
cytoplasm. The H&E stain provides a general overview of a tissue sample’s
structure, aiding pathologists to discriminate easier between the nuclear and
cytoplasmic parts of a cell, and, consequently, allows them to analyze the overall
patterns and cell distribution.

Traditionally, a pathologist would analyze and inspect these slides under a
microscope. However, with the advent of new technologies and computational
advances, digital pathology emerges as a new alternative to traditional
approaches (Pantanowitz, 2010). Digital pathology employs virtual microscopy
with the use of computer-based technology. This way, slides are converted into
digital images that can be viewed, managed, shared and analyzed in a computer.
These gigapixel-resolution digital slides are called Whole-Slide Images (WSIs)
(Figure 1.5).

FIGURE 1.5: Thumbnail of a WSI. Each region corresponds to two different
tissue slices from the same sample. The gray section of the WSI is an
unwanted area, which does not contain tissue, ignored when scanning the
slide. Tissue stained with bluish-purple colors are due to the hematoxylin,
which stains acidic structures, while pink colors are due to the eosin, which

stains basic components.

1.2.5 Histopathology

Around 95% PCas begin when secreting gland cells mutate into cancer cells
(Bast Jr et al., 2010; Humphrey, 2017), which are called adenocarcinomas (from
Greek: "malignant tumor originated from cells of the glandular epithelium"). As
the peripheral zone of the prostate gland concentrates the majority of glandular
tissue, it is the most common region for developing an adenocarcinoma (around
70% of the tumors) (Swallow et al., 2012). Adenocarcinomas can also be located
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in the central zone (25%) or in the transitional zone (5%). Since no glands are
found in the fibromuscular stroma, no tumors can be originated there.

In general, prostatic adenocarcinoma is composed of small to intermediate
sized glands with a tendency to form irregular clusters, growing between large
benign glands (Lavery et al., 2016). As cell differentiation is lost, i.e. cancer
cells resemble less to normal cells and tend to grow and spread faster, the size
of the glands decreases, and they may attach together and form clumps. The
characteristic cells of a prostatic adenocarcinoma present enlarged nuclei with
prominent nucleoli and abundant cytoplasm. The basal cell layer is present
in normal glands, but they are absent in prostate tumors (Lavery et al., 2016).
They also tend to accumulate proteinaceous secretory material called crystalloid
(Bennett and Gardner, 1988).

1.2.5.1 Gleason Grading System

Serum levels of PSA and tumor’s clinical staging (size of the tumor and whether
if it has spread) are some of the most important elements that allow pathologists
to determine the tumor status and to predict the biological behavior of the tumor,
and, thus, to decide the most appropriate therapy for each patient. However,
together with these factors, evaluating and accurately measuring the tumor’s
aggressiveness is essential in order to decide the best therapeutic option. Even
though there are numerous grading systems for the evaluation of prostatic
adenocarcinoma, the Gleason Grading System (GGS) is the most widely accepted
(Gordetsky and Epstein, 2016).

The GGS is focused on determining the cellular differentiation degree of a
tumor, considering 5 different patterns (1 to 5) (Amin and Tickoo, 2016). In order
to assign a specific pattern or grade, pathologists observe the sample at low
magnifications (5× or 10×), which provides a general overview of the tumor’s
structure, and, then, higher magnification objectives (20× or 40×) are used for
visualizing cellular detail in order to confirm the diagnosis. Gleason pattern 1 is
assigned to areas of the tissue containing cells that resemble to normal prostate
cells, whereas, in pattern 5, cancer cells greatly differ to normal prostate cells. This
way, the higher the pattern, the higher the aggressiveness of the cancer and the
lower the differentiation between cancer cells. Figure 1.6 presents the differences
between the different patterns of GGS. Pathologists observe the structure of the
cells in WSIs and assign a lower or higher pattern depending on whether the
appearance is that of healthy or abnormal tissue, respectively.

• Pattern 1

The most well-differentiated tumor pattern is Gleason grade 1. It is a well-
defined small cluster of cells or nodules with single, separate, closely and
densely packed gland pattern that does not invade healthy prostatic tissue
(Pierorazio et al., 2013; Epstein et al., 2005). This pattern is extremely rare
to find, if not non-existent (Chen and Zhou, 2016).



16 Chapter 1. Introduction

FIGURE 1.6: GGS diagram describing 1-5 Gleason patterns. Well-
differentiated cancer cells resemble to normal cells, and they tend to form
and spread more slowly than poorly differentiated or undifferentiated

cancer cells.

• Pattern 2

Gleason pattern 2 corresponds to fairly well circumscribed nodules of
single, separate glands. However, the glands are looser in arrangement and
less uniform than pattern 1. Thus, the main difference between Gleason 1
and 2 is the density of gland packing observed, and while invasion is not
possible in Gleason 1 by definition, in pattern 2 it can occur (Pierorazio et al.,
2013; Epstein et al., 2005). This grade is also considered to be very unusual
(Chen and Zhou, 2016).

• Pattern 3

Gleason pattern 3 is an infiltrative tumor that has spread to nearby healthy
prostate tissue (Figure 1.7). The glands vary in size and shape (they are
often long and angular) and tend to infiltrate into the stroma in between
the benign glands. In contrast to Gleason 1 and 2 grades, they are typically
small/microglandular although some of them may be medium to large in
size. The small glands of Gleason 3 are distinct glandular units (Pierorazio
et al., 2013; Epstein et al., 2005). Gleason pattern 3 has been seen in many
series as the most common pattern (Chen and Zhou, 2016).

• Pattern 4
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Gleason pattern 4 glands are no longer single/separated glands in
comparison with those seen in patterns 1-3 (Figure 1.7). They appear fused
together, difficult to discern, and have rare lumen formation compared to
Gleason 1-3, which normally have open lumen within the glands. Fused
glands are chains, nests, or groups of glands that are no longer fully isolated
by stroma. Also, Gleason grade 4 glands may be presented with a cribiform
pattern in which the tumor appears to have open spaces or small holes in
it, similar to a sieve (Pierorazio et al., 2013; Epstein et al., 2005).

• Pattern 5

In Gleason pattern 5, there is no glandular distinction in the tumor, thus,
not resembling to normal prostate tissue at all (Figure 1.7). It is composed of
sheets (groups of cells that tend to be almost planar), clumps, or individual
cells. Round glands with lumenal spaces, which resemble more to the
normal prostate gland appearance, should no longer be seen (Pierorazio
et al., 2013; Epstein et al., 2005).

The two most predominant Gleason patterns in a WSI are summed up to
determine the corresponding Gleason score, which ranges from 2 to 10. However,
pathologists almost never use scores 2 to 5, since, as mentioned above, patterns
1-2 are very unusual to find, being 6 the lowest Gleason score (Chen and Zhou,
2016). A Gleason score of 7 corresponds to a mid-grade cancer, and a score of 8-10
correspond to a high-grade cancer. A lower-grade cancer grows more slowly and
it has a lower risk of spreading than a high-grade cancer.

As mentioned before, GGS is currently the most widely used grading system
for PCa. However, many studies (Lessells et al., 1997; McLean et al., 1997)
have reported inter-observer variability among pathologists when diagnosing
PCa with this system (more than 30% degree of discrepancy in the score, as
reported in Arvaniti et al., 2018b and Salmo, 2015). In Berg et al., 2011, the authors
investigated the consequences when re-evaluating 350 patients, comparing the
results with the primary pathology reports. There was full agreement between
primary reports and the re-evaluations only in around 76.9% of the cases, where
re-evaluations were scored higher. According to the authors, this fact may lead to
changing the clinical assessment and surgical strategy, and, therefore, it justifies
the re-evaluation of PCa patients with a primary low Gleason score diagnosed.
This involves double effort, requiring several pathologists to analyze the same
images, which is not a very efficient practice.

1.3 Computer-Aided Diagnosis systems

Although the percentage of agreement among professionals in the interpretation
of prostate WSIs is acceptable (around 70%) (Berg et al., 2011), this inter-
observer variability based on the subjectivity of each pathologist’s own skills and
experience should be contemplated (Gurcan et al., 2009).
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Gleason pattern 5

Gleason pattern 4

Gleason pattern 3

FIGURE 1.7: Examples of GGS patterns 3-5.

On the other hand, during their routine work, pathologists have to analyze a
large number of WSIs, which, as introduced, are huge high-resolution gigapixel
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images, and, therefore, take much time for the specialist to completely analyze,
making the whole process tedious. In addition, PCa is not always present in all
cases, in fact, it represents just a small percentage among all patients. Inspecting
all samples in order to search for abnormalities (in the case these exist) is time-
consuming and demands a high level of concentration, in addition of being
laborious to pathologists. Moreover, due to the large number of cases to be
routinely analyzed and the considerable amount of normal cases, pathologists
may miss some subtle abnormalities when inspecting the slides. Therefore, the
drawbacks of the traditional diagnosis lead medical professionals and scientists
to explore alternative approaches.

To this respect, Computer-Aided Diagnosis (CAD) systems, which combine
elements from both medicine and computer science fields, emerged as a new
interdisciplinary technology with a potential future in digital pathology. CAD
systems are automatic or semi-automatic algorithms whose main goal is to assist
specialists by reporting a second opinion when making an interpretation of
medical images.

1.3.1 History

The first CAD systems were developed in the late 1950s, soon after the computer
age began (Yanase and Triantaphyllou, 2019). Biomedical researchers started
to study the possibility of solving biological and medicine problems by means
of computer technology. These systems called “expert systems in medicine”
were based in flow-charts, statistical pattern matching, probability theory or
knowledge bases as the main decision drivers.

However, by the early 1970s, this kind of systems had some significant
limitations for providing accurate diagnosis. The recognition and acceptance of
these limitations led researchers to begin developing new kinds of CAD systems
by using advanced approaches. Therefore, by the late 1980s and early 1990s, data
mining algorithms became the new research topic for the purpose of building
more advanced and flexible CAD systems. After that, researchers have focused
on artificial intelligence and specialized computer algorithms, such as pattern
recognition and classification algorithms, as the main pillar to develop new CAD
systems.

In 1998, the first commercial CAD system called the ImageChecker system
was developed and approved by the US Food and Drug Administration (FDA).
The ImageChecker system was intended for use as an aid for radiologists when
reading routine screening mammograms. To date, several commercial CAD
systems, involved in breast, lung, colon, and heart imaging, have also been
approved by the FDA (Yanase and Triantaphyllou, 2019).

Currently, researchers have investigated and analyzed the use of CAD
systems to automatically diagnose different diseases, including some types
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of cancer, such as breast (Jalalian et al., 2013), lung (El-Baz et al., 2013)
and liver (Chang et al., 2017) cancers; cardiovascular diseases (Faust et al.,
2017); Alzheimer’s disease (Ramírez et al., 2010); among others. Moreover,
these algorithms have proved to be effective in a wide range of image
modalities (Doi, 2005), from radiological imaging, including conventional X-
ray radiology, computed tomography, ultrasound, magnetic resonance imaging
and fluoroscopy; to histological imaging. In the particular case of histology,
researchers found drawbacks when processing WSIs, due to their huge size.
A solution for this problem, which has become a common approach when
processing histological images, is to divide them into small subimages called
patches. This procedure has been widely used in order to develop CAD systems
in this field (Roy et al., 2019; Litjens et al., 2016; Hou et al., 2016).

Nowadays, this kind of systems are considered as a potential future
component of a diagnostic process to provide physicians for better medical
decision-making (Doi, 2007), which also, unquestionably, involves human
experts participation.

1.4 Deep Learning

Artificial Intelligence (AI) emerged in the mid-20th century as a new complex and
misunderstood discipline (Haenlein and Kaplan, 2019). However, over the last
years, the higher computing power and the enormous amount of digitally-stored
data led to the massively popularization of AI applications, which have spread
to the everyday scene (Poola, 2017). The success of these algorithms resides on
their own capability to learn rules from data, in contrast to the conventional
and traditional analysis techniques, which are based on the execution of pre-
programmed rules. Figure 1.8 shows some of the most important events in the
history of AI.

In this context, one of its most prominent branches is Machine Learning
(ML), which proposes an analytical and automatic modeling of data (Alpaydin,
2016). To this end, analysis is approached as a learning process, where the
programmer provides a series of starting rules that the learning algorithm has
to adapt and create new ones, thus, trying to improve the accuracy rate of the
generated model.

At the same time, within ML, there is a subset of algorithms known as Deep
Learning (DL). This approach is inspired by the structure and functioning of the
human brain, which is the reason why these methods are commonly referred to as
neural networks. In the last decade, DL techniques have become one of the most
popular branches of AI, providing results far superior to those obtained with
other ML methods (Arel et al., 2010). DL has already proved its success in several
applications (Ahmad et al., 2019). Even some major technology companies,
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such as Google, Facebook and Microsoft, have already incorporated them as
development tools for their products (Parloff, 2016).
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1950 | Turing Test

Turing Test was developed to 
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demonstrate human intelligence
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1952 | First learning program
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1957 | First Neural Network

1979 | Mobile Robot

1985 | Speech recognition

2006 | Deep Learning

Frank Rosenblatt invented the 
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brain

First moving robot vehicle using 
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Computers learned to pronounce 
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Geoffrey Hinton presented the 
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1967 | The Nearest Neighbor
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1990 | Machine learning as a data-
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data and draw conclusions  from 

the results

FIGURE 1.8: Some of the most relevant events in the history of AI.

1.4.1 An introduction to Artificial Neural Networks

The brain is the most complex information processing system that we know
(Bassett and Gazzaniga, 2011). It is able to perform certain operations such as
spatial and temporal pattern recognition, and processing sensory information
in real time. The human brain consists of, approximately, 10 billion neurons
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with massive structural and functional interconnections called synapses, which
mediate interactions between them. It presents a property called plasticity, which
promotes the development of the nervous system to adapt to its environment
(Huttenlocher, 2009). Plasticity allows the creation of new synaptic connections
between neurons and also the modification of existing ones.

An Artificial Neural Network (ANN) is inspired by the human brain’s
operation. It could be defined as a massively parallel distributed processor
made up of simple processing units, which has a natural propensity for storing
experiential knowledge and making it available for use (Simon, 1999). An ANN
resembles the brain in two approaches: knowledge is acquired by the network
from its environment through a learning process, also called training process,
and interneuron connection strengths, known as synaptic weights, are used to
store the acquired knowledge. During the learning process, network’s synaptic
weights are adapted in order to achieve a desired design goal.

1.4.1.1 Artificial neuron models

The basic information processing unit of a neural network are artificial neurons,
which are inspired in their biological counterpart. Although the human brain
presents different types of these cells, artificial neuron is based on the most
common type of biological neuron. In a simplified form, a biological neuron
consists of different parts:

• A set of terminal branches from which external signals are received, called
dendrites.

• The central body, called soma, which contains the cell nucleus and processes
the combination of stimuli received through the dendrites.

• An extension of the soma, called the axon, which allows communication of
the signal resulting from the processing carried out by the nucleus.

The first mathematical model which imitates the functionality of a biological
neuron, called McCulloch-Pitts Neuron Model, was presented in 1943 with the
purpose of performing simple tasks (Hayman, 1999). This artificial neuron
received binary inputs and produced a binary output based on a certain threshold
value which could be adjusted. This model supposed a relevant event in the
AI history. However, the McCulloch-Pitts neuron presented some limitations,
such as only accepting boolean inputs and not allowing weights, which made the
model less flexible (Minsky and Papert, 2017).

In 1958, Frank Rosenblatt created the perceptron model based on the
McCulloch-Pitts neuron (Rosenblatt, 1958). In contrast to the first model, the
perceptron presents two advantages: first, it can process any real input value,
and, second, projections between neurons are weighted. This neuron model
consists of five basic elements:
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1. A set of data inputs x1, ...xn.

2. A set of synaptic connections, each characterized by a weight w1, ... wn,
corresponding to each input.

3. An aggregation function, ∑, to sum the input signals, weighted by the
respective synapses of the neuron.

4. An activation function, ϕ, to limit the amplitude of the neuron’s output.

5. An output, Y.

The inputs are the stimulus that the artificial neuron receives from the
surrounding environment, and the output is the response to that stimulus. As
in a human brain, the neuron can adapt to the surrounding environment and
learn from it by modifying the value of its synaptic weights. This way, the output
Y of an artificial neuron is defined as:

Y = ϕ(
n

∑
i=1

wixi) (1.1)

where i refers to each data input. Figure 1.9 presents a representation of
the perceptron model highlighting its main components, together with a simple
biological neuron. The activation function ϕ returns an output from an input
value (Sharma, 2017). The most common activation functions are:

• Sigmoid

The sigmoid function is a continuous, monotonically increasing function
with a characteristic ’S’-like curve (Figure 1.10). It transforms the values in
the range 0 to 1. In addition, the sigmoid function is not symmetric around
zero with respect to the Y-axis, which implies that the signs of all output
values will be positive. It was the first activation function implementation
and the basis of most neural networks for many decades, although in recent
years it has lost popularity. The main problem of the sigmoid function is
that it has a saturation zone limited within the range 0 and 1. This zone
means that at the output of the neuron, and during certain phases of the
network training process, the values do not change significantly, which
may cause a possible "stagnation". The sigmoid function is defined in
Equation 1.2 (Sharma, 2017).

ϕ(x) =
1

1− e−x (1.2)

• Rectified Linear Unit (ReLu)
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FIGURE 1.9: Biological neuron representation (A) and perceptron model
(B).

The ReLu is a piecewise linear function which returns 0 if it receives any
negative input, while for any positive value x it returns that value back
(Figure 1.11). It has become the default activation function for many types
of ANNs, since it makes the training phase easier to the network and also
often achieves better performance than other activation functions (Agarap,
2018; Shang et al., 2016). The advantage of using the ReLU function over
the sigmoid is that it does not have any saturation region, as it has a
linear behavior for positive inputs. The ReLu function is mathematically
described in Equation 1.3 (Sharma, 2017).

ϕ(x) = max(0, x) =
{

0 f or x < 0
x f or x ≥ 0 (1.3)
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FIGURE 1.10: Representation of the sigmoid activation function.

FIGURE 1.11: Representation of the ReLu activation function.

• Softmax

The Softmax activation function is a generalization of the logistic function
used for multi-class cases. This function compresses a K-dimensional
vector, x, of arbitrary real values into a vector of real values in the range 0 to
1. The sum of the probabilities of each class must sum 1.0. It is commonly
used in the last layer of a multi-class ANN, as it normalizes the output
values establishing a probabilistic distribution. This additional constraint
allows the training process to converge faster. The softmax function is
defined in Equation 1.4 (Sharma, 2017).
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ϕ(x)j =
exj

∑k=1
K exk

, j = 1, ..., K (1.4)

1.4.1.2 Neural network architecture

As it was mentioned, neurons are connected by synapses in a neural network,
being the behaviour of the network determined by the structure of the synaptic
connections. This structure, topology or connection pattern of a neural network
is called architecture.

In general, neurons are usually grouped into structural units called layers
(Abraham, 2005). A set of one or more layers constitutes the neural network.
Three types of layers are distinguished: input, output and hidden layers
(Figure 1.12). The input layer is composed of neurons that receive data from the
environment, the output layer is composed of neurons that provide the response
of the neural network, while the hidden layers reside between the input and
output layers, not being visible to external systems. The larger the number of
hidden layers in a neural network is, the longer it will take for the neural network
to produce the output and the more complex problems the neural network will
be able to solve.

FIGURE 1.12: An example of an ANN architecture with an input layer, an
output layer and two hidden layers.

Different types of neural architectures can be established depending on the
concept we focus on. Thus, considering their structure, there are monolayer
networks, composed of a single layer of neurons, or multilayer networks, in
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which neurons are organized in several layers. Considering the flow of the
data, neural networks can be distinguished between unidirectional networks,
named as feedforward networks, and recurrent networks or feedback networks
(Abraham, 2005). In feedforward networks, information circulates in a single
direction, whereas in recurrent networks information can circulate between the
different layers of neurons in any direction, even in the output-input direction
(Figure 1.13).

FIGURE 1.13: Comparison between a feedforward network and a recurrent
network.

1.4.1.3 Learning process in a neural network

The learning phase of a neural network depends on which task it will try
to solve. Most tasks are classified into two main groups: classification (also
known as pattern recognition) (Zhang, 2000) and regression (Specht et al., 1991).
Classification networks associate a given input to an output class. The second
type of networks are used for estimating the relationship between a dependent
variable and one or more independent variables.

The development of a neural network consists mainly in two stages. The
first includes designing, training and validating the network. Training is the
procedure for carrying out the learning process, in which the synaptic weights
of the network are modified, allowing the network to determine the appropriate
response for a given input stimuli; while the validation is used to confirm the
generalization of the designed model and to report a set of metrics to measure
how well the model learnt. The second stage is commonly referred to as the
production phase, during which the neural network is already operational, and
both its structure and the values of the weights are not modified. During this
phase, the neural network is used effectively to solve the problems for which it
has been designed.

Regarding the training phase, two types of training processes can be
found: unsupervised and supervised learning (Sathya and Abraham, 2013). The
unsupervised learning bases its training process on a dataset without previously
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defined labels or classes (ground truth). Therefore, no class value, either
categorical or numerical, is known. Unsupervised learning is dedicated to
grouping tasks, also called clustering or segmentation, where its purpose is to
find similar groups or clusters of data in the dataset. In contrast, in supervised
learning, the network learns through known input and output patterns, so they
fit into a set of examples with an associated label or target for which it is known
the relationship between the input and the desired output.

The most used algorithm for training an ANN in a supervised manner is
gradient descent (Kiefer, Wolfowitz, et al., 1952). This is a first-order iterative
optimization algorithm whose purpose is to minimize any differentiable function
by finding a local minimum. In the training phase the function to be minimized
is the loss function (also called cost function), which quantifies the error between
the prediction and the ground truth. The main goal of training a neural network
is to set the best values for the synaptic weights (parameters) for which the
network minimizes the loss function. The training starts with random weights
and, during the learning phase, these are adjusted so that the error between the
output obtained and the desired output is minimal.

The following set of steps are performed for each of the iterations of the
gradient descent algorithm:

1. First, a batch of N random samples from the training set is used as input.

2. Then, this batch is forward-propagated through the set of layers of the
network, performing all the corresponding operations in between and
obtaining the predictions at the output.

3. After the previous step, the loss function is evaluated for the input batch.
As mentioned above, this function evaluates the difference between the
obtained predictions and the ground truth labels. Through the different
iterations, the gradient descent algorithm tries to minimize the value of the
loss function.

4. Then, partial derivatives of the lost function with respect to each of the
network parameters is calculated and the results are stored in a gradient.
Since neural networks contain a massive amount of parameters, calculating
the gradient is not trivial. Consequently, the well-known backpropagation
algorithm is used (Leung and Haykin, 1991). This algorithm consists in
start calculating the partial derivatives of the loss function at the output
only with respect to the parameters of the last layer, which is simplified
thanks to the use of the chain rule (Rojas, 1996). Once obtained, the same
is computed but for the previous layer, and so on, until reaching the first
layer.

5. Once the gradient is obtained, the parameters of the neural network are
updated by subtracting the corresponding gradient value multiplied by the
learning rate (which allows adjusting the steepness of each training step)
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to their current value. In this process, the gradient is subtracted instead of
added to the parameter, since the goal is to decrease the cost function and,
thus, to move in the opposite direction of the gradient. Theoretically, the
closer the solution gets to the global minimum, the smaller the steps will
be, since the slope of the cost function will be smaller.

This five-step process is repeated for a configurable number of iterations
(epochs), or can also be stopped when the value of the loss function and the
output metrics stop improving, or even start to worsen. This way, the learning
process is repeated epoch after epoch until the parameters are stabilized and the
network performance converges to the best value.

When training a neural network, choosing a good learning rate value is
very important, since, as explained in the fifth step, it affects how the weights
of the network are modified (Li et al., 2019). Small learning rates could lead
to needing a very high number of epochs before reaching the minimum point,
whereas selecting a very high learning rate could cause drastic updates which
lead to divergent behaviors, as shown in Figure 1.14.

FIGURE 1.14: Effect of the learning rate value when training a neural
network. L(w) corresponds to the value of the cost function and w

corresponds to the weight.

1.4.2 Convolutional Neural Networks

A Convolutional Neural Network (CNN) is a type of feedforward ANN where
neurons correspond to receptive fields which resembles the neurons in the
primary visual cortex of a biological brain. Since its application is performed
on two-dimensional arrays, CNNs are very effective for computer vision tasks,
such as image classification and segmentation, among other applications (Khan
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et al., 2018). They are designed to automatically and adaptively learn spatial
hierarchies of features.

The operation of a CNN consists in two main stages (Figure 1.15). Firstly,
CNNs extract features from input images. This step is performed by the
application of convolutional operations, which are the main difference between
CNNs and other types of networks. In the feature extraction step there are
also other kind of layers that improve and accelerate both the learning and the
execution processes. Then, the final classification is performed on the extracted
features by layers of perceptron neurons, which are found in the last part of the
CNN architecture.

FIGURE 1.15: Example of a CNN architecture, consisting of a feature
extraction phase and a classification phase.

1.4.2.1 Convolution layer

The main purpose of the convolution layer is to extract features from the input
it receives. This layer is composed of a series of filters or kernels that aim to
extract local features. These kernels (also called filters) are matrices defined by
values known as weights. The weights of the convolution layer are calculated in
the learning phase so that the network minimizes the classification error made
based in the training data. Each kernel is used to extract or compute different
characteristics obtained from the previous layer. These are called feature maps,
which serve as input data to the next layer in the architecture.

The convolution operation allows the network to extract features more
efficiently, reducing the number of parameters to learn and, thus, optimizing the
training process. Although ANNs could also be used to extract features and learn
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patterns from images, it is not feasible due to the vast number of neurons that
would be necessary to process them.

The convolution process consists in sliding a kernel K of size m×n over all
the elements of an input image I of size i×j where for each displacement the
scalar product of the filter elements and the input elements is calculated to finally
obtain the feature map S (Equation 1.5). The amount by which the filter slides
is the stride, which controls how the filter convolves around the input image.
Figure 1.16 presents an example of a convolution operation applying a kernel of
3×3 to an input image (5×5), obtaining an output image of size 3×3.

S(i, j) = (K ? I)(i, j) = ∑
m

∑
n

I(i−m, j− n)K(m, n) (1.5)

The first convolution layer extracts significant low-level features such as
edges, corners, textures and lines, while the higher level features are extracted
in the last convolution layer.
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FIGURE 1.16: Example of a convolution operation with a 3×3 kernel and a
stride of 1×1.

1.4.2.2 Pooling layer

The pooling layer is a non-linear down-sampling filter which reduces the
resolution of the previous feature maps by compacting them, and, thus, reducing
the computational complexity of the network. Pooling ensures that the network
learns the most relevant patterns to perform the classification. In contrast to
the convolution layer, since the pooling layer does not include any configurable
parameter that need to be adjusted, this layer is not affected by the training
process. In a CNN architecture, it is usual to add a pooling layer between each
convolution layer, each one followed by an activation function such as ReLU.
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The pooling layer consists in splitting the input feature maps of size W×W
into regions of size R×R (kernel) to generate one output from each region. The
output size P is given by Equation 1.6.

P =

[
W
R

]
(1.6)

Depending on the operation performed to generate the output, there are
different types of pooling layers. The most popular are max-pooling and average-
pooling. There are other types of pooling layers that are not so widely used, and,
thus, these are not covered in this section.

• Max pooling

The max pooling extracts the most representative value (the maximum)
from each split region when applying a kernel, thus reducing the feature
map size. It is the most common pooling type used, and usually configured
with a kernel size of 2×2. Figure 1.17 shows an example of max pooling,
where each of the elements of the output feature map is calculated as the
maximum value for each split region.
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FIGURE 1.17: Example of a max pooling operation with a 2×2 kernel and
a stride of 1×1.

• Average pooling

The average pooling, also known as avg pooling, calculates the arithmetic
mean from each split region when applying a kernel. This means that each
R×R region of the feature map is down-sampled to the average value in the
region. An example of the average pooling function is shown in Figure 1.18.

1.4.2.3 Fully-connected layer

Fully Connected (FC) layers are used as classifiers in the CNN architecture. The
operations resulted after applying a set of convolution, pooling and activation
function layers are intended for extracting relevant characteristics as feature maps
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FIGURE 1.18: Example of an average pooling operation with a 2×2 kernel
and a stride of 1×1.

from the original image. This learned feature representation is finally mapped by
the FC layer to perform a prediction. The number of outputs in the last FC layer
correspond to the number of different classes to be classified. Figure 1.19 presents
an example of a FC layer.

FIGURE 1.19: Example of three consecutive FC layers, with an input layer,
one hidden layer and an output layer.
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1.4.2.4 State-of-the-art Convolutional Neural Network architectures

In the recent years, many custom CNN architectures have been developed to
solve real-world problems and, due to their success, they have become very
popular. Some of these include LeNet-5, AlexNet, VGG, Inception, Xception,
ResNet, DenseNet and MobileNet.

• LeNet-5

LeNet was developed by Yann LeCun in 1998 for hand-written digit
recognition with the MNIST dataset (LeCun et al., 1998). It achieved 99.2%
accuracy on isolated character recognition. This model is the most widely-
known CNN architecture as it was the first application of CNNs. LeNet-5
CNN architecture is made up of 7 layers. The layer composition consists of
3 convolution layers, 2 pooling layers and 2 FC layers (see Figure 1.20).

FIGURE 1.20: LeNet-5 architecture. Image taken from LeCun et al., 1998.

• AlexNet

AlexNet is a popular CNN architecture designed in 2012 by Alex
Krizhevsky, Ilya Sutskever, and Geoff Hinton, which won the ImageNet
Large Scale Visual Recognition Challenge with a test accuracy of 84.6%
(Krizhevsky et al., 2012). This challenge consisted in evaluating algorithms
for object detection and image classification at large scale in order to classify
more than 20000 categories, such as "dog" or "plane". The network consists
of 5 convolution layers and 3 FC layers. Figure 1.21 shows the architecture
of the AlexNet model.

• VGG

In 2014, researchers at the Visual Geometry Group (VGG) invented a
CNN model, called VGG-16 (Simonyan and Zisserman, 2014), that stacks
more layers onto AlexNet in order to make it deeper and to improve its
performance. This model has 13 convolution layers and 3 FC layers, and
use smaller size filters than AlexNet. A deeper variant of this model, called
VGG-19, was also developed by the same group.

• Inception
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FIGURE 1.21: AlexNet architecture. Image taken from Krizhevsky et al.,
2012.

The first version of the Inception model was created by Google researchers
in 2014. The novel idea of this architecture consisted in concatenating the
results obtained from applying convolution and pooling filters of different
size to the same input. This allows the model to benefit from multilevel
feature extraction and, therefore, capturing different features at 1×1, 3×3
and 5×5, thereby "clustering" them. Different Inception versions have
been developed over time in order to improve previous architectures:
InceptionV1 (Szegedy et al., 2015), InceptionV2 and InceptionV3 (Szegedy
et al., 2016) and InceptionV4 (Szegedy et al., 2017).

• Xception

This architecture is an extension of the Inception model also developed by
Google researchers (Chollet, 2017). The main difference with its predecessor
is that it introduces the concept of depthwise separable convolutions.
Therefore, instead of approaching convolution as a single step in which a
single feature map is obtained as a result of convolving a filter with the
input, in the Xception model, a feature map is obtained for each channel.
The general meaning of this convolution is to perform convolution and
fusion on each depth map separately, which greatly reduces the amount
of parameters.

• ResNet

ResNet (Residual Neural Network) was designed by Microsoft and it
became popular for wining the ImageNet competition (2015) with an
accuracy of 96.4% (He et al., 2016). ResNet model uses skip connections or
shortcuts (residual blocks) to skip training from a set of layers and connect
them directly to the output. The purpose of these residual blocks is to avoid
the problem of vanishing gradients or to mitigate the accuracy saturation
problem. The advantage of adding this type of skip connection is that, in
case any layer hurts the performance of the architecture, it will be skipped
by regularization.
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The ResNet-34 model is inspired by VGG-19 and consists of 34 layers in
which residual blocks are added. Other deeper architectures based on this
same principle are ResNet-50 and ResNet-101.

• DenseNet

DenseNet (Densely Connected Convolutional Networks) was developed by
Gao Huang, Zhuang Liu, and their team in 2017 (Huang et al., 2017). In this
architecture each layer is directly connected to every other layer in a feed-
forward fashion. For each layer, the feature maps of all preceding layers
are treated as separate inputs, whereas its own feature maps are passed on
as inputs to all subsequent layers. Although there are different DenseNet
architectures, DenseNet-121 is the most widely used.

• MobileNet

MobileNet is an architecture proposed by Google, designed particularly for
mobile vision applications (Howard et al., 2017). Therefore, it focuses on
reducing as much as possible the computational power required for the
algorithm. It seeks a very simple architecture even though this makes it
sacrifice some accuracy and performance. This is largely achieved through
the use of depthwise separable convolutions.

1.4.3 Tools for the implementation of Deep Learning algorithms

Some years ago, when DL was not so widespread, the development of CNN
algorithms was a laborious task and was not available to everyone. Nowadays,
the situation has changed thanks to the large number of open source software
frameworks that have been developed, which greatly facilitate the design and
training of these kind of models. These also allow to abstract researchers from
the peculiarities of the neural network’s development in order to speed up the
designing and training processes.

There are several software platforms, libraries and frameworks to develop
CNNs. Currently, the most popular, free and open-source software libraries are
TensorFlow (Abadi et al., 2016) and Keras (Chollet et al., 2015), followed by the
also very well-known software platform called PyTorch (Paszke et al., 2019).
Other noteworthy platforms are Theano (Bergstra et al., 2010), Caffe (Jia et al.,
2014) and Caffe22. Figure 1.22 shows the interest evolution of the most popular
DL frameworks in the last five years based on data obtained from Google Trends.

All these platforms allow researchers to perform all the steps involved in the
development of DL algorithms, which includes the design of the architecture, the
training and the validation processes. These two last procedures require a high
computational cost, as even the simplest neural network requires a large number
of mathematical operations to be performed. Conventional computers would not

2https://caffe2.ai (accessed on June 30, 2021)
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FIGURE 1.22: Worldwide interest evolution of the most popular DL
frameworks over time. Information obtained from Google Trends.

be able to handle so much information or would take too long to complete these
tasks without additional help. In order to speed up the process, it is important
the use of GPUs when working with this type of algorithms (Schlegel, 2015). This
acceleration is possible thanks to NVIDIA’s CUDA library, which uses parallelism
to run a high number of simultaneous threads through GPU’s multiple cores,
making the whole process achieve better performance. In particular, the library
that allows working with DL algorithms is cuDNN, which is based on CUDA.
All of the above mentioned frameworks have cuDNN support.

In this Thesis, the implemented DL-based algorithms have been developed
using both TensorFlow and Keras, which are detailed next.

• TensorFlow3 was developed by Google and released as open source
software on 2015. This tool was designed for creating multiple ML
algorithms, including neural networks. The name TensorFlow derives
from the operations such neural networks perform on multidimensional
arrays of data. These multidimensional arrays are referred to as "tensors".
Tensorflow runs on all the platforms from mobiles to embedded devices
and also distributed servers.

• Keras4 is a high-level Python library commonly used to create neural
networks to solve complex challenges, which works as a wrapper to
TensorFlow or Theano. It is designed to be modular, fast and easy to
use, thus, facilitating the creation of DL algorithms when working with
TensorFlow.

3https://www.tensorflow.org (accessed on June 30, 2021)
4https://keras.io (accessed on June 30, 2021)
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Chapter 2

Objectives

At the beginning of this Thesis, two types of objectives were proposed: general
objectives, with the aim of analyzing and studying the viability of neural
networks and CAD systems for PCa detection in histopathological images; and
more specific objectives, focused on solving particular problems related to the
topic introduced previously and the design of the corresponding systems and
neural networks.

General objectives: search for and study of CAD systems for medical image
processing, focusing on PCa histopathological images.

1. Study of the histopathology of PCa, focusing on GGS.

2. Study of different neural network architectures and learning algorithms for
training systems to perform a specific task, and how these could be applied
to medical image analysis.

3. Development of new systems for processing histological images from
prostate biopsies.

To achieve this general objective, which is broad and ambitious, the
following set of specific objectives were proposed:

Specific objectives: design, implementation and validation of different
mechanisms to perform PCa detection and classification in histopathological
images based on DL algorithms.

1. Dataset generation:

(a) Digitization of prostate biopsy samples to obtain a collection of WSIs.

(b) Study and analysis of state-of-the-art software tools for visualizing and
annotating WSIs.

(c) Development of a new desktop software application in order to
allow pathologists to load and visualize the scanned images with the
purpose of annotating them and generate a report.
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(d) Study and development of new algorithms for generating datasets
from the digitized images and the annotations obtained from
pathologists.

2. Prostate cancer detection in WSIs using Convolutional Neural Networks:

(a) Study of CNNs and how they work.

(b) Evaluation and study of different DL frameworks for designing,
training and testing different neural network architectures.

(c) Generation of a dataset with patches extracted from the labeled WSIs
with the aim of performing a classification between malignant and
normal patches.

(d) Development of a set of filters to pre-process patches.

(e) Design of a custom CNN model to perform the classification.

(f) Validation and quantification of the obtained results.

(g) Generation of a heatmap-like plot showing the malignant tissue areas
within the WSI.

3. Performance evaluation of DL-based PCa screening methods:

(a) Design of a benchmark algorithm to evaluate the performance of DL-
based PCa detection CAD systems.

(b) Analysis of the performance of the proposed CAD system and its
processing steps in different hardware platforms.

(c) Study and evaluation of state-of-the-art prostate cancer detection CAD
systems.

(d) Comparison of the improvements of the proposed CAD system over
other works.

4. Patch aggregation in DL-based PCa detection systems:

(a) Study of different mechanisms to perform patch aggregation.

(b) Development of a set of algorithms to obtain relevant spatial and
statistical features from patch-level classification results obtained after
analyzing WSIs with the proposed CAD system.

(c) Generation of a training and testing dataset.

(d) Design of a custom ANN model to perform the classification.

(e) Validation and quantification of the obtained results.

5. Development of a global CAD system for Gleason pattern classification in
WSIs:
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(a) Study the GGS system and the difference between Gleason patterns.

(b) Generation of a dataset with patches extracted from the labeled WSIs
with the aim of performing a classification between GGS patterns 3, 4
and 5.

(c) Design of a custom CNN model to perform the classification.

(d) Validation and quantification of the obtained results.

(e) Generation of a heatmap highlighting the malignant tissue regions
with their corresponding Gleason pattern.

(f) Integration and connection of the prostate cancer detection CNN, the
patch aggregation system and the GGS classification CNN into a global
CAD system.
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Chapter 3

Prostate cancer detection in WSIs using
Convolutional Neural Networks

3.1 Introduction

Recently, many researchers have investigated the application of CAD systems to
the diagnosis of PCa based on different methodologies. Some of these studies
use ML techniques, such as neural networks, Support Vector Machines (SVMs),
or some complex algorithms to carry out the classification (Kwak and Hewitt,
2017; Toro et al., 2017; Litjens et al., 2016; Li et al., 2018; Doyle et al., 2007; Ren
et al., 2017; Campanella et al., 2019; Ström et al., 2020; Bulten et al., 2020; Arvaniti
et al., 2018b), while others are based on algebraic tools, such as Homology Profile
algorithms, which extracts features from a structure of a topological space (Yan
et al., 2020). Many of them have performed a binary classification (Kwak and
Hewitt, 2017; Toro et al., 2017; Litjens et al., 2016; Doyle et al., 2007; Ren et al.,
2017; Campanella et al., 2019), distinguishing between cancerous and normal
tissue or between different GGS scores, whereas others have performed a multi-
class detection (Li et al., 2018; Arvaniti et al., 2018b; Ström et al., 2020; Bulten
et al., 2020).

For this kind of systems, preprocessing the information could be a key factor
to make it easier for the classifier to extract the most relevant features from the
input images. Background and noise removal are key processes to consider when
working with histopathological images. Otsu’s thresholding (Otsu, 1979) is one
of the most well-known and used methods for extracting background and tissue
from WSIs (Kwak and Hewitt, 2017; Arvaniti et al., 2018b). In Toro et al., 2017,
the Blue Ratio method, which detects nuclei from cells in stained images, is used
to obtain tissue regions. Other simpler mechanisms to remove background are
based on thresholding procedures on the optical density of the RGB channels
(Litjens et al., 2016).

Stain normalization has also proved to be useful for histopathological
images, since it reduces color variations that could have been produced in the
staining process of the tissue sample (Ciompi et al., 2017). This has been used
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in different cancer studies based on histopathological images (Vesal et al., 2018).
In Roy et al., 2018, the authors compared the effect of applying different stain
normalization methods in histopathological images for liver, breast, kidney and
colorectal cancer.

Table 3.1 presents a comparison of some of these studies, summarizing
the characteristics of the dataset, the preprocessing step applied to the data,
the main classification method procedure of the CAD system, the number of
classes taken into account and the results obtained with their corresponding
performance metrics. These works have used many different techniques for the
preprocessing step, although apart from Doyle et al., 2007, which uses SVMs, the
rest have performed either the classification or part of the preprocessing by using
CNNs. As introduced in Section 1.4, these complex architectures have increased
in popularity in the recent years thanks to the rise in the computation capabilities
of current general purpose computers, reducing the gap of achieving a robust
and accurate CAD system.

In this experiment, a novel DL-based CAD system for PCa detection in WSI
images is presented to support pathologists in this task. A CNN was trained
and tested over a new dataset that was built and labeled with the supervision
of expert pathologists after processing the images with novel algorithms to
improve cancer detection and robustness across WSIs from different hospitals
and scanners.

3.2 Materials and methods

3.2.1 Dataset

Training a CNN requires a large amount of data to make the classifier learn and
converge to the wanted solution. The lack of free and open datasets with the
sufficient amount of samples, and with reliable labels associating the pixels in
every image with a specific class, is always a restriction when trying to develop a
CAD system for medical image analysis.

For this experiment, a novel dataset that was analyzed and labeled by
expert pathologists was created. In this dataset, malignant regions of the WSIs
considered by the pathologist for such diagnosis were specified. This kind of
labels could provide the necessary information to train a learning system in
order to extract relevant features from the cell structures contained in them and,
thus, detect specific patterns. Figure 3.1 depicts the whole process applied for
obtaining our dataset.

3.2.1.1 Data acquisition and labeling

To obtain a reliable dataset, a collaboration with the Pathological Anatomy Unit
of Virgen de Valme Hospital in Seville (Spain) was established. They provided a
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TABLE 3.1: Comparative study between state-of-the-art research about PCa
detection.

Ref. Dataset Preprocessing step Classifier Classes Performance measure

Kwak and
Hewitt, 2017

4 TMAs1:
- Train: 73 (cancer) +
89 (normal) cores
- Test: 217 (cancer) +
274 (normal) cores

Otsu’s thresholding,
Euclidean distance
and Watershed
algorithm to perform
nuclear seed detection.
Nuclear seed maps are
used as input to the
classifier.

CNN2

(custom)
2: Cancer and
normal

AUC3 at core level:
0.974

Litjens et al.,
2016

225 WSIs4:
- Train: 48 (cancer) +
52 (normal) WSIs
- Val: 31 (cancer) + 19
(normal) WSIs
- Test: 45 (cancer) +
30 (normal) WSIs

Binary tissue mask by
applying thresholding
procedure based on
optical density of RGB
channels to remove
background.

CNN
(custom)

2: Cancer and
normal

AUC at slide level:
0.99

Campanella
et al., 2019

24859 WSIs:
- Train: 70%
- Val: 15%
- Test: 15%

Otsu’s thresholding to
remove background.

CNN
(ResNet34)
+ RNN5

2: Tumor and
normal

AUC at slide level:
0.986

Ström et al.,
2020

8914 WSIs:
- Train: 6953 WSIs
- Val: 1631 WSIs
- Test: 330 WSIs

Segmentation
algorithm based
on Laplacian filtering.

CNN
(60 Inception
V3)

2: Normal and
malignant
3: GGS6 3,
GGS 4, GGS 5

AUC for normal and
malignant*:
0.997 on validation
0.986 on test
Mean pairwise kappa
for GGS*: 0.62
*at slide level

1: Tissue Microarray. 2: Convolutional Neural Network. 3: Area Under Curve. 4: Whole Slide Image.
5: Recurrent Neural Network. 6: Gleason Grading System.
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FIGURE 3.1: Flow chart of the whole dataset acquisition and the different
preprocessing steps applied.

large set of PCa cases obtained from different patients. These cases consisted
in different H&E stained slides (diagnosed as normal or malignant) obtained
from needle core biopsy. Then, they were digitized with a VENTANA iScan HT1

scanner from Roche Diagnostics.

1https://diagnostics.roche.com/global/en/products/instruments/ventana-iscan-ht.html
(accessed on June 30, 2021)



46 Chapter 3. Prostate cancer detection in WSIs using Convolutional Neural
Networks

Once the biopsies were scanned and digitized, the following step consisted in
labeling the WSIs. To this end, a desktop software application was designed and
developed in C# and Windows Presentation Foundation (WPF) with Microsoft
® .NET Framework with the purpose of allowing pathologists to categorize
specific regions of the tissue as malignant. Using this application, experienced
pathologists examined WSIs in order to find malignant areas, considered as
Regions of Interest (ROIs), indicating the GGS pattern that they belong to, and
thus, labeling each of the WSI images. For a more precise and comfortable
labeling process, pathologists used computer drawing pads from Wacom® to
mark the ROIs inside WSIs. The essential attributes for the dataset creation are
summarized in Table 3.2.

TABLE 3.2: Dataset summary.

Attributes Details

Staining method Hematoxylin and Eosin stain

Scanner VENTANA iScan HT from
Roche Diagnostics

Scanner resolution 0.25 µm per pixel

Total number of WSIs 97

Optical magnification 10×

3.2.1.2 Patch sampling

As mentioned in Section 1.3, due to the large size of the WSIs obtained from
the process presented before (100k×100k pixels, approximately), using them
as a direct input for the CNN is not doable. To this end, these images were
divided into small patches (100×100 pixels at 10× optical magnification) in order
to obtain a dataset that the neural network could work with for the training,
validation and testing steps, ensuring that all patches of a patient are only in
one of these subsets. This division would also have some other effects. First
of all, it would speed up the computation time for processing a complete WSI,
since unwanted areas such as noisy regions of the image or background would
not be taken into account. Then, this would also increase the overall accuracy,
robustness and reliability of the system, since more images would be considered
for training the network. Finally, the CAD system would also be more precise
in locating malignant areas of the tissue, which could better help pathologists,
rather than just predicting if a whole WSI is malignant or not, as an unique and
global diagnosis.
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The quality of the dataset is crucial in the training step as well as when
testing the network. The lesser number of noisy patches the dataset contains, the
more robust and better fitted the training step of the network would be, leading to
achieving better results. For these reasons, it is important to discard all unwanted
regions (background and noisy regions) from the dataset and only consider areas
which contain prostate tissue. Figure 3.2 shows some common noisy agents that
could be present in WSIs.

A

B

C

D

FIGURE 3.2: WSI with unwanted areas: regions which correspond to the
edge of the slide cover (A), cells from external tissue not related to the
prostate (B), external agents such as dirt (C) and zones highlighted with

pen (D).

To obtain the dataset, different patch-extraction algorithms were applied for
WSIs labeled as normal and malignant. It is important to mention that patches
labeled as normal were only obtained from WSIs diagnosed as normal, and
patches labeled as malignant were obtained from ROIs of WSIs diagnosed with
cancer, avoiding possible malignant tissue regions that pathologists could have
missed when labeling a malignant WSI. For malignant WSIs, the ROIs selected
by the pathologists were framed with a polygon, which was then scanned by
overlapping patches (with 50% overlap between them) as in Li et al., 2018 and
Campanella et al., 2019, due to the smaller amount of malignant patches in
comparison with the normal ones. Overlapping was only applied to malignant
WSIs in the cross-validation set, and not in the test set (see Section 3.2.2.2). Those
patches which had at least 80% of its area within the ROI were considered, and
the rest of them were discarded. For normal WSIs, all patches which contained
tissue were extracted, following two consecutive processes: first, background
patches were discarded based on an RGB value threshold, where patches with
a mean color value close to either white or black were removed (below 30 and
above 230, using a 8-bit color depth); then, patches corresponding to unwanted
areas (noise) were discarded by applying a novel filter process based on Deron
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Eriksson’s patch scoring formula2.

This filter applies a score (in a scale that ranges from 0 to 1) to each extracted
patch depending on three subfilters (see Equation 3.1). Following this score, if the
patch exceeded a threshold (established at 0.7), then the patch was considered for
the dataset, if not, it was discarded.

Score = TP×CF× SVF (3.1)

Where TP stands for Tissue Percentage; CF, Color Factor; and SVF, Saturation
and Value Factor.

TP measures the amount of tissue that the patch contains, scoring it from 0 to
1, by counting the number of pixels that do not correspond to background. The
more tissue the patch contains, the higher the score it will be given.

CF measures (from 0 to 1) the area of the patch that is inside H&E’s color
range (which is between pink and blue, including purple, depending on whether
the region is acidic or basic). For this, each of the patches were first converted
from RGB to HSV scale, which consists of three channels: hue (H), saturation
(S) and brightness/value (V). Then, the score assigned to CF depends on the
percentage of pixels whose hue lie within H&E’s color range.

SVF measures the dispersion (standard deviation) of the saturation and
brightness channels of the patch after being converted to HSV scale. As patches
which contain tissue have a medium-high dispersion due to their low uniformity,
those that do not have tissue or that have a small amount of tissue score lower
SVF.

The number of patches obtained from normal and malignant WSIs after
applying the mentioned steps is shown in Table 3.3, where the GGS distribution is
also reported. Around 50% of the total amount of patches correspond to normal,
and the rest to malignant.

3.2.1.3 Preprocessing step

Histology images could present unwanted color variations caused by different
factors such as the staining procedure that was performed, the equipment
that was used for doing it and the color responses of digital scanners in the
digitization process, among others. When comparing WSIs, their color could
be very different even if the images are obtained from the same scanner.
Therefore, color normalization methods, which reduce the variability of H&E
stain appearance, could be useful to improve the classifier. This could also make
the system more robust and stable when predicting or inferring over new unseen

2https://github.com/deroneriksson/python-wsi-preprocessing (accessed on June 30, 2021)
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TABLE 3.3: Dataset classes distribution.

Categories No. of WSI No. of patches

Malignant 70

19905, where:
6404 (32.17%) GGS 3
9791 (49.19%) GGS 4
3710 (18.64%) GGS 5

Normal 27 19772

Total 97 39677

samples from different hospitals and scanners with which the network has not
been trained with.

To this end, a color normalization processing, called Reinhard stain-
normalization (Reinhard et al., 2001; Magee et al., 2009), was applied. With this
color normalization method, the mean and standard deviation of each channel
of a source image are matched to that of a target image by applying a linear
transformation in a perceptual colourspace (the lαβ colourspace of Ruderman
et al., 1998), obtaining the resulting mapped image. This process is defined by
Equations 3.2, 3.3 and 3.4.

lmapped = lsource−l̄source
l̂source

l̂target + l̄target (3.2)

αmapped = αsource−ᾱsource
α̂source α̂target + ᾱtarget (3.3)

βmapped = βsource−β̄source
β̂source

β̂target + β̄target (3.4)

Where l̄, ᾱ, and β̄ are the channel means; l̂, α̂, and β̂ are the channel standard
deviations (calculated over all the pixels in the image). This process was applied
to every patch (source) in the dataset, considering target as the mean over all
the patches in the training set (dashed purple in Figure 3.5). An example of the
application of this process can be seen in Figure 3.3.
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FIGURE 3.3: Examples of the application of Reinhard stain-normalization
on three patches (source) from three WSIs (A, B and C) from different

scanners, obtaining normalized patches (mapped).

3.2.1.4 Data augmentation

In DL algorithms, the more images the dataset has, the more robust and stable
the system will be. Also, having a larger dataset helps to avoid overfitting, since
the network has more different data to train with. However, this is not always
the case (e.g., adding more noisy samples will not help), and this is why having
a clean dataset with region-specific labels is so important.

For this reason, data augmentation techniques were applied to our dataset
in order to increase the number of images for the training step, and thus, to
contemplate many other cases. Different transformations were performed to the
original patches, thus, for each training patch, a horizontal flip and a vertical
flip were applied, along with rotations in the whole 360◦ range with steps of 1◦,
where the missing information in the corners after rotating the patch was filled
by mirroring. Therefore, 2×2×360 new patches were obtained from each original
patch.
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3.2.2 Deep learning framework

3.2.2.1 Convolutional Neural Network architecture

A custom CNN, called PROMETEO, was developed to perform the PCa detection
task. It is a supervised neural network whose architecture is shown in Figure 3.4.
This network consists of five convolution stages. A convolution stage consists of
the following layers: convolution, batch normalization, rectified linear unit and
2×2 pooling. These 5 layers have 64 5×5, 64 3×3, 128 3×3, 128 3×3 and 256
3×3 filters, respectively, connected to three consecutive FC layers with 256, 128
and 128 units, respectively. Finally, a Softmax decision layer with two units gets
the output from the last FC layer and generates the result of the classification,
identifying between normal and malignant patches. Different architectures were
tested, including the VGG16 (Simonyan and Zisserman, 2014), VGG19 (Simonyan
and Zisserman, 2014), MobileNet (Howard et al., 2017) and DenseNet121 (Huang
et al., 2017) architectures (see Section 1.4.2.4), although this custom CNN was
selected based on the fact that achieved the best results.

64
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ConvStage1

64

50

ConvStage2

128

25

ConvStage3

128
12

ConvStage4

256
6

ConvStage5

25
6

FC1

12
8

FC2

12
8

FC3

2

SoftMax

FIGURE 3.4: Diagram of the architecture of the CNN. Each convolution
stage (ConvStageX) consists of convolution, batch normalization, ReLU
and 2×2 max pooling layers. Each fully connected stage (FCX) consists of
dense, batch normalization, ReLU and dropout (0.5) layers. Convolution

kernels are: 5×5, 3×3, 3×3, 3×3, 3×3, respectively.

3.2.2.2 Training, validating and testing the system

As mentioned in previous sections, CNNs and other DL algorithms need a large
amount of samples for the training phase. When using these architectures, the
dataset is commonly divided into three different sets for training, validating and
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testing the model, respectively, where the training set is by far the one with more
samples.

At the same time, to measure the generalization ability of the model, cross-
validation is usually performed. There are different types of cross-validation; the
one used in this study was the K-fold stratified cross-validation (where K = 3).
First, the dataset was split in two sets: 75% was used to perform the 3-fold cross-
validation and the remaining 25% for performing a final test of the system.

For performing cross-validation, the 3-fold cross-validation set was divided
again into three different subsets, where patches in each of these subsets were also
divided following a patient-level split. Each subset consisted of, approximately,
50% cancer and 50% normal cases. Then, the network was trained for 200 epochs
with a batch size of 32 using Adadelta optimizer (Zeiler, 2012) and validated three
times (once per fold), using two of the subsets for training and the remaining one
for validating the system. The results for cancer detection were evaluated as an
average of the 3-fold cross-validation results.

After obtaining these results, a final test was performed, using the whole 3-
fold cross-validation set (75% of the dataset) for training and then testing with the
25% set that was left apart. Figure 3.5 shows a diagram about the dataset division
for the 3-fold-cross-validation and the final test.

Train Train Validation

Train Validation Train

Validation Train Train

Train Train Train Test

Fold 1

Fold 2

Fold 3

Final test

3-fold cross-validation TestData

FIGURE 3.5: 3-fold cross-validation and final test diagram. The dataset was
divided into four subsets. Two of them were used for training each fold and
one for validation. After that evaluation, those three subsets were used to
train a final model and the remaining one was used to test the performance

of the system.

3.2.2.3 Evaluation metrics

In order to present the capabilities of this implemented CAD system, different
evaluation metrics were used. These are accuracy (Equation 3.5), precision
(Equation 3.6), sensitivity (Equation 3.7), specificity (Equation 3.8), F1-score
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(Equation 3.9), and Area Under Curve (AUC) of the Receiver Operating
Characteristic (ROC) curve. All of them were measured at patch level.

Accuracy = 100× TP + TN
TP + TN + FP + FN

(3.5)

Precision = 100× TP
TP + FP

(3.6)

Sensitivity = 100× TP
TP + FN

(3.7)

Specificity = 100× TN
TN + FP

(3.8)

F1-score = 2× Precision× Sensitivity
Precision + Sensitivity

(3.9)

Where TP and FP denote true positive cases (when the system diagnoses
a malignant patch correctly) and false positive cases (the system detects a
malignant patch in a region where the tissue does not correspond to a tumor),
respectively. TN and FN denote true negative cases (the system classifies
a normal patch as normal) and false negative cases (the system classifies a
malignant patch as normal), respectively.

The ROC curve shows the diagnostic ability of a binary classifier system as
its discrimination threshold is varied. The AUC is a commonly used metric that
measures the area that is under the ROC curve, where an area of 1 represents a
perfect test.

3.3 Results

3.3.1 Quantitative evaluation

The evolution of the loss and accuracy over 200 epochs for each fold, both for
the stain-normalized dataset and for the original one that was not normalized, is
shown in Figure 3.6 and Figure 3.7, respectively.
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The ROC curve was calculated for the same cases that were taken into
account in the loss and accuracy plots (Figures 3.6 and 3.7), along with their
corresponding AUC value, which are shown in Figure 3.8 and Figure 3.9.
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FIGURE 3.6: Loss and accuracy evolution when training with the three
cross-validation sets using the stain-normalized dataset.
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FIGURE 3.7: Loss and accuracy evolution when training with the three
cross-validation sets using the dataset that was not stain-normalized.
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FIGURE 3.8: Left: ROC curve for each cross-validation set and the test set
when using the stain-normalized dataset. Right: zoomed in at top left.
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FIGURE 3.9: Left: ROC curve for each cross-validation set and the test set
when using the dataset that was not stain-normalized. Right: zoomed in at

top left.

TABLE 3.4: Results obtained from each cross-validation fold and the final
test.

Set Dataset
Accuracy

(%)

Specificity

(%)

Sensitivity

(%)

Precision

(%)

F1 score

(%)
AUC

C
ro

ss
-v

al
id

at
io

n

1st fold
Stain-normalized 97.43 97.42 97.44 97.47 97.45 0.995

Not normalized 98.54 98.99 98.11 99.00 98.55 0.994

2nd fold
Stain-normalized 96.7 97.85 95.63 97.85 96.73 0.995

Not normalized 99.24 100.00 98.50 100.00 99.24 0.999

3rd fold
Stain-normalized 95.35 96.25 94.49 96.28 95.37 0.990

Not normalized 96.43 95.10 97.72 95.34 96.52 0.994

Average
Stain-normalized 96.49 97.17 95.83 97.2 96.51 0.993

Not normalized 98.07 98.03 98.11 98.11 98.10 0.996

Fi
na

lt
es

t

Test
Stain-normalized 99.14 99.18 99.10 99.27 99.19 0.999

Not normalized 99.98 100 99.97 100 99.98 0.999

Table 3.4 presents the results obtained from each of the cross-validation sets
that were trained and validated, considering the stain-normalized dataset and the
one that was not normalized. These results consists of the evaluation metrics that
were introduced in Section 3.2.2.3, comparing both approaches by calculating the
average over the validation sets.

After the cross-validation was performed, and as was explained in
Section 3.2.2.2, the three subsets were used for training and the remaining 25%
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of the dataset was used to test the network (see Figure 3.5). With this, the stain-
normalized approach achieved 99.14% accuracy, while the not-preprocessed
achieved 99.98% (see Table 3.4). Figures 3.8 and 3.9 present the ROC curves for
these two tests.

As can be seen from these results, both approaches achieved very high scores
in all the metrics that were studied for this classification task, with the dataset
that was not normalized performing slightly better (less than 1.5% increase in
accuracy). However, as was mentioned in previous sections, these results were
obtained with WSIs from the same hospital (Virgen de Valme). Therefore, to
measure the performance of both approaches with WSIs obtained from different
hospitals and scanners, a new test was carried out, which is presented in
Section 3.3.4.

3.3.2 Comparison with other methods

The results obtained in the previous section were compared with different state-
of-the-art architectures and classifiers using the same dataset. The following well-
known CNN models were used to extract features from the dataset: MobileNet,
DenseNet121, VGG16 and VGG19. Instead of training these networks from
scratch, whose architectures are more complex than the one that was developed
for this study, their weights were obtained by using the transfer learning
technique from the ImageNet dataset (Deng et al., 2009). This consists in taking a
pre-trained neural network and adapting it to a new different dataset. Along with
these four models, two different classifiers were tested: Support Vector Machine
(SVM) and SoftMax. Moreover, each of the architectures was also fine-tuned,
meaning that the weights from ImageNet were adjusted using backpropagation
to increase the recognition rate over our dataset. The accuracy results for each of
the possible combinations are presented in Table 3.5.

As it is shown in Table 3.5, the accuracy obtained from the different tested
methods are very similar compared to PROMETEO. However, as it is presented
in Chapter 4, their more complex architectures lead to a higher execution time,
which is an important factor to reduce and optimize when developing a CAD
system.

3.3.3 Expert pathologists’ verification

In addition to the numerical results that were obtained in the previous section,
a validation was also performed by expert pathologists. To this end, the
network trained for the final test was used. With that model, a prediction was
performed over the WSIs from the test subset. To perform a prediction, all patches
from WSIs were read and only those which passed the patch filters mentioned
in Section 3.2.1.2 were stain normalized and predicted by the CNN. These
predictions were represented in a heatmap graph over the original WSI image.
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TABLE 3.5: Results comparison for different state-of-the-art methods. Best
accuracies for each architecture model are highlighted in bold.

Model Classifier Fine-tuning Accuracy (%)

VGG16
SoftMax No 86.36

Yes 94.76

SVM No 85.37
Yes 93.85

VGG19
SoftMax No 83.87

Yes 93.54

SVM No 85.11
Yes 91.22

MobileNet
SoftMax No 81.48

Yes 98.96

SVM No 80.58
Yes 99.08

DenseNet121
SoftMax No 78.47

Yes 96.82

SVM No 78.00
Yes 97.77

An example can be seen in Figure 3.10, where the ground truth annotations
from the pathologist are also shown. These heatmaps were given to different
pathologists together with their corresponding WSIs in order to validate the
predictions obtained from the network. The results of the CNN presented by
the heatmap mark the same regions that pathologists labeled in the original WSI,
with the exception of some isolated false positives, which are indicated.

Ground Truth CNN output

FIGURE 3.10: Left: WSI taken from the test subset with ground truth labels
from pathologists. Right: output of the CNN represented with a heatmap.

Isolated false positives marked with red squares.
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3.3.4 Testing with WSIs from different hospitals

As was mentioned in previous sections, for both training and testing the network,
only images from a single hospital were taken into account, which also means
images from one laboratory and a specific scanner. A new experiment was
carried out in order to measure the performance of the network when using new
images obtained from other hospitals. This also allowed determining whether the
stain-normalization step was better or not compared to the same images without
applying any kind of color normalization.

To perform this experiment, new WSIs were obtained from two different
hospitals: Puerta del Mar Hospital (Cádiz, Spain) and Clínic Barcelona Hospital
(Barcelona, Spain). It is important to mention that this new images were not
labeled the same way as the ones that were used to perform the previous
experiments. These WSIs were only diagnosed as normal or malignant, without
indicating which specific areas of the tissue were relevant for the pathologists
to make that decision. Therefore, this new experiment consisted in measuring
the number of false positives against true negatives (specificity) detected by
the network in total for all WSIs diagnosed as normal for each hospital. WSIs
diagnosed as malignant were not taken into consideration for a sensitivity study
due to the fact that there was no ground truth that could be used to evaluate
the network when testing it with the patches obtained from them. Instead,
a statistical study based on Student’s t-test is later presented to compare the
predicted patches’ distribution between normal and malignant WSIs.

From Clínic Barcelona Hospital, 100 new WSIs diagnosed as normal were
used, whereas a total of 79 were considered from Puerta del Mar Hospital: 33 of
them were obtained from needle core biopsy (the same procedure as Virgen de
Valme Hospital and Clínic Hospital) and the remaining 46 WSIs were obtained
from incisional biopsy.

Figure 3.11 shows the mean specificity and standard deviation for each of the
three sets from different hospitals, comparing the stain-normalization algorithm
(96.08± 2.85, 94.82± 3.52 and 96.26± 2.20, respectively) to the original images
(93.31± 6.43, 95.87± 8.57 and 95.94± 3.42, respectively).

Since malignant WSIs only provided a global diagnosis, the sensitivity at
patch level could not be calculated. Then, an evaluation relying on the slide-
level label was performed, comparing the probability distributions estimated by
the CNN for normal and malignant WSIs for each external hospital. To carry
out this evaluation, 129 new WSIs diagnosed as malignant from Clínic Barcelona
Hospital and 65 new malignant WSIs from Puerta del Mar Hospital (26 obtained
from needle core biopsy and 39 from incisional biopsy) were considered, along
with the ones diagnosed as normal that were used in the previous experiment.
Patches from both normal and malignant WSIs were predicted following the
same procedure explained in Section 3.3.3 with the model that was trained with
stain-normalized patches and also with the one that was not (in this case, patches
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FIGURE 3.11: Mean specificity and standard deviation achieved by the
CNN with WSIs obtained from Clínic Barcelona Hospital (Barcelona.
Spain), and Puerta del Mar Hospital (Cádiz, Spain). A and B were extracted

with incisional biopsy and needle core biopsy, respectively.

extracted from the WSIs from external hospitals were not stain-normalized in the
preprocessing step). The average and standard deviation of the percentage of
malignant patches in relation to the total amount of tissue patches (those that
passed the patch filters mentioned in Section 3.2.1.2) that the models predicted,
were calculated for each hospital. Statistical Student’s t-test was performed to
measure how significant the difference between the results obtained for normal
and malignant WSIs were. For the t-test, two values were generated: the t-statistic
and the critical t-value. If the first is greater than the second, the test concludes
that there is a statistically significant difference between the results obtained for
normal and malignant WSIs. The results of this evaluation are presented in
Table 3.6, where the impact of using stain-normalization is also shown.

As can be seen from the results obtained when performing the predictions,
there is a statistically significant difference between the results obtained for
normal and malignant WSIs when using stain-normalization as part of the
preprocessing step. On the other hand, significant differences cannot be achieved
when predicting without having applied the normalization process to the input
patches before, except for the WSIs obtained from Clínic Barcelona Hospital.

Figure 3.12 presents three extreme cases from Puerta del Mar Hospital
obtained with needle core biopsy. The first case (A) shows a malignant WSI
in which the system detected a high quantity of malignant patches (∼45% of
the tissue). On the other hand, the second one (B), corresponds to a malignant
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TABLE 3.6: Results of the statistical evaluation performed with malignant
and normal WSIs from external hospitals, where Avg%ppm stands for the
average of the percentage of patches predicted as malignant, and Std for
its standard deviation. Cases where t-static > critical t-value (statistically
significant difference found between normal and malignant distributions)
are highlighted in bold. A and B were extracted with incisional biopsy and

needle core biopsy, respectively.

Malignant Normal

C
lí

ni
c

B
ar

ce
lo

na

Stain-normalized
Avg%ppm 12.22% 3.92%

Std 9.29% 2.85%
t-statistic

(critical t-value)
8.24

(1.98)

Not normalized
Avg%ppm 15.46% 6.69%

Std 10.17% 6.43%
t-statistic

(critical t-value)
7.29

(1.98)

Pu
er

ta
de

lM
ar

(A
) Stain-normalized

Avg%ppm 11.47% 5.18%
Std 9.43% 3.52%

t-statistic
(critical t-value)

3.93
(2.01)

Not normalized
Avg%ppm 7.35% 4.13%

Std 9.97% 8.57%
t-statistic

(critical t-value)
1.58

(1.99)

Pu
er

ta
de

lM
ar

(B
) Stain-normalized

Avg%ppm 14.00% 3.74%
Std 11.87% 2.20%

t-statistic
(critical t-value)

4.35
(2.05)

Not normalized
Avg%ppm 3.35% 4.06%

Std 4.08% 3.42%
t-statistic

(critical t-value)
-0.71
(2.01)

WSI with around a 6% of the tissue predicted as malignant. Finally, in the third
case (C), a normal WSI is shown, in which the system mistakenly detected 5%
of the patches that correspond to tissue as malignant. These malignant WSIs
present pen marks drawn by the pathologist that globally diagnosed the slide
before being scanned, which roughly delimit malignant areas of the tissue. As
can be seen in Figure 3.12, C has a relatively high quantity of patches detected
as malignant. However, these patches are scattered across the tissue and, hence,
not focusing on a specific region, which clearly represents the error of the system.
On the other hand, in B, the small quantity of patches detected as malignant are
mostly focused inside the area delimited by the pen marks. After being revised
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FIGURE 3.12: Heatmaps generated by the system for three different WSIs
from Puerta del Mar Hospital. A and B correspond to WSIs globally
diagnosed as malignant with high and low quantity of malignant patches
detected by the system, respectively, while C represents a normal WSI with
a high error rate in the prediction. Zoomed regions are presented for better

visualization.

by a pathologist, it was confirmed that the malignant area matches the heatmap,
while the rest corresponds to normal tissue, except for a small area that is partially
overlapped by the bottom pen mark. Finally, the heatmap presented for A shows
that the system detects most of the malignant tissue correctly based on the pen
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marks.

The results obtained in this chapter have been published in IEEE Access
journal as "PROMETEO: A CNN-based computer-aided diagnosis system for
WSI prostate cancer detection" (Duran-Lopez et al., 2020a). More details of this
publication can be found in Appendix A.
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Chapter 4

Performance evaluation of DL-based
prostate cancer screening methods

4.1 Introduction

In the previous chapter, a CAD system for PCa detection in WSIs, called
PROMETEO, was presented. As mentioned in Section 3.1, this task has become
one of the main topics for many researchers. Ström et al. (Ström et al.,
2020) developed a DL-based CAD system to perform a binary classification,
distinguishing between malignant and normal tissue. The classification was
performed using an ensemble of 30 widely-used InceptionV3 models (Szegedy
et al., 2016) pretrained on ImageNet. They achieved an AUC of 0.997 and
0.986 on the validation and test subsets, respectively. For areas detected as
malignant, the authors trained another ensemble of 30 InceptionV3 CNNs in
order to discriminate between different PCa patterns from GGS, achieving a mean
pairwise kappa of 0.62 at slide level. Campanella et al. (Campanella et al., 2019)
presented a CAD system to detect malignant areas in WSIs. The classification was
performed with the well-known ResNet34 model (He et al., 2016) together with a
Recurrent Neural Network (RNN) for tumor/normal classification, achieving an
AUC of 0.986 at slide level.

These previous works achieve competitive results in terms of accuracy,
precision and other commonly-used evaluation metrics. However, to the best of
the author’s knowledge, most state-of-the-art works do not focus on prioritizing
the speed of the CAD system as an important factor. Many of them used very
complex well-known networks to train and test, without taking into account
the computational cost and the time required to perform the whole process.
Since these algorithms are not intended to replace pathologists but to assist them
in their task, in some cases it is better to prioritize the speed of the analysis,
sacrificing some precision so that the expert has a faster and more dynamic
response from the system.

In this study, a novel benchmark was designed in order to measure the
processing and prediction time of a CNN architecture for a PCa screening
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task. First, the proposed benchmark was run for the PROMETEO architecture
on different computing platforms in order to measure the impact that their
hardware components have on the WSI processing time. Then, using the Personal
Computer (PC) configuration that achieved the best performance, the benchmark
was run with different state-of-the-art CNN models, comparing them in terms of
average prediction time both at patch and at slide level, and also reporting the
slowdown when compared to PROMETEO.

4.2 Materials and Methods

4.2.1 Dataset

In this experiment, a dataset with the same WSIs obtained from Chapter 3 was
used. These cases consisted in different H&E-stained slides globally diagnosed
as either normal or malignant from Virgen de Valme, Clínic Barcelona and Puerta
del mar hospitals. Table 4.1 summarizes the WSIs considered in the dataset
differentiating between normal and malignant cases.

TABLE 4.1: Dataset summary.

Hospital No. of WSIs
Normal Malignant Total

Virgen de Valme Hospital 27 70 97
Clínic Hospital 100 129 229
Puerta del Mar Hospital 79 65 144

4.2.2 Convolutional Neural Network models

Different CNN models were considered in order to compare their performance
by using the benchmark proposed in section 4.2.3. Three different architectures
from state-of-the-art DL-based PCa detection works were compared. The first
one is PROMETEO, presented in Chapter 3, where the authors also demonstrated
that applying stain-normalization algorithms to the patches in order to reduce
color variability could improve the generalization of the model when predicting
new unseen images from different hospitals and scanners. The second CNN
architecture that was considered is the well-known ResNet34 model (He et al.,
2016), which was used in Campanella et al., 2019. The third one is InceptionV3,
introduced in Szegedy et al., 2016, which was used by Ström et al., 2020.

Apart from these three CNN models, other widely-known architectures were
evaluated with the same benchmark, comparing their performance in terms of
execution time with the rest of the networks for the same task. These were
VGG16 and VGG19, MobileNet, DenseNet121, Xception and ResNet101 (see
Section 1.4.2.4).
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4.2.3 Benchmark

A novel benchmark was designed in order to measure and compare the
performance of different CNN models and platforms on a PCa screening task.
In order to make the benchmark feasible to be shared with other researchers so
that it could be run in different computers, a reduced set of WSIs were chosen
from the dataset presented in section 4.2.1. Since the total amount of WSIs of
the dataset represent more than 300 Gigabytes (GBs) of hard drive space, only 40
of them were considered, building up a benchmark of around 50 GBs, which is
much more shareable. These 40 WSIs were randomly selected, considering all the
three different hospitals and scanners, and thus representing well the diversity of
the dataset in this benchmark.
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FIGURE 4.1: Block diagram detailing each of the steps considered
for processing a WSI in the proposed benchmark (read, scoring, stain
normalization and prediction). In Scoring, discarded patches are
highlighted in red, while those that pass the filter are highlighted in green.

The benchmark performs the set of processing steps presented in
Section 3.2.1. Figure 4.1 summarizes the whole process. As it was explained,
first, WSIs are divided into patches (100×100 pixels at 10× magnification in
this case). This process is called Read and, apart from extracting the patches
from the input WSI, those corresponding to background are discarded (identified
as D in the figure) (see Section 3.2.1.2 for more details). Then, in the Scoring
step, a score is given to each patch depending on three factors: the amount
of tissue that it contains, the percentage of pixels that are within H&E’s hue
range, and the dispersion of the saturation and brightness channels. This
score allows discarding patches corresponding to unwanted areas, such as pen
marks, external agents and patches with a small amount of tissue, among
others (see Section 3.2.1.2). The third step, Stain normalization, performs a color
normalization of the patch based on Reinhard’s stain-normalization algorithm
in order to reduce color variability between samples (see Section 3.2.1.3). In
Prediction, which is the last step of the process, each of the patches are used as
input to a trained CNN, which classifies them as either malignant or normal
tissue. When the execution of the benchmark finishes, it reports both the
hardware and system information of the computer used to run the benchmark,
and the results of the execution. These results consist of the mean execution
time and standard deviation for each of the four processes (Read, Scoring, Stain
normalization and Prediction), both at patch level and at WSI level.
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FIGURE 4.2: PROMETEO average patch processing time (in seconds) per
step for each of the hardware configurations detailed in Table 4.2.

4.3 Results

The DL-based PROMETEO architecture, described in section 3.2.2.1, was
proposed and evaluated in terms of accuracy and many other evaluation metrics
in Chapter 3. In this experiment, the authors evaluated this model in terms of
performance and execution time per patch and WSI.

First, the same architecture was tested in different platforms using the
benchmark proposed in section 4.2.3. These results allowed us to measure
and quantify the impact of different components in the whole processing and
prediction process, which could be useful for designing an edge-computing PCa
detection system. Then, the benchmark was used to evaluate the performance
of different state-of-the-art CNN architectures on the computing platform that
achieved the best results on the first experiment.

4.3.1 PROMETEO evaluation

Fourteen different PC configurations were used to evaluate the performance of
the PROMETEO architecture. The hardware specifications (CPU and GPU) of
these computers are listed in Table 4.2. In Figure 4.2, the average patch processing
time for each of the fourteen configurations is shown, where the mean time for
the steps performed when processing a patch (see Section 4.2.3) is reported. As it
can be seen, the step that requires more time is the prediction in most of the cases,
but it is highly reduced in configurations consisting of a GPU.

Figure 4.3 depicts the average and standard deviation of the execution time
needed per WSI for each of the steps considered in the whole process when
running the benchmark on the fourteen different PC configurations. As it can be
seen, reading the whole WSI patch by patch is the step that involves the longest
amount of time in most of the devices (mainly in those configurations with no
GPU). This might seem contradictory considering Figure 4.2, but it is important
to mention that, in that step, all patches from a WSI are read and analyzed, but
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TABLE 4.2: Hardware specifications (CPU and GPU) of the different
computers used in the PROMETEO evaluation.

Device CPU GPU

A
Intel® Core™ i7-8850U @ 1.80GHz

4 cores, 8 threads
-

B
Intel® Core™ i9-7900X @ 3.30GHz

10 cores, 20 threads
-

C
Intel® Core™ i7-6700HQ @ 1.20GHz

4 cores, 8 threads
-

D
Intel® Core™ i7-6700HQ @ 2.60GHz

4 cores, 8 threads
-

E
Intel® Core™ i5-6500 @ 3.20GHz

4 cores, 4 threads
-

F
Intel® Core™ i7-4770K @ 3.50GHz

4 cores, 8 threads
-

G
Intel® Core™ i7-8700K @ 3.70GHz

6 cores, 12 threads
-

H
Intel® Core™ i7-4970 @ 3.60GHz

4 cores, 8 threads
-

I
Intel® Core™ i9-7900X @ 3.30GHz

10 cores, 20 threads
NVIDIA® GeForce™ GTX 1080 Ti

11GB GDDR5X

J
AMD® Ryzen™ 9 3900X @ 4.20GHz

12 cores, 24 threads
NVIDIA® GeForce™ GTX 1080 Ti

11GB GDDR5X

K
Intel® Core™ i5-6500 @ 3.20GHz

4 cores, 4 threads
NVIDIA® GeForce™ GT 730

2GB GDDR5

L
Intel® Core™ i7-4770K @ 3.50GHz

4 cores, 8 threads
NVIDIA® GeForce™ GTX 1080 Ti

11GB GDDR5X

M
Intel® Core™ i7-8700K @ 3.70GHz

6 cores, 12 threads
NVIDIA® GeForce™ GTX 1080 Ti

11GB GDDR5X

N
Intel® Core™ i7-4970 @ 3.60GHz

4 cores, 8 threads
NVIDIA® GeForce™ RTX 2060

6GB GDDR6
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not all of them are processed in the following steps. Unwanted areas, such as
background regions with no tissue, are discarded before being scored. Then, only
those which are not background and pass the scoring step are stain normalized
and predicted by the CNN.
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FIGURE 4.3: PROMETEO average WSI processing time (in seconds) and
standard deviation per step for each of the hardware configurations

detailed in Table 4.2.

Two specific cases of Figure 4.3 are highlighted in Figures 4.4 (C and D
configurations) and 4.5 (G and M configurations). Figure 4.4 shows the impact
that the frequency of the CPU has in the whole process when using the same
computer. As it can be seen, the four processing steps clearly benefit when a
faster CPU is used. On the other hand, Figure 4.5 compares two cases where the
same configuration is used, except for the GPU, which was removed in one of
them. As expected, the GPU highly accelerated the prediction time (by around
3 times in this case). Therefore, in order to build a low-cost edge-computing
platform for PCa diagnosis, this analysis could be useful and should be taken into
account in order to prioritize in which component the funds should be invested.
As it was explained, all patches from a WSI have to be read, but not all of them
have to be predicted, since the majority of them correspond to background and
are discarded first. Therefore, the CPU has a higher impact than the GPU in the
whole process.

The sum of the average execution time of the four preprocessing steps for
each WSI was computed and it can be seen in Figure 4.6. The best case (device
M) takes 22.56±5.67 s on average to perform the whole process per WSI, where
the prediction step only represents 4.20±1.73 s.

The execution times obtained and used for generating the plots presented in
this subsection are detailed in Table 4.3.



4.3. Results 69

0

10

20

30

40

50

60

C D

Ti
m

e 
(s

)
Same computer (no GPU): 

Eco (1.2 GHz) vs Boost mode (2.6 GHz)

WSI Read WSI Score WSI Stain normalization WSI Prediction
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FIGURE 4.6: PROMETEO average WSI processing time (in seconds) and
standard deviation of the hardware configurations detailed in Table 4.2.

4.3.2 Performance comparison for different state-of-the-art
models

After evaluating the PROMETEO architecture using the benchmark designed for
this experiment with different PCs, the same network was compared to other
widely-known architectures. For this purpose, the same computer (device M)
was used in order to perform a fair comparison. The same benchmark that was
used in the previous evaluation (see section 4.3.1) was executed in computer
M (see Table 4.2) for each of the CNN architectures mentioned in section 4.2.2.
The CNNs considered are PROMETEO, ResNet34 and ResNet101, InceptionV3,
VGG16 and VGG19, MobileNet, DenseNet121 and Xception.

The average patch processing time per preprocessing step can be seen in
Figure 4.7 for each of the architectures mentioned. Since the architecture does not
have an effect on the first three steps (reading the patch from the WSI, scoring
it in order to discard unwanted patches, and normalizing it), the time needed
to process them is similar across all the different cases reported in the figure.
This does not happen with the prediction time, which directly depends on the
complexity of the network.

Figure 4.8 reports the combined processing time that device M takes to
compute a WSI on average, together with its corresponding standard deviation.
The same case explained in section 4.3.1, where the WSI reading step takes much
longer than the patch reading step in relation to the rest of the subprocesses, can
also be observed in this figure. It is important to mention that the model proposed
by the authors is faster than the rest in terms of prediction time, with a total of
22.56±5.67 s per WSI on average.

Table 4.4 presents a summary of the results obtained for each architecture,
focusing on the prediction process, which is the only one affected when changing
the CNN architecture. Moreover, the number of trainable parameters and the
slowdown are also reported. The latter is calculated by dividing the average
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FIGURE 4.7: Average patch processing time (in seconds) per step for each
of the CNN architectures using computer M (see Table 4.2).
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FIGURE 4.8: Average WSI processing time (in seconds) and standard
deviation for each of the CNN architectures using computer M (see

Table 4.2).

prediction time per WSI of the corresponding CNN by that obtained with
PROMETEO. This way, the improvement in terms of prediction time between
PROMETEO and the rest of the architectures considered can be clearly seen. The
proposed model predicts 2.55× faster than the CNN used in Campanella et al.,
2019 and 11.68× faster than the one used in Ström et al., 2020. It is also important
to mention that, in the latter, the authors did not use only an InceptionV3 model,
but an ensemble of 30 of them. In this case, the figures and tables only report the
execution time for a single network. When compared to other different widely-
known architectures, PROMETEO is between 7.41× and 12.50× faster.

The execution times obtained and used for generating the plots presented in
this subsection are detailed in Table 4.5.

The results obtained in this chapter have been published in Sensors journal
as "Performance evaluation of Deep Learning-based prostate cancer screening
methods in histopathological images: measuring the impact of the model’s
complexity on its processing speed" (Duran-Lopez et al., 2021). More details of
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TABLE 4.4: Average patch and WSI prediction time, slowdown and
number of trainable parameters for each of the CNN architectures

considered.

Model Avg. prediction time (patch) Avg. prediction time (WSI) Slowdown* Trainable parameters

PROMETEO 3.054 ± 4.845 ms 4.201 ± 1.739 s 1× 1,107,010

ResNet34 8.982 ± 10.086 ms 10.712 ± 3.134 s 2.55× 21,800,107

InceptionV3 41.301 ± 44.282 ms 49.076 ± 14.353 s 11.68× 23,851,784

VGG16 28.664 ± 9.241 ms 34.921 ± 10.160 s 8.31× 138,357,544

VGG19 29.931 ± 9.305 ms 36.250 ± 10.536 s 8.63× 143,667,240

MobileNet 25.689 ± 10.986 ms 31.110 ± 9.030 s 7.41× 4,253,864

DenseNet121 42.489 ± 16.859 ms 51.483 ± 14.945 s 12.25× 8,062,504

Xception 34.050 ± 11.789 ms 41.764 ± 12.175 s 9.94× 22,910,480

ResNet101 43.287 ± 14.679 ms 52.517 ± 15.266 s 12.50× 44,707,176

* Calculated by using the average prediction time per WSI and taking the PROMETEO architecture
as reference. A slowdown of A×means that model B is A times slower than PROMETEO.

this publication can be found in Appendix B.
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Chapter 5

Wide & Deep neural network for patch
aggregation in DL-based prostate cancer
detection systems

5.1 Introduction

As introduced in previous chapters, WSIs are gigapixel-resolution digital slides
which pathologists examine to find abnormalities and make a diagnosis. Since
it is not possible for a CNN to work with a WSI as input due to its large
size, the most common approach is to divide this image into small subimages
called patches, which are later used to train and evaluate the ML model (see
Section 3.2.1.2 for more details). Previously mentioned works, such as Ström
et al., 2020; Campanella et al., 2019; Litjens et al., 2016; Li et al., 2018 and
Bulten et al., 2020, have followed this patch-level classification strategy in order to
develop DL-based CAD systems for PCa detection in digitized histopathological
images, reporting accurate results with different metrics and datasets. Among
them, to the best of the author’s knowledge, PROMETEO achieved the fastest and
least complex model (see Chapter 4) while also obtaining state-of-the-art results,
leading to the most-plausible edge-computing solution for PCa detection. As
introduced in Section 3.2, this was achieved by means of a 9-layer custom CNN
trained and validated with a set of patches after applying different processing
steps, including patch filtering, stain normalization and data augmentation. This
allowed achieving 99.98% accuracy, 99.98% F1 score and 0.999 AUC on a separate
test set (see Section 3.3).

Since when analyzing WSIs by means of CNNs, the results are reported at
patch level, different techniques have been proposed in the literature in order to
combine them and generate a slide-level classification result, which could be of
great importance for developing a fast PCa screening system. This technique is
known as patch aggregation. Among the different studies that can be found in
the literature, some performed different patch aggregation techniques based on
RNNs, Random Forests (RFs) (Campanella et al., 2019) an other ML or statistical
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alternatives (Ström et al., 2020; Bulten et al., 2020), achieving accurate solutions
and leading to precise screening methods.

In this study, a custom novel Wide & Deep (W&D) model for aggregating
the patch-level classification results obtained from PROMETEO into a global
slide-level class is presented. This approach allows providing a fast screening
method for PCa detection at WSI level, while also benefiting from the spatial
resolution obtained at patch level. The promising results obtained, which have
also been compared to other state-of-the-art ML-based approaches, show that
the proposed solution could aid pathologists when analyzing histopathological
images, discriminating between positive and negative PCa samples while
fastening up the whole process.

5.2 Materials and Methods

5.2.1 Dataset

A set of H&E-stained slides from Pathological Anatomy Unit of Virgen de
Valme Hospital were used (158 normal WSIs and 174 malignant WSIs). These
images were preprocessed using the same steps as explained in Section 3.2.1.
First, patches (100×100 pixels at 10× magnification), were extracted from WSIs.
Next, background patches and patches corresponding to unwanted areas were
discarded with a filter that discriminates them based on the amount of tissue
that they contain, the percentage of pixels that are within H&E’s hue range,
and the dispersion of the saturation and brightness channels. Then, Reinhard
stain-normalization was applied to patches in order to reduce stain variability
between samples. Finally, color-normalized patches were used as input to
PROMETEO, which classifies them as either malignant or normal tissue with a
certain probability.

Different features were obtained from PROMETEO’s output in order to
create the dataset. The first feature considered to discriminate between malignant
or normal WSIs was the percentage of malignant tissue area, also called
malignant tissue ratio (MTR), expressed between 0 and 1. This was calculated
by dividing the number of patches classified as malignant by the total amount
of tissue patches extracted from the WSI. This is the most representative data to
perform a slide-level classification, since the more malignant patches the network
detects on the WSI, the more likely it is of being malignant. However, based on
the error of the CNN when performing the patch classification, the percentage
of malignant tissue of the WSI should not be the only input to be considered
for the patch aggregation task, since there are some exceptions that do not meet
the aforementioned rule (e.g. a malignant WSI with a small tumor in a specific
region or a normal WSI with a relatively high percentage of incorrectly-classified
malignant tissue area). Therefore, other features were considered to perform the
patch aggregation step.
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Another feature taken into account to distinguish between malignant and
normal WSIs was the distribution of the prediction probability for malignant
patches. When the CNN predicts a patch, it reports the probability of the patch for
being either malignant or normal. If we only focus on the malignant probability,
the network should have a higher confidence for patches corresponding to
malignant tissue than for those corresponding to normal tissue that have been
incorrectly predicted as malignant. Thus, a 10-bin histogram with the prediction
probabilities of the patches classified as malignant for each WSI was calculated.
These probabilities were distributed from 50% to 100%, with 5% range for each
bin. The histogram was normalized with respect to the total number of tissue
patches. Along with the malignant probability histogram (MPH), the least
squares regression line (LSRL) of the histogram, defined as y = mx + b, was
also calculated, where m and b, which refer to the slope and the Y-intercept,
are described in Equations 5.1 and 5.2, respectively. This line represents the
best approximation of the set of probabilities for all malignant patches of the
corresponding WSI. The mean histogram for both malignant and normal WSIs
are shown in Figure 5.1 together with their corresponding LSRLs, which are
highlighted in red.

m =
N ∑ xiyi −∑ xi ∑ yi

N ∑ x2
i − (∑ xi)2

(5.1)

b =
N ∑ x2

i ∑ yi −∑ xi ∑ xiyi

N ∑ x2
i − (∑ xi)2

(5.2)

Where x and y represent the coordinates of the different values of the
histogram.

As it was previously mentioned, the error of the ML algorithm (a CNN in
this case) leads to errors in the classification, which in a WSI is presented as
sparse normal tissue patches being classified as malignant. Therefore, in a WSI
diagnosed as normal, patches classified as malignant by the CNN are sparsely
distributed through the tissue. On the other hand, in a cancerous WSI, malignant-
classified patches tend to be focused around the tumor areas. Due to this
reason, the dispersion factor of malignant-classified patches was also considered
as another relevant input for the slide-level classification between normal and
malignant WSIs. This factor was obtained by calculating the number of malignant
connected components (MCC), which counts the isolated components (sets of
malignant patches) in the classification result according to a specific distance D.
Algorithm 1 details the method used to calculate the number of connected
components based on the center coordinates of malignant patches and D. In this
experiment, five different values were considered for D (142, 283, 425, 566 and
708 pixels), which correspond to the Euclidean distances (i.e., radii) from a patch
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FIGURE 5.1: Mean probability histogram of the normalized patch
frequency across all the WSIs, distinguishing between malignant (left) and
normal (right) samples. The least squares regression line is shown with
a red dashed line. As can be seen, for malignant WSIs, the system tends
to classify patches as malignant with a higher confidence. This produces a
least squares regression line with a steeper slope. On the other hand, for the
normal WSIs, the classification for malignant patches is not that accurate,

which leads to a less steep regression line.

to a range of 1 up to 5 patches-distance, taking into account that the distance
between two patches is 100 pixels (patches are 100×100 pixels size). The number
of connected components was normalized with respect to the total number of
malignant patches for each WSI. This way, normal samples with a low quantity
of sparse misclassifications are penalized when compared to malignant samples
with sparse tumoral tissue regions.

5.2.2 Wide & Deep network model

The dataset described in Section 5.2.1 was used as input to a neural network
model called Wide & Deep (W&D) (Cheng et al., 2016) to provide a slide-
level classification between normal and malignant WSIs. The W&D model
combines both wide and deep components. The wide component memorizes
sparse interactions between features effectively, which can be defined as learning
how the output responds to combinations of sparse input values. On the other
hand, the deep component corresponds to the feed-forward neural network
which represents the generalization, this is, the ability to handle unseen data.
Therefore, the benefits from both memorization (wide) and generalization (deep)
are combined and achieved in a single model (Cheng et al., 2016).

The malignant tissue ratio was used as the wide element while the malignant
probability histogram, the slope and Y-intercept of the LSRL and the number
of malignant connected components were used as the deep elements. Each of
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Algorithm 1: Connected components algorithm

ConnectedPatches (centers, D)
inputs : A list of center points from malignant patches (centers); a

distance (D).
output: A set of lists of connected patch centers with relative

distance D.
connected_components = [];
current_component = [];
while count(centers) > 0 do

current_component = [];
current_component.append(centers[0]);
centers.remove(centers[0]);
foreach center in current_component do

foreach point in centers do
if distance from center to point <= D then

current_component.append(point);
centers.remove(point);

connected_components.append(current_component);

the deep data were separately connected to two hidden layers of 300 neurons.
Then, these layers were concatenated together with the wide element to a hidden
block of two hidden layers with 300 neurons each. Finally, this hidden block
was connected to the output layer, a SoftMax function which performs the
classification of the WSI as either malignant or normal. This way, complex
features are extracted from combinations of sparse inputs and then concatenated
together in order to perform the final decision.

Figure 5.2 depicts the custom W&D model used, where the different inputs
and layers can be seen. Figure 5.3 represents the whole processing step for
the prostate screening task, highlighting both the patch-level and the slide-level
processes.

5.2.3 Training and validating the system

K-fold stratified cross-validation was performed to measure the generalization
ability of the model. This technique consisted in dividing the dataset in 5 sets
(K = 5). For each fold, the network was trained using four of the five sets (80% of
the dataset) for 10000 epochs and validated using the remaining one (20% of the
dataset). This way, for each experiment, the network was trained and validated a
total of five times with different data. The final results are presented as the mean
accuracy calculated over the five cross-validation folds.
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FIGURE 5.2: Diagram of the W&D network model proposed in this study.
Each hidden layer consists of 300 neurons. The input features, which
are detailed in Section 5.2.1, are: the malignant tissue ratio (MTR) of the
WSI, the slope and Y-intercept of the least squares regression line (LSRL)
of the histogram, the number of malignant connected components (MCC)
with 5 different radii (from 1 to 5 malignant patch distance), and the 10-
bin malignant probability histogram (MPH) between 50% and 100% with
5% ticks. These input features are used to classify the WSI as either

malignant (M) or normal (N).

To validate the network, different evaluation metrics were used. These were
the accuracy (Equation 3.5), precision (Equation 3.6), sensitivity (Equation 3.7),
F1 score (Equation 3.9) and AUC of the ROC curve.

5.3 Results

After training the custom W&D model (Section 5.2.2) with the dataset presented
in this chapter, all the different metrics were calculated and obtained in order to
evaluate the proposed system. Table 5.1 summarizes the results for each cross-
validation fold together with the average for all the evaluation metrics. With
these, the average results were calculated, achieving an accuracy of 94.24%, a
sensitivity of 98.87%, a precision of 90.23%, a F1 score of 94.33% and an AUC of
0.94.

As can be seen, the results obtained across the different folds are consistent.
The proposed model achieves very high scores in all the different metrics studied
for this classification task, particularly in terms of sensitivity. The sensitivity,
which in this field is defined as the ability of the system to identify PCa,
is of utmost importance for reporting and assessing the performance of the
screening test (Hakama et al., 2007). The proposed system is able to achieve
an average sensitivity of around 99%, where three of the folds achieved perfect
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FIGURE 5.3: Diagram of the whole processing step for the PCa screening
task. First, the WSI is processed at patch level, following the same
procedure presented in Figure 4.1. Then, the output classification for each
of the filtered patches from the original WSI is used to perform a slide-
level prediction using the W&D model presented in Figure 5.2, where
the extracted features are used to classify the WSI as either malignant or

normal.

sensitivity (100%). This means that the proposed custom model makes almost
no mistakes when predicting a malignant sample as such, making it a reliable
patch aggregation method, together with PROMETEO, for PCa detection in WSIs.
Figure 5.4 shows some examples of correctly classified WSIs together with their
corresponding heatmaps generated by PROMETEO.

The results obtained in this study were compared with different ML-
based methods and classifiers using the same dataset. The following well-
known machine learning algorithms were used to classify the WSIs: an ANN
(Yegnanarayana, 2009), a SVM (Wang, 2005), a RF (Breiman, 2001) and a k-
Nearest Neighbors (KNN) (Jiang et al., 2007). Table 5.2 summarizes the results
obtained for each method, which are represented as the average of the evaluation
metrics (see Section 5.2.3) obtained for each cross-validation fold.

As it can be seen, the best results for accuracy, sensitivity, F1 score and AUC
are obtained with the proposed W&D model, with the exception of precision,
for which SVM achieves the highest value. As it was previously mentioned,
sensitivity is the most relevant metric for measuring the performance of a
classifier when performing a screening test. In this case, the proposed architecture
is the one achieving the highest sensitivity score among the different algorithms
evaluated, with a difference of more than 6% with the second highest, which is the
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TABLE 5.1: Validation results obtained with the proposed W&D model.
The accuracy, sensitivity, precision, F1 score and AUC) are shown for each
of the different cross-validation folds. The average of the obtained metrics

across the five folds is also presented.

Fold Accuracy
(%)

Sensitivity
(%)

Precision
(%)

F1 score
(%) AUC

1 93.93 100 89.74 94.59 0.93
2 93.93 97.29 92.30 94.73 0.93
3 95.45 100 90.32 94.91 0.96
4 93.93 100 87.09 93.10 0.94
5 93.93 97.05 91.66 94.28 0.93

Average 94.24 98.87 90.23 94.33 0.94

ANN. On the other hand, SVM achieves around 99% precision, which could be
very relevant for other binary or multi-class classification tasks, but not as much
as the sensitivity when developing a medical screening method to differentiate
between positives and negatives samples.

TABLE 5.2: Validation results calculated from the average of the evaluation
metrics (accuracy, sensitivity, precision, F1 score and AUC) for the 5
different cross-validation sets. The results obtained with the proposed
W&D model are compared to other state-of-the-art ML-based algorithms,
namely, ANN, SVM, RF and KNN. The best result for each specific

evaluation metric is highlighted in bold.

Model Accuracy
(%)

Sensitivity
(%)

Precision
(%)

F1 score
(%) AUC

W&D (proposed) 94.24 98.87 90.23 94.33 0.94
ANN 89.69 92.47 87.29 89.54 0.89
SVM 88.18 80.78 98.76 88.79 0.89
RF 88.84 84.89 92.23 88.22 0.88

KNN 88.48 83.29 94.31 88.31 0.88

More details of the results obtained in this chapter can be found in
Appendix C.
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Malignant WSIs
WSI Zoomed region WSI Zoomed region 

Normal WSIs
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FIGURE 5.4: Eight different WSI samples extracted from the dataset
presented in Section 5.2.1. A heatmap of the malignant patches predicted
by PROMETEO is drawn on top of the WSI, and zoomed regions
are presented for better visualization. Red regions represent higher
concentrations of malignant patches, while blue represent the opposite.
The examples presented were correctly classified by the proposed W&D

model.
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Chapter 6

Development of a global CAD system for
Gleason pattern classification in WSIs

6.1 Introduction

Once the tumor is detected, it is crucial to measure how aggressive it is.
As mentioned in Section 1.2.5.1, Gleason Grading System (GGS) is the most
important prognostic marker of PCa, which is critical to patient management
since it drives therapies across all disciplines dealing with PCa. The GGS is
focused on determining the cellular differentiation degree of a tumor, considering
5 different patterns (1 to 5). Grade 1 is assigned to areas of the tissue containing
cells that resemble to normal prostate cells, whereas, in grade 5, cancer cells
greatly differ to normal prostate cells.

Several researchers have investigated the application of CAD systems to
differentiate GGS patterns. Some of these studies distinguish between low and
high grades (Toro et al., 2017; Li et al., 2018), while others have performed
multi-class detection, discriminating between the different GGS patterns (Doyle
et al., 2007; Ren et al., 2017; Ström et al., 2020; Bulten et al., 2020). Many
of these CAD systems are based on ML techniques, such as neural networks
or SVMs. Table 6.1 compares some of these studies, summarizing the main
characteristics of the dataset, the preprocessing step, the classifier that the authors
used, the classes considered and the results obtained with their corresponding
performance metrics.

In this chapter, a DL-based CAD system was developed in order to classify
Gleason patterns, considering grades 3, 4 and 5; 1-2 patterns were not taken into
account, since these are very unusual to find when analyzing malignant WSIs
(Chen and Zhou, 2016). Class Activation Maps (CAMs) were applied to the
output of the CNN together with the input image in order to generate interactive
heatmaps, showing in detail which regions or patterns the network has focused
on to perform the classification.



86 Chapter 6. Development of a global CAD system for Gleason pattern
classification in WSIs

TABLE 6.1: Comparative study between state-of-the-art research about
Gleason patterns classification in prostate cancer histological images.

Ref. Dataset Preprocessing step Classifier Classes Performance measure

Toro et al.,
2017

235 WSIs1:
- Train: 282k patches
- Val: 94k patches
- Test: 92k patches

Binary tissue mask
obtained by Blue
Ratio image to remove
background.

CNN2

(GoogLeNet)
2: High and low
GGS3

ACC4 at patch level:
78.2% on test
73.52% on validation

Li et al., 2018
513 WSIs:
- Train: not specified
- Test: not specified

Normalize procedure
to eliminate stain
variability.

R-CNN5

(custom)

4: Stroma, benign
glands, low GGS,
high GGS

IOU6 *: 79.56%
OPA7 *: 89.40%
SMA8 *: 88.78%
*at tile level (set of
patches)

Doyle et al.,
2007

54 patches:
- Train: not specified
- Test: not specified

Extraction of
architectural features.
Extraction of 1st-order
statistical features with
the average, median,
standard deviation
and range of the pixel
values. Extraction of
2nd-order statistical
features (Haralick
features) from a co-
occurrence matrix.

SVM9

2, but with different
classes:
Epithelium vs stroma
GGS 3 vs GGS 4
GGS 3 vs epithelium
GGS 3 vs stroma
GGS 4 vs epithelium
GGS 4 vs stroma

ACC at patch level:
Epithelium vs stroma:
76.9%
GGS 3 vs GGS 4: 76.9%
GGS 3 vs epithelium:
85.4%
GGS 3 vs stroma:
92.8%
GGS 4 vs epithelium:
88.9%
GGS 4 vs stroma:
89.7%

Ren et al.,
2017

22 WSIs
- Train: 17 WSIs
- Test: 5 WSIs

Segmentation
procedure with
CNN and superpixel
segmentation. Feature
extraction with Bag-
of-Word to remove
background.

RFC10 2: GGS 3 and GGS 4

F1-score*: 0.8460
Sensitivity*: 0.70±0.15
Specificity*: 0.89±0.04
ACC*: 0.83±0.03
*at patch level

Ström et al.,
2020

8914 WSIs:
- Train: 6953 WSIs
- Val: 1631 WSIs
- Test: 330 WSIs

Segmentation
algorithm based
on Laplacian filtering.

CNN
(60 Inception
V3)

2: Normal and
malignant
3: GGS 3, GGS 4 and
GGS 5

AUC11 for normal and
malignant*:
0.997 on validation
0.986 on test
Mean pairwise kappa
for GGS*: 0.62
*at slide level

Bulten et al.,
2020

1243 WSIs:
- Train: 933 WSIs
- Val: 100 WSIs
- Test: 210 WSIs

Tissue segmentation
network for
extracting tissue from
background. Tumor
detection system to
define the tumor
and epithelial tissue
detection system to
label the images.

CNN
(U-Net)

6: Benign, GGG12

1-5.

AUC at slide level:
Benign vs malignant:
0.990
Benign and GGG 1 vs
GGG≥2: 0.978
Benign and GGG 1-2
vs GGG≥3: 0.974

1: Whole Slide Image. 2: Convolutional Neural Network. 3: Gleason Grading System. 4: Accuracy. 5: Region-based
Convolutional Neural Network. 6: Intersection Over Union. 7: Overall Pixel Accuracy. 8: Standard Mean Accuracy.
9: Support Vector Machine. 10: Random Forest Classifier. 11: Area Under Curve. 12: Gleason Grade Group.
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6.2 Materials and methods

6.2.1 Dataset

The dataset used for GGS classification was obtained from the 70 malignant
classified H&E stained slides from Virgen de Valme Hospital (see Table 3.3). Each
slide was analyzed and labeled by pathologists so that malignant regions were
delimited with a specific Gleason pattern (see Section 3.2.1.1).

Due to the small amount of images for the dataset and taking into account
that the network has to classify between three different classes with similar
patterns, other public datasets were used in order to increase the number of
images and their variability. These new images were obtained from:

• Five PCa Tissue Microarrays (TMAs) of H&E stained images, each of these
containing 200–300 tissue spots (Arvaniti et al., 2018a).

• SICAPv2 database, which includes 155 biopsies from 95 different patients
(Silva-Rodríguez et al., 2020). These database consists of several prostate
WSIs with Gleason grades annotations.

• The Gleason Challenge from MICCAI 2019 (Nir et al., 2018), which consists
of seven TMA images, each of them containing 100-200 tissue spots,
annotated in detail by several expert pathologists.

6.2.1.1 Patch sampling and preprocessing steps

To create the dataset, these WSIs and the images obtained by the public datasets,
were preprocessed by applying different steps. The first step consisted in
dividing each WSI into patches (256 × 256 at 10×). Only those patches which
overlaps with the ROIs selected by the pathologists (at least an 80%) were
considered for the dataset. An overlap between patches was applied in order to
obtain more images for training. After that, patches corresponding to background
or unwanted areas (noise, pen marks, among others) were removed by applying
the filter explained in Section 3.2.1.2. The number of patches obtained for
each Gleason pattern after applying the aforementioned steps is shown in
Table 6.2. Finally, the patches which pass the filter were stain-normalized
applying Reinhard method in order to reduce color variability between slides.
More details of the whole preprocessing step can be seen in Section 3.2.1.3.

Around 85% of the dataset was used for the training phase, while the
remaining 15% was considered for validating the network. This division was
made ensuring that patches from the same patient were not present in the two
sets at the same time. Patches obtained from the public datasets were only used
for the training phase. This way, the network has a higher variability of images,
leading to a more robust learning.
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TABLE 6.2: GGS dataset classes distribution.

Pattern No. of patches % of the total No. of patches
after data augmentation

3 5558 32.43% 8 millions

4 8253 48.15% 12 millions

5 3328 19.42% 5 millions

Total 17139 100% 25 millions

6.2.1.2 Data augmentation

In order to increase the number of images for the training step, data augmentation
was applied to the dataset. Different transformations were performed to the
original patches. Horizontal flips and vertical flips were applied for each training
patch, along with rotations in the whole 360◦ range with steps of 1◦, where
the missing information in the corners after rotating the patch was filled by
mirroring. This way, for each patch, new 2×2×360 patches were obtained.

6.2.2 Computer-Aided Diagnosis system design

6.2.2.1 Convolutional Neural Network architecture

A custom CNN was developed to perform the GGS classification. This network
consists of four convolution stages (convolution layer + ReLu + pooling layer).
After that, a final convolution layer + ReLu are included. The convolution layers
have 64 3×3, 64 3×3, 128 3×3, 128 3×3 and 256 3×3 filters, respectively. The last
layer is connected to a Global Average Pooling (GAP), which generates feature
maps that are then used to perform the classification. This classification is made
with a FC layer (SoftMax activation function) which distinguishes between the
three Gleason patterns. Figure 6.1 shows the architecture of the CNN.

GAP is used to reduce the spatial dimensions of a three-dimensional tensor
h× w× d to 1× 1× d (Figure 6.2). This layer reduces each h× w feature map to
a single number by calculating the average. GAP is needed as the last layer for
the feature extraction phase of a CNN to perform a Class Activation Map (CAM)
(see Section 6.2.2.3).

6.2.2.2 Training and validating the system

Due to the imbalance between classes (32.43%, 48.15% and 19.42% for patterns
3, 4 and 5, respectively), a class weights function was used. The whole purpose
of this function is to penalize the misclassification made by the minority class by
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64

Conv1+MaxPool1

64

Conv2+MaxPool2

128

Conv3+MaxPool3

128

Conv4+MaxPool4

256

Conv5

GAP

3

SoftMax

FIGURE 6.1: Diagram of the architecture of the CNN used for the Gleason
pattern classification task. Convolution filters are always followed by a
ReLU unit, and each of them are of size 3×3. All the pooling layers are 2×2
max pooling. GAP stands for Global Average Pooling layer, which reduces
each feature map to a single value by calculating the average. This layer
is connected to a SoftMax, which performs the decision between GGS 3, 4

and 5.

FIGURE 6.2: Example of a GAP operation for an input feature of 6×6.

setting a higher class weight, while, at the same time, reducing the weight for the
majority class. Therefore, the unbalancing of the classes does not affect the results
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of the network.

Different evaluation metrics were used in order to validate the trained
model: sensitivity (Equation 3.7), precision (Equation 3.6), F1 score (Equation 3.9),
and AUC of the ROC curve. Each metric was calculated per class, obtaining the
mean by averaging them taking into account the imbalance between the three
classes in the validation set. Finally, the balanced accuracy was also calculated as
the overall measure of the system. All of them were measured at patch level.

6.2.2.3 Class Activation Map

Zhou et al. demonstrated that even without providing any information of the
object location inside an input image, convolutional units of CNNs work as
unsupervised object detectors (Zhou et al., 2014; Zhou et al., 2016). With this
idea in mind, CAMs can be generated. A CAM for a particular class highlights
the regions of the input image that the CNN considered relevant to perform the
prediction. As mentioned before, when working with CAMs, the use of a GAP
layer before the classification step is recommended. GAP encourages the network
to identify the extent of the object as compared to a max pooling layer which
encourages it to identify just one discriminative part.

To generate a CAM for a class c, firstly, the k weights connected between the
GAP layer and the softmax layer of c are obtained. These weights are multiplied
with each feature map f used as input to the GAP layer and then added. A
weight represents the relevance of every individual channel in the entire feature
map. This way, the final weighted sum results in a heatmap of a particular class
with values ranging from 0 to 1. The heatmap size corresponds to the size of the
feature map f , thus, heatmaps have to be scaled to the size of the input image.
This way, each spatial element (x, y) of the CAM for c (Mc) can be defined by:

Mc(x, y) = ∑
k

wk
c fk(x, y) (6.1)

Figure 6.3 presents an example from Zhou et al., 2016, showing CAMs
generated from the top 5 predicted categories for a given image with "dome"
as ground-truth. CAMs are represented as heatmaps, where red highlights
the regions which the network considered more relevant when performing the
classification.

6.3 Results

After training the custom CNN architecture presented in this chapter with a
batch size of 16 and the Adadelta optimizer (Zeiler, 2012), the trained model
was evaluated on the dataset. Table 6.3 presents the results obtained from
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FIGURE 6.3: Example of the CAMs generated from five categories for an
input image labeled as "dome". The relevant regions where the network
focused on to perform the classification are highlighted in heatmaps. The
predicted class and its score are shown in the top part of each CAM. Image

taken from Zhou et al., 2016.

the validation images. The proposed CNN model achieved 84.60% balanced
accuracy, 83.77% sensitivity, 83.70% precision, 83.66% F1 score and 0.87 AUC.

Figure 6.4 presents the different ROC curves for each class with their
corresponding AUC value. The idea for the ROC curve is to carry out a pairwise
comparison between two classes, and, since this experiment consists of 3 different
classes, a different approach was followed for calculating the ROC curve and the
AUC for each of them. A common solution for this is to use a one-versus-all
strategy, where the ROC curve for a specific class is calculated against the rest
of the classes. This analysis was followed for plotting the curves in this figure,
where the blue curve represents class 3 against 4 and 5, and so on.

TABLE 6.3: Validation results obtained for the 3 GGS classes with
the proposed CNN model. The average was calculated taking into

consideration the imbalance of the validation dataset.

Classes Sensitivity
(%)

Precision
(%)

F1 score
(%) AUC Accuracy

(%)
3 77.62 83.29 80.36 0.84 -
4 81.31 75.89 78.51 0.83 -
5 94.87 95.36 95.11 0.97 -

Average 83.77 83.70 83.66 0.87 84.60
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FIGURE 6.4: ROC curves and AUC values for each of the three classes
considered: GGS pattern 3 (blue), GGS pattern 4 (green) and GGS pattern 5
(red). A one-versus-all strategy was followed for calculating the ROC
curves, where the curve for a specific class was obtained performing a

pairwise comparison between that class and the remaining two.

Figure 6.5 presents the confusion matrix obtained over the validation set for
the three classes considered in this experiment. As it can be seen, the system
correctly learnt the differences between the features extracted and it is able to
perform the classification accordingly, achieving a high accuracy for each of the
three classes. The confusion matrix shows that Gleason pattern 5 is the class with
less error rate. On the other hand, patterns 3 and 4 have a higher error rate, since
the proposed system often confuses between them, due to the fact that patterns 3
and 4 are more similar to each other than with respect to 5.

After classifying the input patches as GGS patterns 3, 4 or 5, the system
is able to generate the CAM of the winner class for each of them. The output
of the system reports an image obtained by applying a threshold to the CAM
that corresponds to the input patch, considering only the regions with CAM’s
values greater than this threshold. These values are stained to blue, yellow or
red, depending of the output class predicted by the network (Gleason pattern 3, 4
or 5, respectively). Examples of the output of the CAD system for Gleason pattern
3, 4 and 5 are shown in Figures 6.6, 6.7 and 6.8, respectively.
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FIGURE 6.5: Confusion matrix for the three classes considered: GGS
pattern 3, GGS pattern 4 and GGS pattern 5.



94 Chapter 6. Development of a global CAD system for Gleason pattern
classification in WSIs

GT CAM Output

G
le

as
o

n
 p

at
te

rn
 4

01

GT CAM Output

G
le

as
o

n
 p

at
te

rn
 3

01

GT CAM Output

G
le

as
o

n
 p

at
te

rn
 5

01

FIGURE 6.6: Examples of the output of the CAD system for Gleason
pattern 3. The left column shows the ground truth (GT) with labels
obtained from pathologists, locating the malignant areas. At the center
column, the CAM for each input image is shown with a heatmap, which
ranges from 0 (white) to 1 (red) values representing the relevance that
the network considered when performing the classification. At the right

column, the output of the system for pattern 3 is presented in blue.



6.3. Results 95

GT CAM Output
G

le
as

o
n

 p
at

te
rn

 4

01

GT CAM Output

G
le

as
o

n
 p

at
te

rn
 3

01

GT CAM Output

G
le

as
o

n
 p

at
te

rn
 5

01

FIGURE 6.7: Examples of the output of the CAD system for Gleason
pattern 4. The left column shows the ground truth (GT) with labels
obtained from pathologists, locating the malignant areas. At the center
column, the CAM for each input image is shown with a heatmap, which
ranges from 0 (white) to 1 (red) values representing the relevance that
the network considered when performing the classification. At the right

column, the output of the system for pattern 4 is presented in yellow.



96 Chapter 6. Development of a global CAD system for Gleason pattern
classification in WSIs

GT CAM Output

G
le

as
o

n
 p

at
te

rn
 4

01

GT CAM Output

G
le

as
o

n
 p

at
te

rn
 3

01

GT CAM Output

G
le

as
o

n
 p

at
te

rn
 5

01

FIGURE 6.8: Examples of the output of the CAD system for Gleason
pattern 5. The left column shows the ground truth (GT) with labels
obtained from pathologists, locating the malignant areas. At the center
column, the CAM for each input image is shown with a heatmap, which
ranges from 0 (white) to 1 (red) values representing the relevance that
the network considered when performing the classification. At the right

column, the output of the system for pattern 5 is presented in red.
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6.4 Global CAD system for prostate cancer detection
and Gleason pattern recognition

The system presented in this chapter could be used as the last processing step of
a global CAD system for PCa detection and Gleason pattern classification when
combined with all the different parts presented in this Thesis. Figure 6.9 presents
a block diagram of the whole system, which can be summarized in three main
steps:

• First, patches are extracted from the original WSI. These are filtered,
removing those corresponding to background or unwanted areas, and,
then, stain-normalized. After this pre-processing step, patches are
predicted using the custom CNN model (PROMETEO) presented and
evaluated in Chapter 3 and Chapter 4. This step is shown in Figure 6.9
as patch-level processing.

• After this, different features are extracted from the predictions obtained
in the previous step for the patches contained in a single WSI. These are
the malignant tissue ratio (MTR), the least squares regression line (LSRL),
the number of malignant connected components (MCC) and the malignant
probability histogram (MPH). The aforementioned features are used as
input to the custom W&D model presented in Chapter 5, which outputs
a slide-level label for the original WSI. This allows aggregating the patch-
level information into a single slide-level class (malignant or normal WSI).
This step is shown in Figure 6.9 as slide-level processing. In the case that
this process identifies the WSI as normal, the system would report it and
start analyzing the next WSI. In the opposite case, if the system detects that
the input image corresponds to a malignant sample, the process continues
to the next step.

• Finally, if the WSI is predicted as malignant, 256×256 pixels-size patches
centered at the ones predicted as malignant by PROMETEO are read
and stained using Reinhard method. After this, the Gleason pattern
classification system presented in this chapter assigns a pattern between 3
and 5 to each of them. With the patch-level Gleason pattern report obtained,
a heatmap is generated from the CAMs, highlighting the malignant areas
of the tissue with their corresponding associated pattern predicted by the
proposed CAD system. This step is shown in Figure 6.9 as Gleason pattern
classification.

The performance evaluation study described in Chapter 4 allowed analyzing
the impact of different hardware components on the execution time of
PROMETEO. This study was used to design and configure a custom small-size
high-performance barebone to be set as the main processing unit for the global
CAD system. The aforementioned barebone consists of an AMD® Ryzen™ 5
5600X 6-Core Processor running at 3.70 GHz, 16 GB DDR4 RAM memory at
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FIGURE 6.9: Block diagram of the global CAD system for PCa detection
and Gleason pattern recognition. The original WSI is divided into patches,
which are classified as either malignant or normal following the procedure
presented in Chapter 3. Then, a global label is assigned following the
processing steps presented in Chapter 5. Finally, if the original WSI is
classified as malignant, the Gleason pattern report is obtained. MTR stands
for malignant tissue ratio; LSRL for least squares regression line; MCC
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histogram.
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3.2 GHz, 1 TB M.2 NVMe PCIe Gen 4 SSD with 7000 MB/s sequential reading
speed, and an NVIDIA GeForce GTX® 1660 6GB DDR5 GPU. With this hardware
configuration, the same benchmark presented in Chapter 4 was run, while also
including three new steps related to the Gleason pattern classification CNN
presented in this chapter. Therefore, all the main steps of the global CAD system
shown in Figure 6.9 were taken into consideration in order to measure the average
time needed by this system to process both a single patch and a single WSI.

Figure 6.10 presents the average time per step when using the custom
barebone. Patch Read, Patch Stain Normalization, Patch Score and Patch Prediction
are related to the PCa detection CNN (PROMETEO) described in Chapters 3
and 4. On the other hand, Patch Read GGS, Patch Stain Normalization GGS and
Patch Prediction GGS refer to the processes of reading a 256×256 pixels-size
patch centered at the one predicted as malignant by PROMETEO, staining it
using Reinhard stain normalization, and predicting it with the Gleason pattern
classification CNN, respectively.
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FIGURE 6.10: Average patch processing time (in seconds) for each of the
steps performed by the global CAD system. The first four steps correspond
to the PCa detection CNN, and the remaining three to the Gleason pattern

recognition system.

Figure 6.11 presents the same idea that in Figure 6.10, but, instead of
calculating the average execution time per patch, the average time was calculated
per WSI. This way, a more realistic scenario can be analyzed, and the execution
time that the Gleason pattern recognition system adds to PROMETEO can be
studied. As it can be seen in the figure, the GGS classification CNN adds
a negligible amount of time to the PCa detection system, even when taking
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into consideration that a bigger patch has to be read and stain-normalized
before being predicted by the CNN. This is mainly caused by the fact that the
Gleason pattern classification is only performed on patches that are predicted
as malignant by PROMETEO, and only if the W&D model has considered the
WSI as malignant. For normal patches and for WSIs not passing the W&D filter,
the Gleason pattern classification process is not executed, reducing execution
time and resources, and allowing a faster response to the expert pathologist. A
clearer comparison between the original PROMETEO system and the global CAD
system involving both PROMETEO and the GGS classification CNN is presented
in Figure 6.12. It can be seen from this figure that the time added by the last to the
global CAD system is only 0.109 seconds on average, which represents a 0.69% of
the total amount of time (15.733 seconds).
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FIGURE 6.11: Average WSI processing time (in seconds) for each of the
steps performed by the global CAD system. The first four steps correspond
to the PCa detection CNN, and the remaining three to the Gleason pattern

recognition system, which is zoomed in for better visualization.

All the information and results regarding the average execution time and
standard deviation for each of the steps both per patch and per WSI are detailed
in Table 6.4, following the same color scheme used in Figures 6.10, 6.11 and 6.12.
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FIGURE 6.12: Combined average WSI processing time (in seconds) for the
global CAD system compared to PROMETEO. The top part of the chart is

zoomed in for better visualization of the difference between both.

TABLE 6.4: Global CAD system performance evaluation results. The
average and standard deviation of the execution times (in seconds) are
shown for each of the steps considered, both per patch and per WSI. The
execution times were calculated using the barebone computer described in

this section.

Patch WSI
Avg 0,000363 7,069082Read Std 0,000661 1,19244
Avg 0,003568 4,154812Score Std 0,000502 1,215193
Avg 0,001377 1,61293Stain Normalization Std 0,000685 0,909821
Avg 0,002321 2,787565PR

O
M

ET
EO

Prediction Std 0,004105 0,82306
Avg 0,002510123 0,016657Read GGS Std 0,001031709 0,0315
Avg 0,007862633 0,047923Stain Normalization GGS Std 0,002607513 0,098615
Avg 0,003468 0,044554G

G
S

C
N

N

Prediction GGS Std 0,021389 0,083266
Total 0,02147 ± 0,030981 15,73352 ± 4,353897
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Chapter 7

Application of CAD systems to other
medical image analysis: COVID-19 case of
use

7.1 Introduction

The world has changed due to the emergence of the new virus from the
coronavirus family (COVID-19), which was declared as a pandemic a few months
after its appearance (Zheng et al., 2020). COVID-19 has had a high impact
in every single field, such as in health, education, economics, labor, among
others. Since the pandemic situation started during the development of this
Thesis, we decided to contribute to the fight against COVID-19. To this end,
the knowledge that was already acquired after carrying out the experiments
presented in previous chapters, including the application of CNNs and CAMs,
was applied for this purpose.

COVID-19 is the disease caused by the new severe acute respiratory
syndrome coronavirus 2 (SARS-CoV-2). Coronaviruses are an extensive family
of viruses that may affect both humans and animals, causing problems to the
respiratory system (World Health Organization, 2021). Other well-known human
coronaviruses identified in the past are SARS-CoV and MERS-CoV, which have
had around 8100 and 2500 confirmed cases, with a case fatality rate of around
9.2% and 37.1%, respectively (Cui et al., 2019; Momattin et al., 2019).

Globally, as of June 30, 2021, the number of confirmed deaths worldwide
caused by COVID-19 has almost surpassed 3.5 million, with more than 215
countries, areas or territories affected and a total of more than 168 million
confirmed cases (World Health Organization, 2021), plunging humanity into a
severe state of fear whose outcome is still unknown.

COVID-19 spreads through direct contact with respiratory drops produced
when an infected person coughs, speaks, sneezes, or even breaths. These droplets
can enter the host’s body through the nose, mouth and tear ducts, giving a
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passage to the mucous membranes in the throat. Through this process of
transmission, the virus reaches the respiratory tract.

Some studies have confirmed angiotensin receptor 2 (ACE2) as the receptor
through which the virus enters the respiratory mucosa (Singhal, 2020). After
reaching the lung alveoli, the virus starts to replicate itself, increasing the viral
load within the host cell. Type II pneumocytes are destroyed, releasing specific
inflammatory mediators. As a result, lungs might become inflamed, which could
lead to pneumonia in the most severe cases (Hussain et al., 2020).

An early detection of COVID-19 is crucial to control outbreaks and prevent
the virus from spreading. Current diagnostic tests for COVID-19 include reverse-
transcription polymerase chain reaction (RT-PCR), real-time RT-PCR (rRT-PCR),
and reverse-transcription loop-mediated isothermal amplification (RT-LAMP)
(Zhai et al., 2020).

Patients who have been exposed to the virus and present severe symptoms,
could still get a negative result in the RT-PCR test (Zhai et al., 2020; Kucirka
et al., 2020; Li et al., 2020a). Therefore, in these cases, COVID-19 should be
diagnosed with medical imaging techniques, such as X-ray or chest Computed
Tomography (CT) (Zhai et al., 2020). Although CT has proved to be one of the
most precise diagnostic methods for COVID-19 (Fang et al., 2020), it has some
important limitations, including around 70× higher ionizing radiation than X-
ray (Lin, 2010), its high cost, and the fact that it cannot be performed as a bedside
test (Lu et al., 2020). Therefore, it is not routinely used in COVID-19 diagnosis
(Self et al., 2013). Moreover, it is not suitable for monitoring the evolution of
specific cases, particularly in critically ill patients. On the other hand, X-ray is
a less sensitive modality in the detection of COVID-19 compared to CT with a
reported baseline sensitivity of 69% (Jacobi et al., 2020). However, X-ray is a
cheaper and faster alternative, and it is also available in most hospitals. Therefore,
X-ray will likely be the primary imaging modality used for COVID-19 diagnosis
and management. With high clinical suspicion for COVID-19 infection, positive
X-ray findings can obviate the need for CT scanning (Jacobi et al., 2020). However,
it is important to consider that these techniques may present limitations to
particular patients such as pregnant women, since they could cause harm to
unborn children (Ratnapalan et al., 2008).

The most common findings that radiologists look for when analyzing X-ray
images for COVID-19 diagnosis are multiple, patchy, sub-segmental or segmental
ground glass density shadows in both lungs (Jin et al., 2020). This process
could be automated using CAD systems in order to aid experts when making
a decision (Civit-Masot et al., 2020).

Although COVID-19 is a very recent topic, many researchers have carried
out studies to find solutions during this crisis. In Shi et al., 2020, a review of
recent AI-based CAD systems for COVID-19 diagnosis in CT and X-ray images
is presented; however, since this study is based on X-ray images, the authors
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only focused on the latter. Ghoshal et al. presented a Bayesian CNN to estimate
the diagnosis uncertainty in COVID-19 prediction, distinguishing between
COVID-19 and non-COVID-19 cases (other types of pneumonia and healthy
patients), obtaining an accuracy of 92.9% (Ghoshal and Tucker, 2020). Narin
et al. performed a binary classification between COVID-19 and normal cases
comparing different DL models, achieving 98.0% accuracy with the ResNet50
model in the best case (Narin et al., 2020). Zhang et al. presented a ResNet-based
model to classify COVID-19 (0.952 AUC), highlighting the pneumonia-affected
regions by applying the Gradient-weighted Class Activation Mapping (Grad-
CAM) method (Zhang et al., 2020). Finally, Wang et al. proposed a Deep CNN
to classify between COVID-19, non-COVID-19 (distinguishing between viral and
bacterial) and normal cases, obtaining an accuracy of 83.5% (Wang and Wong,
2020).

These studies achieved accurate solutions to fight against the COVID-19
pandemic. However, they have some limitations that should be considered. First
of all, they used small datasets with less than 400 COVID-19 X-ray images in total
in the best case. To validate the system, some of them only used 10 X-ray images
for the COVID-19 class. Moreover, studies that proposed not only COVID-19
detection, but also locating affected areas of the lungs, did not include any ground
truth comparison or medical supervision with the obtained results.

In this experiment, a DL-based CAD system, named COVID-XNet, which
classifies between COVID-19 and normal frontal X-ray chest images is presented.
The network focuses on specific regions of the lungs to perform a prediction and
detect whether the patient has COVID-19. The output of the system can be then
represented in a heatmap-like plot by performing the CAM algorithm, which
locates the affected areas. The high reliability obtained in the results, which were
supervised by a lung specialist, indicates that this system could be used to aid
expert radiologists as a screening test for COVID-19 diagnosis in patients with
clinical manifestations, helping them throughout this stage and to overcome this
situation.

7.2 Materials and Methods

7.2.1 Dataset

In this work, different publicly-available datasets were taken into account to build
a diverse and large collection of chest X-ray images from healthy patients and
COVID-19 cases. Both posteroanterior (PA) and anteroposterior (AP) projections
were considered, discarding lateral X-ray images.

For the COVID-19 class, chest X-ray images were obtained from the BIMCV-
COVID19+ dataset, provided by the Medical Imaging Databank of the Valencia
Region (BIMCV) (Vayá et al., 2020) and from the COVID-19 image data collection
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from Cohen et al., 2020. On the other hand, for healthy patients, images were
obtained from the PadChest dataset, also provided by BIMCV (Bustos et al.,
2019). From the total number of images labeled as normal from this dataset,
around the first 10% were used, since, otherwise, the imbalance between the
number of cases for COVID-19 and healthy patients would have been very high.
Therefore, a total of 2589 images from 1429 patients and 4337 images from 4337
patients were considered for COVID-19 and normal classes, respectively.

7.2.2 Methods

7.2.2.1 Preprocessing step

In order to reduce the large variability of these images, a preprocessing step,
which included different techniques, was applied to the original images.

Firstly, all images were converted to grayscale. Since the original images
came from different hospitals, and, consequently, from different X-ray machines,
a histogram matching process was applied to every image, taking one of them as
a reference (Gonzales and Woods, 2002). Therefore, all images in the dataset were
similar in terms of histogram distribution.

Then, rib shadows were suppressed from the X-ray images with a pretrained
autoencoder model developed by Chuong M. Huynh, which is publicly available
in GitHub1. This makes it easier for the network to focus on relevant information
within the lungs. Rib shadows suppression has been applied in other works
related to lung cancer, pulmonary nodules and pneumonia detection in chest
radiography, proving to be a useful approach to aid radiologists and machine
learning systems when diagnosing lung related diseases (Qin et al., 2018;
Soleymanpour, Pourreza, et al., 2011; Oda et al., 2009; Gordienko et al., 2018;
Gusarev et al., 2017).

After this process, a contrast enhancement method called Contrast Limited
Adaptive Histogram Equalization (CLAHE) was used to improve local contrast
and enhance the image definition (Reza, 2004).

Figure 7.1 shows the whole preprocessing phase, where each algorithm’s
output is presented for three different examples.

7.2.2.2 Convolutional Neural Network

After applying the preprocessing step, the images obtained were used as input
to a custom CNN model that was trained from scratch to classify between
COVID-19 and normal cases. This model consists of the following set of layers:
5 convolutions, 4 max poolings, a GAP and a final softmax layer (see Figure 7.2).
This custom model was selected by means of an Exhaustive Grid Search over
the number of layers and kernel’s sizes, prioritizing accuracy and computational

1www.github.com/hmchuong/ML-BoneSuppression
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FIGURE 7.1: Preprocessing flowchart describing the different steps to
obtain the final images for the dataset. COVID-19 A and B correspond
to images from BIMCV-COVID19 and the COVID-19 image data collection

from Cohen et al., respectively.

complexity. Layers were explored from 1 up to the maximum number of layers
that allowed having features of over 1x1 pixels before the GAP layer. Kernel sizes
were explored from 3x3 up to 11x11. The best configuration over all the different
possibilities was the one selected.

7.2.2.3 Training and validating the system

To ensure that our model was generalizing well with data that it had not been
trained with, a stratified 5-fold cross-validation was used to train and validate
the network with all the images. This allowed obtaining more robust results
on the different evaluation metrics. For this approach, the images were split
in 5 different sets, taking into account that images from the same patient were
only present in a single set. Then, the model was trained five times, where four
out of the five sets were used for training and the remaining one for validation.
Therefore, for each fold, 80% of the dataset was considered when training the
system and the remaining 20% when validating it.

In order to increase the variability of the dataset, data augmentation
techniques were used. Random rotations (up to a maximum of 15 degrees), width
shift (up to 20%), height shift (up to 20%), shear (up to 20%), zoom (up to 20%)
and horizontal flips were applied to the input images.

To reduce the computational complexity, input images were resized to
128×128 pixels. Since the dataset used in this experiment is unbalanced (i.e.,
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FIGURE 7.2: Diagram of COVID-XNet. It consists of 5 convolutional layers
(Conv), 4 max pooling layers (MaxPool), a GAP layer and a softmax layer.
Conv1, Conv2 and Conv3 use 5×5 kernel size, while Conv4 and Conv5 use

3×3. All MaxPool layers use 2×2 kernels.

there are more images corresponding to the normal class than to COVID-19), the
class weight function was applied accordingly in Keras in order to give more
importance to the COVID-19 class when training the network.

The following metrics were used to measure the performance of the
COVID-19 detection system: sensitivity (Equation 3.7), specificity (Equation 3.8),
precision (Equation 3.6) and F1-score (Equation 3.9); since the dataset is
unbalanced, the balanced accuracy was also used. In addition, the AUCs of the
ROC were calculated.

7.2.2.4 Postprocessing step

Since the relevant information for COVID-19 detection in frontal X-ray images
only lies inside the lung area (Gordienko et al., 2018; Soleymanpour, Pourreza,
et al., 2011), lungs were segmented from the original images in order to discard
surrounding regions. With this process, CAMs (see section 6.2.2.3) only focus on
this area and, therefore, clearer results in terms of visualization of the system’s
output are provided. This lung segmentation step was performed using a
CNN based on the U-Net model (Ronneberger et al., 2015), which was used to
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solve the Radiological Society of North America (RSNA®) Pneumonia Detection
Challenge2.

7.3 Results

7.3.1 Quantitative evaluation

The results achieved by the network after training and validating the CNN using
the 5-fold cross-validation are summarized in Table 7.1. The ROC curve for each
of the cross-validation folds are presented in Figure 7.3, which also reports their
corresponding AUC values.

TABLE 7.1: Cross-validation results for each of the folds, where sensitivity,
specificity, precision, F1-score, AUC and balanced accuracy are reported.

The average of these metrics over the different folds are also shown.

Fold test Actual classes Predicted classes Sensitivity Specificity Precision F1-score AUC Balanced
accuracy

Normal COVID-19
1st fold Normal 851 16 96.71% 98.15% 96.89% 96.8% 0.997 97.43%

98.15% 1.85%
COVID-19 17 499

3.29% 96.71%
2nd fold Normal 839 28 94.00% 96.77% 94.54% 94.27% 0.990 95.38%

96.77% 3.23%
COVID-19 31 485

6% 94%
3rd fold Normal 834 33 93.02% 96.19% 93.57% 93.29% 0.989 94.61%

96.19% 3.81%
COVID-19 36 480

6.98% 93.02%
4th fold Normal 815 52 88.95% 94.00% 89.82% 89.39% 0.976 91.48%

94% 6%
COVID-19 57 459

11.05% 88.95%
5th fold Normal 839 30 90% 96.55% 93.98% 91.94% 0.986 93.27%

96.55% 3.45%
COVID-19 52 468

10% 90%
Average Normal 96.33% 3.67% 92.53% 96.33% 93.76% 93.14% 0.988 94.43%

COVID-19 7.47% 92.53%

As can be seen, the results achieved demonstrate that the system is able
to generalize well, obtaining similar and stable results across the different
folds. Each of these sets achieved balanced accuracies greater than 91%, and
AUC values above 0.97, which confirms that the system is very reliable when
performing the classification. After calculating the average of the metrics
obtained over all the different cross-validation folds, the system achieved 92.53%
sensitivity, 96.33% specificity, 93.76% precision, 93.14% F1-score, 94.43% balanced
accuracy and an AUC value of 0.988.

2www.kaggle.com/eduardomineo/u-net-lung-segmentation-montgomery-shenzhen
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FIGURE 7.3: Left: ROC curve for each cross-validation set. Right: zoomed
in at top left. AUC values are shown in the legend.

7.3.2 Qualitative evaluation

As introduced in section 6.2.2.3, CAMs are used to visualize what the network
is focusing on represented in a heatmap when performing the classification.
Figure 7.4 shows different input images and their corresponding CAM heatmaps
obtained with COVID-XNet. The most relevant information that the network
considered when performing the prediction for the COVID-19 class is highlighted
in red, while regions that were not relevant for COVID-19 detection (considered
as normal) are presented in dark blue.

The examples shown in Figure 7.4 present different cases that correspond
to true positives (A–H), true negatives (I–K) and false positives (L). The
heatmaps obtained for the true positive cases were compared to the ground truth
descriptions provided in the datasets in order to verify whether the system was
highlighting the correct regions inside the lung area. It is important to mention
that these results were also validated by a lung specialist.

The ground truth corresponding to Figure 7.4-A reports patchy ground-
glass opacities in right upper and lower lung zones and patchy consolidation
in left middle to lower lung zones. Furthermore, several calcified granulomas
were incidentally noted in the left upper lung zone. Figure 7.4-B shows a
right interstitial paracardiac thickening with a tendency to cavitation in its most
cranial portion, along with a mild right hilar enlargement. Figure 7.4-.C presents
consolidations in the base of the right hemithorax and an interstitial pattern that
affects most of that lung. Moreover, a small pseudonodular consolidation is
presented in the left paracardiac region which could suggest another affected
area. In Figure 7.4-D, the ground truth describes the presence of right upper lobe
opacity. The report for Figure 7.4-E details the existence of alveolar infiltrates in
the right upper and lower lobe, and also in the left parahilar area. As can be seen
in the corresponding heatmaps for these cases (A–E), relevant areas described in
the ground truths were detected by the system. In the case shown in Figure 7.4-F,
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FIGURE 7.4: CAM obtained for the COVID-19 class together with their
corresponding original images. Images A–H represent COVID-19 cases,
while I–L correspond to healthy patients. CAMs are represented with
heatmaps, where the most relevant regions for COVID-19 detection are

highlighted in red.

the patient is reported to present opacities in the base of the right lung and in the
left middle and lower lung zones. The output heatmap matches this description,
along with a smaller region in the left upper area which is not mentioned in
the report. Lower and middle to upper right lobe consolidations are reported
in Figure 7.4-G, together with a mild small consolidation in the left lower lobe.
In this case, the system was not able to detect consolidations in the middle to
upper right lung area. Finally, the ground truth of Figure 7.4-H reports COVID-
19 pneumonia manifesting as a single nodular lesion. The AP chest radiograph
shows a single nodular consolidation (black arrows) in the left lower lung zone.
In the latter case, the system detected consolidations marked by ground truth
arrows, but it also mistakenly highlighted upper areas in both lungs.
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For normal cases (I–L), the system did not detect any relevant COVID-19
area, except for Figure 7.4-L, where two small regions were highlighted.

These results prove that, even when training the system with a large
unbalanced dataset obtained from different sources, the proposed custom model
is learning specific characteristics and patterns appropriately.

The results obtained in this chapter have been published in Applied Sciences
journal as "COVID-XNet: A Custom Deep Learning System to Diagnose and
Locate COVID-19 in Chest X-ray Images" (Duran-Lopez et al., 2020b). More
details of this publication can be found in Appendix D.
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Discussion

In this chapter, the main contributions achieved in the previous chapters are
discussed, comparing them to other state-of-the-art approaches, along with
future works that could be investigated as the next steps of this Thesis.

As presented in Chapter 3, a DL-based CAD system, called PROMETEO, was
developed for discriminating between malignant and normal regions in WSIs.
PROMETEO was trained, validated and tested with 100×100 patches extracted
from PCa tissue images. These patches were filtered with a novel patch extraction
and scoring algorithm, which removed unwanted areas, such as pen marks and
external agents, and then normalized using Reinhard’s stain normalization.

As can be clearly seen from the results obtained in Section 3.2.2.3, both the
stain-normalized version of the dataset and the original one achieved very high
recognition rates on the PCa detection task. However, the second one performed
slightly better than the former in the 3-fold cross-validation step and in the final
test, which can be due to different reasons. First of all, color differences could be
one of the factors that the network learns for distinguishing between malignant
and normal patches, since the H&E stain makes malignant regions tend to a more
purple-like color. Then, normalizing all patches to a target color could imply
losing relevant information for the classification.

However, when testing with different hospitals whose WSIs were not used to
train the system and which present different color variations, the results changed
when comparing both approaches. In that case, the mean specificity of both is still
around 95%. However, when looking at the standard deviation of the specificity,
the difference is clearer: the stain-normalized was more stable while achieving
almost the same result. This could be caused by the fact that, thanks to the
normalization, the patches were more homogeneous in terms of color, and the
network was able to extract more relevant features based on the cell structures
(which are more complex to detect than color differences) during the training
phase. Hence, the stain-normalization could make the system more robust
and stable to images from new hospitals and scanners where color variations
exist. This idea was confirmed when performing the Student’s t-test over the
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percentage of malignant area of the tissue predicted by the CNN for normal and
malignant WSIs without applying stain-normalization, which showed that there
was no statistically significant difference between the two classes for two out of
the three external sources. These results were also studied in Otálora et al., 2019,
where the authors concluded that training a deep CNN with stain-normalized
images did not improve the results and, in some cases, they were worse than
the baseline. However, the authors stated that this technique improved the
generalization of the CNN for classification tasks using digital pathology images.
Our results also confirm this idea regarding the application of stain normalization
to PCa histopathological images.

State-of-the-art works, such as Kwak and Hewitt, 2017, Litjens et al., 2016,
Campanella et al., 2019 and Ström et al., 2020, also performed a classification
between normal and malignant tissue. However, since these works performed
the classification and obtained the metrics at a different level (core-level and slide-
level), results cannot be directly compared to the ones achieved by PROMETEO.
Moreover, those works use different datasets, which also does not allow a strict
and fair comparison with the results obtained in the aforementioned experiment.
Therefore, PROMETEO was compared with different well-known pre-trained
models, which were tested on the dataset we used. Some of them obtained similar
results after a fine-tuning process, as presented in Table 3.5. However, in terms
of performance, due to the higher complexity of these models compared to our
proposal, the average time that they take to predict a single patch and a single
WSI is higher than that of PROMETEO, as presented in Chapter 4. This means
that, when using our network, the CAD system would be able to process more
WSIs in the same amount of time than any of the other models that were tested,
as well as to achieve a slightly higher accuracy. These pre-trained models were
much faster to train than our network, since it was trained from scratch, and their
accuracies are close to ours. However, since the training process is a step that only
has to be done once, it is worth to have a longer training process in order to obtain
a lighter computational algorithm with better accuracy for its production phase
(predicting every new WSI that is processed in a hospital).

A comprehensive comparison with other state-of-the-art works in terms of
the number of operations (OPS) performed by the network was also performed.
Based on the number and size of the layers, PROMETEO performs around 350
MOPS (106 OPS) per patch. Other works that present high accuracies for a binary
classification task in WSIs, such as Toro et al., 2017; Campanella et al., 2019
and Ström et al., 2020, use well-known models that, based on Canziani et al.,
2016, perform more than 1 GOPS (109 OPS) per input patch. The custom model
presented in Litjens et al., 2016 needs to perform more than 660 MOPS per patch.
PROMETEO outperforms other state-of-the-art works in terms of computational
complexity for a binary classification task in prostate histopathological images
between normal and malignant WSIs.

The use of transfer learning in CNNs has become a commonplace technique
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for medical image analysis. Most of the current research focuses on using this
approach for avoiding the problem of having to design, train and validate a
custom CNN model for a specific task. This has proved to achieve state-of-
the-art results in many different fields and has also accelerated the process of
training a custom CNN from scratch (Zhuang et al., 2019). However, when
using this technique, very deep CNNs are commonly considered, which, as
demonstrated, leads to a higher computational cost when predicting an input
image and, therefore, a slower processing time. Some specific tasks could benefit
from designing shallower custom CNN models from scratch, such as DL-based
PCa screening, providing a faster response to the pathologists in order to help
them in this laborious process. With the increase on the number of cases and the
mortality produced by PCa, this factor could become even more relevant in the
future.

As an alternative, cloud computing has provided powerful computational
resources to big data processing and ML models (Zhang et al., 2019). Recent
works have focused on accelerating CNN-based medical image processing tasks
by using cloud solutions. While it is true that processing images using GPU and
Tensor Processing Units (TPUs) in the cloud is faster than in any local edge-
computing device, there is an aspect that is not commonly taken into account
when stating this fact: the time required to upload the image to the cloud. This
depends on many factors and it is not easy to predict. Moreover, when digitizing
histological images, scanners store them in a local hard drive using around 1 GB
for each of them. As an example, with an upload speed of 300 Mbps, it would
take more than 27 seconds in ideal conditions just for uploading the WSI to the
cloud, which is more than the time it would take to fully process the image in a
local platform using the system proposed in this Thesis.

The results obtained in the PCa detection task were expanded in order to
perform a Gleason pattern recognition over the malignant patches, providing
more relevant information to pathologists. The results obtained for the Gleason
pattern recognition task presented in Chapter 6 demonstrate that a custom
CAD system as the one proposed could help reducing inter-observer variability
(around 30%, as reported in Berg et al., 2011) when analyzing PCa in WSIs.
Interesting results can also be drawn from the confusion matrix presented
in Figure 6.5. The proposed Gleason pattern classification CAD system has
a higher uncertainty between Gleason patterns 3 and 4 (83.30% and 75.90%
accuracy, respectively). On the other hand, pattern 5 is correctly classified
in most of the cases (95.36% accuracy). Furthermore, when the proposed
system performed predictions over patches labeled as Gleason pattern 3, it
mistakenly predicted 16.49% of them as pattern 4 (only 0.21% of pattern 3 cases
were assigned with pattern 5). The same happened when the system did not
classified Gleason pattern 4 patches correctly, which, in all of the cases, were
classified as pattern 3 (0% of the errors committed for patches labeled as Gleason
pattern 4 corresponded to the system classifying them as pattern 5). This higher
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uncertainty between Gleason patterns 3 and 4 is also present in a traditional
scenario when expert pathologists analyze PCa histopathological images, as
reported by Arvaniti et al., 2018b and Salmo, 2015.

As mentioned in Section 1.2.5.1, the authors in Berg et al., 2011 proposed
the re-evaluation of PCa patients with a primary low Gleason score diagnosed.
This double effort, which would require different pathologists to analyze the
same images in order to agree with each other and reduce the aforementioned
variability, is not a very efficient practice, and CAD systems as the one proposed
and developed could be very useful for this task. This does not mean that
the proposed system could replace pathologists, since these kind of DL-based
approaches are still far from being perfect. However, they could definitely be
used to perform tedious and time-consuming tasks, which would only need
to be supervised and reviewed afterwards, reducing pathologists’ fatigue and,
therefore, error probability.

The evaluated Gleason pattern recognition system, which achieved 84.60%
balanced accuracy, leads to developing a global CAD system combining all the
different parts presented in this Thesis in order to perform a complete report
of input WSIs. This way, an input image is classified as either malignant or
normal by means of the novel W&D network presented in Chapter 5, and, for
the former case, a heatmap highlighting the malignant regions of the tissue and
their corresponding Gleason pattern is generated. The different networks and
processes that are combined to form the global CAD system allow deeper feature
extraction while having a low latency in terms of execution time, with the Gleason
pattern classification CNN representing less than 1% of the total amount of time
needed. Future works will continue expanding this idea by including a new block
at the output of the current system in order to assign a slide-level GGS score to the
input WSI, following a similar approach than the one considered for performing
patch-aggregation with the W&D model over the results obtained at patch level
with PROMETEO. This way, the complete report given by the system would
provide both global and spatial GGS information, which would be of great use
to expert pathologists. Current efforts focus on improving the results obtained in
the Gleason pattern recognition CNN by adding more variability to the dataset.
For this purpose, we are collaborating closely with a team of pathologists from
the Hospital Clínic Barcelona in order to validate the output heatmaps obtained
by the system and to get a higher amount of labeled WSIs.

All the aforementioned algorithms and processes were applied to COVID-
19 detection in order to contribute to the fight against this pandemic situation
(Chapter 7). The proposed system could be useful as a screening test for
COVID-19 diagnosis in combination with patients’ clinical manifestations and/or
laboratory results to discard severe cases and decide whether the patient should
be hospitalized. The performance of the system when predicting new unseen
images shows that the model generalizes well, proving that COVID-XNet could
be the first step for developing a universal CAD system for COVID-19 diagnosis
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in X-ray images. This study, by no means, presents a solution that is currently
ready for its production phase. More tests and improvements should be
performed before considering the use of any DL solution in hospitals. COVID-
XNet was never conceived as a replacement for human radiologists, but as a tool
to aid them and contribute to the fight against COVID-19.

To conclude, this Thesis has presented novel contributions in the field of
medical image analysis and, in particular, in PCa diagnosis in histopathological
images. Some of the results improve previous state-of-the-art solutions in terms
of performance (Appendices A and B), and others are implementations that,
to the best of the author and the advisors’ knowledge, have been developed
for the first time for this purpose (Appendices C and D), becoming important
contributions that have been published (or are under review) in high impact
factor journals. Some new lines of research have been opened with these results,
allowing numerous possibilities for future works, some of which have been
presented in this discussion.
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Chapter 9

Conclusions

In this Thesis, which has been presented throughout this document, the following
contributions and conclusions are highlighted:

• A study of PCa has been carried out, including the histopathology, the
epidemiology, the main causes and the diagnosis procedure.

• An in-depth study of DL algorithms and CNNs has been performed, along
with the current most widely used frameworks for designing, training and
evaluating these kind of networks.

• A novel CNN-based CAD system for discriminating between malignant
and normal regions in WSIs has been developed. A set of WSIs annotated
by pathologists were obtained to create the dataset, which was used to train,
validate and test a custom 9-layer CNN, called PROMETEO. This network
is able to generate a heatmap of the input WSI, indicating the regions that
the network detected as malignant. A novel patch scoring algorithm, which
removed unwanted patches, was also developed. In addition, the impact
of applying a stain-normalization algorithm was studied, proving to be
relevant for the generalization of the model when predicting WSIs from
different sources due to the color variations produced by the H&E stain.

• A novel benchmark has been designed in order to measure the processing
and prediction time of a CNN architecture for a PCa screening task. The
proposed benchmark was used to perform a comprehensive evaluation
of PROMETEO on different computing platforms to measure the impact
that their hardware components have on the WSI processing time. The
benchmark was run with different state-of-the-art CNN models, comparing
them in terms of average prediction time. The proposed model outperforms
other widely-used state-of-the-art CNN architectures, while achieving
better results on the same dataset.

• A novel ML-based algorithm has been developed in order to classify PCa
WSIs as normal or malignant at global slide level based on a previous patch-
level classification. For this purpose, a W&D model, which combines both
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linear model components (wide) and neural network components (deep)
was designed. Different processed features were extracted, which were
then used as input to the proposed W&D model. The proposed model
was compared with other state-of-the-art methods, proving that the W&D
network performs better in terms of accuracy, sensitivity, F1 score and AUC.
To the best of the author’s knowledge, this was the first time that a W&D
network was used to medical image analysis.

• A custom CNN model has been designed, trained and evaluated for
classifying between the three main different Gleason patterns. The
proposed system generates CAMs from the input patches, highlighting
the tissue regions that the system considered as relevant to perform the
classification, allowing for a more precise heatmap of the malignant areas
in the WSI.

• A global PCa diagnosis CAD system has been developed, combining
the different subsystems developed in this Thesis. The proposed system
performs a sequence of processes to the input WSI, acting first as a screening
method and, for those diagnosed as malignant, it reports the output of the
Gleason pattern recognition system with the corresponding heatmap. After
measuring the performance of the global CAD system when analyzing a
WSI, the impact of the Gleason pattern classification system represents a
negligible amount of time of the whole process. To the best of the author’s
knowledge, this aspect makes the proposed global CAD system the fastest
among the state-of-the-art PCa detection studies.

• In order to contribute to the fight against COVID-19, the knowledge
acquired when developing the aforementioned CAD systems for PCa
diagnosis was used for a COVID-19 detection task in chest X-ray images.
A custom CAD system, called COVID-XNet, was developed. X-ray images
were preprocessed with different methods in order to enhance the relevant
information. CAMs were used to visualize the relevant features that the
system considered for COVID-19 detection. The output of the system
for the evaluation set was compared and verified with its corresponding
ground truths and validated by a lung specialist.
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