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Large impact velocities suppress the splashing of micron-sized droplets
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Here we investigate the transition from spreading to splashing of drops with radii R
varying from millimeters to tens of microns impacting onto a smooth and dry partially
wetting substrate at normal atmospheric conditions. Experiments show that the smaller R
is, the larger the impact velocity V for the drop to splash needs to be but also that splash
is inhibited if Weλ = ρV 2λ/σ � 0.5, with σ , ρ, and λ indicating the interfacial tension
coefficient, the liquid density, and the mean free path of gas molecules. This result has
been validated for two different values of the Ohnesorge number Ohλ = μ/

√
ρλσ , with μ

indicating the liquid viscosity, defined using only the material properties of the liquid and
of the surrounding gaseous atmosphere. The underlying reason for this a priori unexpected
finding results from the fact that the thin liquid film ejected after the drop touches the
substrate is, under many practical conditions, Ht � σ/(ρV 2) Riboux and Gordillo [Phys.
Rev. Lett. 113, 024507 (2014)]. Then, for sufficiently large values of V , the thickness of
the lamella becomes similar to the mean free path of gas molecules, i.e., Ht ≈ λ, and,
under these conditions, the splash of the drop is inhibited because the lift force causing
the liquid to dewet the partially wetting solid is negligible. The spreading to splashing
and the splashing to spreading transitions observed experimentally as the impact velocity
is increased and the radii of the droplets is above a certain threshold value are very well
predicted by the theory in G. Riboux and J. M. Gordillo [Phys. Rev. Lett. 113, 024507
(2014)] and J. M. Gordillo and G. Riboux [J. Fluid Mech. 871, R3 (2019)] once the
aerodynamic lift force is set to zero for Ht/λ � 2, i.e., when Weλ � 0.5.

DOI: 10.1103/PhysRevFluids.6.023605

I. INTRODUCTION

Ink-jet printing is based on the fact that an initially spherical droplet impacting against a solid
deforms and creates, after drying, a dot fixed on the substrate [1]. The contour of the image resulting
when a number of properly placed dots gather together is smooth if the perimeter of a single dot is
circular, which happens if the drop spreads over the substrate [2–7] or, in contrast, will be irregular
if the drop splashes [8] (see Fig. 1). It is known that the spreading-splashing transition takes place,
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(a) (b)

FIG. 1. The final shape of a impacting drop onto a smooth solid substrate is circular if the drop spreads
over the solid (a) or it is star shaped if the drop splashes (b).

for given material properties of both the liquid and the surrounding gaseous atmosphere, when the
impact velocity V of a drop of radius R is above the critical velocity for splashing, V > V ∗, which
is usually of a few meters per second [9–11]. Here we will demonstrate that there exists a second
transition from splashing to spreading taking place for larger impact velocities of a few tens of
meters per second like those found, for instance, in new printing applications. We will show that the
reason behind this behavior relies on the fact that the thickness of the lamella ejected tangentially
to the substrate can be similar to the mean free path of gas molecules for sufficiently large values of
the drop impact velocity.

Notice that fast printing processes impose drop impact velocities such that V � 5 m/s and
that the usual spatial resolution requirements of the printed image demand that R < 10−3 m.
However, most of the experimental evidence in the recent literature, with the exception of the
remarkable contributions by Visser et al. [5,6], who did not observe splash for high-speed micron-
sized water droplets, describes the spreading-splashing transition of millimetric drops. Hence, in
spite of its clear interest for ink-jet printing applications, there is a lack of understanding of the
precise conditions under which micron-sized droplets spread or splash after impacting a smooth
and dry partially wetting substrate. The purpose of this contribution is to provide experimental
evidence describing the spreading-splashing transition of micron-sized droplets impacting against
a partially wetting substrate at normal atmospheric conditions. The experimental function V ∗(R)
with R varying within the range of sizes found in different technological applications, namely
1.5 × 10−3 m < R � 45 × 10−6 m, will be compared with the predictions made by the theory
in Refs. [9,10,12], finding good agreement. The effects associated with the substrate temperature
[13–16], surface texture, or wettability [17–21] will not be considered here and could be the subject
of a future contribution.

II. EXPERIMENTS

In all experiments presented here, an ethanol drop of radius R, density ρ = 789 kg/m3, dynamic
viscosity μ = 10−3 Pa s and interfacial tension coefficient σ = 2.2 × 10−2 N/m, impacts with a
velocity V against a dry and smooth silicon wafer at normal atmospheric conditions; therefore,
the values of the density, viscosity, and mean free path of the gas are respectively given by ρg �
1.2 kg/m3, μg = 1.8 × 10−5 Pa s, and λ = 6.9 × 10−8 m. Since the radii of the impacting drops is
varied from R � 1.5 × 10−3 m to R � 4.5 × 10−5 m, and the drop impact speed is varied between
V � 1 m/s and V � 18 m/s, three different types of experimental setups have been used: Figure 2
A(a) shows that millimetric drops are formed from a needle placed at a variable height from the
impacting surface and Fig. 2A(b) shows that drops with radii varying between 8 × 10−5 m and
3.5 × 10−4 m are formed using the method described in Refs. [22,23], where a device produces a
fast and highly stretched micron-sized jet as a consequence of the sudden acceleration of a capillary
tube which is initially filled with a liquid that forms a concave interface with the surrounding air.
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FIG. 2. (A) Sketch of the different experimental setups used to produce droplets with radii varying from
millimeters to tens of microns. These droplets impact against a dry and smooth silicon substrate at normal
atmospheric conditions. (a) Quasistatic generation of millimeter-sized drops, R ∼ 1.15 mm (Oh = 7 × 10−3),
from a needle placed at different heights from the impacting surface in order to change the impact velocity,
V , within the range 0.96 < V < 2.98 m/s. In this case, the high-speed camera (FASTCAM, SA-X, Photron)
is operated at 10 000 frames per second (f.p.s.) and the spatial resolution is ∼10 μm/pix. (b) Generation of
micron-sized droplets by means of the device described in Ref. [22]. The radii of the droplets produced in
this way vary within the range R ∼ 79–330 μm (Oh ∼ 13 × 10−3–27 × 10−3), whereas the impact velocity
varies within the range V ∼ 1–16 m/s. The high-speed camera (FASTCAM, SA-X, Photron) is operated at
100 000 f.p.s. and, in this case, the spatial resolution is ∼8 μm/pix. (c) A continuous ink-jet printer (CIJ)
(Kishu Giken), is used to produce droplets with radii R ∼ 45–69 μm (Oh ∼ 29 × 10−3 − 36 × 10−3) and
impact velocities vary within the range V ∼ 12.2–18.0 m/s. In this case, the drop impact process is recorded
using a high-speed camera (Kirana, Nobby Tech) operated at 500 000 f.p.s., obtaining images with a spatial
resolution of 1.5 μm/pix. (B) Images obtained using each of the three setups depicted in (A). (a) A drop
of radius R ∼ 1.15 mm impacting at V ∼ 3 m/s (We ∼ 365) splashes and disintegrates into tiny droplets.
(b) Splashing of a drop of radius R ∼ 200 μm impacting at V ∼ 6 m/s (We ∼ 254). (c) Spreading of a drop of
radius R ∼ 65 μm impacting at V ∼ 18 m/s (We ∼ 742). The limited spatial resolution does not exclude the
unlikely possibility that submicron-sized droplets are produced in the experiments.

Finally, Fig. 2A(c) shows that even smaller and faster droplets are produced using a continuous
ink-jet printer (CIJ) (Kishu Giken). In this printing technology, a continuous micron-sized liquid jet
breaks into droplets by exciting harmonically the imposed liquid flow rate. The experimental values
of both R and V , represented in Fig. 3 using either hollow or solid symbols to denote spreading
or splashing events respectively, are extracted from the analysis of the videos recorded using two
different types of high-speed cameras, see the caption in Fig. 2.
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FIG. 3. This figure represents the range of experimental values of R and V investigated here for each of the
three different experimental setups sketched in Fig. 2, with D indicating the diameter of the capillary tube used
in the device described in Ref. [22]. Empty symbols indicate that the droplet spreads over the substrate and blue
ones that the droplet splashes. Orange and green symbols indicate the experimental conditions represented at
the top and bottom rows of Fig. 4, respectively. The symbols in red indicate the values of R and V corresponding
to the experimental images in Fig. 2(B).

The analysis of the experimental images at the top sequence of images in Fig. 4, which represent
the effect of increasing the impact speed of droplets with radii R/λ ≈ 2000 reveals that, analogously
with the case of millimetric droplets, an increase of the impact velocity promotes a transition from
spreading to splashing but also that splashing is suppressed when the impact velocity is further
increased. Notice that the value of the impact velocity V is represented in Fig. 4 in terms of the
dimensionless parameter,

Weλ = ρV 2λ

σ
= We

λ

R
, (1)

with the Weber number We, the Ohnesorge Oh, and the Reynolds Re numbers defined here as

We = ρ V 2 R

σ
, Oh = μ√

ρ R σ
, Re =

√
We

Oh
. (2)

FIG. 4. The top sequence of images shows the effect of increasing the drop impact velocity for the case of
droplets with radii R/λ ≈ 2000, where a spreading-splashing-spreading transition is observed. The sequence
at the bottom, where no splash is observed in spite of the impact velocities are even larger than those in the
images at the top, corresponds to the case of drops with R/λ ≈ 800 generated by means of a CIJ printer. The
experimental conditions corresponding to the images at the top and bottom rows are indicated in Fig. 3 using,
respectively, orange and green symbols.
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FIG. 5. Sketch and definition of the different variables used in the analysis in main text, with FL the lift
force, Ht and Vt denoting the thickness and velocity of the edge of the expanding liquid sheet and Vv the
vertical velocity. All these variables are functions of the dimensionless ejection time te = Te V/R, defined as
the instant at which the thin liquid sheet is ejected tangentially to the substrate. The angle α refers to the wedge
angle formed by the advancing rim and the substrate. The flow field entering into the lamella at the top right
sketch is represented in a frame of reference moving with the velocity at which the drop wets the substrate,
namely V ȧ = V da/dt with a = √

3t and t = V T/R the dimensionless time. The expression for the thickness
of the boundary layer δ in Eq. (9) was deduced in Ref. [12] in the moving frame of reference, where there
exists a stagnation point, also represented in the sketch.

The result shown at the bottom sequence of images in Fig. 4, which correspond to the case of
drops with radii R/λ ≈ 800, produced using a CIJ printer, is equally interesting because no splashing
is observed, no matter how large the impact velocity is. The purpose of the next section will be to
explain and quantify the experimental observations depicted in Figs. 3 and 4.

III. THEORY

In Refs. [9,10,12] it was shown that, once a liquid sheet is expelled at a velocity Vt > V after
the drop touches the solid substrate, its edge experiences a vertical lift force per unit length FL

caused by the gas lubrication layer located beneath the liquid rim, which induces a vertical velocity
to the front of the expanding liquid sheet Vv ∝ √

FL/(ρHt ), with Ht indicating the rim thickness,
see Fig. 5. The vertical velocity imparted to the edge of the expanding liquid sheet could make the
lamella to take off from the substrate if this velocity is larger than the velocity of radial growth of
the rim caused by capillary retraction, ∝ √

2σ/(ρHt ). Hence, the critical velocity for splashing can
be determined from the condition

√
FL/(2σ ) = β with β a constant. In Refs. [9,10,12], the lift force

FL was expressed as the addition of the lubrication force exerted by the gas flow at the wedge region
formed by the advancing liquid sheet and the substrate, Kl μg Vt , with Kl a function depending on
the ratio Ht/λ and Vt the relative velocity between the gas and the liquid, plus the aerodynamic force
Kuρg V 2

t Ht , with Ku a constant that, thanks to the experimental results by Ref. [24], we approximated
in Ref. [10] to Ku � 0, see Fig. 5. These facts yield that the splash criterion in Refs. [9,12] can be
written as it was proposed in Ref. [10]:

Kl μgVt

σ
= 0.034, (3)

with Vt related with the instant Te the lamella is initially ejected tangentially to the wall as:

Vt = V (
√

3/2) t−1/2
e , (4)
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where te = Te V/R refers to the dimensionless ejection time, which is calculated using the expression
given in Ref. [9],

√
3

2
Re−1 t−1/2

e + Re−2 Oh−2 = 1.1t3/2
e . (5)

The expression for the coefficient Kl in (3) varies depending on the relative values of the slip lengths
at the solid wall and of the one induced by the shear stresses exerted by the gas flow at the air-liquid
interface: Indeed, using the results in Ref. [10], if We λ/R < (μg/μ)3/4 Oh1/4, then

Kl � 1

2

(
6

tan2 α

)
ln

[
0.011

(
μ

μg

)3/4

Oh−1/4
(Ht

λ

)]
, (6)

and when We λ/R > (μg/μ)3/4 Oh1/4

Kl �
(

6

tan2 α

)
ln

[
1 + Ht

19λ

]
(7)

with α � 60◦ [9] the angle of the wedge formed by the lifting lamella and the solid substrate, see
Fig. 5.

Notice that the splash criterion in Eq. (3) crucially depends on the ratio Ht/λ through the value
of Kl given in Eqs. (6) and (7) so we proceed next to describe how Ht is calculated. First, potential
flow theory in Ref. [9] predicts that (i) the initial thickness of the lamella is given by

Ha =
(√

12

3π

)
R t3/2

e (8)

and also that (ii) the liquid velocity at the root of the lamella is twice the initial velocity of the edge
of the lamella namely, Va = 2Vt , with Vt given in Eq. (4), see the sketch in Fig. 5. However, the real
thickness of the root of the lamella, H+

a , is larger than the prediction given by potential flow theory
in Eq. (8) as a consequence of the finite thickness of the boundary layer. Indeed, the thickness δ

of the boundary layer developing at the entrance of the root of the lamella illustrated in Fig. 5 was
deduced in Ref. [12] to be

δ = 4.34
Ha√
Re te

, (9)

with te and Ha given, respectively, by Eqs. (5) and (8). The thickness H+
a is then calculated imposing

that the value of the flow rate per unit length entering into the lamella is the one given by potential
flow theory namely, 2Vt Ha. Then, assuming for simplicity that the velocity varies linearly within the
boundary layer,

2Vt Ha = 2Vt (H
+
a − δ/2) ⇒ H+

a = Ha + δ/2. (10)

But the diameter Ht of the rim limiting the edge of the expanding lamella is even larger than H+
a

because the liquid flows into the lamella twice as fast as the edge of the lamella, see Fig. 5, and
because of the capillary retraction, these facts explaining the experimental result in Ref. [9], where
it is found that

Ht ≈ 3Ha ≈ R t3/2
e , (11)

with te the solution of Eq. (5) and, hence, Kl in Eqs. (6) and (7) can now be calculated in terms of
the ratio

Ht

λ
= R

λ
t3/2
e (12)

and the term at the left of the splash criterion (3) can be fully determined. But, before comparing
the experimental results in Fig. 3 with the predictions of Eq. (3), let us first point out that Eqs. (6)
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and (7) for Kl were deduced solving the lubrication equations in the wedge region sketched in
Fig. 5. Therefore, these equations will only be valid in the continuum aproach namely, when Ht in
Eq. (11) is larger than the mean free path λ. Indeed, when the rim thickness is similar to the mean
free path of gas molecules i.e., Ht � λ, it is expected that the lubrication force FL will be zero and,
consequently, the drop will not splash. Interestingly, in spite of the mean free path of air molecules
is below 100 nm, the thickness of the lamella can be similar to λ. Indeed, in the limit of low values
of the Ohnesorge numbers of interest here, Oh 
 1, the thickness of the boundary layer δ is smaller
than the thickness Ha in Eq. (8) and the solution of Eq. (5) can be approximated by te � We−2/3

[12,25]. Hence, Eq. (11) reads

Ht ≈ σ

ρ V 2
(13)

and the ratio λ/Ht with Ht given by Eq. (13) reads

λ

Ht
= ρ V 2 λ

σ
. (14)

Consequently, the parameter Weλ defined in Eq. (1) represents a measure of the relative thickness
of the lamella with respect to the mean free path of the gas molecules and then equation

Weλ = 1 → V ′ ≈
(

σ

ρλ

)1/2

, (15)

provides with an estimate of the values of the drop impact velocity V ′ for which the thickness of the
lamella is close to the mean free path of the gas molecules: V ′ ≈ 20 m/s for the case of ethanol and
V ′ ≈ 32 m/s for the case of water (σ = 7.2 × 10−2 N/m, ρ = 103 kg/m3).

In view of the discussion above, the value of the coefficient Kl in (3) for Weλ > Weλ0 with Weλ0

an order unity constant to be determined from experiments, will be set here to

If Weλ > Weλ0 ⇒ Kl = 0 . (16)

The experimental data in Fig. 3 corresponding to Ohλ = μ/
√

ρλσ = 0.91 as well as the experi-
mental point for the case of water in Visser et al. [5,6] corresponding to Ohλ = 0.46, are compared
in Fig. 6 against the predictions given by Eq. (3) using Eqs. (6) and (7) for Kl deduced in Ref. [10]
and Eq. (16) for Kl deduced here. The agreement between the experimental observations and the
theoretical values is rather good when the value of Weλ0 in Eq. (16) is set to Weλ0 = 0.5. Notice,
however, that some spreading events are seen in the region where splashing is predicted to occur,
but the number of these experimental points is quite small when compared with the number of
splashing events. The results in Fig. 6 indicate that our theory is able to predict the experimental
observations in Fig. 4, namely the spreading-splashing-spreading transition as well as the total
absence of splashing, no matter how large the impact velocity is, when droplets are sufficiently
small.

Let us point out that the results in Fig. 6 represent just only a part of the full phase diagram.
Indeed, for larger impact velocities or smaller drop radii, the boundary layer thickness δ in Eq. (9)
will become of the order of the thickness of the lamella, this happening when√

Re te � 4 ⇒ Re1/6Oh2/3 > K ≡ Weλ > K12(R/λ)2 Oh−6
λ , (17)

where we have made use of the approximation te ≈ We−2/3. The stripped area in Fig. 7 indicates
the region where the condition (17) is satisfied with K = 0.33, this also being a region where the
expressions for the ejection time (5) and for the thickness of the lamella (11) are no longer valid and,
instead, the analogous expressions deduced in Ref. [12] should be used in order to predict whether
the drop spreads or splashes. These alternative equations for te and Ht involve, however, unknown
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FIG. 6. The boundary separating spreading and splashing conditions obtained experimentally is compared
with the theoretical predictions in a R/λ-Weλ plane, with Weλ = ρV 2λ/σ and λ = 68 × 10−9 m. The white
region indicates spreading, whereas splashing is represented in blue for the case of ethanol (Ohλ = μ/

√
ρσλ =

0.91) and in yellow for the case of water (Ohλ = 0.46). The thicker continuous line and the dash-dotted
black line are used to respectively indicate the predicted spreading-splashing transition for the cases of
ethanol (continuous line) and water (dash-dotted line). The vertical thin line indicates Weλ = Weλ0 = 0.5.
The experimental data point corresponding to the spreading of a water droplet of radius R = 25 μm impacting
with a velocity of 50 m/s on a smooth substrate is taken from Visser et al. [5,6].

constants that need to be determined carrying out new experiments, and this task is beyond the scope
of the present study.

(a) (b)

FIG. 7. The condition expressed by Eq. (17) with K = 0.33 are represented using striped lines in the phase
diagrams corresponding to (a) ethanol drops in air at normal atmospheric conditions, for which Ohλ = 0.91
and (b) water drops in air at normal atmospheric conditions, for which Ohλ = 0.46. The present theoretical
results cannot be applied to predict whether the drop spreads or splashes in the stripped area, which represent
conditions under which the thickness of the boundary layer is similar to that of the ejected lamella. The
experimental data point corresponding to the spreading of a water droplet of radius R = 25 μm impacting
with a velocity of 50 m/s on a smooth substrate is taken from Visser et al. [5,6].
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IV. CONCLUSIONS

To conclude, here we provide with a predictive theory that determines the region in the R-V space
in which micron-sized ethanol or water droplets spread over a partially wetting substrate, these being
the conditions under which the image resolution of ink-jet printers, is optimal. We have shown that
splashing can be suppressed if the drop impact velocity is such that Weλ = ρV 2λ/σ � 0.5 and also
that our theory is capable to predict the spreading-splashing-spreading transition which is observed
experimentally as the impact speed is increased when the drop radius is above a certain threshold
value. All of these conclusions are valid whenever the thickness of the boundary layer is smaller
than the thickness of the lamella: The analysis of the cases for which the thickness of the boundary
layer is similar to the thickness of the ejected lamella, corresponding to smaller or faster droplets or
to droplets of liquids with viscosities larger than those considered here, is left for a future study.
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