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Abstract. This article aims to develop a minimally intrusive system of
care and monitoring. Furthermore, the goal is to get a cheap, comfortable
and, especially, efficient system which controls the physical activity car-
ried out by the user. For this purpose an innovative approach to physical
activity recognition is presented, based on the use of discrete variables
which employ data from accelerometer sensors. To this end, an innova-
tive discretization and classification technique to make the recognition
process in an efficient way and at low energy cost, is presented in this
work based on the χ2 distribution. Entire process is executed on the
smartphone, by means of taking the system energy consumption into ac-
count, thereby increasing the battery lifetime and minimizing the device
recharging frequency.

1 Introduction

Just 30 minutes of moderate activity five days a week, can improve your health
according to the Centers for Disease Control and Prevention. By enabling ac-
tivity monitoring on an individual scale, over an extended period of time in a
ubiquitous way, physical and psychological health and fitness can be improved.
Studies performed by certain health institutes initiative [7,3,10,6] have shown
significant associations between physical activity and reduced risk of incident
coronary heart disease and coronary events. Their results can be seen in Figure
1, where the inverse correlation between the risk of cardiovascular incidents and
physical activity level is shown through the comparison of four separate studies.

In recent years, thanks largely to the increased interest in monitoring cer-
tain sectors of the population such those of as elderly people with dementia and
of people in rehabilitation, activity recognition systems have increased in both
number and quality. Furthermore, communication between relatives, friends and
professionals can be improved by means of graphs of weekly activity (high rel-
evant for sportsmen and for the relatives of elderly people) whereby the doctor
can be automatically alerted if any strange activity is detected. By using data
acquired from accelerometer, NFC, or even microphone sensors and applying
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Fig. 1. Associations between physical activity and reduced risk of incident coronary
heart disease and coronary events

some classification algorithm, it is possible to recognize human activities. Arti-
ficial neural networks (ANN ) method will be analyzed and compared with our
work. Results show the main differences between different studies, and certain
drawbacks are determined which rules them out for development on users’ smart-
phones To reduce the cost related to process accelerometer signals, this paper
opts for an innovative technique, through which the work is performed in the
field of discrete variables. Thanks to a discretization process, the classification
cost is much lower than that obtained when working with continuous variables.
Any dependence between variables during the recognition process is therefore
eliminated and, on the other hand, energy consumption from the process itself
is minimized.

2 Activity Recognition

2.1 Data Collection

Certain related studies attain results on activity recognition off-line. A compre-
hensive training set from the accelerometer output is first needed before data can
be classified into any of the recognized activities. However, this paper has sought
to minimize the waiting time for recognition, thereby providing valid information
of the activity very frequently. To this end, both training and recognition sets
are obtained using time windows [8] of fixed duration. After having conducted
a performance and system accuracy analysis, it is determined that the optimum
length for these windows is 5 seconds. Five seconds windows was chosen due
to for our system it’s extremely important to ensure that in each time window
there is, at least, one activity cycle. Where activity cycle is define as an complete
execution of some activity pattern. For instance, two steps are an activity cycle
for walking and one pedal stroke is the activity cycle for cycling. If at least one
activity cycle can not be ensure in each time window, it’s not possible to deter-
mine, basing on accelerometer patterns, the activity performed. This statement



could be seen in the next example. Suppose a two second cycle is having and
the actor is jumping continuously, that is, we have a cadence of one jump for
each two seconds. The system is configured with one second time window and
thus, for each activity cycle will have two windows. In the first one, while the
user is rising, vertical acceleration is negative. In the other one, because the user
is falling, vertical acceleration will positive. If user increase the cadence by two,
mean between acceleration set is close to , due to vertical positive and negative
accelerations will be counteracted. For this reason, it’s very important to ensure
that one cycle of all activities, regardless of the speed performed, is contained in
a time window. Segmentation process and activity cycle is shown in Figure 2.
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Fig. 2. Time windows split method over accelerometer signal

Based on these time windows, which contain data for each accelerometer axis,
the signal module has been chosen in order to reduce the computational cost of
the new solution. In addition to rendering the system more efficient, this choice
of module eliminates the problem caused by device rotation [5,4]. Furthermore,
user comfort with the system is decreased by removing the restriction that forces
its orientation to be maintained during the process of learning and recognition.
Using the accelerometer module, a data from each of the different readings taken
within a time window ai = (ax,i, ay,i, az,i) for the x, y, and z axes is defined as
follows

|ai| =
√
(ax,i)2, (ay,i)2, (az,i)2 (1)

For each temporal window is obtained Arithmetic Mean, Minimum, Maximum,
Median, Std deviation, Geometric mean and other measures. In addition to the
above variables, hereafter called temporal variables, a new set of statistics from
the frequency domain of the problem is generated. This second set of variables



will be called frecuencial variables. In order to obtain the frequency characteris-
tics, the Fast Fourier Transform (FFT ) for each time window is applied. In this
way, and based on the frequency components obtained.

2.2 Set of Activities

Far from being a static system, the number and type of activities recognized by
the system depends on the user [9]. However, to carry out a comparative analysis
of the accuracy and performance of the discrete recognition method proposed
below, 8 activities were taken into account. These activities are immobile, walk-
ing, running, jumping, cycling, drive, walking-upstairs and walking-downstairs.
The learning system allows the user to decide what activities he/she wants the
system to recognize. This is highly useful when the determination of certain
very specific activities on monitored users is required. Examples of this situa-
tion include patients in rehabilitation who are monitored during their period of
learning the various physical tasks prescribed by their doctors.

3 Qualitative Method

3.1 Ameva Algorithm

Let X = {x1, x2, . . . , xN} be a data set of a continuous attribute X of mixed-
mode data such that each example xi belongs to only one of � classes of the
variable denoted by

C = {C1, C2, . . . , C�}, � ≥ 2

A continuous attribute discretization is a function D : X → C which assigns a
class Ci ∈ C to each value x ∈ X in the domain of the property that is being
discretized.

Let us consider a discretization D which discretizes the continuous domain of
X into k discrete intervals:

L(k;X ; C) = {[d0, d1], (d1, d2], · · · , (dk−1, dk]}
In this discretization, d0 is the minimum value and dk is the maximum value of
the attribute X , and the di values are in ascendent order.

If L1 is the interval [d0, d1] and Lj is the interval (dj−1, dj ], j = 2, 3, . . . , k,
then

L(k;X ; C) = {L1, L2, · · · , Lk}
Therefore, the aim of the Ameva method [1] is to maximize the dependency
relationship between the class labels C and the continuous-values attribute L(k),
and at the same time to minimize the number of discrete intervals k.

As a result from applying the above algorithm to each statistical value of the
system, a series of intervals associated with a particular C tag is obtained. Thus,
after processing all system statistics, a three-dimensional matrix is obtained. In
the first two dimensions, the label of the activity C associated with the interval



Li = (Ll
i, L

s
i ], as well as with the lower limit Ll

i and the upper limit Ls
i of that

range is stored. In a third dimension, the matrix contains the above data for each
statistic S = {S1, S2, ..., SS}, S ≥ 2 . This three-dimensional matrix containing
the set of interval limits for each statistic is called the Discretization Matrix and
is denoted by Dm{C, Ll,s,S}. The Discretization Matrix therefore determines
the interval to which each item of data belongs with respect to each statistical
value, by means of carrying out a simple and fast discretization process.

Class Integration. The next step of the algorithm determines the probability
associated with the statistical data for each of the activities based on previously
generated intervals. To this end, each element of the training set x = {X ; C} is
processed, to which, in addition to the value of each statistic whose calculation
is based on the time window, is also associated the label of the specific activity
in the training set. In order to carry out this process, Class-Matrix is denoted
by Cm{x, Li,S} and is defined as a three-dimensional matrix that contains the
number of data x from the training set associated with each Li interval for each
statistical S of the system. This matrix is defined as follows,

Cmx,i,s = |x ∈ X|x ≥ Ll
i ∧ x < Ls

i ∧ x{C} = Cs (2)

Therefore, by this definition, each position in the Class-Matrix is uniquely asso-
ciated with a position in the Discretization-Matrix, as determined by its range.

At this point not only is it possible to determine the discretization interval
likelihood, but the Class-Matrix also helps to obtain the probability associated
with the discretization process performed with the Ameva algorithm.

Activity-Interval Matrix. The next step in the learning process is to obtain
the matrix of relative probabilities. This three-dimensional matrix, called the
Activity-Interval Matrix and denoted by AIm{x, Li,S} , determines the likeli-
hood that a given value x associated to an S statistic corresponds to a specific
Ci activity. This ratio is based on the quality of the discretization performed by
Ameva, and in order to determine the most probable activity from the generated
data and the intervals of the training set. First the contents of the array AIm is
defined as follows,

AImc,i,s =
Cmc,i,s

totalc,s
· 1

�− 1

�∑
j=1,j �=c

(1 − Cmj,i,s

totalj,s
) (3)

where totalc,s is the total number of time windows of the training process labeled
with the c activity for the ∫ statistic.

Figure 3 shows the overall process described on this section for carry on data
analysis and interval determination.

3.2 Classification Process

Having obtained the discretization intervals and the probabilities of belonging
to each interval, the process by which the classification is performed can be
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Fig. 3. Overall process of data analysis and interval determination
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Fig. 4. Overall recognition process from data sensors

described. This classification is based on data from the analysis of time windows.
The process is divided into two main steps: the way in which to perform the
recognition of physical activity is first described; and the process to determine
the frequency at which some particular activity is then presented.

Classifying Data. For the classification process, the most probable activity is
decided by amajority voting system. This process starts from theActivity-Interval
Matrix and uses a set of data x ∈ X for each of the statistics belonging to the S
set. The process consists of finding an activitympa ∈ C such that the likelihood is
maximized. The above criterion is included in the following expression,

mpa(X ) = max
s∑

s=1

AImc,i,s|xs ∈ (Ll
i, L

s
i ] (4)



The expression shows that the weight contributed by each statistic to the calcula-
tion of the probability is identical. This can be carried out under the assumption
that all statistics provide the same information to the system, and that there is
no correlation between them. Thus, the most probable activity, or mpa, repre-
sents those activities whose data, obtained through the processing time window,
is more suited to the AIm set values. In this way, the proposed algorithm not
only determine the mpa, but also its associated probability. From this likelihood,
certain activities that do not adapt well to sets of generic classification can be
identified. This could be an indication that the user is carrying out new activities
for which the system has not been previously trained.

Figure 4 shows the overall process described on this section for recognition
process from Activity-Interval Matrix calculated in the previous stage.

4 Method Analysis

Now that the basis of the activity recognition algorithm has been laid out, an
analysis of the new proposal can be performed. To this end, the new development
is compared with a widely used recognition system based on neural networks [2].
In this case, both learning and recognition is performed by continuous methods.
The test process is conducted on Google Nexus S, Samsung Galaxy S2, and
Google Nexus One devices for a group of 40 users. Notably, the activity habits
of these users are radically different, since 10 of them are under 25 years old, 20
users are between 25 and 40 years old, and the rest are over 40. An approximate
distribution of the data for each subject regarding the eight activities in the
study are: immobile (2800 min, 70 min per user), walking (2600 min, 65 min per
user), running (2400 min, 60 min per user), jumping (2400 min, 60 min per user),
cycling (2200 min, 55 min per user), driving (2200 min, 55 min per user), walking-
upstairs (2400 min, 60 min per user), and walking-downstairs (2000 min, 50 min
per user). Annotations are performed using a mobile application installed on the
device itself with speech recognition software through which users dictate the
name of the new activity when the physical activity being performance changes.
Those unrecognizable activities conducted during the test process are dismissed
to analyze the system accuracy. Data collection is obtained during four weeks.

Moreover, it is crucial to consider energy consumption and the processing cost
of the system when it is working on a mobile device. In this case, after comparing
the above methods, the conclusion reached is that the method based on Ameva
reduces the computational cost of the system by about 50%, as can be seen in
Figure 5. The time needed to process a time window by using the Ameva-based
method is 0.6 seconds, while, for methods based on neural networks this figure
is 1.2 seconds.

As can be seen in 6, Ameva battery consumption is lower than neural net-
works. For the first one, the battery lifetime is close to 25 hours while for the
last one, it’s only 16 hours. In the comparison can be observed the battery life-
time for decision tree but the main problem of this method, based on statistics
chosen, is the low accuracy, not higher than 60%.
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Based on Accuracy, Recall, Specificity, Precision, and F measure, Table 1 is
presented. In this table, differences between the two methods, RNA and Ameva
can be observed. Most values presented for each measure and activity show that
the Ameva method performs better than RNA, especially as regards precision.
That is to say, the number of false positive in the Ameva method is lower than
that using the RNA method. Immobile and Drive are controversial activities
due to their similar characteristics. Even under observation, it is difficult to
differentiate between these two activities. For this reason and due to temporal
nature of the Immobile activity, results from these two activities present a high
level of disturbance in contrast to other activities.



Table 1. Performance comparison by using measures of evaluation

Activity Accuracy Recall Specificity Precision F-measure (F1)

Ameva RNA Ameva RNA Ameva RNA Ameva RNA Ameva RNA

Walk 98.77% 97.93% 97.92% 93.95% 98.91% 98.57% 93.50% 91.36% 95.66% 92.64%

Jump 99.35% 98.87% 97.03% 96.44% 99.70% 99.25% 98.00% 95.12% 97.51% 95.77%

Immobile 98.69% 99.50% 94.57% 97.37% 99.42% 99.88% 96.60% 99.29% 95.58% 98.32%

Run 99.27% 98.35% 97.61% 92.62% 99.49% 99.14% 96.36% 93.64% 96.98% 93.13%

Up 98.93% 98.17% 95.40% 90.79% 99.43% 99.22% 96.00% 94.35% 95.70% 92.54%

Down 98.64% 98.25% 95.20% 92.68% 99.04% 98.89% 91.95% 90.62% 93.55% 91.64%

Cycle 99.32% 99.03% 96.13% 95.67% 99.73% 99.47% 97.91% 95.89% 97.01% 95.78%

Drive 98.14% 98.74% 90.02% 95.01% 99.20% 99.23% 93.63% 94.16% 91.79% 94.58%

5 Conclusions and Future Work

In this work, a highly successful recognition system based on discrete variables
is presented, which uses the Ameva discretization algorithm and a new Ameva-
based classification system. It has therefore been possible to achieve an average
accuracy of 98% for the recognition of 8 types of activities. Furthermore, working
with discrete variables has significantly reduced the computational cost associ-
ated to data processing during the recognition process. By using this process to
increase recognition frequency, it has been possible to obtain a physical activ-
ity reading every 5 seconds and to enter these readings into the user activity
log. However, the main problem of this system based on statistical learning is
the limit to the number of activities that can be recognized. Working only with
accelerometer sensors implies a limit to the number of system variables and
therefore may lead to a strong correlation between these variables.

6 AMEVA Running in EvAAL Competition

During the competition, two test sessions were executed. In the first one, the
training was performed prior to competition by an external actor not related to
evaluation process. The training actor was 31 years old and the entire training
process was performed with the smartphone in the hip, attached to the user’s
belt. In the competition, the actor was in a similar age range and thus, the way in
that physical activity was executed was very similar. In other case, the system
should be retrained for a better accuracy. Once finished the first evaluation
session, intermediate data was analyzed. From this analysis, it was concluded
that some activities was not well-recognized such as bending or cycling. This
was a substantial impact in the accuracy due to cycling session was long. The
accuracy for the other activities was promising but we detect that something
was wrong for cycling detection. By using discrete techniques to perform the
activity recognition, cycling is a easy activity to be detected because of the
acceleration patterns presents an evident component in the advancing direction.
Unfortunately, cycling activity was carried out on a stationary bike and thus,



accelerations presented in movement direction was not detected. For the other
controversial activity, bending, the system was not training to detect it because it
was a important conflict with sitting activity. Both activities have a very similar
acceleration profile and it can not be determine which is the right activity with
a proper accurate. In the second test process, the system was retrained in order
to achieve a most accurate recognition. Unfortunately, the Internet connection
was not good enough to connect with training server placed at the University
of Seville. For this reason, dataset from time windows was not properly sent to
the server and therefore, the training parameters were wrong. After checking this
problem, we decided to go on with the evaluation process to determine the impact
of this problem in the accuracy. As it was thought, the second evaluation had a
very low accuracy due to that problems. Furthermore, by studying intermediate
data after the evaluation, temporal windows was misconfigured and it was set to
3 seconds and thus, some ”fast activities” such as walking or cycling wasn’t well
recognized. Finally, EvAAL competition was a great chance to make a real stress
test of AMEVA system since It’s not usual in humans to make a long activities
set in so quickly and so fast. In this regard, statistical-discrete classification for
activity recognition based on AMEVA algorithm was designed to medium-long
time activities. Transitions in discrete classification systems are really difficult to
detect and, in AMEVA case, was not implemented any change activity detector.
In conclusion, EvAAL offered a junction to test many systems and generate new
ideas for competitors’ systems. On the other hand, is very good to know other
techniques in activity recognition and new perspectives about this field.
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