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Abstract. We propose a technique that takes two or more web pages
generated by the same server-side template and tries to learn a regular
expression that represents it and helps extract relevant information from
similar pages. Our experimental results on real-world web sites demon-
strate that our technique outperforms others in terms of both effective-
ness and efficiency and is not affected by HTML errors.
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1 Introduction

The Web is a huge information repository. Semi-structured web pages are gener-
ated by server-side scripts that retrieve information from databases and present
it in HTML templates that introduce irrelevant information and attractive styles
and layouts. Information extractors help extract the relevant information in a
web page by using machine learning techniques.

Many information extractors rely on extraction rules. Although they can be
handcrafted, the costs involved motivated many researchers to work on proposals
to learn them automatically [4]. These proposals are either supervised, i.e., they
require the user to provide a number of samples to be extracted, or unsupervised,
i.e., they extract as much prospective information as they can and the user then
gathers the relevant information from the results. Some authors have worked on
unsupervised proposals that do not rely on extraction rules, but are based on a
number of hypothesis and heuristics that have proven effective [1, 7]. Since typical
web pages are growing in complexity, some authors are also paying attention to
the problem of identifying information regions [11].

In this paper, we introduce a technique that allows to learn a regular expres-
sion that describes the structure of the template used to generate some input
web pages; this expression can later be used to extract information from similar
pages. The idea is to compare the input web pages in order to discover shared
patterns that are common to all of them and, thus, are not likely to contain any
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Fig. 1. A sample trinary tree. (Underlined strings represent shared patterns.)

relevant information. The idea of identifying shared patterns lies at the heart
of the other related proposals, but the techniques they use differ significantly.
EXALG [2] uses two statistical techniques to find the tokens that belong to
the template; RoadRunner [5] uses a multi-string alignment algorithm that is
exponential in the size of the input documents [6]; FiVaTech [8] relies on tree
clustering and an ad-hoc matrix alignment technique. Our proposal relies on a
multi-string alignment algorithm that has proven to be very effective and effi-
cient in practice. Contrarily to the previous proposals, ours does not require the
input web documents to be translated into DOM trees and thus does not require
the input documents to be corrected so that they are well-formed HTML.

The rest of the paper is organised as follows: Section 2 describes the main
algorithms of our proposal; Section 3 presents the results of our experimental
evaluation; Section 4 draws a few conclusions; the paper finishes with some
selected references to the literature.

2 Algorithm

Our algorithm works in two steps: first, it creates a trinary tree that represents
the input pages and makes it explicit what fragments are shared patterns and the



createTrinaryTree(n: Node; min, max: nat)
expanded = false
size = max
while size ≥ min and not expanded do

expanded = expand(n, size)
size = size - 1

if expanded then
leaves = getLeaves(n)
foreach leaf in leaves do

createTrinaryTree(leaf , min, size)

expand(n: Node; s: int): boolean
result = false
if size of n ≥ 2 then

map, pattern = findPattern(n, s)
if map �= {} then

result = true
set pattern of node to pattern
foreach text in node do

using map and text
create the prefixes of n
create the separators of n
create the suffixes of n

return result

Fig. 2. Algorithms to create a trinary tree and to expand a node

prefixes, separators, and suffixes that they induce; later, this tree is transformed
into a regular expression with capturing groups that represents the template used
to generate the input pages. This expression allows to extract information from
other pages that were generated by the same template thanks to the capturing
groups.

Creating a trinary tree: Figure 1 presents a sample trinary tree that we use
throughout the paper to illustrate our proposal. The tree is composed of Nodes
of the form (T, a, p, e, s), where T is a collection of Texts, a is a Text that stores
a shared pattern, and p, e, and s are three Nodes called prefixes, separators,
and suffixes, respectively. A Text is a sequence of tokens, which represent HTML
tags, script blocks, style blocks, and #PCDATA. We use ε to denote an empty
Text and nil to refer to the inexistence of a Text or a Node.

Figure 2 presents our algorithm to create a trinary tree. It works on a Node
with Texts that represent the input web pages and two naturals called min and
max that limit the search for shared patterns to those of size max down to min.
The algorithm first attempts to expand the input node, which is a process whose
goal is to find a shared pattern in the collections of Texts in this node and use it
to split them into new collections of prefixes, separators, and suffixes; if the input
node is expanded, then the algorithm is applied recursively to the newly created
leaves. To find shared patterns, we rely on Algorithm findPattern, which returns
a map from Texts onto lists of naturals and a pattern; the former maps each Text
in the input node onto the list of positions at which the latter was found. If the
map is not empty, that implies that a shared pattern has been found, in which
case, the algorithm sets the shared pattern of the input node to that pattern
and then iterates over the Texts it contains and creates the corresponding prefix,
separator, and suffix nodes.

To illustrate this algorithm, assume that it is invoked on Node N1 in Figure 1.
It first searches for shared patterns in the Texts of this node and finds the
following: <html><head><title>Results</title></head><body><h1>Results:



learnTemplate(n: Node; result: Regex): Regex
if isOptional(n) then result += "("
if isLeaf(n) then

if not every texts in n is empty then
result += "{" + freshLabel() + "}"

else
result += learnTemplate(prefix of n, result)
result += pattern of n
if isRepeatable(n, separators of n) then

result += "(" + learnTemplate(separators of n, result) + getPattern(n)
if nil is in separators of n then

result += ")*"
else

result += ")+"
result += learnTemplate(suffix of n, result)

if isOptional(n) then result += ")?"
return result

Fig. 3. Algorithm to learn a template from a trinary tree

</h1>. It then expands Node N1 into three additional nodes, namely: N2, N3,
and N4. Since the shared pattern is found at the beginning of the Texts in N1
and it is not repeated in any of them, then Node N2, which contains the prefixes
of the shared pattern, only contains three empty Texts; node N3, which contains
the separators between the occurrences of the shared pattern in each Text, only
contains three nil values since there are not any separators; contrarily, there
are three suffixes that are stored in Node N4. Then, the algorithm is applied
recursively to N2, N3, and N4 to search for new shared patterns. N2 and
N3 are not processed again since they only contain empty or nil Texts; only
Node N4, whose Texts share the 3-token pattern <br/></body></html>, is
expanded again to create Nodes N5, N6, and N7. (Note that there are other
shared patterns, but the algorithm searches for the longest one and breaks ties
arbitrarily.) The same procedure is applied as many times as necessary until no
more shared patterns are discovered.

Learning a regular expression: Figure 3 presents our algorithm to learn a
regular expression from a trinary tree. It relies on two ancillary concepts: op-
tionality and repeatability. A Node is optional if one or more of its Texts, but
not all, are empty; a Node is repeatable if one or more of its non-empty Texts
have more than one occurrence of the shared pattern, which implies that the
separators Node contains one or more Texts that are not equal to nil.

The algorithm proceeds as follows: it works on a node and a regex that is
expected to be an empty string initially; the algorithm constructs its result by
adding text to this parameter on each recursive invocation. If the node being
processed is a leaf and not all of its Texts are empty, the algorithm then adds
a capturing group that represents a piece of text that has to be extracted; if it



is not a leaf, then the algorithm builds recursively the regular expressions that
correspond to the prefixes, the separators, and the suffixes. If the separators
node is repeatable, then the decision on whether to use a star or a plus closure
is made as follows: if nil is included in the Texts in the separators node, then
it means that there is at least an input web page in which the separator does
not appear, in which case, a star closure must be used; otherwise, a plus closure
must be used. The first and the last lines of the algorithm take into account the
case in which the node being processes is optional; in such cases, a parenthesis
and an optional operator are added to the resulting regular expression.

The template learnt for our running example is the following:
(<html><head><title>Results</title></head><body><h1>Results:</h1>)  {_A_}  (<br/><b>)
( ({_B_} (</b><br/>) {_C_} (<br/><br/>) {_D_} )? (<br/><b>)  )*
{_E_} (</b><br/>) {_F_}  (<br/></body></html>)

As is the case in other unsupervised techniques, it is the user who must assign
a meaning to the capturing groups. In our running example, _A_ and _D_
stand for titles, _B_ and _E_ stand for authors, and _C_ and _F_ stand
for prices. The problem of mapping the information extracted by the capturing
groups onto structured records was dealt with elsewhere [3].

3 Experimentation

We have developed a prototype of our proposal using the CEDAR framework [10].
We performed a series of experiments on a cloud computer that was equipped
with a four-threaded Intel Core i7 processor that ran at 2.93 GHz, had 4 GB
of RAM, Windows 7 Pro 64-bit, and Oracle’s Java Development Kit 1.7.0_02.
The default heap size of the Java Virtual Machine was not modified. The ex-
periments were carried out on a collection of 29 datasets that provide 688 web
pages. The datasets were gathered from real-world web sites on books, doctors,
movies, and from the EXALG repository [2]. We experimentally found that set-
ting min = 1 and max = �0.05m� was the maximum allowable bias to our search
procedure, where m denotes the size of the longest input document; this resulted
in a significant increase in efficiency without an impact on effectiveness.

We ran our proposal, RoadRunner [5], FiVaTech [8], and WIEN [9] on the
datasets in order to learn extraction rules. (Unfortunately, we could not find
a public implementation of EXALG, so we added WIEN to our comparison
since it ranks amongst the most cited proposals in information extraction.) We
then computed the usual effectiveness and efficiency measures. In the case of
WIEN, it was easy to compute the effectiveness measures since the technique is
supervised, i.e., it requires the user to provide annotations with the information
to be extracted so that an extraction rule can be learnt and evaluated. Contrarily,
our proposal, RoadRunner, and FiVaTech are unsupervised, i.e., they learn an
extraction rule that extracts as much information as possible, give computer-
generated labels to the capturing groups, and it is the responsibility of the user
to assign a meaning to these labels. We then used the following approach: we
compared the information extracted by each capturing group to every annotation



Table 1. Results of our experimentation

Summary N E P R LT ET P R LT ET P R LT ET P R LT ET

Mean 28.67 37.63 0.98 0.95 0.13 0.01 0.49 0.49 44.40 0.01 0.81 0.92 116.18 0.24 0.68 0.55 7.70 9.83

Standard deviation 8.60 37.98 0.03 0.11 0.18 0.02 0.47 0.46 193.77 0.01 0.19 0.11 192.06 0.44 0.24 0.30 4.93 6.79

Site N E P R LT ET P R LT ET P R LT ET P R LT ET

www.abebooks.com 30 2.94 1.00 1.00 0.03 0.00 - - - - 0.92 0.99 15.46 0.12 0.52 0.16 9.66 10.26

www.awesomebooks.com 30 2.16 1.00 0.87 0.03 0.00 1.00 1.00 0.92 0.00 0.85 1.00 8.14 0.14 0.77 0.26 5.01 6.27

www.betterworldbooks.com 30 2.30 0.99 1.00 0.17 0.00 0.00 0.00 0.98 0.00 0.99 0.96 85.32 0.39 0.43 0.35 15.57 17.04

www.manybooks.net 30 6.50 0.99 0.99 0.11 0.02 - - - - 0.77 0.97 65.49 0.12 0.25 0.23 6.74 8.14

www.waterstones.com 30 6.46 0.96 1.00 0.07 0.00 1.00 0.89 1.14 0.02 1.00 0.94 51.53 1.98 0.71 0.67 8.02 8.72

doctor.webmd.com 30 24.10 1.00 1.00 0.02 0.00 0.00 0.00 0.73 0.00 0.77 1.00 11.81 0.03 0.60 0.60 9.45 14.54

extapps.ama-assn.org 30 36.00 0.98 1.00 0.02 0.02 - - - - - - - - 0.60 0.60 6.99 7.38

www.dentists.com 30 103.27 0.92 1.00 0.01 0.00 1.00 1.00 867.63 0.00 0.56 0.99 9.94 0.08 1.00 1.00 1.97 1.84

www.drscore.com 30 33.07 1.00 1.00 0.03 0.00 1.00 1.00 3.28 0.02 0.78 1.00 25.35 0.06 0.78 0.80 3.88 3.62

www.steadyhealth.com 30 24.00 1.00 1.00 0.67 0.02 0.00 0.00 0.67 0.02 0.83 0.83 9.59 0.11 0.75 0.75 9.56 9.77

www.allmovie.com 30 59.40 0.97 0.96 0.21 0.00 0.27 0.30 1.64 0.03 0.79 0.74 14.84 0.11 0.13 0.07 7.78 5.91

www.citwf.com 30 20.90 1.00 1.00 0.02 0.00 1.00 1.00 0.69 0.02 1.00 1.00 29.70 0.05 0.39 0.30 2.79 3.79

www.disneymovieslist.com 30 32.33 1.00 1.00 0.07 0.00 0.00 0.00 0.59 0.00 0.71 0.67 259.23 0.08 0.72 0.72 3.95 3.82

www.imdb.com 30 138.80 0.93 0.86 0.45 0.03 0.00 0.00 0.97 0.02 - - - - 0.38 0.38 15.87 16.46

www.soulfilms.com 30 66.13 0.99 0.92 0.03 0.00 0.00 0.00 0.47 0.03 0.59 1.00 17.24 0.05 0.91 0.81 9.73 9.36

cars.amazon.com 21 20.00 0.93 0.73 0.01 0.00 0.27 0.33 0.55 0.02 0.60 0.67 2.29 0.05 0.97 1.00 19.47 8.10

players.uefa.com 20 10.40 1.00 0.90 0.02 0.02 0.92 0.92 0.51 0.02 0.91 0.94 10.81 0.05 0.92 0.51 3.53 3.70

popartist.amazon.com 19 35.00 1.00 0.98 0.02 0.00 0.99 0.99 0.98 0.03 1.00 1.00 246.97 0.11 0.92 0.58 15.66 10.22

teams.uefa.com 20 32.80 0.99 0.99 0.03 0.00 0.90 0.92 0.28 0.02 0.97 0.99 0.89 0.02 0.64 0.75 1.79 2.28

www.ausopen.com 29 66.73 1.00 1.00 0.26 0.02 0.37 0.39 1.15 0.02 0.24 0.82 132.24 0.27 0.67 0.32 9.67 16.96

www.ebay.com 50 18.12 0.97 1.00 0.51 0.08 0.00 0.00 2.51 0.02 0.83 1.00 577.97 0.48 0.70 0.12 5.44 19.55

www.majorleaguebaseball.com 9 26.00 0.98 0.55 0.04 0.00 0.00 0.00 0.95 0.02 0.99 1.00 158.33 0.06 0.65 0.33 3.60 6.13

www.netflix.com 50 125.86 0.99 0.99 0.18 0.02 - - - - 0.82 0.80 706.64 0.76 0.99 0.99 7.47 31.54

www.rpmfind.net 20 9.90 0.95 0.97 0.03 0.05 0.98 0.99 1.31 0.03 - - - - 0.99 0.99 1.29 10.42
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Table 2. Correlation from number of errors to effectiveness

P R P R P R P R

Coefficient -0.14 -0.08 -0.11 -0.06 -0.33 -0.08 0.08 0.20

P-value 0.38 0.61 0.04 0.74 0.04 0.64 0.57 0.16

RoadRunner FiVaTech WIENTrinity

and computed the precision and recall. Then, we considered that the precision
and recall of the extracted information corresponds to the extracted piece of text
with the highest harmonic mean of precision and recall, i.e., the F1 measure.

Table 1 shows our results. The first few rows provide a summary in terms
of mean and standard deviations of the number of web pages in each dataset
(N), the average number of errors in each dataset (E), precision (P ), recall (R),
rule learning time in CPU seconds (LR), and extraction time in CPU seconds
(ET ). The remaining rows provide the results we computed for each web site.
(A dash, which indicates that the corresponding technique was not able to learn
an extraction rule in 15 CPU minutes.) In average, our proposal seems to out-
perform the other techniques in both precision and recall, with a mean learning
and extraction times that are clearly smaller than the other techniques’; the only
exception is RoadRunner, whose extraction time seems similar to ours.

We were also interested in determining if there was a correlation from the
number of errors in a collection of input pages to the effectiveness of our pro-
posal. Unfortunately, it is not easy to draw an intuitive conclusion from the



data in the table. We then conducted a statistical analysis of correlation using
the well-known non-parametric Kendall’s τ procedure. Table 2 shows the results
of the study. Note that there are only two p-values that are smaller than the
standard significance level α = 0.05: the one that corresponds to the precision
of RoadRunner and the one that corresponds to the precision of FiVaTech; this
implies that the number of errors in the input web pages seems to have an im-
pact on the precision of these techniques, whereas the impact on our proposal is
not significant from a statistical point of view.

4 Conclusions

We have proposed a new and effective unsupervised information extractor that
is based on the hypothesis that web pages generated by the same server-side
template share patterns that provide irrelevant information. The rule learning
algorithm searches for these patterns, builds a trinary tree, which is then used to
learn a regular expression that represents the template that was used to generate
the input web pages. Our experiments on real-world web pages proved that our
technique is highly effective and efficient and that it is not significantly influenced
by the presence of errors in the input HTML pages.
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