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Abstract. A detailed cross-device investigation on the role of filamentary dynamics

in high density regimes has been performed within the EUROfusion framework

comparing ASDEX Upgrade (AUG) and TCV tokamaks. Both devices have run

density ramp experiments at different levels of plasma current, keeping toroidal field

or q95 constant in order to disentangle the role of parallel connection length and the

current. During the scan at constant toroidal field, in both devices SOL profiles tend to

develop a clear Scrape Off Layer (SOL) density shoulder at lower edge density whenever

current is reduced. The different current behavior is substantially reconciled in terms

of edge density normalized to Greenwald fraction. During the scan at constant q95
AUG exhibits a similar behaviour whereas in TCV no signature of upstream profile

modification has been observed at lower level of currents. The latter behaviour has been

ascribed to the lack of target density roll-over. The relation between upstream density

profile modification and detachment condition has been investigated. For both devices

the relation between blob-size and SOL density e-folding length is found independent

of the plasma current, with a clear increase of blob-size with edge density normalized
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2

to Greenwald fraction observed. ASDEX Upgrade has also explored the filamentary

behaviour in H-Mode. The experiments on AUG focused on the role of neutrals,

performing discharges with and without the cryogenic pumps, highlighting how large

neutral pressure not only in the divertor but at the midplane is needed in order to

develop a H-Mode SOL profile shoulder in AUG.

PACS numbers: 52.25.Xz, 52.35.Ra, 52.35.We, 52.70.Ds

To be Submitted to: Nucl. Fusion
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3

1. Introduction

Plasma Wall Interaction (PWI) is a subject of intense study in the context of fusion

energy research for the understanding of the amount of heat loads, tritium retention,

and the lifetime of different Plasma Facing Components. In recent years great efforts

have been devoted to the interpretation of Scrape Off Layer (SOL) transport, with

clear impact also on the design of future machines [1]. Transport in the SOL region,

resulting from a competition between sources and parallel and perpendicular losses,

is dominated by the presence of intermittent structures or filaments, which strongly

contribute to particle and eventually energy losses both in L- and H-mode regimes.

The role of convective radial losses has become even more important due to its

contribution to the process of profile broadening also known as shoulder formation

in L-Mode, describing the progressive flattening of the density scrape off layer profile

at high density [2, 3, 4, 5, 6, 7, 8, 9] where future devices are expected to routinely

operate. This increased radial transport could pose serious problems for Plasma Facing

Components, enhanced by the recent observation that whenever flatter density profiles

are established an increase of heat transport associated to filaments is observed in the

far SOL, with filaments carrying up to 1/5 of the power ejected at the separatrix

[10]. Preliminary investigations suggested that similar mechanisms occur in H-Mode

as well [11, 12, 13, 14, 15] and that filaments strongly contribute to power balance and

SOL transport also in the so-called H-mode density limit (HDL) [16, 17]. The present

contribution will report results of a coordinated effort within the EUROfusion Medium

Sized Tokamaks (MST1) framework between the ASDEX Upgrade (AUG) and TCV

tokamaks, to address the role of filamentary transport in high density regimes both in L-

and H-Mode. Similar methodology and techniques applied to largely different tokamaks,

from a machine with a closed divertor, metallic first wall and cryogenic pumping system,

to a carbon machine with a completely open divertor, allows the consistent comparison

of the results from the two devices. The experimental investigation presented hereafter

will try to shed a light on different scientific uncertainties concerning the SOL density

shoulder formation: is shoulder formation really associated to a filamentary transport

regime transition? Which is the relation between gas fueling, divertor collisionality and

divertor detachment with the upstream profile modifications? Which is the role played

by neutrals? To answer these questions the mechanism of shoulder formation and the

role of filamentary transport have been tested against variations of plasma current

and parallel connection length, and divertor neutral densities in H-Mode, through

modification of cryogenic pump efficiency.

The paper is organized as follow: in section 2 a brief description of the devices

and diagnostics used will be presented. Afterwards the results obtained in two different

current scans, respectively at constant toroidal field and at constant q95 will be described

in section 3 providing information on both target and upstream profiles evolution and

linking them to the properties of the turbulent filaments in the SOL. In section 4 we will

report the experimental investigation carried out on ASDEX Upgrade concerning the
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role of neutrals in establishing the density shoulder in H-Mode extending the preliminary

results reported in [15] at higher heating power and neutral pressure. Finally, in section

5 we will draw the conclusion and make an attempt towards a possible unified picture.

2. Machine and diagnostic description

2.1. ASDEX Upgrade

ASDEX Upgrade is a medium sized divertor tokamak with major and minor radii of

R = 1.65m and a = 0.5m, respectively, and equipped with a fully tungsten coated wall

[18]. The experimental investigation has been carried out in Lower Single Null (LSN)

configuration, with the ion B × ∇B drift pointing towards the X-point. The plasma

shape has been tailored to follow the shape of the outer limiter (in a configuration

dubbed Edge Optimized Configuration), and at the midplane up to 45 mm from the

separatrix the field lines are connected to the divertor target. In Figure 1 (a) the layout

of the principal diagnostics used for the present analysis is shown in the poloidal cross-

section. SOL density profiles are obtained from the lithium beam (LiB) diagnostic,

observing the plasma at a vertical position approximately 30 cm above the midplane.

Density profiles are obtained from the light emission profile, which is sampled with

200 kHz [19], and evaluated within the probabilistic Bayesian framework [20] with

1 kHz in the radial region spanning approximately 0.9 . ρ . 1.05, ρ being the

normalized poloidal flux. In the core and at the edge line densities are obtained with

the standard interferometer system shown as well in Figure 1. The principal diagnostic

used for investigating the fluctuations is the midplane manipulator (MEM) equipped

with a tungsten coated carbon probe head designed to characterize turbulence and

simultaneously withstand the high heat flux observed in H-Mode. The probe features

16 pins distributed among 3 terraces at different radial position (radial separation is 4

mm) whereas the different arrays are aligned in the bi-normal direction as described in

[21] with typical distances of 6 mm. The pins are arranged to measure both floating

potential and ion saturation current: in particular the ion saturation current pins are

distributed in order to have measurements spaced both in the radial and in the poloidal

direction which allow a proper estimate of the radial and bi-normal velocities using a

2D cross-correlation algorithm described in the appendix of [21]. Several plunges can

be done within a single pulse. For the L-Mode shots presented hereafter up to 5 plunges

were performed with the probe sitting in a fixed position for up to 130 ms. In the H-

Mode operation the time duration of the fixed position was reduced to 70 ms to limit the

heat load deposition on the probe head. The acquisition sampling rate for all the shots

was set to 2 MHz, which give us relatively long time series for turbulence analysis. In

addition one pin is run in swept mode in order to infer the local estimate of density and

electron temperature. The information on divertor conditions are primarily obtained

by two arrays of fixed flush mounted triple Langmuir probes, shown in Figure 1 by red

circles, sampled at low sampling rate (33 kHz).
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2.2. TCV

The Tokamak à configuration variable (TCV) is a medium sized tokamak located at

the Swiss Plasma Center, Switzerland [22]. It is a conventional aspect ratio tokamak

(major and minor radii R = 0.88 m and a = 0.25 m, respectively) with a highly

elongated vacuum vessel and a completely open divertor. TCV features 16 independently

powered poloidal field coils, resulting in unique shaping capabilities, with the ability

to accommodate highly elongated plasmas (up to 2.8) and triangularity in the range

−0.7 ≤ δ ≤ 1. The near-complete coverage of TCV surfaces with graphite tiles allows

extreme flexibility in power load deposition, making TCV an ideal test-bed for the study

of different magnetic configurations and divertor geometries.

In recent years great efforts have been devoted in TCV to increase the diagnostic

equipment for divertor studies. A new 32-chords divertor spectroscopy system (DSS)

[23] has been installed for extracting information on recombination and electron

temperature from Balmer series spectra. This information can be combined with

radiation measurements estimated from Bolometry [24]. An array of wall-mounted

Langmuir probes (LPs) [25] covers the inner and outer wall as well as the floor. The

cylindrical tips have diameters of 4 mm and are embedded into the tiles except at the

floor where they have a dome-shaped head protruding from the tile shadow by 1 mm.

For the present experiment the probes have been operated in swept mode to obtain

density and temperature profiles at the wall. The set of LPs has been extended by

the installation of a fast reciprocating probe (RCP) [26]. The probe head, described

in detail elsewhere [27], is equipped with 10 graphite electrodes 1.5 mm in diameter.

The electrodes are arranged in such a way to provide a double probe for density and

temperature profiles, two Mach probes for parallel flow investigations, a pin for fast ion

saturation current measurements with the remaining probes collecting floating potential

in order to infer radial and poloidal electric field fluctuations from the local floating

potential gradient. The radial separation between the floating potential pins is 1.57 mm

whereas the poloidal separation between the pins are 4 mm and 10 mm respectively.

The fast movement of the probe head is 20 cm which is reached within 90 ms with a

maximum speed of 2.2 m/s. The ion saturation current and floating potential electronics

have a bandwidth from 0.1 to 10 MHz with anti-aliasing filters at the Nyquist frequency:

the acquisition frequency was set between 1 MHz to 5 MHz for different discharges used

throughout the paper. The profiles in the SOL have been obtained combining the data

from RCP with the ones from Thomson scattering diagnostic obtained in adjacent time

instants: for TCV the profiles shown throughout the paper have been fitted using a

Gaussian Process regression technique (details can be found in [28] together with the

link to the available software tool). The method allows for a proper determination of the

fit and corresponding errors, as well as of the density gradient with the corresponding

errors. This will be used throughout the paper to compute the e-folding length profile

shown in the following figures. The Line of Sights (LOS) of bolometry, the location of

the Langmuir probes and of the reciprocating manipulator used throughout the paper
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and the LOS of the vertical Far Infrared interferometer for edge and central chord are

shown in Figure 2 to provide an idea of the spatial resolution of the diagnostic setup.

The combined information provide a comprehensive set of measurements suited for the

divertor investigation.

3. L-mode Current scan

The dependence of the SOL density profile on plasma current in L-mode has been

previously reported [2, 5, 6, 8] both for closed and open diverted devices. In all the

cases it has been shown that flatter profiles in the Scrape Off Layer develop at lower

densities for lower currents. Following this premise the first set of experiments was

conceived to disentangle the role played by plasma current variation from the changes

in parallel connection length and consisted of two series of L-mode density ramps, up

to disruption, at different current levels keeping respectively the toroidal field or the q95
constant.

3.1. Divertor target evolution

Figure 3 reports the main plasma parameters concerning the current scan at constant

toroidal field both for AUG and TCV. The 3 levels of plasma current for the two

devices as well as the edge line integrated density and the fuelling levels used for the

discharges are shown. The parallel connection lengths L‖, shown in panels (a) and (g)

of Figure 3, are the connection lengths from the outer target up to the X-point height,

and clearly increase with decreasing current for both the devices. TCV discharges are

purely Ohmic plasmas, whereas on AUG an additional 0.5 MW of NBI heating was

added in order to keep a similar heating power through the separatrix during the scans.

Still in Figure 3, panels (e) and (m), the power crossing the separatrix, estimated as

Psep = PΩ + Pheat − Prad,core, is reported for the various current levels for both devices.

Clearly the additional heating allows to keep much more comparable power levels for

AUG. The divertor pressure on TCV, as seen from panel (n) of Figure 3 measured by

baratrons, does not exhibit differences between the various current levels. On AUG,

where fast gauges located closer to the vessels are used, slightly higher pressure are

achieved at higher current (cfr panel(f) of Figure 3) [21].

The first relevant information can be derived by considering the response of

the divertor to different density levels at different current. In Figure 4 the total

integrated ion fluxes to the outer divertor are shown as a function of edge density and

edge Greenwald fraction (i.e. edge density, obtained from interferometric edge chord,

normalized to Greenwald density value ne
e/nG) for AUG (panel (a) and (b)) and TCV

((e) and (f)), respectively. The choice of normalization (edge density normalized to

Greenwald density) is done in order to consider possible effects due to the different

density peaking obtained at different edge safety factor [29]. As already observed the

integrated ion flux in TCV increases almost linearly with the density up to the threshold
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7

followed by a smooth roll-over [30], the latter assumed in the following as a proxy for

plasma detachment. Differently in AUG the increase of ion flux is faster than linear

up to the threshold with a more pronounced roll-over. These differences are likely due

to the different degree of divertor closure [31]. In both devices we clearly see that ion

flux roll-over occurs early in edge density at lower current. In AUG, where the power

crossing the separatrix is a factor of 2 higher, the behaviour at different current is

reconciled in terms of edge Greenwald fraction. The same observation holds for the two

lower currents in TCV, whereas higher edge Greenwald fraction is needed for the higher

plasma current. In the scan shown in Figure 3, where the density increase was kept

similar at different values of current, indeed no detachment of the outer leg has been

achieved for the higher current case: conversely whenever the density is increased even

further, as the case of shot # 52065 reported as well in panel (e) and (f) of figure 4,

clear outer leg detachment has been obtained even though at higher density. In the same

figure 4 the behaviour of the inner divertor legs for both the devices is shown . In AUG

the integrated ion flux is much lower even though the behaviour in term of edge density

resembles what is observed in the outer divertor. On TCV the integrated ion flux to

the inner divertor is larger and exhibits a less pronounced roll-over at the lower current

levels explored, whereas no sign of roll-over is observed at higher current. It is worth

noting that, differently from AUG, inner target generally detaches later than the outer

one in TCV [32, 30], and this has been observed in K-STAR as well [33]. It is worth

noting that both K-STAR and TCV are carbon machines, with the inner strike point on

a vertical target and a short poloidal distance to the X-point and an outer strike point

on an horizontal plate with a much longer poloidal distance from the X-point. In both

the machines the presence of carbon impurities could increase the pressure and power

dissipation with respect to the pure D case. In particular carbon radiation is a strong

power loss channel but an additional indirect effect in the pressure balance may happen:

the carbon induced cooling and consequent reduction of the electron temperature can

indirectly increase the momentum loss and increase the volumetric reaction rates which

are responsible themselves for momentum loss. Work is in progress within a 2D fluid SOL

modelling effort for TCV to properly account for these contribution in similar plasmas

[34]. In any case a close comparison of the detachment operational space between the

two devices is beyond the scope of the present paper and will be eventually addressed

in further investigations.

A similar current scan has been performed varying the toroidal field together with

the current in order to keep q95 constant: the corresponding main plasma parameters

are shown in Figure 5 for both devices. From panels (a) and (g) we noticed that L‖ was

kept constant throughout the current scan, even though slight variations are observed

in TCV at the lower current level. For the sake of completeness we need to underline

that at the lower current level we had to operate TCV at an unusually low toroidal

field (Bt ≈ 0.8 T). The time evolution of the aforementioned PSOL and of the divertor

neutral pressure are shown in Figure 5 for both the devices. Again, the heating scheme

used (pure Ohmic discharges for TCV and additional 0.5MW of NBI heating in AUG)
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8

allows to keep the PSOL approximately constant in AUG. The pressure in the divertor

is constant throughout the scan in TCV whereas slightly higher pressure is achieved at

higher current in AUG. The evolution of total ion flux at the outer and inner divertor

as a function of edge density and edge Greenwald fraction are shown in figure 6. For

AUG in analogy to the observations obtained during the scan at constant toroidal field,

the ion flux roll-over is observed at lower density for lower current but the behaviour is

reconciled in terms of edge Greenwald fraction for both inner and outer divertor. On the

other hand the comparison of shots at similar current but different toroidal field (e.g.

# 34104 and 34106) reveals that the rollover density threshold is essentially unmodified

by the variation of L‖, but a more robust and faster reduction of ion flux just after

the roll-over is obtained at larger L‖. On TCV instead no sign of detachment neither

at inner nor at the outer divertor was observed, even though the achieved density was

sufficient to guarantee plasma detachment whenever the same density ramp was run at

higher toroidal field (compare Figure 6 panel (e) with the same panel of Figure 4). This

is an interesting observation which does not seem to be due to a change in the power

crossing the separatrix since the values of Psep at the same current are comparable at

least around the time where higher field discharge exhibits ion flux roll over as can be

inferred by comparing Figure 3 and Figure 5. The understanding of the differences at

lower toroidal field is presently under investigation.

3.2. Upstream profile evolution

Figures 7i and 7ii report the evolution of the upstream profiles for different current levels

at the same value of edge density and toroidal field for AUG and TCV respectively. In

the same figures we have also included the density profiles at the outer target (panels (c)

and (d) of sub-figures 7i and 7ii) as well as the profiles of the normalized collisionality

Λ defined as :

Λ =
L‖νei
cs

Ωi

Ωe

(1)

This quantity represents an effective collisionality or equivalently the ratio between the

parallel transit time divided by the inverse of the electron-ion collision frequency. It

has been originally introduced in [35] and adopted in [7] as a parameter to identify

enhanced filamentary transport transition in high density regimes. In particular in [7] it

has been suggested that filamentary transport enhancement is regulated by the effective

collisionality in the divertor, Λdiv, which depends on the parallel connection length,

evaluated as the length from the X-point height to the outer target, and on the values

of density and temperature in the divertor region, estimated in the present paper from

target density and temperature given by Langmuir probes at the outer target. In the

following all data will be presented as function of divertor collisionality Λdiv. The error

bars on Λdiv shown throughout the paper have been estimated propagating the errors

on the target density and temperature. It can be easily observed that flatter profiles are

obtained at lower current for the same density levels for both the devices even though
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9

some differences may be noted. In AUG the different upstream profiles are associated

to different target density profiles and clearly different divertor collisionality. All the

cases where the profiles in AUG at the outer midplane are flatter are associated to

higher values of divertor collisionality. Differently outer divertor collisionality does not

represent a proper metric for TCV since very different upstream profiles are obtained

with comparable Λdiv profiles even well above the threshold of Λdiv ' 1 identified in

[7] for increased filamentary transport regimes: this confirms previous observations [9]

where a variation of divertor collisionality obtained through modification of target flux

expansion has shown little impact on evolution of upstream profiles. On the other

hand we have already observed that, apart from the TCV case at higher current, edge

Greenwald fraction can reconcile the target profiles evolution. Figures 8i and 8ii compare

again upstream and target profiles, as well as divertor collisionality at comparable edge

Greenwald fraction but different current levels for both the devices. We clearly recognize

that the upstream profile evolution behavior at different current is better reconciled in

terms of edge Greenwald fraction, with similar shoulder developed at comparable ne
e/nG

The investigation of the target evolution with edge density in the current scan

performed at constant q95, shown in Figure 6 already revealed differences between AUG

and TCV, in particular showing that the reduction of toroidal field prevent the plasma

from reaching a detached condition in TCV at lower current. This reflects also to

different upstream behaviour as shown in Figure 9 (i) and (ii) respectively for AUG and

TCV. Indeed while for AUG the behaviour at constant q95 reflects what was observed

at constant toroidal field, with substantial overlap of target and upstream profiles at

equivalent values of edge Greenwald fraction, the behaviour of TCV is scattered with

a clear shoulder developed only at high current, were also the broader target profile is

recognized. We can also confirm that the evolution of the upstream profile is independent

of the evolution of Λdiv as computed at the outer divertor. Investigation is in progress

on TCV in order to eventually understand the dependence of shoulder formation on the

divertor collisionality computed at the inner divertor, Λinn
div . Indeed, the inner divertor,

with its shorter connection length L‖ with respect to the outer divertor one, could exhibit

a largely different value of Λinn
div , with lower values at similar edge densities.

In order to properly understand the relation between upstream to downstream

condition we have monitored the evolution of upstream profile with respect to

detachment condition. This can be done within a single shot on AUG, due to the

availability of time resolved SOL density profiles through LiB, whereas for TCV we

had to rely on repetition of similar shots, namely 330 kA L-mode plasma with the

same density ramp, where the reciprocating probe head has been plunged at different

times. The result of this analysis is shown in Figure 10 where upstream profiles,

normalized to the value at the separatrix are shown for different levels of detachment.

The obtained profiles suggest that the modification of the upstream profiles for both of

the devices begin close to the ion roll-over and further develop as soon as the ion flux

starts decreasing. For completeness it should be pointed out that the chosen scenario

for shot repetition on TCV, at 330 kA, is the one which requires higher edge Greenwald
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10

fraction to exhibit ion flux roll-over. A more refined and detailed analysis of the relation

between ion-flux rollover and upstream profile modification on TCV, including cases

where detachment is achieved by pure N2 seeding, will be addressed in a forthcoming

paper [36]. As far as TCV is concerned, from the present dataset we can confirm that,

if detachment is achieved by pure fueling and intrinsic impurity radiation, upstream

profile variation are observed only close to and after ion-flux rollover.

3.3. Influence of neutrals on shoulder formation

Even though the increase of filamentary convective transport has been recognized since

the beginning [4] to play a fundamental role in the process of shoulder formation, the

role of other mechanisms is presently under consideration. Among them, the influence

of neutrals in the divertor region, which has been theoretically proposed [37] and

experimentally suggested in [38] is subject of intense study. On the other hand also

the role of neutrals in the main chamber which could modify the ionization rate in the

Outer Midplane (OMP) has been proposed as a possible candidate in the process of

shoulder formation [15], even though it is still debated [8].

This motivated an activity to determine the emission of neutral deuterium in the

divertor region on AUG, based on the evaluation of signals collected by two cameras

with two different filters for Dα (656 nm) and Dγ (434 nm) lines, respectively. The

two absolutely calibrated cameras [39] are both located just below the midplane (Z=-

0.27) at slightly different toroidal angle (the centre of the two cameras are shifted by

6 toroidal degrees and they both observe the same divertor region). A tomographic

algorithm has been developed in order to infer the 2D map of the emissivity ǫ. Assuming

toroidal symmetry, the emission is a function of radial and vertical positions only, i.e.

ǫ = ǫ(R,Z). This allows us to to project each Line of Sight (LoS) corresponding to each

camera pixel in the plane (R,Z) [40]. In this plane the different LoSs intersect each

other, allowing for the development of a proper tomographic reconstruction. In order

to introduce as little as possible a-priori constraints, the pixel method is used, and the

inversion is performed with an iterative algorithm. Two assumptions are made: Dα and

Dγ emissions do not depend on the toroidal angle, and they are restricted to the region

outside the separatrix. Thus the divertor region outside the separatrix is divided into

rectangular pixels and the emissivity ǫ in each pixel is considered constant. Using this

method, the link between the intensity measured by each LoS of the camera and the

emissivity is a linear system of equations, that can be written as:

I = A · ǫ (2)

where Ij is the line integrated signal measured by the LoS j; ǫi is the unknown emissivity

of the pixel i; and the matrix element aij is the length of the LoS j inside the pixel i.

This matrix is evaluated only once, and it depends on the geometry of the LoS and the

pixels division. In eq. 2 there are ≈ 40000 LoSs and ≈ 200 pixels, so the system is over-

determined. For inverting it and obtaining the emissivity of each pixel, the simultaneous

algebraic reconstruction technique (SART) is used [41, 42]. It is an iterative technique
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11

which solves the linear system of Eq. 2 via an iterative error-correcting procedure, which

can be written as:

ǫk+1
i = ǫki +

Σj

[

aij
Ij−aj ·ǫ

(k)

Σaij

]

Σjaij
(3)

where ǫki is the emissivity of the pixel i after k iterations. The initial estimate ǫ0i is set

to 0. Since the emissivity of each pixel is positive, this constraint is enforced in each

iteration by setting to zero the coefficients that are less than zero after an iteration step.

The convergence is quite rapid, and after about 20 iterations it is reached.

The results of this analysis is shown in figure 11 where the inversions for both Dα

and Dγ are shown at three different values of edge normalized Greenwald density. At

the beginning emission is strongly localized in the inner divertor, consistent with the

presence of a High Field Side high density region [43, 44]. During the fuelling ramp

the divertor moves into a high recycling regime and Dα and Dγ radiation move towards

the low field side (LFS) region, initially in the private flux region (PFR) and then

in the main SOL moving upstream once the target density rolls over. This strongly

resembles the observation on JET in the Horizontal Target [38]: in this configuration

indeed JET upstream profile develops a clear shoulder whenever fuelling is raised, and

this is accompanied by a clear Dα radiation front moving into the main LFS SOL. On

the other hand whenever run in the Vertical Target configuration no shoulder is observed

in JET at the same level of fuelling, and Dα radiation was confined to a narrow region

along the divertor leg. This observation seems to reconcile the behaviour of JET and

ASDEX Upgrade despite the different divertor configurations.

An effort is ongoing in order to use the 2D map of the emissivity of the two Balmer

lines in the divertor to infer the neutral density [45]

3.4. Filamentary studies

The role of enhanced convective filamentary transport in the formation of SOL density

shoulder has been already suggested [3, 4, 7, 9], even though reduced parallel losses

could also influence the process. The relation between profile evolution and blob-sizes

has been investigated in the present scan using properly designed probes. In both the

devices the blob-size is determined as δb =
τb
2
v⊥ with τb estimated as the FWHM of the

conditionally averaged ion saturation current signal where peaks 2.5 standard deviation

σ higher than the average values have been detected. Due to the different experimental

setup of the probe head, the estimate of the perpendicular velocity is done differently in

the two devices. For TCV we have used the method extensively described in [27] and the

perpendicular velocity is estimated as v⊥ =
√

v2r,E×B
+ v2pol,cross−corr: vr,E×B has been

estimated from the conditionally averaged sampled Eθ using as condition the detection of

the peaks on ion saturation current. The fluctuating electric field is computed from the

local floating potential gradients. The poloidal velocity component is estimated from the

2D cross-correlation of poloidally and radially spaced floating potential measurements
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as detailed in [27]. For AUG the estimate of v⊥ is done following the method described

in the appendix of [21], based on the 2D cross-correlation using conditionally sampled

ion saturation current structure measured by pins spaced both in the radial and poloidal

direction. For a better comparison with previous results we underline that τb is estimated

differently with respect to [27], since in the present manuscript the asymmetric shape

of the ion-saturation current conditionally average sampled is kept, thus considering

the trailing wake neglected in the aforementioned paper [27]. Furthermore in previous

AUG papers [21, 7, 15] τb was approximated by the auto-correlation time, and all the

data shown were actually the blob diameter, rather than the blob radii which will

be shown in the present paper. In AUG the filaments are detected during the fixed

positions of the probe. This implies a long signal length (up to 130 ms at 2 MHz for

the L-Mode cases) where several hundreds of filaments are detected and used to infer

the Conditionally Average Sample (CAS) waveforms. In TCV conversely the probe is

continuously moving: the peaks on Isat exceeding the chosen threshold are sampled from

a 3 ms windows, as done in [46, 27] after removing the slow time evolution caused by

the motion of the reciprocating probe. Several windows are sampled for each plunge at

different radial insertions of the probe. Typical examples of the results obtained from

the conditionally average sample technique for the two devices are shown in Figure 12.

The yellow bar indicates the estimate of the FWHM: for TCV we have shown as well

the typical waveform of the poloidal electric field fluctuations from the CAS. The data

presented refers to a shot at low density: the shape of the ion saturation current,

presented in units normalized to the rms value σ is asymmetric for both the devices, as

already seen [6, 47, 48, 49] even though the total pulse length is different between the

two machines. The pattern observed for AUG on the pins displaced in the radial and

poloidal directions clearly recognized the intermittent structure whereas from the time-

delay a proper determination of the movement in the two directions can be inferred. The

observed fluctuation of the poloidal electric field for TCV is of the order of 1.5-1.8 kV/m

giving a radial velocity of the order of 1.5 km/s in agreement with previous estimate

[27].

As aforementioned, recent results ascribed the broadening of SOL density profile

to a transition in the filamentary regime from a connected regime to a disconnected

or inertial one [7, 50, 15]. A threshold has been identified with transition to inertial

regimes occurring for Λdiv & 1. The experimental results supporting this hypothesis

have been clearly obtained in AUG and in JET, the latter device only whenever run in

Horizontal Target configuration [7, 38]. But the dependence on divertor collisionality

is not universally recognized: for example Λdiv fails to describe the operation of JET

in vertical target configuration [38] as well as in TCV where very similar profiles are

obtained with largely different outer target Λdiv values, even though, as aforementioned,

the evaluation of the influence of inner divertor Λdiv influence is still under investigation.

In this respect we have investigated the evolution of the e-folding length of SOL

density profile, defined as λn =
(

|∇ne|
ne

)−1

as a function of previously defined divertor
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collisionality Λdiv and as a function of the blob-size δb. As previously mentioned the

e-folding length is not computed from local exponential fit of the profiles, but rather

by estimating local density gradient as a result of the fitting procedure which provide

estimate of the error on the gradient as well, used then to propagate the error on the e-

folding length estimate. The e-folding length is computed at the same radial location as

the estimate of the blob-size, namely for ρ ≈ 1.02−1.03 for AUG and 1.025 . ρ . 1.045

in TCV. Blob dimensions are normalized to the local ion-sound gyroradius ρs =
√

Te+γTi

mi

where the assumption Ti = Te has been assumed for TCV. On AUG instead, where

detailed investigation on the behavior of ion temperature in the SOL at different levels

of density has been performed [10], we have assumed Ti = 3Te for Λdivs . 1 and Ti

= Te for larger collisionality. In order to get rid of possible uncertainties due to the

scattered points, on TCV we have used the evaluation of the profile from the Gaussian-

process regression fit shown in the previous figures (cf. figures 7, 8 and 9) which provide

also an evaluation of the error on the radial derivative of the fit. The results of this

analysis are shown in figure 13 respectively. The original trend observed in AUG [7] is

confirmed in both the series of discharges with a clear increase of the e-folding length

as soon as Λdiv increases and a strong dependence of λn on the blob-size. It is worth

noting that within the different current levels no distinction is clearly observed.This is

in agreement with observation obtained from LiB diagnostics reported in [51], where

no sensible dependence of blob size on the toroidal field strength were observed both in

scaling at constant Ip and constant q95. The corresponding blob values, for comparable

greenwald fraction are compatible with observation obtained using LiB on AUG [51] or

GPI [52]. On TCV, limiting to the dataset with the same toroidal field, the e-folding

length increases with blob-size (cfr figure 13 panel (g)), whereas we confirm that no

dependence is observed on the outer target Λdiv (cf. figure 13 panel (c)). On the other

hand, whenever the current is scanned keeping q95 constant on TCV the e-folding length

is constant despite the 2 orders of magnitude of difference in Λdiv (cfr figure 13 panel (d)),

but at the same time small variations of blob-size are observed (cf. figure 13 panel(h)).

From the observation of Figure 5 we already suggested a possible link between upstream

profile variation and detachment condition: during the scan at constant q95 no signature

of detachment or ion saturation roll-over was observed (as seen in figure 6), and this

analysis confirms that no variations of the upstream e-folding length, as well as small

variation of blob-size are observed if no ion-flux roll-over occurs.

In order to check the dependence of the blob-size on the divertor detachment status

we consider a similar set of discharges used in Figure 10 and evaluate the blob-size at

different edge Greenwald density fractions. The result is shown in Figure 14. On AUG

the number of plunges in a single shot prevents a detailed analysis close to the roll-

over. Nevertheless we can substantially confirm that the blob-sizes are small with the

plasma in attached condition, and then the size increases close to and after the roll-over.

On TCV a sharp increase of blob-size is observed around ne
e/nG ≈ 0.3 with a further

saturation at larger edge Greenwald fraction. The same information can be obtained on

a statistical basis considering all the database available for both devices. For the sake of
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clarity we have included only the shots at the same toroidal field on TCV and for currents

below 300 kA, where a clearer location of ion-flux roll-over is observed. The result is

shown in Figure 15 panel(a): on AUG a sharp increase is observed around ne/ng ≈ 0.3,

which coincides as seen in figures 4 with the transition to a high-recycling regime. For

TCV we observe an increase of the blob-size up to the edge Greenwald fraction 0.25

.ne/nG . 0.3 where again ion-flux roll-over at the outer target is observed for currents

below 330 kA. Afterwards the blob-size seems to saturate. The behaviour of the two

devices is reasonably well reconciled, with an increase during the increase of the ion-flux

to the outer target up to a saturation after the roll-over. For the sake of completeness it

is worth mentioning that the smaller blobs on AUG have as estimated diameter at the

limit of our diagnostic and method capabilities. Nevertheless the observed trend, which

is consistent with past results even though obtained with a different probe head, made

us confident of the reliability of the drawn conclusions. Blob size estimates from probes

are based on the evaluation of the characteristic time τb and on the binormal velocity

v⊥ which can be projected into the radial and vertical motion. In Figure 15 panels

(b), (c) and (d), the different contributions are shown still as a function of edge density

normalized to Greenwald fraction. We clearly see that the larger variations are observed

for τb, which increase with ne
e/nG in agreement with the results reported in [9], with the

increase of auto-correlation time observed in AUG [21] and with similar analyses based

on LiB diagnostic on AUG as well [53]. It is worth noting that these results seems to

contradict observations obtained using GPI on C-Mod [48] or probe measurements still

in TCV [47] where the pulse shapes of the intermittent structures were insensitive to the

changes in density. So far no clear explanation of these differences has been determined.

On the other hand, in the same figures we report both the radial and poloidal velocities

normalized to the local ion-sound speed. For AUG a modest increase with the density

is observed confirming what was shown previously using probes [21] or LiB [53]. The

behavior in TCV exhibits a different trend with an almost constant value for the poloidal

component and a modest decrease, if any, at higher densities on TCV: both behavior

confirms previous observations [9]. On the other hand previous measurements of the

effective radial velocity on TCV [47] show a small variation with density in the far SOL

and a larger variation in the near SOL still compatible with present results.

Finally, in order to properly compare the filamentary features between the two

devices we consider all the filaments detected in the Θ−Λdiv plane, where Λdiv has been

already described, the parameter Θ is defined as

Θ =

(

δbR
1/5

L
2/5
‖ ρ

4/5
s

)5/2

(4)

with an obvious meaning of the different quantities. Specifically for both the devices

both Θ and Λdiv are computed considering L‖ as the parallel connection from the outer

target up to the X-point height, whereas the ion-sound gyroradius is locally computed

at the position of the filament measurements. These two invariants have been originally

introduced in the so called two region model [35]. The second invariant Θ is a typical
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spatial blob scale. The proposed model allows the distinction of different regimes for

the filaments where different velocity scalings with respect to filament size and different

current closure schemes are identified. While a detailed description can be found in

the original paper [35], for the present paper it is sufficient the distinction between

filaments electrically connected to the target (in the sheath-connect (Cs) or in the

connected ideal interchange (Ci) regimes) on one side and those electrically disconnected

as the resistive X-point (RX) or the resistive balloning (RB) regimes on the other side.

These different regimes occupy different portions in the Λ − Θ plane as pointed out

in [35, 27]. The evaluation of Λ and Θ for all filaments detected in both devices is

shown in Figure 18. In the same plot we have also marked the regions for the different

regimes. Actually the boundary of the connected ideal interchange regime Ci depends

on the magnetic fanning parameter ǫx, which is a measure of the elliptical distortion of

the flux surfaces. In analogy to what was done in [27] for the plot shown in Figure 16

we have chosen a value of ǫx ≈ 0.3. As pointed out in [27] TCV blobs have features

mainly consistent with a resistive ballooning type with the radial velocity which should

scale as the square root of the blob size. For ASDEX Upgrade the points at very

low collisionality (Λdiv . 6 × 10−2) appear to be close to a connected regime whereas

transition to a clearly disconnected regime is achieved whenever higher collisionality is

reached. Thus while in AUG different filamentary regimes seem to have been attained,

in TCV in the explored collisionality region no regime variations have been observed

and this could be responsible for the lack of dependence on collisionality. This could

be as well the reason for the lack of dependence of the e-folding length from Λdiv

although further investigations are indeed mandatory. Presently work is in progress

to compare velocity estimates with independent measurements, such as fast camera

velocimetry measurements, which will give us additional data to eventually support

these considerations. Besides the determination of the filamentary regime, investigations

are under way in order to quantify also the level of transport associated to the filaments

at different levels of shoulder formation, in analogy to what was done in [15], since

increased convective losses are ultimately responsible for the enhanced radial transport.

As already mentioned, increasing investigatory efforts have been devoted to the

role of neutrals in determining the SOL profile flattening at high density, both from

an experimental [8] and a numerical point of view [54, 55, 56, 57]. In this respect an

attempt to distinguish the behaviour of upstream SOL e-folding length with respect to

the neutral pressure as measured at the midplane or in the divertor region in AUG has

been carried out, and the results are shown in Figure 19. In panels (a) and (b) of figure

17 the e-folding length, still computed around ρ ≈ 1.02 − 1.03, is shown as a function

of divertor collisionality and of blob-size respectively with a color-code representing the

measurement of sub-divertor neutral pressure, whereas on panels (c) and (d) the same

plot is shown with colour-code proportional to the pressure as measured by midplane

gauges. The plot suggests, even though not perfectly, a general tendency of developing

flatter profiles in the SOL at higher neutral pressure, with a weaker dependence on

the divertor values with respect to the midplane one. This is actually interesting, and
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in partial contradiction with observation in JET [38] and MAST [8]. We will address

a similar analysis in TCV as well, where more robust and reliable measurements from

gauges both in the divertor region and midplane will be available in a near future. What

the results up to now point out clearly is that a global comprehension, which unifies the

experimental observations obtained from a variety of devices, must retain the physics

of interaction between plasmas and its fluctuations and neutrals.

4. H-Mode experiment

The question of whether the mechanism of SOL profile flattening is affecting also the

profiles in H-Mode is a fundamental issue, since operation at high Greenwald fraction

with divertor in detached condition is envisaged for future reactor-relevant plasmas. The

present contribution will extend the observations already reported in [14, 15], with more

detailed filamentary investigations in H-Mode plasma in AUG with a total power up to

5.8 MW and focusing on the role of divertor neutral pressure by comparing operation

without and with the cryogenic pumps.

The time traces of relevant parameters are shown in figure 18 for 3 different

discharges at 0.8 MA, Bt = -2.5 T in ASDEX Upgrade all with the same heating power of

5.8 MW obtained through a combination of NBI and ECRH. Shots # 34276 and 34278

were operated with the same fuelling and seeding settings without and with the cryogenic

pumps, whereas for shot # 34281, where the cryogenic pump was operated, both fuelling

and seeding were increased aiming to match the sub-divertor neutral pressure ( panel

(d) of Figure 20). It is worth noting that the level of fuelling attained in these shots

and the heating power are much higher than what reported in [15]. Comparing shots

#34276 with #34278 we observe that keeping the same level of fuelling and seeding

but starting the cryogenic pump prevents the plasma from detachment (indicated by

constant divertor temperature) with a modest increase in edge density. To reach similar

conditions for edge density and detachment, high levels of fuelling and seeding are

needed. Another clear difference between operation without and with the cryogenic

pump is the ELM behaviour, as observed by the measurements of the divertor shunt

current at the outer divertor shown in panel (f) of figure 18, with shots #34276 and

#34281 exhibiting a clear reduction of the ELM amplitude and a transition toward a

small ELM regime at higher density, whereas a modest reduction is observed in the shot

with the lower neutral divertor pressure.

In Figure 19 the upstream and target inter-ELM profiles for the same three shots

are shown for three different time instants in analogy to what was done in [15]. It is worth

noting that while the determination of inter-ELM intervals is easy at the beginning of the

H-Mode phase of the discharge, the distinction at a later stage, with such an high ELM

frequency and low amplitude, is difficult. Nevertheless even at high density a suitable

threshold on divertor shunt current has been determined in analogy to [15], even though

no sensible differences were identified with respect to average profiles determined without

distinction between ELM and inter-ELM intervals in the small ELM regime. This makes
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us confident that the considerations carried out can be properly compared with similar

measurements presented in [58]. In all cases we start from a clearly attached plasma with

a steep upstream profile and a divertor collisionality completely, or at least partially,

below the threshold Λdiv = 1. Both the target and upstream profiles start evolving

for shots with comparable sub-divertor neutral pressure (# 34276 and # 34281) moving

towards high recycling and finally to fully detached conditions. Consistently, the divertor

becomes fully collisional with a Λdiv profile well above 1 in the explored radial region

and the upstream profiles tend to flatten, more robustly for the shot at higher divertor

neutral pressure. On the other hand for shot #34278 the upstream and target profiles

remain practically unchanged with the peak target density still increasing without sign

of roll-over. This is observed even though Λdiv increases in the near SOL, thus confirming

the stronger influence of the far SOL divertor condition in determining upstream profiles

in AUG [50]. In analogy to the investigation performed in L-Mode we now verify the

evolution of upstream profiles in terms of divertor status. Figure 20 shows the evolution

of integrated outer divertor ion flux as a function of edge Greenwald normalized density

for the same shots. For shot # 34276 without the cryogenic pump, a divertor evolution

similar to the one observed in L-Mode can be recognized, with the divertor moving from

an attached condition, to high-recycling and then detachment after ion-flux roll-over

occurring around ne/nG ≈ 0.7. For the same shot the upstream profiles start evolving

moving towards flatter profiles as the density is raised. Similar observations can be done

for shot # 34281 where upstream profile evolution starts whenever the outer divertor

moves to the high-recycling regime whereas for the shot with lower divertor neutral

pressure the profile remains substantially unmodified without any signature of target

ion flux roll-over.

Inter-ELM filament characteristics have been investigated in these shots. 
Determination of inter-ELM intervals were done in analogy to [15]. The results 
concerning the relation with inter-ELM density profile flattening are summarized in 
Figure 21 where the e-folding length is shown as a function of divertor collisionality 
Λdiv in panels (a) and (c) and as a function of inter-ELM blob-size in panels (b) and (d). 
The fluctuation data, as well as the corresponding λn, has been obtained at ρ ≈ 1.05, 
further away from the separatrix with respect to the data in L-Mode. The symbol 
colour code is proportional to the divertor neutral pressure as measured in the sub-
divertor area in panel (a) and (b), and to the midplane neutral pressure as measured 
from midplane gauges in panel (c) and (d). For completeness, since the local ion and 
electron temperature were not available for these shots at the probe location for a 
proper computation of ρs, we have assumed that Te = 15 eV and Ti = 45 eV for 
Λdiv . 1 and Te = Ti = 15 eV for higher collisionality in accordance to the observation 
reported in [10]. We are aware of the possible uncertainties caused by the lack of 
information on the ion temperature but as pointed out in [53, 10] better comparison 
between experimental results and theoretical predictions are observed whenever hot 
ion approximation is retained: this motivates our choice in the determination of ion 
sound gyroradius. From this analysis we can recognize the relation suggested in [7]
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with increasing λn observed when crossing Λdiv ≈ 1 even though, as anticipated in

[15], the transition is smoother and less clear than in L-Mode. Larger values of λn are

obtained at higher neutral pressures (both divertor and midplane), consistently with the

constant increase of pressure during the fuelling ramp observed in Figure 18. On the

other hand, from panel (d) of Figure 21 we recognize that large blobs are insufficient

to ensure the increase of λn but for the same blob-size flatter profiles are obtained only

for higher values of neutrals at the midplane. Also the relation between e-folding length

and blob-size is weaker than in L-Mode thus supporting the idea that the paradigm of

filamentary regime transition proposed for the L-Mode needs to be revised to provide

unified description of the L and H-mode dynamics.

To corroborate the measurements of blob properties performed by probes, we used

gas-puff-imaging (GPI) in the same discharges. The GPI system on AUG introduces

a local density of neutrals via a piezoelectric valve at the LFS radius R = 2.19m and

height z = −0.16m [59]. In the experiments reported, a He puff was used to enhance

line emission and allow toroidal localization of fluctuation signals, and the brightest,

587.6nm wavelength line of helium was imaged using a Phantom v711 camera sampled

at 398kHz. Figure 22 compares results of the GPI measurements in shots #34276 and

34278 (without and with cryogenic pump) based on a cross-correlation over 1 ms of

signal, with zero time lag, using a reference at ρ ≃ 1.05. The solid black line indicates

the contour line at 0.5 correlation value. Since the fluctuation power in the far SOL is

dominated by filaments, the correlation is a good proxy to an average blob shape, i.e.

filament cross-section. However, since the measurements were performed in H-modes, in

the time histories used for cross-correlation care was taken to avoid ELM bursts, which

overwhelm blob filaments by orders of magnitude. Both patterns show a somewhat

radially elongated structure, with poloidal and radial correlation lengths, estimated as

half of the FWHM value of the correlation, Λθ(34276) = 0.5 cm, Λθ(34278) = 0.75 cm

and Λr(both) = 1.2 cm respectively.

Poloidal and radial velocities are extracted from the motion of emission features

using a tracking TDE (time delay estimation) method [60], suitable for systems with

a high degree of spatial resolution with relatively slow time resolution and detection

speeds. Direct velocimetry results are converted to nominal minor radius and poloidal

directions using the equilibrium reconstruction. At the marked far SOL location of

ρ = 1.05 filament velocities in #34276 are vθ = 330 ± 30m/s, vr = 220 ± 120m/s and

in # 34278 vθ = 310± 30m/s, vr = 120± 80m/s. In the above, velocimetry errors are

estimated as the larger one of the fit error in tracking or the deviation between instances

of inter-ELM activity.

Since the gas puffing and the probe plunges were not synchronized a one to one

comparison is not possible given also the non stationary condition of the discharge.

Nevertheless, with similar conditions the probe estimates are respectively δb = 0.9 cm

and δb = 1.1 cm, thus compatible with the GPI estimate. Also the velocity estimates are

consistent with a radial and poloidal velocity of vr = 450, vθ = 160 m/s for # 34276 and

vr = 250, vθ = 260 for # 34278. Given the different location and type of measurement
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this represents an excellent agreement providing confidence in the observations carried

out by insertable probe measurement.

5. Conclusion

A unified effort within the EUROfusion Medium-Size-Tokamaks (MST1) Work

programme has been coordinated to explore the role of filamentary transport in high

density tokamak regimes both in L and H-mode, particular focusing on the issue of SOL

shoulder formation. Comparable current scans at constant toroidal field or constant q95
have been performed to disentangle the role of plasma current from the modification

of parallel connection length. On AUG we have proved that the shoulder formation at

different current behavior, with or without constant L‖, is well reconciled in terms of edge

Greenwald fraction. On TCV this is true only for the two lower current levels explored

in the constant toroidal field scan. Furthermore, in analogy with JET, upstream profile

starts evolving with the transition to a high recycling regime for AUG, and is associated

with an enhancement of Dα radiation in the LFS SOL region, as reported in [38] for JET

Horizontal Target plasmas. On the other hand TCV, with its completely open divertor,

exhibits a different divertor dynamical behaviour, with the target density increasing

almost linearly with fuelling: for both the devices we have proved that the evolution

of the upstream profiles follows the dynamics of the divertor, with more pronounced

and flatter profiles obtained after target density roll-over. The lack of detachment

at lower currents observed in TCV during the constant q95 scan prevents upstream

variation and the development of a SOL density profile shoulder. In L-Mode plasmas,

the density e-folding length increases with blob-size independently of the current in all

scans performed on ASDEX Upgrade, whereas the same relation, even if recognizable

in the scan at constant toroidal field, is weaker and more scattered for TCV. What

has been proved clearly is that the blob-size for both devices increases with the edge

Greenwald normalized density, and at least for AUG, larger filaments are observed at

higher neutral pressure (the dependence on the midplane neutral pressure is more robust

and clear as seen in Figure 19 (d)). The filamentary characteristics in L-Mode have been

considered in the framework of the 2-region model, which allows the distinction between

connected and disconnected regime. We have shown that for AUG the points at lower

collisionality are compatible with electrically connected filaments whereas the transition

to disconnected regimes is obtained at larger collisionality. Differently filaments in TCV

appear to be always in disconnected regimes, confirming previous analysis [27]. Work

is in progress to understand if this difference could be at the basis of the different

behavior with respect to divertor collisionality observed in the two devices. More

detailed investigations are in any case mandatory in this case due to the uncertainty in

the estimate of the local ion and electron temperature under the different conditions. H-

Mode density shoulders have been obtained in ASDEX Upgrade, in discharges with high

levels of both fuelling and seeding. We have demonstrated that neither large divertor

collisionality nor large blobs are sufficient on themselves to guarantee the shoulder
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formation, but that a high neutral density, in particular in the midplane region, is

mandatory. The reason why this is not confirmed in other devices [8] is presently under

investigation. Work is presently in progress to extend the H-Mode analysis in TCV,

where high density H-Mode in detachment conditions has not yet been achieved even

with high values of inter-ELM divertor collisionality.
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Braun F, Brüdgam M, Buhler A, Burckhart A, Chankin A, Classen I, Conway G, Coster D,
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Sommer F, Stäbler A, Stober J, Streibl B, Strumberger E, Sugiyama K, Suttrop W, Szepesi

T, Tardini G, Tichmann C, Told D, Treutterer W, Urso L, Varela P, Vincente J, Vianello

N, Vierle T, Viezzer E, Vorpahl C, Wagner D, Weller A, Wenninger R, Wieland B, Wigger

C, Willensdorfer M, Wischmeier M, Wolfrum E, Würsching E, Yadikin D, Yu Q, Zammuto I,
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Figure 1: Experimental layout on ASDEX Upgrade. (a) Poloidal section of the typical

L-mode discharge performed in the so called EOC shape. The separatrix is indicated in

blue line, whereas the position of the principal diagnostics are indicated. In particular

the position of the Li-Beam (black line), the Midplane manipulator (green line), the edge

and core interferometer chords (orange lines) and the Langmuir probe measurements are

shown. In panel (b) a zoom of the field line close to the location of the measurements

whereas on panel (c) a photo of the probe head used as seen from the plasma.

Figures
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(a) (b)

(c)

Figure 2: (a) Poloidal cross-section of TCV tokamak with a typical equilibrium from one

of the shot used in the present paper. The LoS of bolometry (reddish) and Far Infrared

Interferometer (orange) are shown as well as the location of the embedded Langmuir

Probes (blue) and the position of the midplane fast reciprocating manipulator (green).

(b) Zoom of the edge and SOL region around the midplane (c) Scheme of the Fast

Reciprocating probe used.
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Figure 3: Discharge parameters for AUG (left columns) and TCV (right columns) for

current scans analysis performed at constant Bt. From top to bottom: (a) and (g)

parallel connection length L‖ from target to X-point heights for 3 discharges at different

current levels but same toroidal field. Toroidal plasma current (b) and (h), edge line

average density (c) and (i), total deuterium fueling (d) and (l), Power crossing the

separatrix (e) and (m), divertor pressure (f) and (n).
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Figure 4: Outer Target profiles as a function of edge density (a) and edge density

normalized to Greenwald fraction (b) for AUG. Inner Target profiles as a function

of edge density (c) and edge density normalized to Greenwald fraction (d) for AUG.

Outer Target profiles as a function of edge density (e) and edge density normalized to

Greenwald fraction (f) for TCV. Inner Target profiles as a function of edge density (g)

and edge density normalized to Greenwald fraction (h) for TCV. All the data refer to

the scan at constant toroidal field.
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Figure 5: Discharge parameters for AUG (left columns) and TCV (right columns) for

current scans analysis performed at constant q95. From top to bottom: (a) and (g)

parallel connection length L‖ from target to X-point heights for 3 discharges at different

current levels but same toroidal field. Toroidal plasma current (b) and (h), edge line

average density (c) and (i), total deuterium fueling (d) and (l), Power crossing the

separatrix (e) and (m), divertor pressure (f) and (n).
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Figure 6: Outer Target profiles as a function of edge density (a) and edge density

normalized to Greenwald fraction (b) for AUG. Inner Target profiles as a function

of edge density (c) and edge density normalized to Greenwald fraction (d) for AUG.

Outer Target profiles as a function of edge density (e) and edge density normalized to

Greenwald fraction (f) for TCV. Inner Target profiles as a function of edge density (g)

and edge density normalized to Greenwald fraction (h) for TCV. All the data refer to

the scan at constant q95.
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Figure 7: (a) and (b) Upstream density profiles, normalized to the values at the

separatrix at three different currents (colour code) with the same Bt at the same level of

Edge density. For TCV both the raw data and the Gaussian process regression fits are

shown (c) and (d) Outer target density profiles as a function of normalized poloidal flux

ρ. The large circles and corresponding error bars are the results of a binning procedure

on raw data. (e) and (f) Divertor collisionality as a function of ρ. The Λ profiles error

are obtained propagating the errors on density and temperature. Sub-figure (i) refers

to AUG whereas sub-figure (ii) refers to TCV.
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Figure 8: (a) and (b) Upstream density profiles, normalized to the values at the

separatrix at different currents (colour code) with the same Bt at the same level of edge

Greenwald fraction. For TCV both the raw data and the Gaussian process regression

fits are shown (c) and (d) Outer target density profiles as a function of normalized

poloidal flux ρ. The large circles and corresponding error bars are the results of a

binning procedure on raw data. (e) and (f) Divertor collisionality as a function of ρ.

The Λ profiles errors are obtained propagating the errors on density and temperature.

Sub-figure (i) refers to AUG whereas sub-figure (ii) refers to TCV.
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Figure 9: (a) and (b) Upstream density profiles, normalized to the values at the

separatrix at different currents levels (colour code) with the same q95 at the same level

of edge Greenwald fraction. For TCV both the raw data and the Gaussian process

regression fit are shown. (c) and (d) Outer target density profiles as a function of

normalized poloidal flux ρ. The large circles and corresponding error bar are the results

of a binning procedure on raw data. (e) and (f) Divertor collisionality as a function of

ρ. The Λ profiles error are obtained propagating the errors on density and temperature.

Sub-figure (i) refers to AUG whereas sub-figure (ii) refers to TCV.
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Figure 10: (a) Total integrated ion flux at the outer target as a function of edge density

normalize to Greenwald density for AUG. (b) SOL density profile normalized to the

density at the separatrix for AUG. The colors refer to the values of density marked in

panel (a). (c) Total integrated ion flux to the outer target in TCV as a function of

edge density normalized to Greenwald fraction (d) Upstream profiles normalized to the

density at the separatrix. The lines indicate the result of a GPR fit whereas the points

indicate the actual data. The color code refers to the vertical lines indicated in panel

(c).

Page 34 of 45AUTHOR SUBMITTED MANUSCRIPT - NF-103159.R2

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

A
cc

ep
te

d 
M

an
us

cr
ip

t



35

0.20 0.25 0.30 0.35 0.40 0.45 0.50
ne/nG

0.0

0.2

0.4

0.6
[1
02

3 io
n/

s]

AUG #34102

1.4 1.6
R [m]

1.0

0.8

0.6

Z 
[m

]

ne/nG=0.27

1.4 1.6
R [m]

ne/nG=0.30

1.4 1.6
R [m]

ne/nG=0.35

1.4 1.6
R [m]

1.2

1.0

0.8

0.6

Z 
[m

]

ne/nG=0.27

1.4 1.6
R [m]

ne/nG=0.30

1.4 1.6
R [m]

ne/nG=0.35

0

10

20

D
 [k

W
/m

3 ]

0.0

0.5

1.0

D
 [k

W
/m

3 ]
Figure 11: Top panel: Integrated ion flux at the outer target as a function of normalized

Greenwald edge density: Middle row: Tomographic inversion of Dα radiation at three

different values of ne
e/nG. Bottom row: Tomographic inversion of Dγ radiation at three

different values of ne
e/nG.
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Figure 12: Conditional average samples results as obtained in low-density discharges

on AUG (left columns) and TCV (right columns). The condition is the detection of

peaks on ion saturation current exceeding 2.5 times the value of the standard deviation

above the mean value. The upper panels shows the ion saturation current typical

waveform normalized to the standard deviation. The yellow bar indicates the estimate

of the FWHM. For AUG the lower panel shows the corresponding Conditionally Sample

waveform on the ion saturation current displaced in the radial Jr
s and in the poloidal

JZ
s direction, used in the 2D cross-correlation analysis for the estimate of the binormal

velocity. They are both normalized to the respective standard deviation σ. For TCV

the waveform on the poloidal electric field fluctuation is associated to the ion saturation

blob. It is worth remembering that on TCV the radial velocity fluctuations is estimated

from local poloidal electric field fluctuations as explained in the text.
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Figure 13: SOL density e-folding length λn vs outer divertor collisionality Λdiv for the

scan at constant Bt (a) and at constant q95 (b) on AUG. λn vs Λdiv for the scan at

constant Bt (c) and at constant q95 (d) for TCV . SOL density e-folding length λn

vs blob-size δb for the scan at constant Bt (e) and at constant q95 (f) on AUG. (c)

λn vs δb for the scan at constant Bt (g) and at constant q95 (h) on TCV. Different

colours refer to different currents. The errors on Λ are obtained from the propagation

of density and temperature errors. The errors on λn are obtained propagating the error

on the gradient estimate and the density profile fit estimate. The errors on blobs are

estimated propagating the errors on τb as well as the errors on velocities. These have

been computed considering the error on the shape of the conditionally average sample

waveforms.
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Figure 14: (a) Total integrated ion flux at the outer target as a function of edge density

normalized to Greenwald density for AUG. (b) Blob-size as a function of edge density

normalized to Greenwald density on AUG. The colours refer to the values of density

marked in panel (a). (c) Total integrated ion flux to the outer target in TCV as a

function of edge density normalized to Greenwald fraction (d) Blob-size as a function of

edge density normalized to Greenwald density on TCV.The error on blobs are estimated

propagating the error on τb as well as the errors on velocities. These have been computed

considering the error on the shape of the conditionally averaged sample waveforms.
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Figure 15: (a) Blob-size as a function of edge Greenwald fraction for AUG and TCV. (b)

τb as a function of edge Greenwald fraction. (c) Radial velocity normalized to ion sound

speed as a function of edge Greenwald fraction. (d) Poloidal velocity as a function

of edge Greenwald fraction. For TCV in order to highlight the trend the data have

been binned in classes of ne/nG, and the corresponding box-plot are shown, with boxes

representing 50 % of the population, and the orange lines representing the median of

the distribution of the bin. The center of the box is positioned at the median value of

the corresponding density population.
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Figure 16: Λdiv vs Θ for L-Mode discharges in TCV and ASDEX Upgrade. The different

regimes Cs (sheath-connected), Ci (connected ideal interchange), RX (resistive X-point)

and RB (resistive balloning) are marked. In the plot we have used a magnetic fanning

parameter ǫx = 0.3. The error bars on Λ are obtained propagating the errors on target

density and temperature. The errors on Θ are obtained from the error on blobs which

are estimated propagating the error on τb as well as the errors on velocities. These have

been computed considering the error on the shape of the conditionally averaged sample

waveforms.
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Figure 17: (a) λn vs Λdiv with colour code proportional to divertor pressure. (b) λn

vs δb with colour code proportional to divertor pressure. (c) λn vs Λdiv with colour

code proportional to midplane pressure. (d) λn vs δb with colour code proportional to

midplane pressure. All data refer to AUG.The errors on blobs are estimated propagating

the errors on τb as well as the errors on velocities. These have been computed considering

the errors on the shape of the conditionally average sample waveforms. The errors on

λn are obtained propagating the errors on the gradient estimate and the density profile

fit estimate.
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Figure 18: (a) Edge density from H-5 interferometer chord (b) Total deuterium fuelling

(c) Total nitrogen seeding (d) Sub-divertor neutral pressure (e) Temperature at the

outer target (f) Shunt current at the outer target used as a proxy for ELM detection.

The colours refer to three different discharges, all with the same heating power. In

discharge # 34276 the cryogenic pump was not in operation.
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Figure 19: (a) Edge density vs time for the shots #34276 (no cryogenic pump), #34278

and #34281 (b-d). Inter-ELM upstream density profiles normalized to values at the

separatrix respectively for shots 34276, 34278 and 34281. The different colours refer to

different time instants marked in panel (a).(e-g) Inter-ELM target density profiles for

the 3 shots at the same time instants as previous row (h-l) inter-ELM Λdiv profiles. Only

ASDEX Upgrade data are presented.
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Figure 20: (a-c) Total outer divertor integrated ion flux vs edge density normalized

to Greenwald fraction. The vertical colour lines refer to the chosen interval for the

evaluation of upstream profiles (d-f). Upstream profile normalized to the value at the

separatrix at different values of normalized edge Greenwald fraction. All data refer to

AUG H-Mode operation.
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Figure 21: (a) SOL density e-folding length λn vs edge collisionality Λdiv with colour

code proportional to divertor pressure. (b) e-folding length λn vs blob-size δb with colour

code proportional to divertor pressure. (c) λn vs Λdiv with colour code proportional to

midplane pressure. (d) λn vs δb with colour code proportional to midplane pressure. All

data refer to AUG H-mode operation. The errors on blobs are estimated propagating

the errors on τb as well as the errors on velocities. These have been computed considering

the errors on the shape of the conditionally average sample waveforms. The errors on

λn are obtained propagating the errors on the gradient estimate and the density profile

fit estimate.
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(a) (b)#34276 #34278

Figure 22: (a) Inter-ELM blob as measured through cross-correlation technique for shot

# 34276 in the period 4.368 s. (b) inter-ELM blob as measured through cross-correlation

technique for shot # 34278 in the period 2.513-2.613 s. The solid back contour indicates

the contour line of 0.5 correlation value. The flux surface labels are indicated as well.
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