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Abstract. Text mining pursues producing valuable information from
natural language text. Conditions cannot be neglected because it may
easily lead to misinterpretations. There are naive proposals to mine con-
ditions that rely on user-defined patterns, which falls short; there is only
one machine-learning proposal, but it requires to provide specific-purpose
dictionaries, taxonomies, and heuristics, it works on opinion sentences
only, and it was evaluated very shallowly. We present a novel hybrid
approach that relies on computational linguistics and deep learning; our
experiments prove that it is more effective than current proposals in
terms of F1 score and does not have their drawbacks.

1 Introduction

Text mining pursues processing natural language text to produce useful informa-
tion. Unfortunately, current state-of-the-art text miners do not take conditions
into account, which may easily result in misinterpretations. For instance, given
sentence “Let it happen and John will leave Acme”, current entity-relation extrac-
tors [6,12] return fact (“John”,“will leave”,“Acme”); similarly, current opinion
miners [17,19] return a negative score since “will leave” typically conveys a neg-
ative opinion. Neglecting the conditions clearly results in misinterpretations.

The simplest approach to mine conditions consists in searching for user-
defined patterns [3,10], which falls short regarding recall because there are many
common conditions do not fit common patterns. There is only one machine-
learning approach [13], but it must be customised with several specific-purpose
dictionaries, taxonomies, and heuristics, and it mines conditions regarding opin-
ions only, not to mention that it was evaluated very shallowly.

In this paper, we present a proposal to mine conditions that hybridises com-
putational linguistics and deep learning, without any of the previous problems.
We have performed a comprehensive experimental analysis on a dataset with
3 779 000 sentences on 15 common topics in English and Spanish; our results
prove that our approach is comparable to others in terms of precision [5], but
improves recall enough to beat them in terms of F1 score [22].
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The rest of the paper is organised as follows: Sect. 2 provides an insight into
the related work; Sect. 3 describes our proposal; Sect. 4 reports on our experi-
mental analysis; finally, Sect. 5 presents our conclusions.

2 Related Work

Narayanan et al. [14] range amongst the first authors who realised the problem
with conditions in the field of opinion mining. However, they did not report on
a proposal to mine them.

The simplest approaches to mine conditions build on searching for user-
defined patterns. Mausam et al. [10] studied the problem in the field of entity-
relation extraction and suggested that conditions might be identified by locating
adverbial clauses whose first word is one of the sixteen one-word condition con-
nectives in English; unfortunately, they did not report on the effectiveness of their
approach to mine conditions, only on the overall effectiveness of their proposal
for entity-relation extraction. Chikersal et al. [3] proposed a similar, but sim-
pler approach: they searched for sequences of words in between connectives “if”,
“unless”, “until”, and “in case” and the first occurrence of “then” or a comma.
Unfortunately, the previous proposals are not generally appealing because hand-
crafting such patterns is not trivial and the results typically fall short regarding
recall, as our experimental analysis confirms.

The only existing machine-learning approach was introduced by Nakayama
and Fujii [13], who worked in the field of opinion mining. They devised a model
that is based on features that are computed by means of a syntactic parser
and a semantic analyser. The former identifies so-called “bunsetus”, which are
Japanese syntactic units that consists of one independent word and one or more
ancillary words, as well as their inter-dependencies; the latter identifies opin-
ion expressions, which requires to provide several specific-purpose dictionaries,
taxonomies, and heuristics. They used Conditional Random Fields and Support
Vector Machines to learn classifiers that make “bunsetus” that can be considered
conditions apart from the others. Unfortunately, their approach was only evalu-
ated on a small dataset with 3 155 Japanese sentences regarding hotels and the
best F1 score attained was 0.5830. As a conclusion, this proposal is not generally
applicable and its effectiveness is poor for practical purposes.

Our conclusion is that mining conditions is a problem to which researchers
are paying attention recently because it is a must for software agents to mine
text properly so as to avoid misinterpretations. Unfortunately, the few existing
techniques have many drawbacks that hinder their general applicability. This
motivated us to work on a new approach that overcomes their weaknesses and
outperforms them by means of a hybrid approach that combines computational
linguistics and deep learning; our proposal only requires a stemmer, a depen-
dency parser, and a word embedder, which are readily-available components.



3 A Hybrid Approach to Mining Conditions

In this section, we first describe the main methods of our proposal, which work
in co-operation to learn a regressor that assesses the candidate conditions in a
sentence before the most promising ones are returned; then, we describe some
ancillary methods to generate candidate conditions, to compute their scores,
to set up a regressor using a deep neural network, and to remove overlapping
candidate conditions. We use sentence “If you’re someone who likes cakes, then
try John’s.” as a running example where appropriate.

3.1 Description of the Main Methods

The main methods are sketched in Fig. 1, namely: method train, which is used
to learn a regressor that assesses candidate conditions, and method apply, which
selects the best candidate conditions in a sentence and returns them.

Method train takes a dataset ds as input and returns a regressor r. The input
dataset is of the form {(si, Li)}n

i=1, where each si denotes a sentence and each Li

denotes a set of labels that identify the conditions in that sentence (n ≥ 0). The
output regressor is a function that given a candidate condition returns a score
that assesses how likely it is an actual condition. The method first initialises
training set T to the empty set and then loops over dataset ds; for each sentence
s and set of labels L in ds, it first computes a set of candidate conditions; then,
for each condition c, it computes a score σ and stores a tuple of the form (c, σ)
in training set T . When the main loop finishes, it learns a regressor from T using
a deep-learning approach.

Method apply takes a sentence s, a regressor r, and a threshold θ as input
and returns a set R of tuples of the form {(ci, σi)}m

i=1, where each ci denotes a
condition and σi its corresponding score, which must be equal or greater than
the threshold (m ≥ 0). The method first generates the candidate conditions in
s, stores them in set C, and initialises the result R to an empty set; it then
iterates over set C; for each candidate condition c in set C, it first computes its
score by applying regressor r to it; if it is equal or greater than threshold θ, then

Fig. 1. Main methods of our proposal.



Fig. 2. Sample dependency tree.

Fig. 3. Sample candidate conditions.

candidate condition c is added to the result set. When the main loop finishes,
R provides a collection of candidates and scores; before returning it, we must
remove the conditions that overlap others with a higher score.

3.2 Method to Generate Candidates

Our first ancillary method is generateCandidates, which takes a sentence as
input and returns a set of candidate conditions. A naive approach would simply
generate as many sub-strings as possible, but it would be very inefficient because
a sentence with n words has O(n2) such sub-strings. In order to reduce the
candidate space we use a dependency tree to generate them since conditions are
clauses from a grammatical point of view and the non-leaf nodes of a dependency
tree typically represent many such clauses.

Method generateCandidates first computes the dependency tree of the input
sentence, then changes the words in its nodes to lowercase, and finally stems
them. Now, for each non-leaf node in the dependency tree, we compute all of
the sequences of tokens that originate from that node; a token is a tuple of the
form (w, d), where w denotes a stem and d the dependency tag that links its
corresponding node in the dependency tree to its parent, if any. Note that we do
not select leaf nodes because we have not found a single example in which one
word can be considered a condition. As a conclusion, a condition is modelled
as a sequence of the form 〈(wi, di)〉n

i=1 where each wi is a stem and di is its
corresponding dependency tag (n ≥ 2).



Fig. 4. Sample matchings.

Example 1. Figure 2 shows the dependency tree of our running example; the
nodes that correspond to the condition are highlighted in grey. Figure 3 shows
the candidates that are generated from the previous dependency tree. Candidate
c1 is generated from the root node, candidate c2 is generated from the node with
stem “someone”, candidate c3 is generated from the node with stem “lik-”, and
candidate c4 is generated from the node with stem “john”. Note that, as expected,
the condition is confined to one of the nodes in the dependency tree.

3.3 Method to Compute Scores

Our second ancillary method is computeScore, which takes a candidate condition
c and a set of labels L as input and returns its corresponding score. A naive
approach would simply return 0.0000 if c does not exactly match any of the
labels in L and 1.0000 otherwise, but that is too crisp. An approach in which a
candidate gets a score in range [0.0000, 1.0000] better captures the chances that
it is an actual condition. We use an approach that is based on the well-known
F1 score in order to balance the precision and the recall of candidate conditions.

The F1 score is computed as 2 tp
(tp+fp)+(tp+fn) , where tp, fp, and fn denote,

respectively, the number of true positives, false positives, and false negatives.
Given a candidate condition c and a label l, it makes sense to interpret the
tokens that they have in common as true positive tokens, the tokens in c that
are not in l as false positive tokens, and the tokens in l that are not in c as
false negative tokens. We also realised that the first few tokens in a condition
typically provide a landmark that characterises it. Thus, we decided to measure
the degree of matching between a condition and a label as follows:

match(c, l) =
|l|∑

i=1

{
1/i if li ∈ c
0 otherwise

}
(1)

Simply put: let li denote the i-th token in the label (i = 1..|l|); if li is in the
candidate, we then add 1/i to the score and zero otherwise. This way, the first few
tokens in the label contribute much more to the score than the remaining ones.



That is, given a candidate condition c and a label l, match(c, l) is a measure of
the number of true positive tokens in c.

Given the previous definition, the maximum degree of matching for a candi-
date condition or a label x is defined as follows:

match∗(x) =
|x|∑

i=1

1/i (2)

Realise that given a candidate condition c, match∗(c) is a measure of the
number of true positive tokens (the tokens that belong to both the candidate
condition and the label) and the false positive tokens (the tokens that belong
to the candidate, but not to the label); similarly, given a label l, match∗(l) is a
measure of the number of true positive tokens (the tokens that belong to both
the label and the candidate condition) and the number of false negative tokens
(the tokens that belong to the label, but not to the candidate condition).

Our proposal to compute the score of candidate condition c with respect to
the set of labels L is then as follows:

score(c, L) = max
l∈L

2 match(c, l)
match∗(c) + match∗(l)

(3)

Note the similarity to the F1 score since match(c, l), match∗(c), and
match∗(l) are measures of tp, tp + fp, and tp + fn, respectively; the differ-
ence is that we do not count the actual number of true positive, false positive,
or false negative tokens, but a measure that puts an emphasis on the first few
tokens and decays asymptotically.

Example 2. Figure 4 shows label l, which corresponds to the condition in our
running example, and how the candidate conditions match it. Candidate condi-
tion c1 represents the whole input sentence, which obviously contains the label,
i.e., seven true positive tokens, but also four false positive tokens, which results in
a score of 0.9240. Candidate c2 matches the label perfectly, i.e., it matches seven
true positive tokens and no false positive or false negative token, which results in
a score of 1.0000. Candidate c3 is a partial match with three true positive tokens
and three false negative tokens, which results in a score of 0.2302. Finally, con-
dition c4 does not match any true positive token, but two false positive tokens
and seven false negative tokens, which results in a score of 0.0000.

3.4 Model to Learn a Regressor

Our third ancillary method is learnRegressor, which takes a training set T
as input and returns a regressor r. We implemented it using a deep-learning
approach because of its natural ability to transform data into feature-based
representations that help learn good regressors.

Prior to learning a regressor, the candidate conditions in the training set
must be vectorised. Our labelled dataset, which is presented in Sect. 4, suggests
that the length of common conditions ranges from a few tokens to a few dozens,
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Fig. 5. Neural networks for learning regressors.

so it makes sense to represent them as large-enough fixed-size sequences. Given a
candidate condition of the form 〈(wi, di)〉n

i=1, we transform it into a sequence of
the form 〈wi⊕di〉λ

i=1, where wi denotes the vectorisation of stem w, d denotes the
vectorisation of dependency tag d, w ⊕ d the vector that results from catenating
the previous ones, and λ denotes the size of the longest possible condition; note
that padding tokens need to be added if the original condition is shorter than λ.

Given a stem w, we compute its vectorisation w by using word embed-
ding [11], which can unsupervisedly produce vectors that preserve some semantic
relationships amongst the original stems; to reduce the stem space, we replaced
numbers, email addresses, URLs, and stems whose frequency is equal or smaller
than five by class words “NUMBER”, “EMAIL”, “URL”, and “UNK”, respectively.
Given dependency tag d, we compute its vectorisation d by means of one-hot
encoding [23], which vectorises a finite set of tags using binary features. Note
that the vectorisation of a condition can then be interpreted as a matrix with λ
rows and δ columns, where δ denotes the dimensionality of the word embedding
vectorisation plus the dimensionality of the one-hot vectorisation.

Our baseline architecture was a multi-layer perceptron (MLP) with two dense
layers. We devised a dozen more architectures, but the best ones were based on
the following components: gated recurrent units (GRU), bi-directional gated
recurrent units (BiGRU), convolutional neural networks (CNN), and a hybrid



approach that combines convolutional neural networks and bi-directional gated
recurrent units (CNN-BiGRU).

GRUs are a kind of recurrent neural network (RNN) [8] and BiGRUs
are a kind of bi-directional recurrent neural networks (BiRNN) [20]. In both
RNNs and BiRNNs the connections between units form a directed cycle, which
allows to apply them to sequences of varying length; the difference is that
RNNs cannot take future elements in a sequence into account whereas BiRNNs
can. Unfortunately, both RNNs and BiRNNs suffer from the so-called explod-
ing/vanishing gradient problems [16], which is overcome by using gated recurrent
units (GRUs) [4] or bi-directional gated recurrent units (BiGRUs) [15] that help
control the amount of data that is passed on to the next epoch or forgotten. The
CNN network [18] includes two convolutional layers and a pooling layer. The for-
mer consists of several filtering units that take a small region of the input data as
input and applies a non-linear function to it; the latter consists of pooling units
that apply a merging method to the results of the previous layer. Our proposal
is to use a convolutional layer with a large number of filters in order to create
a wide range of first-level features, but a smaller number of filters in the sec-
ond convolutional layer to obtain a more specific range of second-level features
that combine de first ones. Finally, the pooling layer combines the previous deep
features using a global maximum function as the global pooling strategy since
our experiments prove that it performs better than others. The CNN-BiGRU
network uses a convolutional layer with a number of filters similar to the input
length, and then applies a local pooling that captures the most relevant features
only. We then apply a BiGRU layer that takes the dependencies between tokens
into account, from both the beginning to the end of the sentences and vice versa.

Figure 5 summarises the previous architectures. The boxes represent the lay-
ers and provide information about the corresponding parameters, namely: in all
cases, the input and output dimensions in terms of λ and δ (rounding to the clos-
est natural number is assumed); in all cases, but pooling layers, the activation
function and the drop-out ratio; in the case of convolutions, the kernel size; and,
in the case of pooling layers, the functor and the pool used. The parameters
were computed using the Stochastic Gradient Descent method [9] with batch
size equal to 32. In order to prevent over-fitting as much as possible, we used
some drop-out regularisations [21] and early stopping [2] when the loss did not
improve enough after 10 epochs. We used the Mean Squared Error as the loss
function since it is very common in regression problems [1]. We did not apply a
decay momentum because we observed that the loss always converges smoothly,
even if it needs more epochs for some networks than for others.

3.5 Criteria to Remove Overlaps

The fourth ancillary method is removeOverlaps, which takes a set of tuples of
the form (c, σ) as input, where c denotes a candidate and σ its corresponding
score, and filters some of them out.

It is the simplest method in our proposal. Basically, it works as follows: it
iterates over the set of input tuples and removes those whose conditions overlap



a condition with a higher score. In other words, given the input set of tuples R,
it computes the following subset:

{(c, σ) | (c, σ) ∈ R∧ � ∃(c′, σ′) : (c′, σ′) ∈ R ∧ c′ ∩ c �= 〈〉 ∧ σ′ > σ} (4)

Example 3. Assume that the threshold to select the best candidates is set to
θ = 0.5000. In our running example, method apply would return candidate
conditions c1 and c2 since they are the only whose scores exceed the threshold,
cf. Fig. 4. Note that both candidate conditions overlap, so the one with the lowest
score is filtered out. In this case, method apply would then return condition c2
only, which, indeed, represents the condition in our running example.

4 Experimental Analysis

Computing Facility: We run our experiments on a virtual computer that was
equipped with one Intel Xeon E5-2690 core at 2.60 GHz, 2 GiB of RAM, and
an Nvidia Tesla K10 GPU accelerator with 2 GK-104 GPUs at 745 MHz with
3.5 GiB of RAM each; the operating system was CentOS Linux 7.3.

Prototype Implementation:1 We implemented our proposal with Python
3.5.4 and the following components: Snowball 1.2.1 to stemmise words, the Stan-
ford NLP Core Library 3.8.0 to generate dependency trees, Gensim 2.3.0 to com-
pute word embedders using a Word2Vec implementation, and Keras 2.0.8 with
Theano 1.0.0 to learn the regressors.

Evaluation Dataset:2 We used a dataset with 3 779 000 sentences in English
and Spanish that were randomly gathered from the Web between April 2017
and May 2017. The sentences were classified into 15 topics according to their
sources, namely: adults, baby care, beauty, books, cameras, computers, films,
headsets, hotels, music, ovens, pets, phones, TV sets, and video games. None
of the conditions that we found in this dataset was smaller than two tokens or
longer than 50 tokens, so we set those limits to vectorise candidate conditions.

Baselines: We used the proposals by Mausam et al. [10] and Chikersal et al.
[3] as baselines. The proposal by Nakayama and Fujii [13] was not considered
because it is not clear if it can be customised to deal with languages other than
Japanese and its best F1 was 0.5830; neither could we find an implementation.

Performance Measures: We measured the standard performance measures,
namely: precision, recall, and the F1 score. Regarding the baselines, we com-
puted the measures from our dataset since there is no machine-learning involved;
regarding our proposals, we computed the measures using 5-fold cross-validation.
We computed the measures independently for each of our approaches and set
threshold θ to 0.2500, 0.5000, and 0.7500.

1 Available at https://github.com/FernanOrtega/HAIS18.
2 Available at https://www.kaggle.com/fogallego/reviews-with-conditions.
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https://www.kaggle.com/fogallego/reviews-with-conditions


Fig. 6. Experimental results in comparison with baselines.

Fig. 7. Statistical analysis based on Hommel’s test.

Experimental Results: The experimental results are presented in Fig. 6. MB
and CB refer to Mausam et al.’s and Chikersal et al.’s baselines, respectively.
The greyed cells highlight the approaches that beat the best baseline.

The precision of the baselines is relatively good taking into account that they
are naive approaches to the problem that rely on handcrafted user-defined pat-
terns; Mausam et al.’s proposal achieves a recall that is similar to its precision,
but Chikersal et al.’s proposal falls short regarding recall. Our approaches do
not generally beat the baselines regarding precision, but attain results that are
almost similar. It is regarding recall that most of our approaches beat the base-
lines since they are able to learn patterns that are more involved; thanks to our
deep learning approach, the input sentences are projected onto a rich feature
space that can capture many patterns that an expert cannot easily spot. Note
that the improvement regarding recall is enough for the F1 score to improve the



baselines. Regarding the value of threshold θ, note that increasing it increases
the average precision of our approaches, but decreases their average recall.

To make a decision regarding which of the approaches performs the best, we
used a stratified strategy that builds on Hommel’s test [7]. In Figs. 7a, b and
c, we report on the results of the statistical analysis regarding our proposal;
our goal was to select the best ones for each of the values of threshold θ. The
previous figures show the experimental rank of each approach, and then the
comparisons between the best one and the others; for every comparison, we
show the value of the z statistic and its corresponding adjusted p-value. Note
that the experimental results do not provide any evidences that the best-ranked
approach is different from the second one since the adjusted p-value is greater
than the significance level; however, there is enough evidence to prove that it
is different from the remaining ones since the adjusted p-value is smaller than
the significance level. Our conclusion is that CNN is the best approach when
θ = 0.2500, CNN-BiGRU is the best approach when θ = 0.5000, and CNN is
again the best approach when θ = 0.7500. In Fig. 7d, we present the results
of comparing the previous best approaches and the baselines (we denote the
corresponding value of θ using subindices). According to Hommel’s test, CNN
with θ = 0.2500 is similar to CNN-BiGRU with θ = 0.5000, but they are better
than both baselines and CNN with θ = 0.7500.

Our experimental analysis confirms that our best alternatives are CNN with
θ = 0.2500 or CNN-BiGRU with θ = 0.5000, that they are similar to the other
proposals in terms of precision, but improve recall enough to beat them in terms
of F1 score. In summary, it confirms that our approach is very promising.

5 Conclusions

We have presented a novel proposal to mine conditions. It relies on a hybrid
approach that merges computational linguistics and deep learning as a means
to overcome the problems that we have found in the literature, namely: it does
not rely on user-defined patterns, it does not require any specific-purpose dic-
tionaries, taxonomies, or heuristics, and it can mine conditions in both fac-
tual and opinion sentences. Furthermore it relies on a number of components
that are readily available, namely: a stemmer, a dependency parser, and a word
embedder. We have also performed a comprehensive experimental analysis on a
dataset with 3 779 000 sentences on 15 common topics in English and Spanish.
Our results confirm that our proposal can beat the state-of-the-art proposals in
terms of recall and F1 score.
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