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H I G H L I G H T S  G R A P H I C A L  A B S T R A C T  

• Novel beta porous titanium implant 
coated with therapeutic biocomposite. 

• Bio-functional antibacterial behavior of 
PVA/PCL/AgNPs biocomposite. 

• A solution to improve the tribomechan-
ical and biofunctional behavior of metal 
implants.  
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A B S T R A C T   

Tooth loss is common in patients struggling with dental cavities, periodontal diseases, and tumors, as well as those 
who abuse tobacco or drugs. In this scenario, dental implants have become the primary treatment option for 
complete or partial tooth loss. Dental implant failure can be caused by stress shielding phenomenon, poor 
osseointegration, or to bacterial infections. In the present study, a joint solution to these limitations is proposed 
using a variety of porous β-titanium substrates using powder Ti35Nb7Zr5Ta alloy and employing the spacer-holder 
approach (ammonium bicarbonate) to obtain a variety of porosity percentage (30, 40, and 50 vol%), and pore 
diameters in 100–200 μm, that has been characterized in terms of its size distribution, density, morphology, 
chemical composition, compaction ability and Vickers micro-hardness. Furthermore, porosity, microstructure 
(Archimedes and image analysis) and tribomechanical behavior (P-h curves and scratch tests) experiments were 
performed to study and characterize the porous substrates. Polyvinyl alcohol (PVA)/poly-ε-caprolactone (PCL) 
containing silver nanoparticles (AgNPs), as antibacterial composite, was employed to infiltrate β-Ti disks. Scanning 
electron microscopy was used to determine the coating morphology, thickness, and infiltration of the porous 
substrates. Wettability and SBF experiments were also carried out to investigate hydrophobicity and potential bio- 
functionality. The results suggested how the porosity of the β-Ti alloy affects the mechanical characteristics and the 
wettability of the substrate that was successfully infiltrated to exert an antimicrobial behavior.  
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1. Introduction 

Around 3.5 billion people worldwide suffer from oral health prob-
lems, and 267 million people are estimated to have lost teeth [1–3]. 
Patients’ dental health and functions may be restored due to the success 
of dental implants, which had a global market potential of USD 4.3 
billion in 2015 and is anticipated to reach USD 5.9 billion by the end of 
2022 [4,5]. Dental caries, infections, and trauma are the three most 
frequent causes of tooth loss [6,7]. Loss of teeth may have an impact on 
oral health, which can cause problems with speech and chewing [8,9]. 
In this context, the primary treatment option for whole or partial tooth 
loss in this situation is dental implants [10]. Ti and its alloys, which are 
frequently used as long-term implants in clinics due to their improved 
biosafety, are preferred over stainless steels or Co-Cr alloys [11,12]. Due 
to its excellent biocompatibility, superior mechanical properties, and 
high corrosion resistance, Ti and its alloys are the materials most 
commonly used to produce medical and dental implants [11,12]. 
However, most commercially available titanium implants are solid 
structures; compared to bone tissue, the dense titanium has a higher 
elastic modulus, resulting in a larger stress shield, and promotes bone 
tissue resorption [13]. Furthermore, it is of great concern that the 
well-known primary metallic biomaterial Ti-6Al-4V alloy, which is used 
to build orthopedic implants, may release toxic aluminium and vana-
dium ions [14,15]. These ions have the potential to cause long-term 
health problems such as osteomalacia, Alzheimer’s disease, and pe-
ripheral neuropathy [16,17]. Despite the low failure rates of these ti-
tanium implants, 5–10% of them are still known to fail (due to poor 
osteogenesis and infection associated with implants) and require 
removal [18–20]. Therefore, it is essential to create biomaterials with 
adequate biomechanical aspects (stiffness, mechanical and fatigue 
resistance), as well as a bifunctional balance (corrosion resistance and 
bone ingrowth), in order to manage and prevent the high rate of 
implant-related infections [21–23]. As a result, porous titanium im-
plants were created with adequate biomechanical aspects that approx-
imate bone tissue and reduce the effective stress-shielding phenomenon 
[24,25]. The limitations mentioned above of conventional titanium 
implants could be addressed by the fabrication of porous titanium alloys 
with appropriate mechanical properties, adequate pore sizes that are 
suitable for bone ingrowth and vascularization, and a lack of vanadium 
and aluminium ions [26]. For instant, the porous titanium produced 
using space-holder methodology can allow cell adhesion and growth, 
promoting bone ingrowth and enhancing osseointegration [20,23, 
27–29]. However, it is important to keep in mind that a bacterial biofilm 
could proliferate on the surface of a porous titanium implant with 
consequent implant failure [30,31]. In this scenario, an appropriate 
antibacterial coating might be a strategy to reduce the risk of infection 
while simultaneously serving as a reliable local drug delivery matrix 
system, improving implant biocompatibility, or strengthening corrosion 
resistance. It has been established that the antibacterial properties of 
positively charged silver ions (Ag+) make it effective against bacteria, 
fungi, and some viruses [32–34]. Positively charged silver ions will 
produce reactive oxygen species (ROS), which can facilitate the catalytic 
oxidation of bacterial components [35,36]. The application of silver in 
the form of nanoparticles (AgNPs) could combine the antimicrobial ef-
fect of both Ag+ and a nanoparticulate material. Dental coatings should 
preferably be mechanically stable, biocompatible, and antimicrobial 
[37,38]. Polymeric coatings have a significant effect on the development 
of modern biomaterials in the biomedical field. They can be used to 
enhance bioactivity, surface functionality, and wear and corrosion 
resistance [29,39,40]. Polyvinyl alcohol (PVA) is a hydrophilic polymer 
with exceptional film-forming abilities, high crystallinity, non-toxicity, 
and impressive chemical resistance. It also exhibits highly important 
functional qualities, such as high mechanical strength [41]. The PCL 
polymer, on the other hand, is well known for its excellent mechanical 
properties, cytocompatibility, non-toxicity, and slow biodegradability 
[42,43]. However, due to its hydrophobic nature, which hinders cell 

adhesion and proliferation, it is difficult to adhere to the native bone 
tissue [42,43]. This restriction can be overcome by combining PCL with 
hydrophilic polymers, like PVA. The combination of both polymers 
PVA/PCL could act as a polymeric biocompatible matrix that could 
easily be loaded with antibacterial AgNPs nanoparticles. To simulate 
osteo-conductance and achieve mechanical strength, it is necessary to 
fill the bone defects left behind after the surgical removal of benign bone 
tumors. Implanting porous titanium alloy coated with polymeric 
PVA/PCL/AgNPs into bone defects can offer a favorable bone substitute 
for human osteogenesis and could be a useful replacement for bone graft 
in the treatment of some benign tumors. 

The use of β-titanium alloys (β-Ti), with Young’s modulus (60–80 
GPa) [44,45] that are closer to that of natural bones, is another potential 
solution to reduce the problem of stress-shielding [46–48]. Moreover, 
β-Ti exhibits improved fatigue resistance and biocompatibility [49,50]. 
Therefore, the capacity to balance biomechanical and biofunctional 
behaviors is significantly increased by the combination of porosity and 
β-Ti, which also boosts implant success [51]. The literature has reported 
on the macro-mechanical behavior of the dense Ti35Nb7Zr5Ta alloy 
[47,52], however there are few studies on the porous structures of β-Ti 
alloys [20,53]. In this study, we suggest addressing three issues related 
to metallic implants at once: 1) the stress-shielding of tensions, 2) 
avoiding the use of toxic elements (V and Al), and 3) the proliferation of 
bacteria. 

In this research work, we propose an optimal fabrication of porous 
β-titanium disks using powder Ti35Nb7Zr5Ta alloy, via the accessible 
spacer-holder approach, to obtain a varied porosity volumes and pore 
diameters, to avoid the phenomenon of stress shielding. For adequate 
biomaterial infiltration with total pore coverage and to evaluate the 
potential of this methodology to fabricate implants with enhanced 
osseointegration and antibacterial properties, a biocompatible and non- 
toxic composite based on the combination of PCL and PVA, containing 
AgNPs was suggested. 

2. Materials and methods 

This section lists the materials used in the research as well as the 
experimental procedures that were followed to create the porous β-Ti 
substrates, the synthesis of the PVA/PCL/AgNPs composite, the infil-
tration of the porous β-Ti substrates and other critical studies for char-
acterization (both before and after being coated with the biopolymer). 
The following Fig. 1 summarizes a schematic workflow including the 
most important details. 

2.1. Materials 

To fabricate the porous metal substrates, β-Ti powder was used with 
the stoichiometric chemical formula Ti35Nb7Zr5Ta (TNZT), (Ercata 
GmbH in Chemnitz, Germany). Ammonium bicarbonate (NH4HCO3), 
99% purity, supplied by Cymit Química S.L. (Barcelona, Spain), 
100–200 μm in size, was used as spacer particles. All chemical products 
were used directly from suppliers without any need for purification. 
Polyethylene glycol 3000 (PEG 3000), polyethylene glycol 200 (PEG 
200), polyvinyl alcohol (PVA, Mn = 30.000–70.000 g/mol, 87–90% 
hydrolyzed), poly-ε-caprolactone (PCL, average Mn 80,000 g/mol), and 
glycerol were purchased from Sigma-Aldrich (Madrid, Spain). Silver 
nitrate (AgNO3) was purchased from Sigma-Aldrich (Madrid, Spain). 
Dichloromethane and HCl (35%) were acquired from Scharlau in Bar-
celona, Spain, and Honeywell in Badalona, Spain, respectively. For the 
preparation of the solutions required by the titration method for the 
evaluation of bioactivity, sodium chloride (NaCl, BioXtra) ≥ 99.5% 
purity, di-sodium hydrogen phosphate dehydrated (Na2HPO4⋅2H2O, 
EMPROVE® ESSENTIAL Ph Eur, BP, USP), calcium chloride (CaCl2) 
97.0% purity, and Trizma base 99% purity (TRIS) were purchased by 
Sigma-Aldrich (Madrid, Spain). 
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2.2. Characterization of the β-Ti alloy powder 

In this work, the morphology, size distribution, chemical composi-
tion, and other characteristics of the starting powder were all evaluated. 
The size distribution of the TNZT-alloy powder was measured by laser 
diffraction (Mastersizer 2000, Malvern Panalytical Ltd, Malvern, UK). 
Furthermore, a helium pycnometer (5200e, Quantachrome, Anton Paar 
GmbH, Graz, Austria) was used to measure the density of the powder. 
Using an X-ray diffractometer (XRD) (X’Pert Pro MPD, Panalytical Ltd., 
Malvern, UK), equipped with a goniometer and X’cellerator detector, 
the crystallinity was evaluated. Cu-K radiation was used to acquire the 
diffraction patterns in a step-by-step scanning process, with an angle 
variation of 0.03◦ and a scanning time of 300 s per scan, in the range of 
2-angles from 10◦ to 120◦. Chemical composition was assessed using an 
Energy Dispersive X-ray (EDX) detector and a Scanning Electron Mi-
croscopy (SEM) (Hitachi S-4800, Bruker, Billerica, Massachusetts, USA) 
with an electron acceleration voltage of 20 kV. The SEM images of the 
metal (β-Ti) particle were captured using secondary electrons at a 5 kV 
acceleration voltage. Finally, at least 10 Vickers microhardness mea-
surements (HV0.01) were made using a Shimadzu HMV-G indenter 
(Kyoto, Japan). 

On the other hand, the potential bioactivity evaluation of the β-Ti 
alloy powder in vivo was carried out using a rapid in vitro protocol 
mainly based on the determination of the calcium phosphate nucleation 
onset point associated with a pH evolution, recently described by Zhao 
et al. [56]. A calcium solution was added dropwise (0.1 mL/min) using a 
1 mL syringe to 50 mL of phosphate solution, maintained under stirring, 
containing 0,1 g of β-Ti alloy powder and without the testing material 
for the blank-control comparison. Calcium phosphate nucleation was 
monitored until it took place, using a pH electrode (pH 50+DHS Set 
bench meter incl. pH-electrode 201T, Dostmann Electronic GmbH, 
Germany). During the experiment, the temperature was controlled at 
25.0 ± 1.0 ◦C or 26.0 ± 1.0 ◦C. The initial pH of the solution was 
experimentally measured and was 7.45 and was monitored in situ using 
the pH electrode. 

2.3. Fabrication and characterization of porous β-Ti substrates using the 
space-holder technique 

The β-Ti powder was mixed with different spacer contents (30, 40 
and 50 vol% and size range between 100 and 200 μm). To ensure that 
the mixtures were well homogenized, the mixtures (Ti-β + vol% 
NH4HCO3) were stirred in a Turbula T2C mixer (TMG machines, 

Birmingham, UK) for 40 min. The mixtures were then pressed at 800 
MPa in a cylindrical 12 mm diameter die using a Universal Instron 5505 
machine (Instron, High Wycombre, UK). Prior to the sinterization, 
removing the green disks’ spacers particles was necessary. This was 
accomplished by two stages of thermal treatment: the first 10 h at 333 K, 
followed by another 10 h at 383 K under low vacuum (10− 2 mbar) 
conditions. The final sintering was completed over the course of 2 h at 
1673 K in a high vacuum atmosphere (10− 5 mbar) in a molybdenum- 
chamber furnace from Termolab-Fornos Electricos, Lda., Gueda, 
Portugal. To preserve the proportion, size, and morphology of the pores, 
the obtained disks surface (12 mm in diameter and 4 mm high) was 
subjected to an appropriate grinding and polishing process. To examine 
the degree of infiltration of the composite biopolymer and the thickness 
of the coating, a comparable metallographic preparation was also per-
formed on the cross-sectional surface of some cut disks (D-shaped 
substrates). 

The density (ρ), as well as the total (PT), and interconnected (PI) 
porosity of the β-Ti substrates were obtained by the Archimedean 
method. The equivalent diameter (Deq) and the form factor (Ff) were 
evaluated from at least 10 images obtained using an optical microscope 
(Nikon, Tokyo, Japan), which has a “Jenoptik Progres C3” camera 
attached (Jenoptik, Jena, Germany) handled by the image analysis 
computer software “Image-Pro-Plus 6.2”. The wettability test was car-
ried out on the “Phoenix 300′′ equipment (Surface Electro Optics, South 
Korea) following the protocol that establishes that the drop must be 
formed in the syringe tip and deposited on the surface [55]. The 
wettability of the surfaces of the titanium disks is evaluated by 
measuring the angle formed between the drop and the surface, using 
photographs captured “Phoenix 300′′ equipment (Surface Electro Optics, 
South Korea). Using the captured images and the “Surfaceware 7′′

software, the angle formed between the drop and the surface was 
measured. 

On the other hand, the tribo-mechanical characteristics of the porous 
substrates were assessed using: 1) instrumented micro-indentation (load 
and uloading tests, P-h curves), and 2) scratch tests. Both tests were 
carried out using a MTR3750-50/NI equipment (Microtest S.A., Madrid, 
Spain). The P-h curves were performed using a Vickers indenter with a 
load control of 2 Nmin-1, a maximum load of 2 N, and a maintenance 
time of 15 s. Using the Oliver–Pharr method, the values for micro- 
hardness and Young’s modules were estimated using P-h curves 
[56–58]. 

These results were corrected, considering the geometry of the 
indenter, as well as the wear and/or possible damage caused by its use. 

Fig. 1. Illustration of the fabrication and characterization of biopolymeric composite-coated β-Ti based porous disks.  
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On the other hand, the scratch tests were carried out using a 200 μm 
diameter Rockwell diamond tip, carried out at a constant load of 3 N 
(rate of 0.5 mm⋅min-1) and a scar length of 3 mm [59]. The typical load, 
penetration depth, and scar length are all measured continually. The 
surface roughness profile during the 3 mm scar length and a negligible 
applied stress must be known prior to completing the scratch tests. This 
study allowed obtaining the characteristic roughness parameters: 
arithmetic mean roughness (Ra), root-mean-square roughness (Rq), 
maximum height from peak to valley of all the measurement trace (Ry) 
and arithmetic average of the maximum height from peak to valley of 
the roughness values of five consecutive sampling sections on the 
filtered profile (Rz), as well as to correct the scratch curves (considering 
the inclination y/or previous surface roughness). After the in-situ 
scratch tests were completed, a post-palpation was performed to mea-
sure the depth of permanent penetration, the elastic recovery, and the 
depth of groove scar roughness. Finally, an optical microscopy study of 
the scratch was performed, which allowed identification of potential 
damage mechanisms. In this work, all P-h curves and scratch tests were 
performed at least three times. 

2.4. Synthesis and antimicrobial behavior of the biopolymer composite 

According to the process described by Madhavan et al. [60], the 
AgNPs were synthesized, producing nanoparticles with comparable 
properties (spheroidal shape and approximate size of 20 nm). The pro-
cedure was carried out on a hot plate with magnetic stirring (MR 
Hei-Standard magnetic stirrer from Heidolph Instruments, Germany) 
where 10 ml of PEG 200 and 3.42 g of PEG 3000 were mixed at 353 K 
under constant magnetic stirring (2400 rpm). Once homogeneous, the 
temperature was changed to 323 K, and 100 mg of AgNO3 were added, 
keeping magnetic stirring until a brown solution was obtained. On the 
other hand, to obtain the mixture of 2 g of PCL and PVA, they were 
prepared in a 50/50 w/w ratio on a hot plate with a magnetic stirrer. It 
started by dissolving the PVA in 15 ml of dichloromethane under mag-
netic stirring at a temperature of 303 K; Once dissolved, the PCL was 
added, maintaining stirring until the latter was also completely dis-
solved. Finally, the composite was prepared from the mixture of PCL and 
PVA; and addition of the previously described AgNPs to maintain a ratio 
of 0.4% w/w Ag. 

On the other hand, the antimicrobial behavior of the used composite 
was described against reference bacteria strains Pseudomonas aeruginosa 

(P. aeruginosa, ATCC 15692), as Gram-negative bacteria, and Staphylo-
coccus aureus (S. aureus, ATCC 29737), as Gram-positive bacteria, ac-
cording to Alcudia et al. [24] work and following a modified version of 
the Kirby-Bauer disk diffusion method [61]. Briefly, TSA agar petri 
dishes were streaked with 100 or 150 μl of inoculant containing 
P. aeruginosa and S. aureus, respectively. 8 mm diameter cylinders of the 
composite were placed on top of the plates, including a gentamicin disk, 
as the positive control. Inhibition halos were measured after 24 h of 
incubation at 37 ◦C. 

2.5. Infiltration and coating of the porous β-Ti substrates 

During this process, the polished surface of the porous β-Ti disks, 
whole and cut into two half-moons (D-shape), were covered with bio-
composite (see details of the entire process in Fig. 1). Before depositing 
the coating, the entire disks or the two D-shape parts, facing each other, 
were introduced into a heat-shrinkable rubber tube. The biopolymer 
composite was then deposited by dripping 300 μL of suspension with a 
syringe. The use of this shrinkable rubber prevents the loss of the bio-
composite, covering the entire surface, and infiltrating the pores of the 
substrates. Finally, the coated disks were placed for 24 h in an oven at a 
temperature of 314 K, to evaporate the dichloromethane (solvent used in 
the synthesis). The use of D-shape disks enables to approach the study of 
the cross section of the coated disks (measure the thickness), minimizing 
the risks of damage to the coating in the cutting processes. 

In relation to the characterization of the coated substrates, the 
morphology, thickness, and degree of infiltration of the composite 
biopolymer deposited on the porous β-Ti substrates were studied using 
scanning electron microscopy images (FEI TENEO, Term Fisher Scien-
tific), obtained in secondary electron scanning mode, SEM and back-
scattered electrons, BSE (detect potential differences in the chemical 
composition of the composite biopolymer). This study was carried out 
on the surface and cross section of porous disks. Finally, the wettability 
of the surface covered with the composite biopolymer was evaluated, 
following the protocol already detailed. 

3. Results and discussion 

In this section, the results of the characterization of the β-Ti alloy 
powder are presented first. The following aspects of the powder were 
examined: its morphology, size distribution, density, micro-hardness, 

Fig. 2. Characterization of the Ti- alloy’s starting powder: Ti35Nb7Zr5Ta. a) SEM image of the powder, b) XRD diffraction pattern and SEM chemical composition 
mapping, c) Density and EDX analysis. 
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phases, and chemical composition. Next, the porosity of the substrates is 
characterized, and the static behavior (P-h curves) and dynamic 
behavior (scratch tests) are evaluated. Finally, the appearance of the 
biopolymeric coating, its adherence, and degree of infiltration in the 
porosity of the metallic substrate are characterized. To discriminate the 
role of the macro-porosity inherent to the spacer and the role of the 
coating, the wettability of the porous disks is also tested in this work 
before and after coating. Finally, the antimicrobial behavior of the 
coating and potential β-Ti bioactive surface studies were compiled and 
discussed. 

3.1. Characterization of β-Ti powder 

In Fig. 2, some results related to the microstructural and mechanical 
characterization of the Ti35Nb7Zr5Ta alloy powder are summarized. 
The SEM images (Fig. 2a) revealed the spherical morphology of the 
powder, as well as its surface roughness. The diffraction pattern 
confirmed the presence of only β phase, with BCC cubic symmetry and 
space group Im-3m (Fig. 2b). The chemical composition by weight of the 
metallic particles coincided with the nominal values reported by the 
powder supplier (see table, in Fig. 2c), and the acquired composition 
maps showed a homogeneous distribution of the four metallic constit-
uents in the powder (Fig. 2b). Fig. 2. c includes the value of the powder 
density, the Vickers micro-hardness; as well as the elemental analysis 
using EDX. 

In relation to the calcium phosphate nucleation, an in vitro test of the 
β-Ti alloy powder would assume hydroxyapatite (HA) formation, since it 
is a stable biological mineral that triggers osteoblast activity for bone in- 
growth. However, unfortunately, most studies are based on long time 

experiments that employ ISO 23314:2014, with samples immersed in 
SBF (simulated body fluid) for 28 days. Thus, investigating whether a 
material such as powder β-Ti could potentially induce superficially HA 
growth, is a determining factor to estimate its ability to easily promote 
osseointegration. In this sense, the method described by Zhao et al. [54] 
seems a quicker and interesting alternative to assess the generation of 
HA in a few hours. This method is supposed to correlate the evolution of 
the pH of a phosphate solution by comparing a material to determine the 
calcium phosphate nucleation onset point. The results obtained in the in 
vitro test for the qualitative evaluation of the ability of the β-Ti alloy 
powder to initiate the HA nucleation are graphically reported in Fig. 3. 

The pH evolution profile was determined initially at 26 ◦C (Fig. 3a) 
and repeated at 25 ◦C (Fig. 3b). From these results, the critical role of 
temperature was observed. Indeed, a distinct visible variation of slope in 
the evolution of pH, that corresponds to a sudden decrease in available 
free Ca2+ for the sample, was monitored for both experiments. However, 
in both cases, the decrease of pH, related to the formation of octacalcium 
phosphate or HA, occurred simultaneously in the sample and in the 
blank. Therefore, no unequivocal conclusions regarding the osteointe-
gration bioactivity behavior of the β-Ti compared to c. p. Ti could be 
stablished, requiring further and more deep and comprehensive 
investigations. 

3.2. Characterization of the porosity and tribo-mechanical behavior of the 
porous β-Ti substrates 

In Fig. 4. a. as an example, the macro-structure of dense and porous 
β-Ti disks is presented; while, in Fig. 4b, a collage of the optical images is 
shown, in which the relatively homogeneous distribution of porosity can 

Fig. 3. Bioactivity in vitro test based on calcium phosphate nucleation of the β-Ti alloy powder at a) 26 ◦C, and b) at 25 ◦C.  

Fig. 4. a) Photograph of porous β-Ti disks, b) collage of optical microscopy images of the porous titanium substrates of β-Ti alloy.  
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be seen in the three types of disks manufactured by the spacer technique. 
Table 1 shows the density and the vol% of the porosity (total and 
interconnected) obtained; as well as details of the size (equivalent 
diameter) and morphology (shape factor) of the macro-pores inherent in 
the spacer. The analysis of these results verified that the spacer route is 
an economical and effective technique for reproducing and controlling 
the content and size of pores in metallic substrates. In addition, a direct 
relationship between the spacer content, the average size, and the ir-
regularity of the resulting pores could be indicated, a fact that can be 
attributed to pore coalescence phenomena as their content increases. 

Fig. 5 shows the static behavior (P-h curves) and the results derived 
for the 30 vol% and 40 vol% porous titanium substrates. In the case of 
the 50 vol% substrate, the instrumented micro-indentation curves ob-
tained were not acceptable (irregular loading and unloading test). As 
expected, the maximum penetration, as well as the elastic recovery 
(absolute and relative) is greater for the more porous substrates. The 
analysis of the slopes of the curves during the unloading (Oliver and 
Pharr method), allowed us to estimate the values of HV and Young’ 
modulus (E) for these two porous substrates: 30 vol%. (HV = 270 and E 
= 29 GPa) and 40 vol% (HV = 235 and E = 22 GPa). As expected, beta 
alloy’s pores volumetric content is inversely proportional to stiffness and 
hardness values. Therefore, the pores content needed to be introduced 
into the implants, to replicate the mechanical requirements of cortical 
bone tissue (E = 20–25 GPa and σy = 150–180 MPa), is lower in implants 
made of the TNZT alloy (35 vol%), comparing with the required content 
in Ti c. p. (50 vol%). Another important characteristic of materials for 
orthopedic applications is the maximum elastic strain: for bones, it is 
approximately 1.1%, and for high-porosity TiNbZrTa samples it is 
approximately 3%, which guarantees that the implant will not be 
damaged before bone [62,63]. The hardness results are consistent with 
few studies reported in the literature (P-h curves), for dense beta tita-
nium alloys [64,65]. It is interesting to note that the β-Ti alloy has a 
substantially higher hardness than cortical bone from femoral diaphysis 
[66]. 

The macro-mechanical behavior of dense Ti35Nb7Zr5Ta alloy has 
been reported in the literature (E = 55–64 GPa, σf = 265 MPa, σy =
480–530 MPa and UTS = 540–590 MPa) [47,54], while in porous β-Ti 
alloys [Ti-(18-20)Nb-(5-6)Zr] are limited. In this context, in the work of 
Brailovski et al. [53], the values of Young’s modulus (uniaxial 
compression tests) of porous samples are reported to vary from 7.5 to 
3.7 GPa and the maximum compression strength from 225 to 70 MPa, 
depending on porosity (from ~45 to 66%). These Young’s modulus 
values from uniaxial compression tests are significantly lower than those 
from instrumented microindentation test. Some authors associated this 
discrepancy with super-elastic deformation within the linear-elastic 
range of tested materials [52]. In this same sense, the authors of this 
work have reported a similar trend for c. p. Ti obtained by a conven-
tional powder-metallurgy process, as well as in works using 
space-holders (NaCl and NH4HCO3) [25,67–70]. These differences were 
attributed to a stiffness testing machine effect in which the mechanical 
system and the sample were considered to be two springs in series. 
Furthermore, note that the Ti matrix is different at each cross-section of 
the cylindrical sample during a compression test; the material collapse 

starts at the section with the lowest Ti content. In these works, the 
reliability and certainty of measurements were validated by comparison 
with well-known and accepted pore-elasticity models, such as that of 
Nielsen [71]. In this scenario, the mechanical properties measured in 
this work are more consistent with those reported in the literature for 
β-Ti alloys of similar composition and porosity. 

The results of the scratch tests (Fig. 6) experienced a similar trend to 
that observed in the P-h curves, with the scratch resistance being lower 
(greater penetration depth and elastic recovery) in the β-Ti substrate 
with a 40 vol%. It is interesting to indicate the role of the macro-porosity 
in the roughness profile of the surface. In this sense, the values of Ra, Rq, 
Rz and Ry were lower in the less porous disk (see Fig. 7). In this same 
context, the clear increase in the roughness of the surface of the groove 
generated by the scratch test could be indicated, a fact that can be 
attributed to phenomena of deformation and collapse of the porous 
structure caused by imposed stress (see details in Fig. 8). 

3.3. Bio-functional antibacterial behavior of PVA/PCL/AgNPs 
biocomposite 

The combined use of two non-toxic, biocompatible polymers with 
different chemical nature, such as PCL and PVA in the appropriate 
proportions (50/50) has been shown to allow a controlled short-term 
release profile of therapeutic agents. This ratio was chosen based on a 
larger pore size of the biomaterial, with a larger surface area allowing 
for better degradation, and the drug release pattern was especially 
interesting, since the most frequent infections in implantology are 
described as occurring in the first 3 weeks after the intervention. The 
pharmaceutical goodness of this biomaterial with antibacterial action 
has been previously demonstrated, in a work recently published by the 
group of Prof. Torres, based on the Kirby-Bauer techniques and inhibi-
tion halo measurements, generated by samples when incubated on top 
on a bacterial lawn [24,72]. When the diameter of the generated halo 
was normalized with the diameter of the sample, the differences be-
tween samples could be semi qualitatively evaluated. Fig. 9 shows the 
antibacterial behavior of the composite against P. aeruginosa (Fig. 9 a) 
and S. aureus (Fig. 9 b), where the inhibition halos around the samples 

Table 1 
Characteristic parameters of the porosity obtained by the spacer route.  

Spacer 
percentage 

Archimedean Method Image Analysis 

ρ (g/cm3) PT (%) Pi (%) DEq 

(μm) 
Ff 

30 vol% 3.93 ±
0.03 

31.6 ±
0.5 

21.8 ±
0.8 

144 ±
30 

0.59 ±
0.05 

40 vol% 3.62 ±
0.15 

37.0 ±
2.6 

33.0 ±
2.5 

155 ±
24 

0.49 ±
0.07 

50 vol % 3.37 ±
0.24 

41.5 ±
4.1 

39.2 ±
3.6 

183 ±
32 

0.50 ±
0.06  

Fig. 5. Mechanical behavior of the porous titanium substrates of the β-Ti alloy, 
loading-unloading curve (P-h curve). Note: the characteristic parameters of the 
curves are included in the table. 
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can be clearly observed. This effect could be associated with the diffu-
sion of both AgNPs and Ag+ over the TSA, preventing the seeded bac-
teria from proliferating. Where the antimicrobial agents could not reach, 
the bacterial lawn was visible. In this sense, the standardized value of 
the compiled halo was 1.71 ± 0.11 and 1.83 ± 0.26 for P. aeruginosa and 
S. aureus, respectively (Fig. 9 c). From these results, it could be 
concluded that both bacterial strains are sensitive to this composite, 
presenting slightly higher inhibition for S aureus. 

3.4. Characterization of porous β-Ti substrates infiltrated with AgNPs- 
loaded composite biopolymer 

The homogeneous mixture of the composite PVA/PCL/AgNPs was 

infiltrated into disks of the β-Ti TNZT alloy with different porosities (30, 
40 and 50 vol%), as shown in Fig. 10. A comparison of the result of this 
infiltration of porous TNZT substrates with another previously prepared 
disk of c. p Ti 50 vol % porosity, was accomplished. Interestingly, it was 
observed an effect that concentrates part of the composite on the edges, 
reaching up to 3 mm in some cases. 

This peculiar composite distribution was similar to a coffee ring-type 
pattern and generates an unexpected higher deposit of the coating on the 
perimeter when it dries. Interestingly, a slightly similar effect was 
observed when using c. p. Ti. The origin of this behavior might be 
related to different effects such as a) the disk size, b) the influence of the 
edge due to possible manufacturing irregularities, as those observed in 
the optical microscopy from images in Fig. 10a, c) the different chemical 

Fig. 6. In situ scratch tests and permanent penetration depth: a) 30 vol % b) 40 vol %.  

Fig. 7. Roughness profiles of the porous disks studied before coating (30 vol% and 40 vol%). Note: the characteristic roughness parameters (before and after the test) 
are included in the inset table. 

Fig. 8. Collage of optical images of the groove generated with the scratch test at constant load of 3 N and 3 mm scar length: a) 30 vol % b) 40 vol%.  
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composition (TNZT vs. c. p.Ti) of the metallic surface that would induce 
a hydrodynamic flow, d) to different interactions between the elements 
of the alloy and the components of the biopolymer coating, or perhaps e) 
to the chemical behavior of the heat shrink tube employed. In this 
context, it would be advisable to carry out XPS studies in future works to 
try to understand and/or explain in depth the possible causes. The use of 
surfactants, electrowettability, vibrations, or Marangoni fluxes may also 
be valued to minimize this effect. 

In bone tissue regeneration, the ability of the implant to vascularize 
plays a fundamental role [73]. In this sense, there was an interesting 
phenomenon not only of interconnected porosity of β-Ti substrates, but 
also including the porosity of the polymer coating, with a pattern like 
honeycombs as observed in Fig. 11. In addition to the porosity of disks, 
an increase in porosity of coatings was observed, mainly generated by 
the presence of protuberances, whose content increased with larger 
pores of the β-Ti substrate. In this work, these protuberances could be 
identified as PVA considering the density of PCL (1.14 g/cm3) is lower 

than that of PVA (1.23 g/cm3), the latter can remain in greater pro-
portion on the surface as it has greater difficulty infiltrating the 
macro-pores of the metal substrates). In this figure, the presence of a 
micro-porosity in the form of honeycomb inside the macro-pores of the 
substrate was also observed, like the morphology identified on the 
coating surface. In general, a detailed comparison pointed out that the 
porosity of the coating was more homogeneous in the coating deposited 
on the β-Ti substrate with 30 vol%. 

Although a statistically significant trend cannot be established in 
relation to the size of the porosity of the coating, larger pores were 
observed in the coating on the substrate with a content of 40 vol% pores. 
This fact could be promoted by the kinetic evaporation of the solvent, 
which in this case could evaporate more abruptly, generating this sur-
face orography. 

In relation to the homogeneity and thickness of the polymeric coat-
ings in the three types of porous substrates studied (Figs. 12 and 13), an 
inverse relationship could be indicated between the pore content of the 
metallic substrate, the thickness of the coating and the homogeneity of 
the material covering. The coating deposited on the substrate with a 50 
vol% of pores was the thinnest and most heterogeneous. These facts can 
be attributed to the higher infiltration capacity of the biopolymer and 
the greater presence of PVA protuberances in the coating, respectively. 

3.5. Surface wettability of disks with and without coatings 

The effect of the macro-porosity of the porous β-Ti substrates and/or 
the biopolymeric coating (PVA/PCL/AgNPs) on the wettability behavior 
was studied. Wettability is a factor that can be related to the antibac-
terial behavior of a surface [74], such that a higher contact angle pro-
vides less wettability, which is related to greater hydrophobicity. Thus, a 
hydrophobic surface is more predisposed to inhibit the adhesion spread, 
and reproduction of bacteria of all kinds, and therefore, it is usually 
described as achieving superior antibacterial performance from a pro-
phylactic point of view. The results shown in Fig. 14 indicated that when 
comparing the wettability of the dense β-Ti alloy with c. p. Ti, a sig-
nificant increase in the contact angle of 25.2◦ was observed. This indi-
cated interestingly that the new alloy offers a more hydrophobic surface 
and thus, potentially implemented features of bio-functionality. On the 
other hand, the wettability values of the infiltrated β-Ti substrates with 
different porosities are shown in Fig. 15. Unfortunately, it was not 
possible to obtain a wettability result for the porous substrate with 50 
vol%, because the drop deposited on its surface quickly filtered into its 
interior. In general, two remarkable and very favorable trends were 
observed: 1) the increase in porosity implied a loss of the contact angle 
and, therefore, an increase in the hydrophilic character and 2) the 
coating with the biomaterial based on a polymeric matrix with 
embedded AgNPs provided an improvement in hydrophobicity values, 
regardless of the degree of porosity 30 or 40 vol%, being more 

Fig. 9. Antimicrobial behavior of the composite. Inhibition halos generated by 
the composite when applying a modified version of the Kirby-Bauer diffusion 
method against a) P. aeruginosa and b) S. aureus. c) Values of the standard-
ized halos. 

Fig. 10. a) Edges of the porous substrates of the β-Ti alloy (collapse and agglomerations of micropores), and b) Photograph of the porous disks of the β-Ti TNZT alloy, 
after the infiltration process of the composite biopolymer. 
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remarkable in the case of 40 vol%. In summary, the results indicated that 
the introduction of porosity in the metal and morphology of the coating 
positively influenced the solid-liquid contact of the Ti surface. The best 
bio-functionality could be achieved in our case with infiltrated 

substrates with 30 vol% porosity, thus providing a clear technical 
orientation for the design and application of metal porosities, which if 
combined with micro-textures with antibacterial properties could make 
a difference in the field of dental restoration. 

Fig. 11. Collage of SEM images at different magnifications of the coated titanium substrates from a top view.  

Fig. 12. Collage of BSE microscopy images of the coated porous titanium substrates. Top row: Infiltrated coating from top view. Intermediate row: Cross section 
where the level of infiltration and the thickness of the coating are observed. Lower row: Cross section at higher magnification where biopolymers are observed inside 
the macropores. 
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4. Conclusions 

In this study, different porous substrates of the β-Ti alloy 
(Ti35Nb7Zr5Ta) coated with a biopolymeric composite (PVA/PCL/ 
AgNPs) have been manufactured and characterized, highlighting the 
good bio-mechanical and bio-functional balance obtained. Commercial 
powder had a spherical morphology and a rough surface. The powder 
particles presented a homogeneous chemical composition by weight 
corresponding to the beta alloy Ti35Nb7Zr5Ta. The compressibility of 
this material made it possible to obtain green compacts with good 
structural integrity before and after removing the spacer. The spacer 
technique was an economical, repetitive, and scalable manufacturing 

route on an industrial scale, allowing the control of the porosity (content 
and size of pores) of porous β-Ti alloys. Infiltration and coating of metal 
substrates with the antibacterial biocomposite PVA/PCL/AgNPs against 
P. aeruginosa and S. aureus were successful, although a “ring” effect was 
observed at the perimeter of the disks, which increased in size in the 
disks with greater porosity. The morphology and thickness of the layer 
in the different porous substrates of the β-Ti alloy showed that there was 
good penetration of the material, producing different orographies on the 
surface. On the other hand, the smallest thickness corresponded to the 
largest porosity. In addition, the wettability study showed that this alloy 
was more hydrophobic (potentially with better bio-functionality char-
acteristics), compared to that of Ti c. p.; additionally, the comparison of 
porosity indicated that with the less porosity 30 vol% the surface would 
potentially induce better antibacterial behavior. 
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