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Magnetic adatoms on a superconducting substrate undergo a quantum phase transition as their
exchange coupling to the conduction electrons increases. For quantum spins, this transition is
accompanied by screening of the adatom spin. Here, we explore the consequences of this screening
for the phase diagrams and subgap excitation spectra of dimers of magnetic adatoms coupled by
hybridization of their Yu-Shiba-Rusinov states and spin-spin interactions. We specifically account for
higher spins, single-ion anisotropy, Ruderman-Kittel-Kasuya-Yosida coupling, and Dzyaloshinsky-
Moriya interactions relevant in transition-metal and rare-earth systems. Our flexible approach based
on a zero-bandwidth approximation provides detailed physical insight and is in excellent qualitative
agreement with available numerical-renormalization group calculations on monomers and dimers.
Remarkably, we find that even in the limit of large impurity spins or strong single-ion anisotropy,
the phase diagrams for dimers of quantum spins remain qualitatively distinct from phase diagrams
based on classical spins, highlighting the need for a theory of quantum Yu-Shiba-Rusinov dimers.

I. INTRODUCTION

Assemblies of magnetic adatoms on superconductors
are currently attracting much attention as platforms
for topological superconductivity [1–3] and correlated
electron physics [4]. The adatoms induce Yu-Shiba-
Rusinov (YSR) states within the excitation gap of the
substrate superconductor [5–12], which hybridize be-
tween adjacent sites of the assembly. Several recent
experiments [13–21] probe adatom dimers, which con-
stitute the minimal example of such an assembly. If
the adatoms of the dimer are spaced such that their
atomic d orbitals do not overlap, the coupling is entirely
mediated by the superconducting substrate. The fa-
miliar Ruderman-Kittel-Kasuya-Yosida (RKKY) [22–25]
and Dzyaloshinsky-Moriya (DM) [26, 27] interactions be-
tween the adatom spins are complemented by hybridiza-
tion of their YSR states.

So far, dimer experiments have been largely inter-
preted assuming classical impurity spins. In this frame-
work, the impurity spin acts as a local Zeeman field on
the substrate superconductor and the coupling in the
dimer depends on the relative orientation of the adatom
spins [7, 13, 17, 28–33]. In the absence of spin-orbit cou-
pling, the YSR states split for ferromagnetic alignment,
but remain unsplit for antiferromagnetic spins. There is
also an overall shift of the YSR levels of the dimer rela-
tive to the monomer, which tends to be small compared
to the splitting for the ferromagnetic dimer [7, 20].

Experiments on individual adatoms on superconduc-
tors suggest, however, that their spins are quantum. In
particular, this is implied by the observation of Kondo
resonances, both on normal-metal [34, 35] and super-
conducting substrates [10, 18, 36–40], and of discrete
spin excitations in the presence of single-ion anisotropy
[41–44]. Dimers of quantum spins on a superconduct-
ing substrate were discussed by Zitko et al. [45] and
Yao et al. [46], based on the numerical renormalization
group (NRG). While these calculations were limited to

spin- 1
2 and spin-1 dimers with isotropic exchange cou-

pling to the conduction electrons, recent experimental
work emphasizes the importance of higher spins, single-
ion anisotropy, anisotropic exchange and RKKY coupling
as well as DM interactions [13–17, 19, 20, 39].

Here, we present a simple yet flexible approach to
discuss dimers of quantum spins on superconductors.
Sidestepping the substantial and rapidly forbidding nu-
merical effort of full-scale NRG calculations, our ap-
proach focuses on the subgap excitations by limiting the
substrate superconductor to a single site per adatom
and conduction electron channel (zero-bandwidth model
[47–51]). While this approach neglects Kondo renor-
malizations and effects associated with the spatial wave-
function pattern of the YSR excitations, it is remarkably
successful [51] in qualitatively reproducing the phase di-
agrams and excitation spectra of individual higher-spin
adatoms, which were previously obtained by NRG [45].
We find that this remains true for adatom dimers. As
detailed below, the approach qualitatively reproduces
the phase diagrams and excitation spectra of spin-1

2 and
spin-1 dimers as obtained from NRG calculation in Ref.
[45] and [46]. This encourages us to apply the ap-
proach to models of the transition-metal and rare-earth
systems used in the experiments on YSR dimers [13–
17, 19, 20, 39].

There are important qualitative differences between
the physics of classical and quantum spins on supercon-
ducting substrates. First, Kondo-like screening of the
adatom spin is limited to quantum spins. Both classi-
cal and quantum adatom spins induce a quantum phase
transition as their exchange couplingK to the conduction
electrons increases [52]. At weak coupling, the ground
state of the superconductor is fully paired (even fermion
parity). Beyond a critical coupling, the adatom binds
a quasiparticle (odd fermion parity). However, only for
quantum spins, this binding of a quasiparticle is associ-
ated with a change in the ground-state multiplicity and
thus with Kondo-like screening of the adatom spin. In
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Figure 1. Phase diagrams of a spin- 1
2

YSR dimer as a function of RKKY coupling Jz and YSR energy EYSR for different
anisotropies of the exchange coupling K⊥/Kz. The anisotropy of the RKKY interaction is chosen to match the exchange
anistropy, K⊥/Kz = J⊥/Jz. Phase diagrams are obtained from the zero-bandwidth Hamiltonian in Eq. (5). The color
scale (see scale bar) indicates the expectation value of the number of bound quasiparticles F as defined in Eq. (9). Black
dashed lines indicate phase boundaries, at which the spin and/or fermion parity quantum numbers of the ground state change
discontinuously. (a) Ising exchange with nonzero Kz and K⊥ = 0, corresponding to a classical-spin model of the adatom. Phase
boundaries and crossovers essentially depend only on the sign of the RKKY coupling, reflecting the absence of screening of the
adatom spin in the classical model. (b) Heisenberg exchange K = K⊥ = Kz. Phase boundaries and crossovers depend on the
magnitude of the RKKY coupling. This phase diagram qualitatively reproduces the results of NRG simulations in Ref. [46]. (c)
Dominant longitudinal and (d) dominant transverse anisotropic couplings as indicated in the panel. The singly-screened phase
(white) reduces in extent as K⊥/Kz increases. Parameters: (Kz,K⊥) = 100t(cos θ, sin θ), (a) θ = 0, (b) θ = π

4
, (c) θ = 0.05,

(d) θ = π
2
− 0.1, V = 0.9(Kz + 2K⊥)/4.

dimers, this screening abruptly alters the RKKY energy
at the quantum phase transition [4, 20], leading to rich
physics of quantum YSR dimers. Second, half-integer
and integer quantum spins can behave in qualitatively
different ways due to the presence or absence of Kramers
degeneracies. This leads to characteristic differences in
their Kondo effects [53] and we find related distinctions
for quantum YSR dimers.

This paper is organized as follows. Section II discusses
YSR spin- 1

2 dimers, contrasting classical and quantum
spins. Motivated by transition-metal and rare-earth sys-
tems, Sec. III extends the discussion to dimers of higher-
spin adatoms, accounting for single-ion anisotropy and
Dzyaloshinsky-Moriya interactions. We conclude in Sec.
IV. In an effort to focus the main text on the principal
physical arguments, we delegate some technical details as
well as some additional considerations to appendices.

II. SPIN- 1
2

DIMERS

A. Monomers and screening

The qualitatively different screening behavior of clas-
sical and quantum adatom spins can be understood by
considering a spin-1

2 monomer within the zero-bandwidth
model

H = ∆(c†↑c
†
↓ + h.c.) + c†σ[V δσσ′ + S · K̂ · sσσ′ ]cσ′ (1)

(see App. A 1 and [51] for further discussion). Here,
∆ is the pairing amplitude of the superconducting site
coupled to the adatom spin S through potential scatter-
ing V and antiferromagnetic exchange interaction K̂ =
diag(K⊥,K⊥,Kz). On the superconducting site, conduc-
tion electrons of spin σ are annihilated by cσ, and s = 1

2σ

in terms of the vector of Pauli matrices σ. Summation
over repeated spin indices is implied.

Within models of classical spins, one assumes that the
adatom spin S is aligned along, say, the z direction,
so that it couples only to a single component of the

conduction-electron spin (density) c†σsσσ′cσ′ and there
are no transverse spin couplings. Within the model
of Eq. (1), this corresponds to Ising exchange coupling

K̂ = diag(0, 0,Kz). In contrast, the quantum nature of
the adatom spin plays a role as soon as the transverse
spin couplings are nonzero, K⊥ 6= 0, as is the case, for
instance, for Heisenberg coupling K̂ = diag(K,K,K).

Regardless ofK⊥, the monomer ground state exhibits a
quantum phase transition with increasing exchange cou-
pling. It is fully paired with a free adatom spin at weak
exchange coupling and binds a quasiparticle at strong
coupling. The weak-coupling state |⇑ / ⇓,BCS〉 is a di-
rect product of a free impurity spin (|⇑ / ⇓〉) and a paired
electronic ground state (|BCS〉) with even fermion par-
ity, and takes the same form for classical and quantum
spins. In contrast, the strong-coupling states of classical
and quantum spins differ in their screening properties.
In the classical case, the monomer continues to have two
degenerate ground states, namely the odd-fermion-parity
states |⇑, ↓〉 and |⇓, ↑〉. Consequently, the quantum phase
transition leaves the impurity-spin state unaffected and
thus unscreened. For quantum spins, the nonzero trans-
verse exchange coupling K⊥ lifts the degeneracy between
|⇑, ↓〉 and |⇓, ↑〉 and the singlet state |s〉 = |⇑, ↓〉 − |⇓, ↑〉
becomes the unique strong-coupling ground state. Now,
the impurity spin no longer points along a preferred di-
rection and is thus screened by the conduction electrons
(see also App. A 1).

The different phases of the monomer can in general be
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labeled by the fermion parity P = (−1)
∑
σ c

†
σcσ as well as

the magnitude and/or projection of the effective spin

Seff = S + c†σsσσ′cσ′ , (2)

depending on the degree of spin rotation symmetry [51].
The excitation energy

EYSR = Eo − Ee. (3)

of the YSR state is the energy difference of the low-
est monomer states in the odd and even-fermion-parity
sectors (Eo and Ee, respectively). With this definition,
EYSR is positive in the weak-coupling phase and negative
in the strong-coupling phase, and takes on the value

EYSR =
√

∆2 + V 2 − 1

4
(Kz + 2K⊥) (4)

for a spin- 1
2 monomer.

The zero-bandwidth approximation fails to account for
the quasiparticle continuum and can thus only be ex-
pected to describe deep subgap states. We account for
this limitation by assuming large ∆, K, and V in such a
way that the YSR energy EYSR and the dimer couplings
remain small by comparison. In particular, this assures
that EYSR is well within the gap. This assumption will
be made throughout this paper, in both the numerical
and the analytical calculations.

B. Dimer phase diagrams

The distinctly different screening properties of classical
and quantum spins have important ramifications for the
phase diagram of dimers. This can already be illustrated
for a spin- 1

2 dimer within the zero-bandwidth model

H =

2∑
j=1

∆(c†j↑c
†
j↓ + h.c.)− t[c†1σc2σ + h.c.]

+

2∑
j=1

c†jσ[V δσσ′ + Sj · K̂ · sσσ′ ]cjσ′ + S1 · Ĵ · S2. (5)

Here, the adatom spins Sj (j = 1, 2) are coupled to sep-
arate superconducting sites (cjσ). Hybridization of the
YSR states is incorporated through intersite hopping of
strength t. The RKKY interaction Ĵ = diag(J⊥, J⊥, Jz)
is incorporated explicitly as it is mediated by the quasi-
particle continuum, which is not accounted for within
the zero-bandwidth model. Due to the oscillatory de-
pendence of the RKKY interaction, strength and sign of
Ĵ depend on the distance between the adatoms.

To characterize the phases of the model in Eq. (5),
we exploit the symmetries of the system. The supercon-
ducting pairing breaks particle-number conservation, but
conserves the overall fermion parity

Ptot = (−1)
∑
σ(c†1σc1σ+c†2σc2σ). (6)

Figure 2. Illustrative level scheme of spin- 1
2

dimers with
isotropic exchange and ferromagnetic RKKY coupling (J <
0). The low-energy spectrum of the uncoupled dimer (left)
is labeled by the fermion parities Pj and effective spins Seff,j

of the monomers as (P1, Seff,1)(P2, Seff,2). For EYSR < 0 the
local singlet state (F ' 2, blue) is the ground state. Nonzero
RKKY interaction (center) couples the monomer states into
states of total parity and spin (Ptot, Stot). This affects only
the unscreened state (F ' 0, red), which splits into molecular
singlet and triplet. For sufficiently large |J |, the molecular
triplet becomes the ground state. Finally, hybridization of
the YSR states splits the odd-fermion-parity states (F = 1,
black) into symmetric and antisymmetric states. For suffi-
ciently large hybridization t̃ this leads to the singly-screened
ground state.

Provided that the model retains spin rotation symmetry
about the z-axis, the projection Sztot of the total spin

Stot = S1 + S2 +
∑
j

c†jσsσσ′cjσ′ (7)

is also a conserved quantity. For the special case of
Heisenberg exchange and RKKY interactions, the model
has full spin rotation symmetry and we can further clas-
sify phases according to Stot. Finally, we can label the
dimer phases by their spatial parity Σ (with Σ2 = 1),
which interchanges the monomers as defined by

Σc†1,σΣ = c†2,σ , ΣS1Σ = S2. (8)

Note that this operation also exchanges the fermions,
which gives rise to an additional minus sign when both
adatom spins are screened.

The quantum numbers Ptot, S
z
tot, and Σ can be used

to classify the model’s phases. We also find it useful to
consider the expectation value of

F =
∑
j=1,2

(
c†j↑cj↑ − c

†
j↓cj↓

)2

, (9)

which is a proxy for the number of bound quasiparticles.
It should be noted, however, that for nonzero YSR hy-
bridization t, this is not a conserved quantum number
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Figure 3. Excitation spectra of a spin- 1
2

dimer as a function of YSR energy EYSR for isotropic (a) ferromagnetic (FM) and
(b) antiferromagnetic (AFM) RKKY coupling J . Tunneling excitations (purple arrows) flip fermion parity and change total
spin by ± 1

2
. In the even-fermion-parity phases, tunneling is possible into the symmetric and antisymmetric doublets. In the

doublet phase, all (low-energy) even parity states are in principle accessible by tunneling, resulting in three peaks (or more for
anisotropic RKKY interaction, see Fig. 4). Parameters as in Fig. 1(b) with fixed RKKY coupling J = −2t (a) and J = 2t (b),
as indicated by gray dashed lines in Fig. 1(b) .

due to the presence of pairing correlations in the model.
While ground states with different quantum numbers de-
fine phases of the quantum YSR dimer, we refer to the
unscreened (F ' 0) or doubly-screened (F ' 2) parts of
the phase diagram as regions.

Figure 1(a) and (b) show dimer phase diagrams as a
function of the RKKY interaction Jz and the YSR energy
EYSR for Ising coupling (classical spins) and Heisenberg
coupling (quantum spins), respectively. The most strik-
ing difference is that phase boundaries and crossovers in
the classical phase diagram [Fig. 1(a)] essentially depend
only on the sign, but not on the magnitude of the RKKY
interaction J . In contrast, the magnitude of the RKKY
coupling is an important parameter in the quantum phase
diagram [Fig. 1(b)].

This difference arises as follows. The phase bound-
aries correspond to lines in the phase diagram, along
which states with different total spin are degenerate. For
a classical impurity spin, the quantum phase transition
does not affect the impurity-spin state. Consequently, it
leaves the RKKY energy of the dimer unchanged, which
will then cancel from the energy balance governing phase
boundaries and crossovers. In contrast, for quantum
spins, the impurity spin is fully screened in the strong-
coupling state. Thus, only the unscreened phases benefit
from the RKKY interaction, while the RKKY interac-
tion energy vanishes for the phases in which one or both
spins are screened. Now, the RKKY interaction enters
into the energy balance governing phase boundaries and
crossovers.

The phase diagram of a quantum spin- 1
2 dimer with

Heisenberg interactions was also computed in Ref. [46],
using the numerical renormalization group (NRG) in-
cluding the full quasiparticle continuum of the substrate
superconductor. Remarkably, the phase diagram of the

zero-bandwidth model of Eq. (5) in Fig. 1(b) qualita-
tively reproduces the NRG phase diagram. We now
discuss the phase diagram in Fig. 1(b) for isotropic
(Heisenberg) exchange and RKKY coupling in more de-
tail (see also App. A 2). For sufficiently large EYSR, both
adatom spins are unscreened (F ' 0). For ferromagnetic
RKKY coupling (J < 0), the ground state is a molecular
triplet, e.g., |⇑,BCS〉1 ⊗ |⇑,BCS〉2, with quantum num-
bers (Ptot, Stot) = (+, 1). For antiferromagnetic RKKY
interactions (J > 0), the unscreened impurity spins
couple into a molecular singlet |⇑,BCS〉1 ⊗ |⇓,BCS〉2 −
|⇓,BCS〉1 ⊗ |⇑,BCS〉2, so that (Ptot, Stot) = (+, 0). For
large and negative EYSR, the adatom spins are indi-
vidually screened (F ' 2) and the dimer has a local-
singlet ground state, |s〉1 ⊗ |s〉2. This state also has
(Ptot, Stot) = (+, 0), so that the molecular singlet evolves
continuously into the local singlet phase as EYSR is re-
duced. The absence of a sharp phase transition between
these ground states reflects that the pairing term in the
model in Eq. (5) breaks particle-number conservation. At
large and negative RKKY coupling, there is a direct tran-
sition between the molecular triplet and the local-singlet
phases, with a corresponding change in Stot.

For weak RKKY coupling and small |EYSR|, there is
an odd-fermion-parity phase with half-integer total spin,
(Ptot, Stot) = (−, 1

2 ). The doublet ground state of this
phase, |s〉1⊗|⇑ / ⇓,BCS〉2+|⇑ / ⇓,BCS〉1⊗|s〉2, emerges
when the hybridization splitting of the dimer states with
one screened adatom is large enough to offset the cost in
YSR energy.

Figure 2 shows level diagrams for the RKKY and hy-
bridization splittings, illustrating the mechanisms gov-
erning the phase diagram in Fig. 1(b). While the ferro-
magnetic RKKY coupling favors the molecular triplet, a
sufficiently large YSR hybridization t can lower the en-
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Figure 4. Tunneling spectroscopy of spin- 1
2

dimers in the dou-
blet phase with isotropic exchange and ferromagnetic RKKY
coupling. (a) Spectral functions for different symmetries of
the RKKY coupling (see legend; offset for clarity). (b) Level
schemes (not to scale) for Heisenberg, XXZ and XYZ RKKY
coupling, emphasizing the increase in the number of reso-
nances as the spin rotation symmetry is reduced. Parameters:
EYSR = −0.2t, ∆ = 106t, V = 3∆, J = −0.3t, Heisenberg:
Ĵ = J diag(1, 1, 1), XXZ: Ĵ = J

√
3/2 diag(1, 1, 0), XYZ:

Ĵ = J diag(
√

2, 1, 0).

ergy of the doublet with half-integer spin to become the
ground state. Note that we use 2t̃ to denote the actual
energy splitting of the singly-screened states due to the
hybridization t.

The phase diagrams in Fig. 1(c) and (d) for, respec-
tively, predominantly longitudinal and transverse ex-
change and RKKY couplings deviate qualitatively from
the isotropic Heisenberg case. Here, we take both the ex-
change coupling K̂ and the RKKY interaction Ĵ to have
the same anisotropy (i.e., K⊥/Kz = J⊥/Jz). For domi-
nant longitudinal coupling, K⊥ � Kz, Fig. 1(c), the dou-
blet phase continues to form a stripe as in the Ising case,
albeit with boundaries that depend on the RKKY cou-
pling. Beyond a critical value of K⊥, the doublet phase
forms an island as in the Heisenberg case. We note that
classical behavior with phase boundaries approximately
independent of J is recovered only for K⊥ � J, t. For
dominant transverse couplings, K⊥ � Kz, Fig. 1(d), the
doublet phase remains limited to small RKKY couplings
as in the isotropic Heisenberg case.

C. Dimer excitation spectra

Figure 3 shows representative excitation spectra for
Heisenberg couplings along the dashed lines in Fig. 1(b).
These provide further confirmation that the dashed lines
cross true quantum phase transitions on the ferromag-
netic side, as indicated by the level crossings, while there
are only anticrossings indicative of crossovers on the an-
tiferromagnetic side. The excitation spectra are in ex-
cellent qualitative agreement with corresponding results
of NRG calculations in Ref. [46], further supporting the
usefulness of the zero-bandwidth model [54].

To connect to tunneling experiments, we also consider

the spectral function

A(E) =

2∑
j=1

∑
σλ

[
|〈λ|c†j,σ|gs〉|2 δ (E − Eλ + Egs) +

|〈λ|cj,σ|gs〉|2 δ (E + Eλ − Egs)
]
, (10)

where |gs〉 denotes the ground state and |λ〉 the ex-
cited states with opposite fermion parity. Spin rota-
tion symmetries give rise to selection rules for the ma-
trix elements. In Fig. 4, we show A(E) for the doublet
phase. For full spin rotation symmetry, there are three
peaks, corresponding to transitions into the molecular
singlet and triplet as well as the local singlet. Consider-
ing RKKY couplings with XXZ and XYZ symmetry, the
triplet peak splits into two and then three resonances.
Thus, depending on the degree of symmetry, there are
between three and five peaks in the doublet phase. For
even-parity ground states, there are only two peaks in
A(E), regardless of the degree of spin rotation symme-
try. These correspond to the symmetric and antisymmet-
ric doublets, which do not split further due to Kramers
degeneracy. Thus, quantum phase transitions generically
change the number of resonances observed in tunneling
experiments.

III. HIGHER SPINS

A. Isotropic RKKY coupling

YSR dimers based on transition-metal and rare-earth
systems typically involve higher-spin adatoms. In many
cases, higher spins effectively behave more classically.
Remarkably, in the present problem, the phase diagrams
for classical and quantum spins remain qualitatively dis-
tinct even as S →∞. This is a direct consequence of the
difference in the screening properties. Although a sin-
gle conduction-electron channel screens higher quantum
spins merely from S to S− 1

2 , we find that the change in
RKKY energy associated with a quantum phase transi-
tion to the screened state approaches a nonzero constant
and thus remains relevant even for large S.

Figure 5 shows representative phase diagrams for
larger adatom spins as a function of the RKKY coupling
J and the YSR energy EYSR. Both the exchange coupling
K and the RKKY coupling J are assumed isotropic, so
that for general impurity spin S, the YSR energy of the
monomer is given by (see App. B 1)

EYSR =
√

∆2 + V 2 − S + 1

2
K. (11)

As appropriate for isotropic couplings, we label phases
by their total spin Stot. The phase diagrams for adatom
spins S = 1 and S = 3

2 in Fig. 5 exhibit four phases, one

more than for the spin- 1
2 dimer. For a single conduction-

electron channel per adatom, higher adatom spins can
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Figure 5. Effect of Heisenberg RKKY coupling on YSR dimers with higher spins S. (a),(b) Phase diagrams as a function of
isotropic RKKY coupling J and YSR energy EYSR for S as indicated in the panel. As for spin- 1

2
dimers, RKKY coupling

stabilizes unscreened dimers with F ' 0 (red). Unlike spin- 1
2

dimers, the phase boundary between the approximately doubly-

screened Stot = 2S − 1 (blue, F ' 2) and singly-screened Stot = 2S − 1
2

phases (white, F = 1) is no longer approximately
constant as partially screened dimers gain RKKY energy, see (c). As S increases, the phase boundaries on the ferromagnetic
side become more and more parallel. Gray dashed lines indicate value of the RKKY coupling in Fig. 6. (c) Level scheme for
higher spins. RKKY coupling shifts the energies not only of the unscreened dimer, but also of the singly and doubly screened
dimer. Parameters: V = 2∆, ∆ = 106t.

only be partially screened. Thus, even in the doubly-
screened region, they will couple to different total spins
for ferromagnetic and antiferromagnetic RKKY coupling.
This introduces a phase boundary at J = 0 and negative
EYSR, which is absent for a dimer of fully screened S = 1

2
adatoms.

Apart from this additional phase boundary, the phase
diagrams for higher spins are similar in appearance to the
phase diagram for S = 1

2 . In particular, nonzero RKKY
coupling of either sign favors the unscreened phases. At
the same time, the half-integer spin phase [white region
in Figs. 5(a) and (b)] has not only a different ground-
state multiplicity (doublet for S = 1

2 , quartet for S = 1,

and sextet for S = 3
2 ), but also appears in a differently

shaped parameter region. While the lower boundary is
only weakly dependent on J for S = 1

2 [Fig. 1(b)], it ex-
hibits a pronounced linear J dependence for higher spins.
For S = 1

2 , both the singly-screened and the doubly-
screened regions have zero RKKY energy and J does not
enter the energy balance determining their phase bound-
ary. In contrast, singly and doubly-screened regions have
nonzero – and different – RKKY energies for higher spins
[see Fig. 5(c)], leading to a J-dependent phase boundary.

We note in passing that Fig. 5 shows phase diagrams
for V ∼ ∆. At small |J |, the detailed structure of the
phase diagram actually depends in some detail on the
ratio V/∆, see App. B 2 for further discussion. In partic-
ular, there can be additional spin transitions which have
no analog for classical adatom spins.

We can obtain additional insights into the phase
boundaries by explicitly computing the RKKY energy
ERKKY in the various phases as a function of S. This
also allows us to ask about the limit of large impurity
spins, S → ∞. In general, the RKKY coupling JS1 · S2

between spins of magnitude S1 and S2 coupling into a

total spin of Stot has the magnitude

ERKKY =
J

2
[Stot(Stot+1)−S1(S1+1)−S2(S2+1)]. (12)

Assuming, say, ferromagnetic coupling (Stot = S1 + S2),
one might then naively expect that the difference in
RKKY energies of the fully unscreened phase (S1 = S2 =
S) and the singly screened phase (S1 = S and S2 = S− 1

2 )
is JS/2 and thus proportional to S. A more careful
treatment accounting for changes in the effective RKKY
coupling J between the different phases shows that the
difference in RKKY energies approaches a constant inde-
pendent of S for S →∞.

Given that the exchange coupling K is large compared
to the RKKY coupling, the projection theorem implies
that the impurity spins S1 and S2 can be replaced by the
effective screened spin of the adatom, Seff , albeit only up
to an overall prefactor, which can be absorbed into a
renormalization of the RKKY coupling J (see App. B 3
for details). One finds that for each screened spin, the
RKKY coupling is renormalized by a factor 1+1/(2S+1).
Focusing first on ferromagnetic RKKY coupling, J < 0,
this gives the RKKY energies

ERKKY =



JS2 Stot = 2S,

JS

(
S − 1

2S + 1

)
Stot = 2S − 1

2 ,

J

(
S − 1

2S + 1

)2

Stot = 2S − 1.

(13)

The phase boundary EYSR = EYSR(J) between the un-
screened (Stot = 2S) and the singly screened (Stot =
2S − 1

2 ) phases follows from the energy balance

JS2 = EYSR + JS

(
S − 1

2S + 1

)
− t̃. (14)
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Figure 6. Excitation spectra of YSR dimers for adatom spins (a) S = 1 and (b) S = 3
2

with isotropic ferromagnetic RKKY
coupling. Allowed tunneling excitations (purple arrows) are determined by the selection rules PtotP

′
tot = −1 and Sztot−(Sztot)

′ =
± 1

2
. (a) For S = 1, the selection rules permit four possible tunneling excitations from the (approximately) doubly-screened

ground state (blue, F ' 2), three from the singly screened (black), while only two survive when the ground state is unscreened
(red, F = 0). (b) S = 3

2
shows corresponding behavior. Parameters: K = 100t, V = 70t, J = −2t, as indicated by gray dashed

lines in Fig. 5(a) and (b).

Here, t̃ again denotes the energy gain of the singly
screened phase due to the hybridization t of the YSR
states. Thus, we find

EYSR = t̃+
JS

2S + 1
(15)

for the phase boundary on the ferromagnetic side J <
0. An analogous consideration for the phase boundary
between the singly screened phase and the fully screened
(Stot = 2S − 1) phase yields

EYSR = −t̃+
JS

2S + 1
− J

(2S + 1)2
. (16)

As advertized above, the slope of these phase boundaries
EYSR = EYSR(J) approaches 1

2 in the limit of S → ∞,
which is distinctly different from the purely classical re-
sult of zero slope. Thus, the distinction between classical
and quantum spins persists to arbitrarily large spins.

The phase boundaries in Eqs. (15) and (16) also im-
ply that the singly screened phase terminates at J =
−2t̃(2S + 1)2. For stronger ferromagnetic RKKY cou-
pling J , there is a direct transition between the un-
screened and the doubly screened phase with

EYSR =
JS

2S + 1

(
1− 1

2S(2S + 1)

)
. (17)

describing the phase boundary.
Antiferromagnetic RKKY interaction couples the im-

purity spins to Stot = 0 (see App. B 2 for an exception).
At large and positive EYSR, this results from a coupling of
the unscreened impurity spins. As EYSR is reduced and
becomes negative, this eventually crosses over to coupling

of the screened impurity spins. As for spin- 1
2 dimers, this

is a crossover rather than a phase boundary. We can de-
duce the crossover line by equating the energies of the
Stot = 0 states for unscreened and screened spins,

− JS(S + 1) = 2EYSR − 2J
(S − 1

2 )(S + 1)2

2S + 1
, (18)

which yields

EYSR = −J S + 1

4S + 2
. (19)

Thus, the slope of the crossover line for antiferromagnetic
RKKY coupling approaches − 1

4 for large S.
We note that the zero-bandwidth model not only pro-

vides detailed insight into the physics of YSR dimers,
but that the corresponding phase diagram for the spin-1
dimer in Fig. 5(a) is also in excellent qualitative agree-
ment with full NRG calculations in Ref. [45].

In Fig. 6, we show excitation spectra for adatom spins
S = 1 and S = 3

2 along the dashed lines shown in Fig.
5. In particular, these spectra identify the transitions
that are observable in tunneling experiments (see pur-
ple arrows in the figure). Single-electron tunneling flips
the fermion parity and changes the total spin by ±1/2.
For spin- 1

2 dimers, the number of resonances of the tun-
neling spectra depends only on the fermion parity (Fig.
3). For higher spins, we find that it also varies with the
total spin. If the ground state of the dimer has mini-
mal (Stot = 0) or maximal (Stot = 2S) total spin, it is
only coupled to the symmetric and antisymmetric states
with Stot = 1

2 or Stot = 2S − 1
2 , respectively. This re-

sults in two tunneling resonances. If the total spin of the
ground state differs from the minimal or maximal spin,
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Figure 7. Tunneling spectroscopy of spin-1 dimers in the dou-
bly screened region with isotropic exchange and ferromag-
netic RKKY coupling. (a) Spectral functions for different
symmetries of the RKKY coupling (offset for clarity). For
Heisenberg RKKY coupling (purple), the resonances origi-
nate from tunneling into the symmetric and antisymmetric
quartet states (+, 3

2
). Tunneling into the symmetric and an-

tisymmetric doublet states (−, 1
2
) is allowed, but beyond the

energy range shown here (see Fig. 6). Upon breaking spin ro-
tation symmetry, the symmetric and antisymmetric quartets
split into two peaks each. The odd-parity states remain de-
generate even for XYZ coupling as they are protected by time
reversal symmetry. (b) Corresponding level schemes (not to
scale). Parameters: EYSR = −t, ∆ = 106t, V = 2∆, Heisen-

berg: Ĵ = −diag(t, t, t)/
√

3, XXZ: Ĵ = −diag(t/2, t/2, t/
√

2),

XYZ: Ĵ = −diag(0.4t, 0.58t, t/
√

2).

as for ferromagnetic coupling of screened spins or in the
half-integer-spin phases, tunneling couples to additional
states and thus leads to further resonances as shown in
Fig. 6. Corresponding spectral functions and spectra are
illustrated in Fig. 7.

B. Single-ion anisotropy

For strictly isotropic spin interactions, the ground and
excited states are degenerate multiplets associated with
different spin projections of Stot. These degeneracies are
lifted by anisotropic couplings as illustrated in Fig. 7(a)
and (b). This leads to splitting of tunneling resonances
and affects phase diagrams. We illustrate the effects
of magnetic anisotropy by studying uniaxial single-ion
anisotropy,

Hani = D
∑
j

(Szj )2. (20)

For simplicity, we retain fully isotropic exchange coupling
K and RKKY interaction J . The results are only weakly
affected by moderate anisotropy of K̂ and Ĵ , in particular
if the type of anisotropy is consistent with the sign of D.

1. Easy-axis anisotropy

For D < 0 (easy-axis anisotropy), Hani favors the max-
imal spin projections Szeff = ±S (unscreened monomer)
and Szeff = ±(S − 1/2) (screened monomer) of the
monomer spins. Large and negative D frustrates the
transverse part of the RKKY interaction, so that the
monomers act as effective Ising spins. However, it is im-
portant to note that the magnitude of these effective Ising
degrees of freedom depends on the screening state of the
adatom spin. For this reason, easy-axis anisotropy does
not induce classical behavior of the dimer. (Classical
behavior requires longitudinal exchange coupling K in
addition.)

Figure 8(a)-(c) shows corresponding phase diagrams,
which exhibit four distinct phases as for the fully isotropic
model. The YSR energy EYSR is now taken to include
the single-anisotropy, see App. B 1 for details. We ob-
serve that the phase diagrams remain essentially un-
affected by the single-ion anisotropy D as long as the
RKKY coupling is ferromagnetic. In this case, the easy-
axis anisotropy merely selects the states with maximal
spin projection Sztot from the degenerate ground-state
multiplets for isotropic couplings. Thus, the unscreened
phase has Sztot = ±2S, the singly screened phase has
Sztot = ±(2S − 1/2), and the doubly screened phase has
Sztot = ±(2S − 1).

In contrast, easy-axis anisotropy changes the phase di-
agrams qualitatively for antiferromagnetic RKKY cou-
pling. We observe a change in slope of the crossover
line, when the anisotropy and RKKY energies become
comparable. For large RKKY coupling, J � |D|, the
anisotropy is a small perturbation. Then, the ground
state has Stot = 0 and the crossover line is given by
Eq. (19) obtained in the absence of the anisotropy. In
the opposite limit of small RKKY coupling, J � |D|,
the monomers behave like Ising degrees of freedom,
which minimize the total spin projection by anti-aligning,
Sztot = 0. The crossover line in this regime follows from
the energy balance

− JS2 = 2EYSR − J
(

1 +
1

2S + 1

)2(
S − 1

2

)2

, (21)

where the last term on the right-hand side accounts for
the renormalization of the RKKY coupling for screened
spins. This yields a crossover line

EYSR = − JS

2S + 1

(
1− 1

2S(2S + 1)

)
, (22)

with a steeper slope than at large J .
The monomer spin of S = 1 is a special case. While the

unscreened monomers act like Ising spins, the screened
monomers are effective spin- 1

2 degrees of freedom and
gain energy through the transverse part of the RKKY
interaction regardless of the magnitude of J . For anti-
ferromagnetic RKKY interaction, the screened monomer
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Figure 8. Phase diagrams for YSR dimers with higher spins S (see panels) including single-ion anisotropy. The phases are
labeled by (Ptot, S

z
tot,Σ), with Σ indicating the spatial parity of the dimer. Note that EYSR = Eo − Ee contains single-ion

anisotropy, as defined in App. B 1. (a)-(c) Easy-axis anisotropy D < 0. For ferromagnetic RKKY coupling, the phase diagrams
are unchanged compared to Fig. 5 for isotropic couplings. For antiferromagnetic RKKY coupling, the phase boundaries are
affected for J . |D|. (d)-(e) Easy-plane anisotropy D > 0. The phase diagrams are strongly modified for |J | . D with
significant difference between integer and half-integer spins. For integer spins, weak RKKY coupling favors the screened phase,
while for half-integer spins it strongly favors the unscreened phase. Integer spins have different spatial parity for the doubly
screened phase, but equal parity in the unscreened phase. For half-integer spins, the roles are reversed. Parameters: V = 2∆,
∆ = 106t, (a)-(c) D = −10t , (d)-(f) D = 5t.

spins couple into a singlet. Accounting for the renor-
malization of the RKKY coupling for screened spins,
the gain in RKKY energy due to singlet formation is
ERKKY = −4J/3. Thus, for weak RKKY coupling the
crossover line follows from the energy balance

− J = 2EYSR −
4J

3
, (23)

which predicts a crossover line

EYSR =
J

6
(24)

with a positive slope. Interestingly, in this regime, small
RKKY coupling favors the screened over the unscreened
state. We finally observe that surprisingly, ferromagnetic
RKKY interaction couples the screened monomers into
the triplet state with Sztot = 0. The screened monomers
have Seff = 1

2 and the easy-axis anisotropy does not affect
them directly. However, unlike the Sztot = ±1 states, the
Sztot = 0 state gains energy by admixing the antialigned
state of the unscreened dimer.

2. Easy-plane anisotropy

The phase diagrams for easy-plane anisotropy in Fig.
8(d)-(f) show more substantial differences compared to
fully isotropic couplings. First, there are qualitative dif-
ferences between integer and half-integer S. For half-
integer spins, RKKY coupling favors the unscreened state
as for isotropic couplings. In contrast, for integer spins,
RKKY coupling initially favors the screened over the
unscreened states and the conventional behavior is re-
covered only once the RKKY coupling J exceeds the
anisotropy D in magnitude. Second, we find that un-
like in the isotropic and easy-axis cases, the phase di-
agrams display only three distinct phases. This results
from the different behavior of the phase boundaries at
J = 0, which separates ferromagnetic and antiferromag-
netic phases. For easy-plane anisotropy, the extent of this
phase boundary depends on the nature of the adatom
spins S. For integer adatom spins, there is no such phase
boundary for unscreened adatom spins, while for half-
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integer adatom spins, the phase boundary is absent for
screened spins.

The different behaviors of integer and half-integer
monomer spins S at weak RKKY coupling, |J | � |D|,
can be understood as follows. The easy-plane anisotropy
favors small spin projections of the monomers. In the
unscreened state, anisotropy favors Szeff = 0 for integer
S and Szeff = ± 1

2 for half-integer spins. The situation
is reversed in the screened state. When the single-ion
anisotropy favors Szeff = ± 1

2 , the adatom acts effectively

as a spin- 1
2 degree of freedom.

We first consider integer-spin monomers. In the un-
screened state, the monomers are in Sz = 0 states and the
RKKY coupling is ineffective. Correspondingly, there is a
single Sztot = 0 phase regardless of the sign of the RKKY
coupling. In contrast, the screened monomers effectively
act as spin- 1

2 degree of freedom. The effective RKKY

coupling written in terms of these spin- 1
2 degrees of free-

dom has an easy-plane anisotropy (S = 1 monomers are
again an exception), so that the ground state has Sztot = 0
even for ferromagnetic RKKY interaction. Importantly,
however, there is still a phase boundary at J = 0. While
the phases are not distinguished by fermion parity or spin
projection, the phases differ in their spatial parity Σ as
defined in Eq. (8). Under spatial parity, the spin ground
state is symmetric for ferromagnetic RKKY coupling and
antisymmetric for antiferromagnetic coupling. As Σ also
interchanges the fermions, it further distinguishes the un-
screened and doubly-screened phases in the case of fer-
romagnetic RKKY coupling. Figure 8 explicitly displays
Σ for all phases.

For half-integer spins, the behavior of unscreened and
screened monomers are essentially reversed. This ex-
plains the difference in the phase boundaries at J = 0.
The difference in the sign of the slope of the phase bound-
ary at weak RKKY coupling can be understood as fol-
lows. There is a gain in RKKY energy only when there
is a residual spin- 1

2 degree of freedom. For integer spin,
this is the case for screened monomers and consequently,
RKKY coupling favors the screened phases. In contrast,
it is the unscreened monomers which retain a residual
spin- 1

2 degree of freedom for half-integer spins and the
RKKY coupling favors the unscreened phases.

We finally note that strong RKKY coupling, |J | � |D|,
couples the monomer spins into a total spin Stot. In
view of the projection theorem, the monomer spins are
effectively proportional to Stot, which is integer for both
the unscreened and the fully screened phases. Then, the
single-ion anisotropy favors the Sztot = 0 state regardless
of the sign of the RKKY coupling.

C. Anisotropy and Dzyaloshinsky-Moriya
interactions

Anisotropy of the exchange coupling K strongly affects
the phase diagram. As we have seen above, purely lon-
gitudinal (Ising-like) coupling with K⊥ = 0 effectively

Figure 9. Classical spin alignment for different screening sce-
narios in the presence of anisotropic coupling, easy-axis single-
ion anisotropy, and DM interaction, as outlined in Sec. III C.
(a) Unscreened spins S1 and S2 align along the z-direction due
to easy-axis single-ion anisotropyD. (b) A screened spin (here
S2) aligns perpendicular to the z-direction due to transverse
exchange coupling K⊥, which dominates over the single-ion
anisotropy. The singly screened case is favored by DM inter-
actions with M lying in the xy-plane. (c) Two screened spins
align in the xy plane (here antiferromagnetically), associated
with a gain in energy due to the transverse RKKY coupling.
Quantum effects modify the classical picture, see Fig. 10.

corresponds to a classical-spin model, leading to qualita-
tively distinct phase diagrams from quantum spins. For
spin- 1

2 adatoms, the classical spin model remains ade-
quate only as long as the transverse exchange coupling
K⊥ is small compared to the hybridization and RKKY
coupling between the adatom spins. As we show in App.
B 4, for higher spins and ferromagnetic RKKY coupling,
the condition for classical behavior is K⊥ � Kz. For an-
tiferromagnetic RKKY coupling, J⊥ � Jz has to be sat-
isfied, in addition. Since anisotropy of K̂ is a consequence
of spin-orbit coupling and diminishes under Kondo scal-
ing, this is a rather stringent condition. Note that the
zero-bandwidth model can be viewed as the result of in-
tegrating out the quasiparticle continuum, so that its
exchange coupling should effectively account for Kondo
renormalizations down to scales of order ∆.

For xy-like exchange coupling, i.e., when K⊥ domi-
nates over Kz, the exchange coupling forces the effec-
tive adatom spin Seff of the screened state into the xy-
plane. When this occurs along with easy-axis single-ion
anisotropy, screening of the adatom spin is accompanied
by a reduction of Szeff from its maximal value (Szeff = ±S)
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Figure 10. Phase diagrams for YSR dimers with transverse (xy) couplings K⊥ and J⊥, easy-axis anisotropy D, and DM
interaction M . (a)-(c) For vanishing DM interaction, the fermion parity Ptot, the spin projection Sztot, and the spatial parity Σ
are good quantum numbers. For integer spin, small RKKY coupling J⊥ � |D| favors the screened spin phases as expected from
classical considerations, see Fig. 9. In contrast, for half-integer spins the screened phase is suppressed. Note also the alternation
in phase boundaries associated with changes in spatial parity Σ. The singly-screened phase (white) is increasingly suppressed
for higher spins due to the different spin alignments of unscreened and screened monomers, see Fig. 9. (d)-(e) For nonzero
DM interaction with M = M ŷ orthogonal to the single-ion anisotropy, only Ptot and the discrete spin rotation Π remain good
symmetries. DM interaction drastically enhances the singly-screened phase (white) for integer spins, while it merely shifts the
phase boundary/crossover for half-integer spins. Parameters: V = 2∆, ∆ = 106t, D = −15t, (a)-(c) M = 0, (d)-(f) M = 5t.

in the unscreened state to its minimal value (Szeff = 0 or
± 1

2 ) in the screened state (see Fig. 9 for an illustration).
It was recently argued [17] that this situation is realized
for gadolinium adatoms (S = 7/2) on a bismuth surface
with proximity-induced superconductivity. Moreover, it
was argued that the dimer spins interact via RKKY cou-
pling dominated by J⊥ as well as Dzyaloshinsky-Moriya
coupling.

Corresponding phase diagrams (with Kz = Jz = 0) are
shown in Fig. 10. First consider Figs. 10(a)-(c) for van-
ishing DM coupling. Interestingly, the transverse RKKY
coupling strongly favors the screened states for integer
spins, with the phase boundary being cusp-like at J⊥ = 0.
In contrast, RKKY coupling still favors the unscreened
state for half-integer spins, with a smooth phase bound-
ary at J⊥ = 0.

This stark difference between integer and half-integer
spins can be understood as follows. For integer adatom
spin, the effective spin of the screened monomer is half-
integer, so that the transverse exchange coupling K⊥
favors Szeff = ± 1

2 and the adatom acts as an effective

spin- 1
2 degree of freedom. Transverse RKKY interaction

of either sign couples these effective spins into Sztot = 0
states already at linear order in J⊥. In contrast, the
transverse RKKY coupling couples the ground state of
the unscreened dimer only to excited states, so that the
RKKY energy is quadratic in J⊥. As a result, the gain
in RKKY energy is parametrically larger for and thus
favors the doubly-screened dimer.

For half-integer spins, the situation remains unchanged
for the unscreened dimer. In contrast, the screened
monomers are now in a Szeff = 0 state. As a result,
the transverse RKKY coupling couples only to excited
states of the monomer, and the gain in RKKY energy
is also quadratic in J⊥, leading to a smooth boundary
between unscreened and doubly-screened regions. The
curvature of the boundary at small J⊥ can be deduced
by noting that the excited states lead to energy denomi-
nators of order D for the unscreened monomer and of or-
der K⊥ for the screened monomer. This implies a larger
gain in RKKY energy for the unscreened dimer, so that
the phase boundary in Fig. 10(b) bends downward [55].
Some of the phase boundaries are again associated with
changes in the spatial parity Σ. For integer spins, the
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spatial parity of the doubly-screened phases depends on
the sign of J⊥ and there is a phase boundary at J⊥ = 0.
There is no corresponding phase boundary for the un-
screened dimer. The roles of screened and unscreened
phases are reversed for half-integer spins.

It is also evident in Figs. 10(a)-(c) that the ex-
tent of the singly-screened phase is strongly reduced
as the adatom spin S increases. In the present situa-
tion, the projections of the effective spins of unscreened
and screened monomer differ by more than 1

2 (spin-1
monomers are an exception). Since the intermonomer
hopping t transfers only spin 1

2 , hybridization splittings
require increasingly high-order processes as the monomer
spin S increases. For the same reason, the crossover be-
tween molecular and local singlets for antiferromagnetic
RKKY coupling becomes sharper with increasing S.

As shown in Figs. 10(d)-(f), a robust partially
screened phase appears for integer spins once we include
Dzyaloshinsky-Moriya coupling

HDM = M · (S1 × S2) (25)

with M = M ŷ lying in the xy-plane. DM of this form
was argued to be relevant in the above-mentioned ex-
periment by Ding et al. [17]. Evidently, this DM cou-
pling leads to a substantial gain in energy of the singly-
screened phase, where the spins of the two monomers are
effectively at right angles, but no corresponding gains in
the unscreened and doubly screened regions, where the
monomer spins effectively align in parallel. As a result,
the partially-screened phase can become the ground state
over an extended parameter range, showing that DM cou-
pling provides an alternative mechanism for the emer-
gence of a singly-screened phase. While this semiclassical
picture rationalizes the results for integer spins, a more
quantum mechanical understanding of the emergence of
the singly-screened phase is needed for half-integer spins,
see App. B 5.

In the presence of DM interactions, neither the spin
projection Sztot nor the spatial parity Σ are conserved
quantum numbers. There is, however, a discrete spin
rotation symmetry

Π = exp(iπSytot), (26)

which leaves both the single-ion anisotropy and the DM
interaction invariant. For Ptot = 1, the dimer is an inte-
ger spin system and Π2 = 1, so that Π has eigenvalues
±1. For Ptot = −1, in contrast, the dimer has half-integer
spin and Π2 = −1, so that Π has eigenvalues ±i. Figures
10(d)-(f) label the phases by the quantum numbers Ptot

and Π.
It is interesting to distinguish more explicitly between

classical and quantum aspects of the phase diagrams in
Fig. 10. In a classical treatment, one minimizes the en-
ergy as a function of the classical spin configuration. In
the absence of the DM interaction and the hybridization
t, the unscreened dimer has energy

Eee = −2|D|S2 cos2 α− |J⊥|S2 sin2 α, (27)

where α is the angle of the adatom spins relative to the
z-axis. Minimizing with respect to α predicts an abrupt
transition between spin polarizations along the z-axis at
small |J⊥| and in the xy-plane at large |J⊥|. In contrast,
the doubly-screened dimer has spins that lie in the xy
plane regardless of J⊥, so that its energy equals

Eoo = 2EYSR − |J⊥|S2. (28)

Then the phase boundary follows from Eoo = Eee, which
yields

EYSR =
1

2
(−2|D|+ |J⊥|)S2 cos2 α, (29)

with an abrupt transition between cosα = 1 at small
J⊥ and cosα = 0 at large J⊥. This is consistent with
the initial cusp-like behavior of the phase boundaries at
small J⊥, which we find for integer adatom spins in Fig.
10(a) and (c). However, the phase boundary of the clas-
sical phase diagram saturates to a J⊥-independent value
of EYSR for J⊥ beyond the abrupt transition, while the
phase boundary bends downward at large J⊥ in the quan-
tum phase diagram. This bending is therefore a quantum
effect, originating in the reduction of the effective spin
by screening. Moreover, the alternation in the phase di-
agrams between integer and half-integer spins is specific
to quantum spins. Interestingly, the phase diagram for
half-integer spins is distinctly different from the classical
phase diagram.

IV. CONCLUSIONS

Motivated by recent experiments, we have discussed
Yu-Shiba-Rusinov dimers of quantum spins. Both Kondo
resonances and spin excitations of individual adatom
spins show that magnetic adatoms on superconductors
act as quantum spins. This contrasts with theoretical
discussions of YSR dimers, which focus on a description
in terms of classical spins. Moreover, the existing works
on quantum YSR dimers are limited to small adatom
spins and do not account for single-ion anisotropy or DM
interactions, which are relevant for the transition-metal
and rare-earth systems used in many of the experiments.

At first sight, one may expect that the physics of quan-
tum YSR dimers becomes more classical for larger impu-
rity spins or stronger (easy-axis) single-ion anisotropy.
Remarkably, we find that this is not the case and the
qualitative differences between the phase diagrams for
classical and quantum spins persist even in the limit
of S → ∞. These differences are rooted in the dis-
tinct screening properties of classical and quantum spins.
While in both cases, binding of a quasiparticle induces
a quantum phase transition with increasing exchange
coupling between adatom spin and substrate electrons,
this transition is associated with Kondo-like screening
for quantum spins only.

The screening of the adatom spins by bound quasipar-
ticles directly modifies the RKKY energy of the dimer.
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Since the RKKY energy is typically larger for higher
adatom spins, one frequently finds that RKKY cou-
pling stabilizes the unscreened phases. In some cases,
however, the RKKY coupling can also stabilize the
screened phases, for instance when easy-plane single-
ion anisotropy frustrates the RKKY coupling of the un-
screened phases. This example also shows that even
such gross features of the phase diagrams can depend on
whether the adatoms have integer or half-integer spins.

In the present paper, we have focused on illustrating
basic phenomena in quantum YSR dimers. Evidently,
this system has an exceedingly rich parameter space, and
several aspects are left for future work. For instance, we
have restricted attention to a single conduction-electron
channel per magnetic adatom. More generally, higher
spins couple to multiple conduction electron channels,
admitting for multistage screening of the adatom spins.
While coupling to multiple conduction electron channels
can be addressed within the zero-bandwidth model em-
ployed here, there are also interesting aspects which are
beyond the reach of this approach. Most notably, this
concerns the spatial structure of the hybridized YSR
wave functions which are readily resolved in state-of-the-
art experiments.

Recent works have made proposals for qubits based on
YSR dimers [56, 57]. It seems likely that a thorough
theoretical understanding of such qubits would have to
rely on a description of the magnetic impurities in terms
of quantum spins. Moreover, possible implementations
in transition-metal or rare-earth systems require one to
account for magnetic anisotropy or noncollinear spin cou-
pling as we have done here.
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Appendix A: Spin- 1
2

adatoms

This appendix discusses the zero-bandwidth model
(see also [4, 51]) for spin- 1

2 adatoms, see Eq. (1) for the
monomer and Eq. (5) for the dimer.

1. Spin- 1
2

monomer

The lowest-energy state for even fermion parity is a
direct product of a free impurity spin |⇑ / ⇓〉 and the

paired BCS state |BCS〉 = (u+vc†↓c
†
↑) |0〉 with amplitudes

u2 =
1

2

(
1 +

V√
∆2 + V 2

)
, (A1a)

v2 =
1

2

(
1− V√

∆2 + V 2

)
. (A1b)

This state has energy

Ee = V −
√

∆2 + V 2 (A2)

independent of the exchange coupling K.
For odd fermion parity, the lowest-energy state binds

a quasiparticle and has energy

Eo = V − 1

4
(Kz + 2K⊥) (A3)

independent of the pairing strength ∆. For purely lon-
gitudinal (Ising-like) exchange coupling, the state is a
doublet |⇑, ↓〉, |⇓, ↑〉. For nonzero transverse coupling,
there is a unique singlet ground state

|s〉 =
1√
2

(|⇑, ↓〉 − |⇓, ↑〉), (A4)

corresponding to a screened adatom spin.
The quantum phase transition between even-fermion-

parity (weak coupling) and odd-fermion-parity (strong
coupling) ground states occurs when Eo = Ee. The en-
ergy of the subgap YSR excitation

EYSR = Eo − Ee =
√

∆2 + V 2 − 1

4
(Kz + 2K⊥) (A5)

vanishes at the quantum phase transition.

2. Spin- 1
2

dimer

For isotropic couplings K = Kz = K⊥ and J = Jz =
J⊥, states can be labeled by the total fermion parity Ptot

as well as the total spin Stot and its projection Sztot. Be-
low, we measure dimer energies relative to the energy of
two uncoupled and unscreened monomers.

For ferromagnetic coupling, the unscreened phase
(Ptot = 1, Stot = 1) has energy − 1

4J due to RKKY cou-
pling of the adatom spins into a molecular triplet. The
doubly-screened phase (Ptot = 1, Stot = 0) does not gain
RKKY energy and has energy 2EYSR. These energies
are unaffected by the hybridization t. Thus, the phase
boundary at large and negative RKKY coupling follows
EYSR = J/8.

For antiferromagnetic coupling, we first ignore the hy-
bridization t. Then, the unscreened ground state (Ptot =
1, Stot = 0) has energy − 3

4J due to RKKY coupling into
a molecular singlet. The doubly-screened state has the
same quantum numbers and energy 2EYSR independent
of the RKKY coupling. This leads to a crossover line at
EYSR = −3J/8. The width of the crossover is governed
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Figure 11. Phases of a S = 2 YSR dimer with isotropic exchange coupling and weak isotropic RKKY interaction J . (a),(c)
show number of bound quasiparticles F and (b),(d) show total spin Stot as a function of J and EYSR. Parameters: ∆ = 106t,
(a),(b) V = 20∆ and (c),(d) V = 0.5∆.

by the nonzero matrix element of the hybridization t be-
tween these states,

∆̃ =
√

2tuv, (A6)

which can be interpreted as an effective nonlocal singlet
pairing [4]. In the presence of t, the ground state for
antiferromagnetic RKKY coupling is thus a superposition
of the local and molecular singlets with energy

EYSR −
3

8
J −

√
∆̃2 +

(
EYSR +

3

8
J

)2

. (A7)

The odd-parity phase (Ptot = −1, Stot = 1
2 ) derives

from the hybridization of the two configurations with a
screened and an unscreened monomer into symmetric and
antisymmetric superpositions. The corresponding split-
ting is equal to [4]

2t̃ = t
(
u2 − v2

)
. (A8)

Thus, the lower-energy superposition has energy EYSR−
t̃.

The expressions for the ground-state energies of the
various phases can be used to find analytical results for
the phase boundaries seen in Fig. 1(b). We also note
that these analytical results can be readily extended to
anisotropic exchange or RKKY coupling. The condition
mentioned in Sec. II B for the applicability of the classical
phase diagram follows from such a calculation.

Appendix B: Higher-spin adatoms

1. Monomers

For isotropic exchange coupling and in the absence of
uniaxial anisotropy, the lowest-energy state with even
fermion parity has the same energy Ee as for the spin- 1

2
dimer, see Eq. (A2). The lowest-energy state with odd
fermion parity has energy

Eo = V − S + 1

2
K. (B1)

This yields Eq. (11) for the YSR energy EYSR = Eo−Ee.
For anisotropic exchange couplings K⊥ 6= Kz or with

uniaxial anisotropy D, fermion parity and Szeff are con-
served quantities. The low-energy states of the un-
screened monomer have energy (assuming large ∆ and
K, as usual)

Ee(S
z
eff) = V −

√
∆2 + V 2 +D(Szeff)2. (B2)

For D < 0, the lowest-energy state has maximal spin
projection Szeff = ±S, with energy Ee = Ee(±S). For
D > 0, the lowest-energy state has minimal spin pro-
jection, i.e., Szeff = 0 for integer S [lowest-energy state
with energy Ee = Ee(0)] and Szeff = ±1/2 for half-
integer S [lowest-energy state with energy Ee = Ee(1/2)].
For the screened monomer, the states are spanned by
the basis |S, Sz〉 ⊗ |σ〉. By conservation of Szeff, the
Hamiltonian couples only states |S, Szeff − 1

2 〉 ⊗ |↑〉 and

|S, Szeff + 1
2 〉 ⊗ |↓〉 where −S + 1/2 ≤ Szeff ≤ S − 1/2.

They are coupled by

h(Szeff) = V − Kz

4
+D

[
(Szeff)2 +

1

4

]
+

1

2

[
(Kz − 2D)Szeffρ3 +K⊥α(Szeff)ρ1

]
, (B3)

where ρi are Pauli matrices acting in this subspace and
we define α(Szeff) =

√
S(S + 1)− (Szeff)2 + 1/4. Diago-

nalizing h(Szeff) yields the low-energy eigenstates

|Szeff〉 = d− |S, Szeff −
1

2
〉 ⊗ |↑〉 − d+ |S, Szeff +

1

2
〉 ⊗ |↓〉 ,

(B4)
with energy

Eo(S
z
eff) = V − Kz

4
+D

(
(Szeff)2 +

1

4

)
− 1

2

√
(Kz − 2D)2(Szeff)2 +K2

⊥α
2(Szeff) (B5)

and amplitudes

d2
±(Szeff) =

1

2
± (Kz − 2D)Szeff

2
√

(Kz − 2D)2(Szeff)2 +K2
⊥α

2(Szeff)
.

(B6)
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We ignore extremal Szeff, i.e., states |S, S〉 ⊗ |↑〉 and
|S,−S〉 ⊗ |↓〉, as they do not contribute at low energy.
The lowest-energy state is Eo = minSzeff Eo(S

z
eff). We

again define EYSR = Eo − Ee.

2. Phase diagrams at small |J |

There are subtleties for weak RKKY coupling J , which
are briefly mentioned in the main text. In general, both
the hybridization t̃ and the pairing ∆̃ depend on Stot.
For instance, in the unscreened phases, ∆̃ will vanish for
sufficiently strong ferromagnetic RKKY coupling (maxi-
mal Stot), but is generally nonzero for antiferromagnetic
coupling (minimal Stot). Close to J = 0, however, it is
not a priori clear which Stot minimizes the total energy. t̃
favors a partially screened phase, J favors ferromagnetic
or antiferromagnetic coupling depending on its sign, and
the singlet pairing ∆̃ favors a singlet phase. The results of
this competition are illustrated in Fig. 11 for S = 2. Note
that these phase diagrams show a considerably smaller J
interval than the phase diagrams in the main text.

The phase diagram depends sensitively on the relative
magnitude of t̃ and ∆̃ as controlled by the ratio V/∆. As
we have seen in the main text, the available spin is typ-
ically maximized (minimized) for ferromagnetic (antifer-

romagnetic) RKKY coupling for ∆ ∼ V (so that t̃ ∼ ∆̃)
and the phase boundaries between ferromagnetic and an-
tiferromagnetic phases occur at J ' 0.

In contrast, for V � ∆ and thus t̃� ∆̃ [Fig. 11(a) and
(b)], the singly screened phase extends into the region
of antiferromagnetic coupling J (up to J ∼ t̃). In this
region, there is a cascade of transitions from Stot = 2S−
1/2 all the way down to Stot = 1/2 in steps of one. (Some
steps would only be apparent with higher resolution.)

For ∆ � V and thus ∆̃ � t̃ [Fig. 11(c) and (d)],
the doubly screened phase Stot = 2S − 1 as well as the
antiferromagnetic phase gain energy via ∆̃, reducing the
extent of the singly screened phase.

3. Effective RKKY coupling

Unlike for spin-1
2 adatoms, the RKKY coupling of

higher spins is also nonzero for the (partially) screened
states, in which the monomers now have a nonzero effec-
tive spin. To calculate the RKKY energy, we note that
in the screened state, the matrix elements of the adatom
spin S are proportional to the matrix elements of the
effective adatom spin Seff . As a consequence of the pro-
jection theorem, the constant of proportionality depends
only on the magnitude of the effective spin Seff defined
in Eq. (2), so that we can replace

S→ cSeff (B7)

in the RKKY interaction,

S1 · Ĵ · S2 → c1c2Seff,1 · Ĵ · Seff,2. (B8)

The constant cj is equal to unity if the monomer is in
the unscreened state with Seff = S and cj = 1 + 1

2S+1 if

the monomer is in the screened state with Seff = S − 1
2 .

In computing the RKKY coupling, we can then work
with the effective adatom spin provided that we use the
renormalized RKKY coupling c1c2Ĵ .

It remains to compute c in the screened state. The
projection theorem gives

〈Szeff|S |(Szeff)′〉 =
〈Szeff|S · Seff |Szeff〉
(S − 1

2 )(S + 1
2 )
〈Szeff|Seff |(Szeff)′〉 ,

(B9)

where |Szeff〉 denotes the projections of the effective spin
Seff for Seff = S − 1

2 . Since S · Seff = (S2
eff + S2 − s2)/2,

the prefactor can be evaluated to give

〈Szeff|S |(Szeff)′〉 =

(
1 +

1

2S + 1

)
〈Szeff|Seff |(Szeff)′〉

(B10)

as advertised above.

4. Crossover between Ising and Heisenberg
exchange

As the ratio Kz/K⊥ increases, the phase diagrams
should become more and more classical. We probe this
crossover in the limit of large S by calculating how the
phase boundaries and crossover lines in Fig. 5 are mod-
ified when Kz/K⊥ is different from unity. We focus on
dominantly longitudinal exchange coupling, Kz/K⊥ > 1,
so that the screened monomers have maximal spin pro-
jection Szeff = ±(S − 1

2 ). For simplicity, we assume
Kz −K⊥ � t, |J | and work to leading order in the limit
S � 1, which is expected to be most classical.

First consider ferromagnetic RKKY coupling, for
which we find the RKKY energies

ERKKY ' J


S2 Sztot = ±2S,

S
(
S − d2

−
)

Sztot = ±(2S − 1
2 ),(

S − d2
−
)2

Sztot = ±(2S − 1).

(B11)

Here, d− = d−(S − 1
2 ) is given by Eq. (B6) with D = 0,

which gives d2
− ' K2

⊥/(2SK
2
z ) for large S. By equating

energies, we find that all three phase boundaries on the
ferromagnetic side of the phase diagram follow

EYSR ' JSd2
− '

J

2

K2
⊥

K2
z

. (B12)

Thus, the phase boundary becomes classical only in
the limit K⊥ � Kz. This is in contrast to spin− 1

2
dimers, for which the classical behavior requires the even
stronger condition K⊥ � t, J . For antiferromagnetic
RKKY coupling, the unscreened dimer gains RKKY en-
ergy −JS(S + 1), compared to −J(S − d2

−)2 for the
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Figure 12. Phase diagrams for a spin- 3
2

dimer with transverse (xy) couplings K⊥ and J⊥, easy-axis anisotropy D, and DM

interaction M , see Sec. III C, in the intermediate regime S|D| � K⊥ . 4S3|D|. (a) M = 0. Note that in contrast to Fig. 10(b)
transverse RKKY coupling stabilizes the doubly-screened dimer as the energy balance inverts for K⊥ . 4S4|D|. (b) M = 3t. In
contrast to Fig. 10(e) a singly-screened phase (white) arises. This requires K⊥ . 4S3|D|, see App. B 5. Parameters: ∆ = 200t,
V = 2∆, D = −15t.

doubly-screened dimer. This gives a crossover line

EYSR ' −JS
(

1

2
+ d2
−

)
' −JS/2 (B13)

in the limit of large S. Thus, for Heisenberg RKKY
interaction, the slope of the crossover line is indepen-
dent of the anisotropy of the exchange coupling. One
finds classical behavior only when Jz � J⊥ in addition
to Kz � K⊥.

5. DM interaction

We complement the semiclassical argument for the sta-
bilization of the singly-screened phase due to DM interac-
tions in Sec. III C by a quantum-mechanical calculation.
To this end, we estimate the energy gain due to the DM
interaction in the various phases at small J⊥.

First consider integer S, so that unscreened monomers
have Szeff = ±S and screened monomers Szeff = ± 1

2 . In
the unscreened phase, the DM interaction M(Sz1S

x
2 −

Sx1S
z
2 ) lowers the energy only in quadratic order in

M . In the doubly-screened phase, the DM interaction
M(Sz1S

x
2 − Sx1Sz2 ) couples dimer states with Sztot = ±1

(parallel monomer spins) to states with Sztot = 0 (an-
tiparallel monomer spins). The corresponding matrix el-

ements involve

〈1
2
,

1

2
|Sz1Sx2 |

1

2
,−1

2
〉 =

1

4

√
S(S + 1) ∼ S. (B14)

These results should be contrasted with the fact that in
the partially-screened phase, the DM interaction couples
monomer states with Sztot = ±(S + 1

2 ) to states with

Sztot = ±(S − 1
2 ), with corresponding matrix elements

〈S, 1

2
|Sz1Sx2 |S,−

1

2
〉 =

1

2
S
√
S(S + 1) ∼ S2. (B15)

Thus, the gain in DM energy scales as MS2 in the singly-
screened phase, compared to MS for the doubly-screened
phase and a yet smaller result in the unscreened phase.
This explains the emergence of the odd-parity phase due
to DM interactions in Figs. 10(d) and (f) for integer spin.

The situation is more subtle for half-integer S. Now,
the screened monomers have Szeff = 0. Thus, the
DM interaction only couples to excited states involv-
ing monomer energies ∼ |D| (for unscreened monomers)
or ∼ K⊥ (for screened monomers). Correspondingly,
the gain in DM energy approximately vanishes in the
doubly-screened phase and equals −M2S2/2|D| in the
unscreened phase. This should be compared to a gain
in DM energy of −2M2S5/K⊥ in the singly-screened
phase. Thus, there is no singly-screened phase when
the exchange coupling K⊥ dominates over the other en-
ergy scales, as is the case in Fig. 10(e). If, however,
4S3|D| & K⊥ � S|D|, a singly screened phase forms at
small J⊥, as shown in Fig. 12(b).
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[38] C. Rubio-Verdú, J. Zald́ıvar, R. Zitko, and J. I. Pascual,
Phys. Rev. Lett. 126, 017001 (2021).

[39] A. Kamlapure, L. Cornils, R. Zitko, M. Valentyuk,
R. Mozara, S. Pradhan, J. Fransson, A. I. Licht-
enstein, J. Wiebe, and R. Wiesendanger, (2019),
arXiv:1911.03794.

[40] A. Odobesko, D. Di Sante, A. Kowalski, S. Wilfert,
F. Friedrich, R. Thomale, G. Sangiovanni, and M. Bode,
Phys. Rev. B 102, 174504 (2020).

[41] C. F. Hirjibehedin, C.-Y. Lin, A. F. Otte, M. Ternes,
C. P. Lutz, B. A. Jones, and A. J. Heinrich, Science 317,
1199 (2007).

[42] N. Tsukahara, K.-i. Noto, M. Ohara, S. Shiraki, N. Tak-
agi, Y. Takata, J. Miyawaki, M. Taguchi, A. Chainani,
S. Shin, and M. Kawai, Phys. Rev. Lett. 102, 167203
(2009).

[43] B. W. Heinrich, L. Braun, J. I. Pascual, and K. J. Franke,
Nat. Phys. 9, 765 (2013).

[44] S. Kezilebieke, R. Zitko, M. Dvorak, T. Ojanen, and
P. Liljeroth, Nano Lett. 19, 4614 (2019).

[45] R. Zitko, O. Bodensiek, and T. Pruschke, Phys. Rev. B
83 (2011).

[46] N. Y. Yao, C. P. Moca, I. Weymann, J. D. Sau, M. D.
Lukin, E. A. Demler, and G. Zaránd, Phys. Rev. B 90,
241108 (2014).

[47] R. Allub, C. Wiecko, and B. Alascio, Phys. Rev. B 23,
1122 (1981).

[48] G. Kirs̆anskas, M. Goldstein, K. Flensberg, L. I. Glaz-
man, and J. Paaske, Phys. Rev. B 92, 235422 (2015).

[49] K. Grove-Rasmussen, G. Steffensen, A. Jellinggaard,
M. H. Madsen, R. Zitko, J. Paaske, and J. Nygard, Nat.
Commun. 9 (2018).

[50] J. C. Estrada Saldana, A. Vekris, R. Zitko, G. Stef-
fensen, P. Krogstrup, J. Paaske, K. Grove-Rasmussen,
and J. Nyg̊ard, Phys. Rev. B 102, 195143 (2020).

[51] F. von Oppen and K. J. Franke, Phys. Rev. B 103,
205424 (2021).

[52] A. Sakurai, Prog. Theor. Phys. 44, 1472 (1970).
[53] A. F. Otte, M. Ternes, K. von Bergmann, S. Loth,

H. Brune, C. P. Lutz, C. F. Hirjibehedin, and A. J. Hein-
rich, Nat. Phys. 4, 847 (2008).

[54] Yao et al. [46] assumed a particle-hole symmetric sub-
strate which gives rise to a level crossing between the
local-singlet and molecular-singlet states. As we do not
assume this additional symmetry, we observe the more
generic avoided crossing.

[55] We note that the energy balance inverts, when K⊥ .
|D|S4. Corresponding phase diagrams are included and
discussed in App. B 5.

[56] A. Mishra, P. Simon, T. Hyart, and M. Trif, PRX Quan-
tum 2, 040347 (2021).

[57] L. Pavesic and R. Zitko, Phys. Rev. B 105, 075129
(2022).

https://doi.org/10.7498/aps.21.75
https://doi.org/10.1143/PTP.40.435
http://jetpletters.ru/ps/1658/article_25295.shtml
https://doi.org/10.1126/science.275.5307.1767
https://doi.org/10.1103/PhysRevLett.100.226801
https://doi.org/10.1103/PhysRevLett.100.226801
https://doi.org/10.1126/science.1202204
https://doi.org/10.1126/science.1202204
https://doi.org/10.1103/RevModPhys.78.373
https://doi.org/10.1103/RevModPhys.78.373
https://doi.org/10.1016/j.progsurf.2018.01.001
https://doi.org/10.1016/j.progsurf.2018.01.001
https://doi.org/10.1103/PhysRevLett.120.156803
https://doi.org/10.1103/PhysRevLett.120.167001
https://doi.org/10.1021/acs.nanolett.7b05050
https://doi.org/10.1038/s41467-021-22261-6
https://doi.org/10.1038/s41467-021-22261-6
https://doi.org/10.1073/pnas.2024837118
https://doi.org/10.1073/pnas.2024837118
https://doi.org/10.1038/s41467-018-05701-8
https://www.nature.com/articles/s41467-021-26802-x
https://arxiv.org/abs/2107.06361
https://doi.org/10.1038/s41567-020-0971-0
https://doi.org/10.1103/PhysRev.96.99
https://doi.org/10.1103/PhysRev.106.893
https://doi.org/10.1103/PhysRev.116.898
https://doi.org/https://doi.org/10.1016/0022-3697(58)90076-3
https://doi.org/10.1103/PhysRev.120.91
https://doi.org/10.1103/PhysRevB.88.155420
https://doi.org/10.1103/PhysRevB.88.155420
https://doi.org/10.1103/PhysRevB.89.115109
https://doi.org/10.1103/PhysRevB.92.064503
https://doi.org/10.1103/PhysRevB.92.125422
https://doi.org/10.1103/PhysRevB.92.125422
https://doi.org/10.1103/PhysRevB.91.064505
https://doi.org/10.1103/PhysRevB.97.184503
https://doi.org/10.1103/PhysRevB.97.184503
https://doi.org/10.1126/science.280.5363.567
https://doi.org/10.1103/PhysRevLett.80.2893
https://doi.org/10.1103/PhysRevLett.80.2893
https://doi.org/10.1038/s41467-017-02277-7
https://doi.org/10.1103/PhysRevLett.125.256805
https://doi.org/10.1103/PhysRevLett.126.017001
https://arxiv.org/abs/1911.03794
https://doi.org/10.1103/PhysRevB.102.174504
https://doi.org/10.1126/science.1146110
https://doi.org/10.1126/science.1146110
https://doi.org/10.1103/PhysRevLett.102.167203
https://doi.org/10.1103/PhysRevLett.102.167203
https://doi.org/10.1038/nphys2794
https://doi.org/10.1021/acs.nanolett.9b01583
http://dx.doi.org/10.1103/PhysRevB.83.054512
http://dx.doi.org/10.1103/PhysRevB.83.054512
https://doi.org/10.1103/PhysRevB.90.241108
https://doi.org/10.1103/PhysRevB.90.241108
https://doi.org/10.1103/PhysRevB.23.1122
https://doi.org/10.1103/PhysRevB.23.1122
https://doi.org/10.1103/PhysRevB.92.235422
http://dx.doi.org/10.1038/s41467-018-04683-x
http://dx.doi.org/10.1038/s41467-018-04683-x
https://doi.org/10.1103/PhysRevB.103.205424
https://doi.org/10.1103/PhysRevB.103.205424
https://doi.org/10.1143/PTP.44.1472
https://doi.org/10.1038/nphys1072
https://doi.org/10.1103/PRXQuantum.2.040347
https://doi.org/10.1103/PRXQuantum.2.040347
https://doi.org/10.1103/PhysRevB.105.075129
https://doi.org/10.1103/PhysRevB.105.075129

	Preprint
	2203.15011
	Quantum Yu-Shiba-Rusinov dimers
	Abstract
	I Introduction
	II Spin-12 dimers
	A Monomers and screening
	B Dimer phase diagrams
	C Dimer excitation spectra

	III Higher spins
	A Isotropic RKKY coupling
	B Single-ion anisotropy
	1 Easy-axis anisotropy
	2 Easy-plane anisotropy

	C Anisotropy and Dzyaloshinsky-Moriya interactions

	IV Conclusions
	 Acknowledgments
	A Spin-12 adatoms
	1 Spin-12 monomer
	2 Spin-12 dimer

	B Higher-spin adatoms
	1 Monomers
	2 Phase diagrams at small J
	3 Effective RKKY coupling
	4 Crossover between Ising and Heisenberg exchange
	5 DM interaction

	 References



