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Abstract: This paper aims to provide the smart grid research community with an open and accessible
general mathematical framework to develop and implement optimal flexibility mechanisms in large-
scale network applications. The motivation of this paper is twofold. On the one hand, flexibility
mechanisms are currently a hot topic of research, which is aimed to mitigate variation and uncertainty
of electricity demand and supply in decentralised grids with a high aggregated share of renewables.
On the other hand, a large part of such related research is performed by heuristic methods, which
are generally inefficient (such methods do not guarantee optimality) and difficult to extrapolate
for different use cases. Alternatively, this paper presents an MPC-based (model predictive control)
framework explicitly including a generic flexibility mechanism, which is easy to particularise to
specific strategies such as demand response, flexible production and energy efficiency services. The
proposed framework is benchmarked with other non-optimal control configurations to better show
the advantages it provides. The work of this paper is completed by the implementation of a generic
use case, which aims to further clarify the use of the framework and, thus, to ease its adoption by
other researchers in their specific flexibility mechanism applications.

Keywords: large-scale systems; aggregated terms; flexibility mechanisms; model predictive control;
centralised MPC; decentralised MPC

1. Introduction and Literature Review

The implementation of flexibility mechanisms in large-scale power and energy sys-
tems [1] is a paradigm of great importance for today’s industry, which has become more
widespread as systems have grown [2]. Thanks to the development and integration of such
automation and optimisation algorithms, the efficiency of the smart grids improves while
saving costs and supporting the environment.

In particular, early attempts to solve the complex problem of scheduling in the frame of
flexibility mechanisms were mostly based on heuristics, which is a methodology that does
not guarantee optimality and is difficult to generalise [3]. More recently, the researchers
have adopted approaches based on mathematical optimisation [4], which provides the
means to achieve optimality and generalisation of the solutions.

Under such an approach, researchers usually make use of linear programming (LP)
and mixed integer linear programming (MILP) that can be applied to optimise schedules
based on different criteria under different operating conditions [5]. More sophisticated ap-
proaches than LP and MILP also includes hybrid mixed-integer quadratic optimisation [6],
multi-objective mixed-binary linear programming [7], and other extensions of MILP [8].

However, despite the sophistication of such optimisation techniques and to the best
of this authors’ knowledge, most of them rely on ad hoc realisations that are particu-
larly adapted to the specific configuration of the smart grid configuration and flexibility
mechanisms under research. This fact hinders their direct extrapolation to other different
configurations and usually forces the researchers to develop new formulations from scratch.
As an alternative, this paper proposes a structured, general mathematical optimisation
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framework for the optimal and generic implementation of flexibility mechanisms that is
based on model predictive control (MPC).

Historically, MPC has been one of the most applied control algorithms for large-scale
systems within the industry [9–11]. The main reasons behind the success of such kind of
controller are its well-known robustness and reliability [12,13], since MPCs are capable of
reaching an optimal solution taking into account not only the current state of the system
but also its future behaviour throughout the use of a model of the process [14]. Indeed,
MPCs can find an adequate and optimal control behaviour even when the model is not
perfectly accurate regarding the real-world process [15].

In addition, another key characteristic of MPCs is their flexibility when modelling
large-scale systems. MPCs allow to mathematically subdivide, thanks to the use of state-
space models (such as energy hub methods [16]), large systems into smaller subsections,
usually called “nodes” [17].

Thanks to such advantages, the use of MPC for the implementation of flexibility
mechanisms have the potential to provide the researchers with an efficient and easy-
to-generalise framework for further applications. To illustrate the potential of MPC to
provide an efficient and easy-to-generalise framework for the implementation of flexibility
mechanisms, the rest of this paper is organised as follows. First, Section 2 briefly introduces
the concept of model predictive control to provide some contextualisation. Section 3
describes, in detail, the mathematical framework proposed by the authors along with
the explicit consideration of generic flexibility mechanisms. Section 4 shortly defines a
benchmarking example based on heuristics. Later, Section 5 presents a generic use case for
validating the authors’ proposed approach against the benchmarking example. Section 6
discusses the application of the proposed framework to the implementation of smart grids’
flexibility mechanisms applications. Finally, Section 7 presents the authors’ conclusions
about the results achieved and insights about the upcoming works on the topic.

2. Model Predictive Control

Model predictive control (MPC) is an advanced process control method that has been
used in large-scale systems since the 1980s [18]. MPCs are widely used in the industry
since they allow to consider both the current and also the future system status in order to
satisfy the system constraints and control objectives [19]. This is achieved by minimising
an objective function, which allows defining the cost associated with the use of certain
variables throughout a prediction time horizon [20].

At each instant, the set of future control values is calculated by following the next criteria:

Minimise An objective function (also called “cost function”) in terms of actions over
the prediction horizon.

Subject to Dynamics of the system over the prediction horizon;
constraints of the system;
measurement of the initial state of the system at the beginning of the
current control instant.

Therefore, MPC is based on an iterative optimisation, as shown in Figure 1. At instant k,
the information about the current state of the system is received, and a control strategy that
minimises the cost is calculated (using a mathematical solver) for a time range from the current
instant (k) to a future instant (k + H). Specifically, a solution that emerges from the current
state and guides the system through a time range [k, k + H] is found (always complying
with objective function cost minimisation and constraints). Then, only the next step (that
corresponds to k + 1) of the control strategy is implemented. Then, when the next instant
k + 1 arrives, the process starts again.
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Figure 1. MPC scheme.

3. Proposed Approach

In the first part of this section, the mathematical framework proposed by the authors
is presented and described in depth. In addition, all the variables, constraints, matrixes,
and equations that define the optimisation problem are enunciated. The second part of
this section introduces the flexibility mechanism and details how it is integrated into the
optimisation problem.

3.1. Centralised MPC

A Centralised MPC relies on a control Agent that manages the whole large-scale
system by itself. This Agent considers the state variables, inputs, outputs, constants,
constraints, disturbances and dynamics of all the elements of the network to satisfy a
single global objective function for the entire system. Since this MPC knows every piece
of information of every node of the grid, it ensures the convergence and the optimality
(global optimum) of the solution [14].

However, some past literature [18] indicated that the disadvantages of a centralised
MPC include the difficulty of modelling the entire system and the complication of isolating
parts of the system in case one part fails.

Nevertheless, the authors have followed some methodologies that reduce the impact
of the disadvantages. First, the system has been modelled as an aggrupation of different
and independent state-space models. Accordingly, the system can be easily modelled and
the nodes can be rapidly isolated if necessary.

Figure 2 shows a large-scale system composed of N parts, also called “nodes”, where
each node has a set of inputs ui(t), state variables xi(t) and outputs yi(t).
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According to the formulation:

xi =
[
xi,1, . . . , xi,j, . . . , xi,α

]T (1)

ui =
[
ui,1, . . . , ui,j, . . . , ui,β

]T (2)
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yi =
[
yi,1, . . . , yi,j, . . . , yi,γ

]T (3)

with i being the number of nodes, α the number of states of the node, β the number of
inputs of the node and γ the number of outputs of the node.

In general, the dynamics of each node are given by the continuous, non-linear and
time-varying description:

.
xi (t) = fi(xi(t), ui(t)) (4)

yi (t) = gi(xi(t), ui(t)) (5)

without loss of generality, each node is modelled by a discrete, linear, time-invariant
description with a state-space model [21]:

xi(k + 1) = Ai·xi(k) + Bi·ui(k) (6)

yi (k) = Ci·xi(k) (7)

where:

Ai =

 ai
1,1 · · · ai

1,α
...

. . .
...

ai
α,1 · · · ai

α,α

 (8)

Bi =


bi

1,1 · · · bi
1,β

...
. . .

...
bi

β,1 · · · bi
β,β

 (9)

Ci =


ci

1,1 · · · ci
1,γ

...
. . .

...
ci

γ,1 · · · ci
γ,γ

 (10)

The local control problem for each node i is then written as:

min
x̃i(k+1),ỹi(k),ũi(k)

φlocal,i(x̃i(k + 1), ũi(k), ỹi(k)) (11)

subject to xi(k + 1 + l) = Aixi(k + l) + Biui(k + l)
yi(k + l) = Cixi(k + l)

(12)

where k is the execution or simulation instant, l is the prediction window instant and H is
the control horizon:

x̃i(k + 1) =
[

xT
i (k), . . . , xT

i (k + H)
]T

(13)

ũi(k) =
[
uT

i (k), . . . , uT
i (k + H − 1)

]T
(14)

yi(k) =
[
yT

i (k), . . . , yT
i (k + H − 1)

]T
(15)

xi(k + 1 + l), ui(k + l), yi(k + l) ∈ Ωxi , Ωui , Ωyi (16)

l = [0, 1, . . . , H − 1] (17)

k ∈ N (18)

This mathematical approach is also supported and derived from the work of other
authors [14,16,21,22]. Thanks to this mathematical description of a node, a centralised MPC
can be efficiently defined for a large-scale system.
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3.2. Introducing the Flexibility Mechanism into the Centralised MPC

As mentioned above, this paper intends to develop and validate an MPC controller
capable of working with flexibility mechanisms. A “flexibility mechanism” is the need
for several nodes in a large-scale smart grid to compensate or comply with constraints
together [23,24]. This means that a set of variables from different nodes of a smart grid
must participate together to satisfy a specific constraint.

In general, this constraint is exemplified by ensuring that the sum of the inputs of the
various nodes in the system is not greater than a specific value. For the specific application
to smart grids, such constraint would be used to ensure, for example, that the combined
electricity consumption of several houses does not exceed a value.

Specifically, a centralised MPC applied to a large-scale system of N nodes with a
flexibility mechanism can be represented as follows (Figure 3).
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Under this approach, an External Agent defines the flexibility mechanism that all the
nodes must jointly satisfy. A general flexibility mechanism is defined by an upper limit
M̃u(k), which is further explained later in this section.

The diagram includes a High-Level Agent, which implements the centralised MPC
and performs the calculation of the optimal control actions to solve the optimisation
problem. Once the optimal control actions are computed, the High-Level Agent sends the
corresponding set-points to the Low-Level Agents, which are assumed to perform the low-
level control actions (and thus, can be omitted in the high-level approach discussed herein).

This way, the control problem of a large-scale system of N interconnected nodes can
be seen as an aggregation of the local control problems plus the constraints of the flexibility
mechanisms. Its equations can be extrapolated from Equations (6)–(18) as follows:

min
x̃i(k+1),ỹi(k),ũi(k)

N

∑
i=1

φlocal,i(x̃i(k + 1), ũi(k), ỹi(k)) (19)

subject to X(k + 1 + l) = AX(k + l) + BU(k + l)

Y(k + l) = CX(k + l)

K[·]·U(k + l) ≤ M̃u(k + l)

(20)

where:

A =


A1

A2
. . .

AN

 (21)
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B =


B1

B2
. . .

BN

 (22)

C =


C1

C2
. . .

CN

 (23)

X(k + 1) =
[

xT
1 (k + 1) · · · xT

N(k + 1)
]T (24)

U(k) =
[

uT
1 (k) · · · uT

N(k)
]T (25)

Y(k) =
[

yT
1 (k) · · · yT

N(k)
]T (26)

M̃u(k + l) ∈ R+ (27)

3.3. Benchmark Example: Decentralised MPC

As highlighted in Section 1, one of the simplest and widely adopted methods to
ensure multiple nodes in a network to comply with an overall constraint is to heuristically
distribute this constraint between all the nodes of the grid. That way, each of the nodes
must independently satisfy their respective assigned part of the overall constraint. In this
paper, such a heuristic approach is formulated as a “Decentralised MPC” [25].

Under the decentralised MPC, the whole large-scale system is split into small subsys-
tems. Each of these subsystems is totally independent and ignores (there is no communi-
cation between agents) the rest of the nodes. Each one has its own MPC agent, which is
responsible for fulfilling the constraints, dynamics, and objective function of the model of
its particular subsystem [26]. Since the nodes do not communicate with each other, the
only way to fulfil the flexibility mechanisms is to distribute them heuristically among the
agents. A direct way to distribute the limits imposed by the flexibility mechanism M̃u(k) is
its equal split among the N Agents, that is, M̃u(k)/N.

It is easy to infer that, under such an approach, a global optimum is not guaranteed. A
decentralised MPC applied to a large-scale system of N nodes with a flexibility mechanism
can be represented as follows (Figure 4).
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The mathematical formulation of the benchmarking decentralised MPC is derived
from previous Equations (6)–(18), and results as follows:

min
x̃i(k+1),ỹi(k),ũi(k)

N

∑
i=1

φlocal,i(x̃i(k + 1), ũi(k), ỹi(k)) (28)

subject to xi(k + 1 + l) = Aixi(k + l) + Biui(k + l)

yi(k + l) = Cixi(k + l)

Ki[·]·ui(k + l) ≤ M̃u(k+l)
N

(29)

4. Use Case

This section presents a use case to illustrate the implementation of the proposed
formulation to a relatively simple network composed of four nodes, each of them with two
inputs (ui,1 and ui,2), two states (xi,1 and xi,2) and one output (yi,1), as depicted in Figure 5.
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4.1. Use Case for the Centralised MPC

The application of the centralised MPC to the specific use case is graphically syn-
thetised in Figure 6.
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The specific state-space models for each node are:

Node 1



[
x1,1(k + 1)
x1,2(k + 1)

]
︸ ︷︷ ︸

x1(k+1)

=

[
1 1
0 1

]
︸ ︷︷ ︸

A1

[
x1,1(k)
x1,2(k)

]
︸ ︷︷ ︸

x1(k)

+

[
−1 0
0 −1

]
︸ ︷︷ ︸

B1

[
u1,1(k)
u1,2(k)

]
︸ ︷︷ ︸

u1(k)

[y1,1(k)]︸ ︷︷ ︸
y1

=
[

1 0
]︸ ︷︷ ︸

C1

[
x1,1(k)
x1,2(k)

]
︸ ︷︷ ︸

x1(k)

(30)
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Node 2



[
x2,1(k + 1)
x2,2(k + 1)

]
︸ ︷︷ ︸

x2(k+1)

=

[
1 1
0 0.7

]
︸ ︷︷ ︸

A2

[
x2,1(k)
x2,2(k)

]
︸ ︷︷ ︸

x2(k)

+

[
−0.2 0

0 −0.2

]
︸ ︷︷ ︸

B2

[
u2,1(k)
u2,2(k)

]
︸ ︷︷ ︸

u2(k)

[y2,1(k)]︸ ︷︷ ︸
y2

=
[

1 0
]︸ ︷︷ ︸

C2

[
x2,1(k)
x2,2(k)

]
︸ ︷︷ ︸

x2(k)

(31)

Node 3



[
x3,1(k + 1)
x3,2(k + 1)

]
︸ ︷︷ ︸

x3(k+1)

=

[
1 0.9
0 0.8

]
︸ ︷︷ ︸

A3

[
x3,1(k)
x3,2(k)

]
︸ ︷︷ ︸

x3(k)

+

[
−0.8 0

0 −0.8

]
︸ ︷︷ ︸

B3

[
u3,1(k)
u3,2(k)

]
︸ ︷︷ ︸

u3(k)

[y3,1(k)]︸ ︷︷ ︸
y3

=
[

1 0
]︸ ︷︷ ︸

C3

[
x3,1(k)
x3,2(k)

]
︸ ︷︷ ︸

x3(k)

(32)

Node 4



[
x4,1(k + 1)
x4,2(k + 1)

]
︸ ︷︷ ︸

x4(k+1)

=

[
1 0.8
0 0.7

]
︸ ︷︷ ︸

A4

[
x4,1(k)
x4,2(k)

]
︸ ︷︷ ︸

x4(k)

+

[
−1.7 0

0 −1.7

]
︸ ︷︷ ︸

B4

[
u4,1(k)
u4,2(k)

]
︸ ︷︷ ︸

u4(k)

[y4,1(k)]︸ ︷︷ ︸
y4

=
[

1 0
]︸ ︷︷ ︸

C4

[
x4,1(k)
x4,2(k)

]
︸ ︷︷ ︸

x4(k)

(33)

The aggregation of the individual nodes results in the following formulation:

• Aggregated objective function:

min
x̃i(k+1), ỹi(k), ũi(k)

N
∑

i=1
φlocal,i(x̃i(k + 1), ũi(k), ỹi(k))

= min
x̃i(k+1), ỹi(k), ũi(k)

N
∑

i=1

 X(k + 1 + l)
U(k + l)
Y(k + l)

T

·Q·

 X(k + 1 + l)
U(k + l)
Y(k + l)

+ fT ·

 X(k + 1 + l)
U(k + l)
Y(k + l)

 (34)

The aggregation of the four nodes results in the following set of overall equations:

• Aggregated model:

A =


A1

A2
A3

A4

 B =


B1

B2
B3

B4

 C =


C1

C2
C3

C4


X =

[
x11 x12 x21 x22 x31 x32 x41 x42

]T

U =
[

u11 u12 u21 u22 u31 u32 u41 u42
]T

Y =
[

y11 y21 y31 y41
]T

(35)

• Flexibility mechanism:

M̃u(k + l) = 4 , ∀k, ∀l = [0, 1, . . . , H − 1]
K[·] = 11x8

(36)

• Initial condition (k = 0):

X(0) =
[

8 7 6 5 4 3 4 5
]T (37)

• Space of variables:

uij(k + l), xij(k + l + 1), yij(k + l) ≥ 0, 0, 0 (38)
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• Prediction horizon:

H = 5 (39)

4.2. Decentralised MPC Applied to the Use Case

The application of the decentralised MPC to the specific use case is graphically syn-
thetised in Figure 7.
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Under this approach, there is no aggregation and each local MPC implements the local
problem defined as follows:

• Objective function:

min
x̃i(k+1), ỹi(k), ũi(k)

φlocal,i(x̃i(k + 1), ũi(k), ỹi(k))

= min
x̃i(k+1),ỹi(k),ũi(k)

 xi(k + 1 + l)
ui(k + l)
yi(k + l)

T

·Qi·

 xi(k + 1 + l)
ui(k + l)
yi(k + l)

+ f T
i ·

 xi(k + 1 + l)
ui(k + l)
yi(k + l)

 (40)

where Qi is the matrix that contains the quadratic cost of each variable of the node, and fi
is the matrix that contains the linear cost of each variable of the node.

The use case data (Equations (30)–(33)) can be implemented in the Equations (28), (29)
and (40) in such a way that:

• Model:

Node 1→
{

A1 B1 C1
}

, x1 =

[
x11
x12

]
, u1 =

[
u11
u12

]
, y1 = [y11]

Node 2→
{

A2 B2 C2
}

, x2 =

[
x21
x22

]
, u2 =

[
u21
u22

]
, y2 = [y21]

Node 3→
{

A3 B3 C3
}

, x3 =

[
x31
x32

]
, u3 =

[
u31
u32

]
, y3 = [y31]

Node 4→
{

A4 B4 C4
}

, x4 =

[
x41
x42

]
, u4 =

[
u41
u42

]
, y4 = [y41]

(41)

• Flexibility mechanism:

M̃u(k + l) = 4 , ∀k, ∀l = [0, 1, . . . , H − 1]

Ki[·] =
[

1 1
] (42)
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• Initial conditions (k = 0):

x1(0) =
[

8 7
]T

x2(0) =
[

6 5
]T

x3(0) =
[

4 3
]T

x4(0) =
[

4 5
]T

(43)

• Space of variables:

uij(k + l), xij(k + l + 1), yij(k + l) ≥ 0, 0, 0 (44)

• Prediction horizon:
H = 5 (45)

With this, the decentralised MPC control problem is particularised for the use case.

5. Analysis of Results

Figures 8–10 show the results obtained from running the centralised MPC approach
under the four-node use case. Specifically, Figure 8 shows the solution for the u-variables
(inputs of the nodes), while Figure 9 shows the results for the y-variables (outputs of
the nodes) and Figure 10 shows the evolution of the objective function cost throughout
the simulation.
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Figure 9. Solution for y-variables of the centralised MPC.

Under this optimal solution, provided by the proposed centralised MPC, the evalua-
tion of the objective cost function is expected to decrease as quickly as possible (concretely,
Figure 10 shows that the cost reaches 0 at simulation step 42). While doing so, Figure 8
shows that the constraint related to the flexibility mechanism is always fulfilled (concretely,
the sum of the inputs is always below the maximum value 4). These trade-off results in the
optimal sequential evolution of the outputs shown in Figure 9.
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For benchmarking such an optimal solution, Figures 11–13 summarise the result of
the non-optimal decentralised MPC. Specifically, Figure 11 shows the solution for the
u-variables (inputs of the nodes), Figure 12 shows the results for the y-variables (outputs
of the nodes), and Figure 13 shows the evolution of the sum of the local objective function
costs under the decentralised MPC simulation in comparison with the aggregated objective
function cost under the centralised MPC.
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As expected, the evolution of the sum of the local objective function costs under the
non-optimal decentralised MPC is consistently higher than the objective function cost
under the optimal centralised MPC (as shown in Figure 14). Specifically, the area under the
blue line in Figure 14 (centralised MPC cost) is 3925.4, while the area under the red line in
the same figure (decentralised MPC cost) is 9205.6.
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The higher costs associated with the non-optimal approach are caused by the infra-
utilisation of the inputs by the decentralised MPC, as shown in Figure 11, where the sum
of the inputs is far from the limit allowed by the flexibility mechanism. This comparison
clearly shows the advantage of the proposed centralised MPC over heuristically-based
approaches and confirms that the automatic flexibility mechanism designed by the authors
is an optimal and efficient method to define joint constraints between several nodes in a
large-scale system.

To conclude this section, the following Table 1 summarises all the characteristics of
the algorithms that have been analysed in this document.

Table 1. Comparison between centralised MPC and decentralised MPC.

Centralised MPC Decentralised MPC
Convergence guarantee Yes Yes

Global optimality guarantee Yes No
Computational
requirements Medium (*) Low

Execution time of one instant Medium (*) Low
Response time (number of execution

instants to reach the optimum) Low High (**)

Fulfilment of flexibility targets High Medium
(*) It can be reduced with modern technologies. (**) Only guaranteed if the global optimum can be reached or if it
can be reached in an amount of time considered reasonable.

6. Extrapolation of Use Case to Energy Flexibility Mechanisms

Thus far in this document, the proposed mathematical formulation has been described
generally, so other researchers can easily extrapolate the formulation and conclusions
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achieved in this work to any kind of system. Nevertheless, the specific application of the
proposed framework to energy flexibility mechanisms is straightforward.

On the one hand, the authors recommend adopting the so-called energy hub tech-
nique [16] for constructing the models of the smart grids’ nodes. On the other hand, the
flexibility mechanism can be directly included in the formulation, as presented in Section 3.2.

Specifically, when controlling such kind of large electrical network, it is a common
practice to activate a demand response or flexibility mechanism services to ensure the
overall consumption is in line with the needs of the grid. For instance, in the event of a
consumption peak, the energy supplier asks different clients (nodes) of the network to
temporality reduce their consumption to reduce the stress over the network. This is usually
called “peak clipping”. Another example can be the “load shifting”, which consists of
incentivising the displacement of the consumption to certain hours with lower demand
favouring the equilibrium of the network, so the energy extracted from renewable sources
is maximised while the one extracted from no renewable production (gas, carbon, oil, etc.)
is not used.

7. Conclusions and Future Work

This research offers a general and effective method for automating the distribution
of aggregate constraints between nodes of a large-scale system. Although the use case
presented has been maintained as simple to allow for a straightforward analysis, the
proposed method can be extrapolated to other more complex large-scale systems without
losing effectiveness.

It was demonstrated that the designed centralised MPC achieves the optimal solution
and produces more efficient results than other methods used in the control of large-scale
systems with aggregate constraints between nodes. Effectiveness has been demonstrated
through the benchmarking with a non-optimal decentralised MPC, which prevents com-
munication between nodes and thus forces subdivisions of the flexibility mechanisms.

The flexibility mechanisms are optimally distributed across the instants of the predic-
tion window in the MPC proposed by the authors (Figure 8). The performance achieved
in this research presents promising results for industry sectors seeking to implement con-
trollers in large-scale systems. One of the main characteristics of the proposed method,
compared to traditional methods, is that it uses the advantages of today’s technology
without losing the benefits of node modelling. In this way, it is possible to reach the
desired results and distribute the constraints efficiently, without complex modelling or
mathematics, achieving the most optimal solutions.

The formulation and use case presented in this paper has been designed as generically
as possible so that other researchers can use the proposed control algorithm in any large-
scale smart grid system. Furthermore, the extrapolation of the proposed framework has
been discussed in Section 6 to ease the extrapolation to a specific case. Regarding future
work, the authors of this paper will extend the capabilities of the control solution, specifying
their use for large-scale energy systems to other use cases.
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