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Abstract. Robotic Process Automation (RPA) provides a means to
automate mundane and repetitive human tasks. Task Mining approaches
can be used to discover the actions that humans take to carry out a
particular task. A weakness of such approaches, however, is that they
cannot deal well with humans who carry out the same task differently
for different cases according to some hidden rule. The logs that are used
for Task Mining generally do not contain sufficient data to distinguish
the exact drivers behind this variability. In this paper, we propose a new
Task Mining framework that has been designed to support engineers who
wish to apply RPA to a task that is subject to variable human actions.
This framework extracts features from User Interface (UI) Logs that
are extended with a new source of data, namely screen captures. The
framework invokes Supervised Machine Learning algorithms to generate
decision models, which characterize the decisions behind variable human
actions in a machine-and-human-readable form. We evaluated the pro-
posed Task Mining framework with a set of synthetic UI Logs. Despite
the use of only relatively small logs, our results demonstrate that a high
accuracy is generally achieved.

Keywords: Robotic Process Automation · Process discovery · Task
mining · Decision model discovery

1 Introduction

Robotic Process Automation (RPA) is a software technology that facilitates the
automation of human tasks, especially when they are structured and repetitive.
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Fig. 1. Proposed framework for variability analysis through interpretable decisions
from UI Logs. The current paper focuses on steps 3 and 4.

In contrast to other automation approaches (i.e., API-based), RPA works by
closely mimicking the way humans interact with computer applications [2].

Some of the typical benefits are that the technology helps to save costs,
increases agility, and improves quality [9,18] while its level of intrusiveness is low
[33]. Due to these wide range of benefits, industry has adopted this technology
on a wide scale in recent years [10].

Most RPA projects start out by observing how human workers perform work
that is to be automated. To support this initial RPA analysis, approaches such as
Task Mining [1,31] and Robotic Process Mining [22] are highly suitable. What
all these techniques have in common is that they operate on UI Logs, i.e., a
series of timestamped events (e.g., mouse clicks and keystrokes), obtained by
monitoring and recording user interfaces.

An open issue concerning discovering the process model behind the UI Log is
to disclose the drivers behind the variations that are shown in a process model.
These variations indicate that human operators take different decisions for dif-
ferent cases, but it is generally not possible to find rules which explain how
these decisions were made. That, however, is crucial knowledge for the engineer
who aims to develop the RPA bot. A clear example occurs in the development
of a business process outsourcing operation, where it is necessary to work with
different systems that, in their turn, are virtualized. In this type of scenario, it
is difficult to understand certain operator decisions that depend specifically on
the context of the problem being addressed. Although efforts have been made to
overcome this problem, they rely on what is observable in the log [3,12,19,32].
This approach has inherent limitations since human work is sometimes based on
information that is simply not captured in the log, i.e., it only appears on the
screen. Therefore, human decision-making remains hidden in this respect and,
as a result, difficult to automate.

Against this backdrop, this paper proposes a framework to analyze the vari-
ability in human actions automatically. The framework leverages information
on the screen to detect factors that influence human decisions – an angle that
existing approaches have neglected so far.



In previous work, we proposed (1) a tool to monitor the user behavior which
generates a UI Log, including one screen capture for each event (cf. step 1 in
Fig. 1) [25], and (2) a method to analyze such logs to discover the underlying
process model (cf. step 2 in Fig. 1) [15]. This paper significantly extends these
contributions by: (1) proposing a novel approach to systematically analyze the
screen captures to extract information which is, then, incorporated into the UI
Logs (cf. step 3 in Fig. 1) using image-processing techniques [26] (e.g., Optical
Character Recognition), (2) presenting a method to discover decision models
which explain the variability that is found in the UI Log (cf. step 4 in Fig. 1)
using a Machine Learning (ML) approach, and (3) evaluating the approach with
synthetics problems of different complexity to demonstrate the efficacy and effi-
ciency of the framework.

It should be noted that industrial RPA platforms often do incorporate sophis-
ticated task mining techniques, as well as features for image processing. The
point is that these capabilities are not integrated in approaches to analyze task
variability.

The rest of the paper is organized as follows. Section 2 provides the back-
ground in topics like behavior monitoring, ML, and image processing. Section 3
introduces a synthetic business case to motivate the proposal. Section 4 elabo-
rates on the novel method to discover the decision models. Section 5 reports the
empirical evaluation performed to validate the method. Sect. 6 presents a critical
discussion. Section 7 reviews similar approaches in the literature. Finally, Sect. 8
summarizes the work and describes future research lines.

2 Background

The approach that is presented in this paper builds on behavior monitoring
techniques, process discovery, Graphical User Interface (GUI) analysis, and ML.

For behavioral monitoring, there are several industrial solutions for keylog-
ging1 that capture the interaction of a human interacting with a system. In
addition, other approaches have been proposed in academia, taking a further
step in how to automate certain stages of robotization [3,11,20,24,25]. It should
be noted that there are different formats proposed for capturing events, although
the most representative for this work is the UI Log from [15] which defines it as an
extension of the XES format—standard for event logs in Process Mining—which
incorporate attributes like the app name (i.e., the name of the app), event type
(i.e., mouse click or keystroke), click type (i.e., left, right, or middle), click coords
(i.e., position of the mouse on the screen), the keystroke (i.e., the keys that are
typed), and the screenshot (i.e., the screen capture associated to this event path).

Using a UI Log, many proposals exist for process discovery, i.e., to automati-
cally or semi-automatically discover the underlying process model that is associ-
ated with human behavior [5,6,13,15,19,23]. Moreover, these proposals include
functionalities to clean the UI Log from irrelevant information, so that noise
in the resulting process model is filtered; and to select variants/cases/activities

1 Availabe at: www.spyrix.com and bestxsoftware.com/es/.
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according to the frequency, length, and other criteria that are useful to identify
process candidates to robotize. The resulting process model may contain decision
points and separate branches for different process variants.

In the field of GUI analysis, approaches exist than can identify the GUI com-
ponents within an image [28,34]. GUI components are atomic graphical elements
with predefined functionality, displayed within a GUI of a software application
[28]. Besides locating the element on the screen (i.e., calculating the bound-
ing boxes), they can classify them by the type of element, e.g., image, button,
or text. Nevertheless, when dealing with texts, Optical Character Recognition
(OCR) techniques are more appropriate. For instance, KerasOCR [17] allows
extracting words and their bounding boxes from screen captures. Such an image-
based technique allows for extracting the content and structure of an image in
a computer-readable way (cf. Fig. 2).

In the ML domain, supervised algorithms exist that focus on finding rules
to explain a given dataset, e.g., extracting a decision tree [27]. Datasets are
commonly represented in tabular form: each column is an input variable or a
label (i.e., what needs to be predicted or classified), and each row is a member
of the dataset. In a classification problem, the algorithm tries to find patterns in
the input variables that help to explain the labels. Decision trees are an example
of classification algorithms that, besides just providing a classification, do so in
a human-interpretable way [14].

3 Running Example

This section describes an artificial business case to explain and motivate the
problem addressed in this paper. Figure 3 depicts an excerpt of the elementary
user interfaces for registering a customer in the context of a telecom company.

(‘TextView[attached]’, array([
[ 40., 329.], [121., 329.], 
[121., 346.], [ 40., 346.]])

(‘ButtonView', array([
[ 30., 30.], [115., 30.], 
[115., 60.], [ 30., 60.]])

(‘ButtonView', array([
[ 30., 30.], [115., 30.], 
[115., 60.], [ 30., 60.]])

(‘ImageView', array([
[ 120., 330.], [190., 330.], 
[190., 360.], [ 120., 360.]])

Fig. 2. Example of GUI analysis applied to a sample screen capture. Extracted buttons
are in blue, images are in green, and texts are in red. To the sake of readability, some
extracted coordinate are not shown. (Color figure online)



In this registration process, the human operator checks her email inbox and
reviews the pending emails regarding the registration tasks. After opening the
email, the operator has to validate that all provided information related to the
new customer is correct. More precisely, the customer ID card is expected to be
included as an attachment. If it is indeed included (cf. Fig. 3a), all the customer
data has to be registered into a CRM system (cf. Fig. 3b). Otherwise, in case the
ID card is missing (cf. Fig. 3c), an email has to be sent to the customer requesting
such data (cf. Fig. 3d). Regardless which of these two situations occurred (i.e.,
Variant 1 or Variant 2 of Fig. 3), the operator returns to their inbox to process
the next mail. This process must be repeated several times during the day to
process the entire queue of emails in the operator’s inbox.

Variant 1

Variant 2
a) Open email b) Register customer in CRM

c) Open email d) Reply to customer

Send

Fig. 3. Mockups of motivating example

Fig. 4. Excerpt of a UI Log obtained form a keylogger.



Fig. 5. Process model discovered from the UI Log.

Task Mining techniques can be applied to discover the operator process model
[3,15,22]. In essence, these techniques start by monitoring the operator behavior
(e.g., with a key logger [25]) and, then, analyze it to extract the relevant activities
and cases using image-similarity comparison [15]. This results in a UI Log (cf.
Fig. 4) which includes, at a minimum, the time when each event is produced,
the activityId, the caseId, the type of event (i.e., mouse click or keystroke),
the text which is introduced, the name of the application where the event has
occurred, and a screen capture taken just before the event. The process model
discovered from such a log would be similar to the one shown in Fig. 5, which
correctly depicts that it contains a single decision point after activity “B” (i.e.,
after seeing the email), where the process branches off into two different variants.

Despite the simplicity of this process, disclosing the condition which rules the
decision point of this process is challenging, i.e., why is it that the operator choses
for decision Id1 or Id2? Existing techniques are unable to find a meaningful
correlation between the events and the decision since it is missing from the UI
Log – it only appears in the screen captures.

4 Decision Discovery Framework

It is clearly challenging to automatically identify the factors behind variable
human behavior on the basis of a UI Log that lacks certain key information.
The proposed framework includes a first step to enrich the UI Log with fea-
tures extracted from the screen captures, recorded along with the UI Log (cf.
Sect. 4.1). The second step that is carried out by the framework leverages this
new information, which is derived from the screen captures, to deliver a decision
model. In our opinion, it is crucial that such a model can be interpreted by a
machine and also be understood by a human (cf Sect. 4.2).

4.1 Feature Extraction

This step transforms the screen captures that are taken for each event in the
UI Log into structured information (i.e., features), which can be incorporated
back into the log. Since a variety of features can be extracted from a screen
capture, the current framework offers a common interface for these extractors (cf.
Definition 1) which can be implemented accordingly to the project necessities.



Definition 1. A Feature Extractor is a tuple <Name, Function> that rep-
resents a software component named Name, with a Function that receives an
image and returns a list of pairs <key, value>, where the key is the name of a
feature that presents a value in the given image.

Once implemented, the framework applies these feature extractors to each
event in the UI Log, i.e., the Function of each extractor is applied to the screen
capture of each event. If the feature extracted is new in the UI Log (i.e., none
of the columns of the UI Log have the same name as the key), a new column
is appended to the log, and the value is assigned to this event. The rest of the
log events have an empty value for this new column. Otherwise, if the feature
already exists, the value is assigned to this event at the existing column key.

To illustrate this process, we will describe the UI Element Occurrence
extractor in more detail. It extracts the occurrences of UI elements in the sense
that the output of its Function contains as many keys as different UI elements
are found in the screen capture. The value associated with each key is a number
greater than 0, which expresses the number of occurrences of this key in the
screen capture. The extractor includes the detection and classification of each
component to determine which type of UI Element they belong to. For this
purpose, each screen capture is processed in three phases by the Function:

1. To detect the UI elements, image-processing techniques are applied to find
the elements within the image. In this phase, edge detection algorithms can
be used, such as Canny’s algorithm [7], which we applied. Each detected UI
element is then cropped to deal with these separately in the next phase.

2. To classify the detected UI elements according to the type of GUI component
they belong to, an ML model—previously trained for conducting such a task—
is used.2 Specifically, we adapted the convolutional neural network proposed
in Moran’s work [28], which is able to detect 14 different types of UI elements.

3. To return the number of occurrences for each type of UI element, the detected
UI elements in the first phase are first grouped, according to the class deter-
mined during the second phase, and then summed.

Consequently, after applying the UI Element Occurrence extractor, 14
columns—one for each type of UI element—are appended to the resulting UI
Log. They are then available, along with the additional columns from other
extractors.

Running Example. When considering the screen capture in Fig. 3.a, which relates
to our running example, 2 image buttons can be observed (i.e., the ‘envelope’
for returning to the email home page, and the ‘arrow’ for reply), as well as 3
texts. Therefore, the returning list of the Function of the UI Element Occur-
rence extractor is: {<# ImageButton, 2>,<# TextV iew, 3>}. This results in
an UI Log that includes the # ImageButton column, which gets value 2, and the
# TextView column, which gets value 3. The values are shown in Fig. 6 under
the header ‘Occurrence Extractor info’.
2 We trained the model with this dataset: https://doi.org/10.5281/zenodo.2530277.

https://doi.org/10.5281/zenodo.2530277


Fig. 6. A sample UI Log including features (columns) extracted from the screen cap-
tures.

Fig. 7. Proposed algorithm for generating labeled datasets

4.2 Decision Model Discovery

Once the UI Log is enriched with the extracted features, the decision model
discovery takes place. To enable this, first a labeled dataset is generated for
each decision point in the process model. Secondly, a classification algorithm is
applied to disclose the rules existing in the dataset, which will help to explain
the decision in the process model. In the remainder of this section, each of these
steps will be explained.

Generating the Labeled Dataset. This step processes the enriched UI Log
to convert it into a labeled dataset usable by supervised ML algorithms (e.g.,
classification trees) in the next step. Specifically, one dataset is created for each
decision point that appears in the process model.

Given a decision point, the objective is to determine which branch is chosen,
providing a detailed explanation. Therefore, the label of the resulting dataset is
the branch of the decision point. With this aim, Fig. 7 illustrates, in an activity
diagram, the way of creating an appropriate dataset for each decision point that
appears in a process model.

First, it receives both the UI Log and the discovered process model and
returns a map where the keys are the IDs of the decision point in the process
model, and the values are the dataset extracted to each one. The algorithm starts
by flattening the UI Log (cf. step 1 in Fig. 7). This operation is done by putting
all UI Log events of each case in the same row of the dataset (i.e., the dataset will



contain one row for each different case in the UI Log). In this way, the dataset
will include columns for an ID (i.e., auto-incremental number starting in 0), the
caseID, a TimeStampEnd (i.e., corresponding to the timestamp of the last event
of this case), and a TimeStampStart (i.e., corresponding to the timestamp of the
first event of this case), and the rest of the UI Log attributes for each activity of
this case (i.e., event type, click coordinates, each of the extracted features, etc.).
Regarding these latter attributes, the column names are the attribute names
prefixing its activityID. For instance, the EventType attribute of activity A
will be stored as: EventType A.

Then, for each decision point in the process model, the columns of the dataset
are filtered in such a way that only the columns related to the activities that
precede that decision point are kept (cf. step 2 in Fig. 7). Note that the columns
of the events after the decision point relate to events in the future, so they
should not be considered when discovering the decision model of that particular
decision. Aferwards, the label column is added to the dataset. For each row (i.e.,
each process case), its value is the branch which is taken for this decision point,
(cf. step 3 in Fig. 7).

Discovering the Decision Model with Classification Algorithms. As
we explained, the labeled dataset generated at this point will be used to train
a supervised ML model. This model will classify the label column based on
the rest of the dataset columns. There is a wide range of algorithms that can
be used for this purpose. For our framework, we use decision trees since both
humans and machines can easily interpret them. This kind of model expresses
the discovered rules of the classification in the form of a tree: the tree nodes are
a column of the dataset (i.e., UI Log attributes) while the tree edges are non-
overlapping conditions as evaluated over the node. Our framework implements
four common used algorithms to construct decision trees: CART [8], ID3 [29],
C4.5 [30] and CHAID [16]. Although these techniques are known to be similar,
they are implemented to explore their behavior in this context.

To make the tree even more understable for humans, the framework takes
the discovered features and rules to highlight them into the associated screen
captures, in this way linking them with their visual information.

Fig. 8. Dataset extracted from the UI Log of Fig. 4



Fig. 9. Decision Tree for the decision point in the process model of Fig. 5

Running Example. In our running example, only one decision point is discovered
from the UI Log (cf. Fig. 5). Therefore, only one dataset is generated (cf. Fig. 8).
The dataset contains a series of columns that describe the attributes for each
case and a label column that indicates the decision which is made at the decision
point. The decision tree that is obtained when trained on this dataset is shown
in Fig. 9. As can be inferred from the framed columns in Fig. 8, the decision Id2
is made when there is nothing in column Attached B ; otherwise, the decision Id1
is taken. When looking at the screen capture of activity B (cf. Fig. 3a and 3c),
we can see that these actions correspond to the absence or presence of the word
“Attachment” in the email, respectively. Note that the classification algorithm
provides one tree, although other alternatives exist. For instance, the number of
ImageView UI elements in activity B explains the behavior too.

5 Empirical Evaluation

Purpose: This empirical evaluation aims to analyze our proposal to discover
the conditions that drive decisions from a UI Log. Particularly, it focuses on
situations where the conditions depend on information that does appear on the
screen but not in the log itself.

Objects: The evaluation is based on a set of synthetic problems, which resem-
ble realistic use cases in the administrative domain. More precisely, 3 different
processes (P ) are created, each of them with a different level of complexity. Com-
plexity is measured in terms of the number of activities, the number of variants
to execute the process, and the number of visual features that affect the decision
to choose between variants. The processes are:

P1 Client creation. A process with 5 activities and 2 variants. The single deci-
sion in this process is made based on the existence of an attachment in the
reception email.

P2 Client validation. A process with 7 activities and 2 variants. The decision is
made based on the user’s response to a query.

P3 Client deletion. A process with 7 activities and 4 variants. The decisions are
made based on two conditions: (1) the existence of pending invoices and (2)
the existence of an attachment to justify the payment of the invoices.

These processes all contain a single decision point, although the one in P3 is
rather complex. All processes include (1) synthetic screen captures for their



activities and (2) a sample event log with a single instance for each variant. To
generate the objects for the evaluation, we generate event logs of different sizes
(|L|) for each of these processes by deriving events from the sample event log.
We consider log sizes in the range of {10, 25, 50, 100} events. Note that we
consider complete instances in the log and, thus, we remove the last instance if
it goes beyond |L|. Some of these logs are generated with a balanced number of
instances, while others are unbalanced (B?) in the sense that more than a 20%
frequency difference exists between the most frequent and less frequent variants.
To average the result over a collection of problems, 30 instances are randomly
generated for each tuple <P, |L|, B?>.3

Independent Variables: The independent variables of this empirical evalua-
tion are (1) the process (i.e., P ), (2) the log size (i.e., |L|), and (3) whether the
log is balanced or not (i.e., B?).

Response Variables: The efficiency and efficacy of the approach are evaluated
in terms of: (1) the average time spent on each of the framework phases, i.e.,
feature extraction (tFE) and decision model discovery (tDD), (2) the number
of columns included in the log after the feature extraction phase (#CL), (3) the
number of columns included in the dataset after the flattening phase (#CD),
and (4) the average accuracy of the discovered model (Ac).

Evaluation Design: For each of the 3 processes, 30 instances are randomly
generated by varying the graphical look&feel of the screen captures, includ-
ing/excluding some UI elements that do not affect the process, as well as replac-
ing texts. For each of these 90 instances, 8 different logs are generated consid-
ering the different values of |L| and B?. To do this, the instances of the sample
event log of the process are used as templates to create similar ones by applying
changes in the events while keeping their logic (e.g., a mouse click at a random
place inside the same button). The framework is then executed for each of the
720 objects and the response values are calculated considering the average values
for the 30 instances. To measure accuracy, we record 100% if the model correctly
identifies the condition and 0% otherwise.

Execution Environment: The evaluation was run on a machine with Windows
10, an Intel i9-7900X processor at 3.30 GHz, 64 Gb of RAM, and 10 cores.

Evaluation Results and Data Analysis: Table 1 shows the experiment
results. For each problem, identified by P , B?, and |L|, the average values for the
30 scenarios are shown for each response variable. Some of them are calculated
for the feature extraction phase (i.e., tFE and #CL,) and the others are calcu-
lated for the decision model discovery (i.e., tDD and Ac for each algorithm).

Regarding the feature extraction phase, we can observe that it is a time-
consuming task (i.e., tFE), which takes longer as the number of activities of the
process increase (i.e., P ) and the size of the log (i.e., |L|) grows. This behavior is
expected since the extraction algorithms need to be applied to each screen cap-
ture that exists in the log before the decision point. Nonetheless, the number of
3 The set of problems are available at: https://doi.org/10.5281/zenodo.5734323.
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Table 1. Experiment results

P B? |L| tFEa #CL #CD tDDCARTb tDDID3b tDDC4.5b tDDCHAIDb AcCARTc AcID3c AcC4.5c AcCHAIDc

P1 Yes 10 108 25 39 323 339 330 335 12.9 12.9 12.9 12.9

25 258 25 39 332 361 356 350 83.9 83.9 83.9 83.9

50 497 25 39 352 394 393 379 100.0 100.0 100.0 100.0

100 1,029 25 39 334 360 358 352 100.0 100.0 100.0 100.0

No 10 112 25 39 324 340 329 334 12.9 12.9 12.9 12.9

25 273 25 39 330 354 351 344 83.9 83.9 83.9 83.9

50 501 25 39 350 390 388 376 96.8 96.8 96.8 96.8

100 977 25 39 331 359 358 349 100.0 100.0 100.0 100.0

P2 Yes 10 79 25 79 704 716 708 701 0.0 0.0 0.0 0.0

25 137 25 79 399 421 404 819 31.0 31.0 31.0 31.0

50 319 25 79 1,323 1,572 1,405 2,102 93.1 93.1 93.1 93.1

100 588 25 79 3,495 3,781 3,593 3,531 100.0 100.0 100.0 100.0

No 10 70 25 79 308 321 307 316 0.0 0.0 0.0 0.0

25 158 25 79 563 597 570 583 6.9 6.9 6.9 6.9

50 363 25 79 1,787 1,853 2,175 2,463 75.9 75.9 75.9 75.9

100 659 25 79 4,627 4,584 3,737 4,764 100.0 100.0 100.0 100.0

P3 Yes 10 51 25 79 1,086 1,090 1,096 1,090 0.0 0.0 0.0 0.0

25 189 25 79 1,155 1,101 1,058 1,014 0.0 0.0 0.0 0.0

50 333 25 79 1,818 2,200 1,981 2,748 32.3 48.4 32.3 48.4

100 724 25 79 2,848 3,039 3,008 5,950 100.0 100.0 96.8 100.0

No 10 51 25 79 1,085 1,102 1,088 1,087 0.0 0.0 0.0 0.0

25 219 25 79 1,378 1,094 1,489 1,082 0.0 0.0 0.0 0.0

50 394 25 79 1,735 2,359 1,893 2,284 19.4 45.2 19.4 45.2

100 737 25 79 5,473 5,626 3,762 5,908 77.4 100.0 93.6 100.0
aExpressed in seconds; bExpressed in milliseconds; cExpressed in %.

features that are extracted and included in the UI Log (i.e., #CL) only depends
on the extractor itself that, for this experiment, the UI Element Occurrence
extractor (cf. Sect. 4.1) obtains a fixed number of features for each screenshot,
i.e., 14—one for each UI element. The other 11 columns are the standard ones
defined for the UI Log.

Regarding the decision model discovery phase, the number of columns
included in the dataset for training the classification algorithm (i.e., #CD)
depends on the number of activities before the decision point. More precisely,
P1 has 2 activities, while P2 and P3 both have 4 activities. In this phase, it
can be observed that the time for decision model discovery, which is expressed
in ms (i.e., tDD), is negligible in comparison with tFE, which is expressed in s.
Moreover, tDD depends on both |L|, since the flattener algorithm needs to run
over all the events, and #CD, since the tree’s training runs over the entries in
the dataset. In turns, tDD seems not to be influenced by the algorithm. When
analyzing the accuracy of the classification tree (i.e., Ac), it is clear that the
framework has a better performance with higher values of |L| since there are
more entries in the dataset. However, as expected, the accuracy decreases when
the process becomes more complex (i.e., P ): more columns in the dataset are
not relevant for the decision, i.e., can be considered noise. In addition, for P3,
we observe more differences between the performance of the algorithms while
in P2 and P3 all the algorithms present the same behavior. This situation may
be caused since P3 decision depends on more than one feature. Furthermore,



having more possible variants (i.e., 4) may affect the performance of the algo-
rithms because fewer rows are obtained for each variant to train the decision
models. Unlike the previous response variables, Ac is influenced by whether the
log is balanced or not (i.e., B?). This behavior can be expected since an unbal-
anced dataset offers fewer opportunities to distinguish between data and noise.
It is important to note that the accuracy is 100% for most cases with |L| = 100,
which is a reasonably small number for this kind of logs. This provides the insight
that the framework can generally explain the variability within these processes.
This result is very encouraging, particularly when considering the small log sizes
included in this experimental set-up.

6 Discussion

Discovering why decisions are made in a process is of utmost importance when
the aim is to analyze the variability or even to automate such decisions. The
framework proposed in this paper was motivated by the fact that existing Task
Mining approaches fail to leverage screen captures when mining UI Logs. In
general, alternatives exist to make a transparent analysis of the UI, e.g., navi-
gating the DOM tree or accessing Windows GUI API. Yet, we discovered that
considering screen captures is necessary for specific situations like in Business
Process Outsourcing scenarios [15], where access to the front-end of the informa-
tion systems is usually secured or virtualized by systems like Citrix. Although
combining both sources of information—transparent analysis of UIs and screen
captures—could bring benefits when they are available, this proposal focuses on
these situations based exclusively on screenshots proposing a framework that
can support a process analyst to (1) accelerate the analysis phase since the
automatically-generated decision models include rules linked to the screen cap-
tures, which are readable by the analyst, (2) accelerate the development phase
since the rules are in a computer-readable format too, and (3) unleash candidates
to automate that would be discarded otherwise because no rule could be found
to describe the human variability in UI Log. Our experimental evaluation, as
conducted with synthetic problems of a variety of complexities, showed positive
results. It is noteworthy that these problems use logs that includes one event
for each activity while, in practice, there might be more than one events for a
single activity, i.e., several events performed over the same screen. However, the
approach has not been tested on real UI Logs nor real screen captures; these are
clearly limitations to our work.

There are further limitations that can be observed. Specifically, the feature
extraction phase highly relies on the image-processing techniques (i.e., the OCR
and GUI analysis), which may occasionally present wrong classifications or detec-
tions. Moreover, several alternatives exist for these techniques, and they evolve
fast due to highly active communities. Nonetheless, the proposed framework is
not limited to any of these techniques. After all, it defines a high-level interface
to incorporate improved techniques easily. In addition, it is noteworthy that the
number of extracted features is directly related to the number of columns in the



dataset to be used to train the classifier. Although the aim is to not overlook
any relevant feature from the screen captures, non-relevant features may just
produce noise that would negatively affect its performance unless more entries
are included in the dataset (i.e., longer UI Logs). Fortunately, if the number of
dataset columns increases, the evaluation has demonstrated that the framework
keeps a reasonably good performance if the size of the log increases as well.

Finally, the validation has intentionally considered problems that rely on the
screen captures’ content to make the decision. This was done to ensure that the
evaluation covers the two phases of the framework. However, the classification
algorithm may take into account all the information contained in the UI Log,
which makes it compatible with existing related approaches, e.g., SmartRPA [4],
which is very suitable when screen captures are not required.

7 Related Work

There exist other proposals in the literature that can be applied for decision
model discovery. Rozinat and Van der Aalst [32] use decision trees to analyze
choices made based on data dependencies that affect the routing of a case. How-
ever, this approach does not consider information on the screen nor provides the
possibility of showing graphically to a non-expert user why a decision was made.

Agostinelli et al. [3] and Leno et al. [22] cover the complete RPA lifecy-
cle, from event capture to the automatic generation of scripts. Data capture is
based on an Action Logger that captures the information through plugins [23] or
separately within the system [3]. Furthermore, although this capture is mainly
focused on the keyboard and mouse events, they capture the DOM tree in those
events which interact with the web browser. In contrast to these approaches, our
work focuses on screen captures as the primary information source.

Leno et al. [21] present an algorithm that generates a kind of “association
rules” between events and results. The information gathering is based on tailor-
made plugins. Their approach proposes similar solutions as is the case for our
framework. However, in their approach it is not possible to capture the informa-
tion that the user generates outside the context of these plugins. Finally, Gao
et al. [12] propose a solution based on the implementation of decision trees for
the algorithmic deduction of RPA rules, based on the captured user behavior.
Similar to [21], screen captures and their features are left out from this analysis.

8 Conclusion and Future Work

This paper proposes a framework for discovering decision models from event
logs that are extended with screen captures. The framework includes a phase
to extract features from such screen captures, as well as a phase to discover
decision models using these features. Furthermore, we illustrated our proposal
by means of a running example and provided an extensive empirical evaluation.
Our proposal advances the state-of-the-art on Task Mining for its application



to RPA by providing insights into the drivers for variability in human behavior
that is targeted to be automated.

For future work, we plan: (1) to validate the current approach in a real-life
context with people with different profiles. So that both the feature extraction
algorithm and the decision discovery algorithm can be tested with industrial
data and scenarios; (2) to investigate the robustness of the proposal against
noise injected at the event level; (3) to investigate mechanisms to reduce noise
by filtering/selecting the appropriate features, e.g., by using eye-tracking tech-
nologies, which could focus the attention of the feature extraction algorithms on
those screen regions where human attention is devoted to; (4) to analyze further
classification algorithms to provide more alternatives to express the observed
variability; in this way, they can be compared in terms of usability and under-
standability; and (5) analyze other UI elements detection and classification tech-
niques to compare them with the accuracy of Canny’s algorithm and CNN.
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