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a b s t r a c t

In this paper, a generalization of support vectormachines is exploredwhere it is considered
that input vectors have different ℓp norms for each class. It is proved that the optimization
problem for binary classification by using the maximal margin principle with ℓp and ℓq
norms only depends on the ℓp norm if 1 ≤ p ≤ q. Furthermore, the selection of a different
bias in the classifier function is a consequence of the ℓq norm in this approach. Some
commentaries on the most commonly used approaches of SVM are also given as particular
cases.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Support vector machines (SVMs) are learning machines which implement the structural risk-minimization inductive
principle to obtain good generalization on a limited number of learning patterns [1]. This theory was developed on the basis
of a separable binary classification problem where the output scale is determined such that outputs for the support vectors
are ±1. The optimization criterion is the width of the margin between the positive and negative examples, since an SVM
with a large margin separating two classes has a small VC dimension which provides a good generalization performance, as
has been demonstrated in some applications [2].

Although the ℓp norm has been explored in SVMs [3,4], the norm usually used is ℓ2 or ℓ∞ norm and is always the same
norm for both positive andnegative examples. In this paper, it is considered that norm for the positive andnegative examples
are ℓp and ℓq norms, where1 p, q ≥ 1, respectively. It is worth noting that some real-world examples that justify using
multiple metrics and theoretical results of this approach have recently been considered in other areas of research [5–9].
Nevertheless, to the best of our knowledge, there are not existing researches that directly address the problem of pattern
recognition using this approach.

The remainder of this paper is arranged as follows: Section 2 presents a new SVM to solve linearly separable binary
classification problems with a different metric for each class. Some particular cases are obtained and comments are
made on this approach in Section 3, and its extensions to solve multiclassification and nonlinear separable problems
are given in Section 4. Empirical testing is carried out using different biases in Section 5. Finally, some conclusions are
drawn.
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1 Note that ℓp is not a norm if p < 1.
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2. ℓp-SVM-ℓq approach

Let Z = {(x1, y1), . . . , (xn, yn)} be a training set, with2 xi = (xi1, . . . , xid)′ ∈ Rd as the input space, yi ∈ Y = {θ1, θ2} =

{+1, −1} the output space, and zi = (xi, yi) for i = 1, . . . , n. LetZ+ andZ− be the patterns belonging to the classes labelled
as +1 and −1, respectively.

Let us first consider the linearly separable case, that is, a w ∈ Rd (no null), b ∈ R, xi0 ∈ Z+ and xj0 ∈ Z− exist such
that w′ x + b ≥ w′ xi0 + b = 1 if x ∈ Z+, and w′ x + b ≤ w′ xj0 + b = −1 if x ∈ Z−. Hence, both inequalities can be
written as yi


w′ xi + b


≥ 1 for any i = 1, . . . , n. The best pair is sought among all pairs (w, b) by following the criterion

of maximization of the margin [1].
Given b∗ with −1 ≤ b∗

≤ 1, let us consider the hyperplane πb∗ : w′ x + b − b∗
= 0 and suppose, without any loss of

generality, that norms in the region πb∗ > 0 and πb∗ < 0 are the ℓp and ℓq norms, respectively, with 1 ≤ p ≤ q. Thus, given
xi ∈ Z+ and xj ∈ Z−, the p-distance between xi and πb∗ , that is dp(xi, πb∗) = minx∈πb∗ dp(xi, x), is (see in [10,3,11]):

dp(xi, πb∗) =

w′ xi + b − b∗


‖w‖p1

=
w′ xi + b − b∗

‖w‖p1

≥
1 − b∗

‖w‖p1

= dp(xi0, πb∗) (1)

and the q-distance between xj and πb∗ is as follows:

dq(xj, πb∗) =

w′ xj + b − b∗


‖w‖q1

=
−

w′ xj + b − b∗


‖w‖q1

≥
1 + b∗

‖w‖q1

= dq(xj0, πb∗) (2)

on the condition that p1 and q1 are the conjugate exponents of p and q, respectively, that is,3 1
p +

1
p1

= 1, 1
q +

1
q1

= 1, and

‖w‖p =

∑M
i=1 |wi|

p
 1

p
, ‖w‖∞ = maxi |wi| are the p-norm and the ∞-norm of the vectorw, respectively.

By defining the p-distance between a set A and a hyperplane πb∗ , denoted by dp(A, πb∗), as dp(A, πb∗) = inf
dp(x, πb∗), for all x ∈ A


, then by using (1) and (2) (the lowest bound is always attained in Z+ and Z−):

dp(Z+, πb∗) =
1 − b∗

‖w‖p1

and dq(Z−, πb∗) =
1 + b∗

‖w‖q1

.

Hence, the pq-margin between Z+ and Z− with respect to the hyperplane πb∗ can be defined as dp(Z+, πb∗) +

dq(Z−, πb∗). Therefore, the hyperplane πb∗ with the largest pq-margin in Z can be obtained by solving the problem
max


dp(Z+, πb∗) + dq(Z−, πb∗)


, which can be written as follows:

max
w,b,b∗


1 − b∗

‖w‖p1

+
1 + b∗

‖w‖q1


s. t. yi


w′ xi + b


≥ 1, −1 ≤ b∗

≤ 1, ∀i = 1, . . . , n.
(3)

It is worth noting that the constraints do not depend on p and q. This optimization problem can be simplified since
1 ≤ p ≤ q ⇒ p1 ≥ q1 ⇒ ‖w‖p1 ≤ ‖w‖q1 for any w ∈ Rd. Hence,

1 − b∗

‖w‖p1

+
1 + b∗

‖w‖q1

≤
1 − b∗

‖w‖p1

+
1 + b∗

‖w‖p1

≤
2

‖w‖p1

for any −1 ≤ b∗
≤ 1, and as this upper bound is attained by taking b∗

= −1; therefore, the optimization problem (3) is
equivalent to maxw,b

2
‖w‖p1

, which can be formulated as a pth-order programming problem [10]:

min
w,b

1
2

‖w‖
p1
p1

s. t. yi

w′ xi + b


≥ 1, ∀i = 1, . . . , n.

(4)

The objective function 1
2 ‖w‖

p1
p1 is a convex function for any p1 ≥ 1 and the constraints are linear; therefore, the

optimization problem (4) has a unique solution. It is important to note that the problem (4) does not depend on the ℓq
norm (q ≥ p) and regardless of whether the ℓp norm is considered in positive or negative examples.

Therefore, a binary linear classifier, f(w,b)(x) = w′ x + b − 1, is found with w = (w1, . . . , wd)
′

∈ Rd and b ∈ R
(b∗

= −1), and where outputs are obtained as h(w,b)(x) = sign(f(w,b)(x)), that is, +1 (θ1) if f(w,b)(x) ≥ 0, and −1 (θ2)
otherwise. Nevertheless, a new bias, different to b − 1 (that is b∗

= 1) and b (that is b∗
= 0), must be considered since in

2 Notation: vectors are denoted in bold, the transposed vector of x is denoted by x′ . Sets and real numbers are denoted in capitals and lower-case letters,
respectively.
3 If p = 1, then p1 = ∞.
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these cases dq(Z−, π−1) = 0 and dq(Z−, π0) =
1

‖w‖q1
≤

1
‖w‖p1

= dp(Z+, π0), that is, the vectors of Z− are closer than
the vectors of Z+ to the hyperplanes π−1 and π0. Thus, a natural selection of the b∗ is to choose it such that the equality
dq(Z−, πb∗) = dp(Z+, πb∗) holds, and thus:

1 − b∗

0

‖w‖p1

=
1 + b∗

0

‖w‖q1

H⇒ b∗

0 =
‖w‖q1 − ‖w‖p1

‖w‖q1 + ‖w‖p1

≥ 0. (5)

Hence, the ℓq norm is useful in the search for an adequate bias. Note that if p = q, then b∗

0 = 0 and the standard bias b is
obtained. For this reason, the b∗ is not taken into account in the developments of the standard SVM (p = q = 2) since it is
not necessary. Henceforth, let us call this approach ℓp-SVM-ℓq.

With respect to the generalization error, it is known that this barely depends on p when the usual bias is chosen
[3,4]. However, the bias in the ℓp-SVM-ℓq, b − b∗

0 , is not the standard bias b, and the hyperplane πb∗
0

: w′ x + b − b∗

0 = 0
is geometrically nearer the positive class than the negative class, that is, the bias reduces skew towards the positive class.
Hence, the performance on the negative class is increased but it is reduced on the positive class. For this reason, an empirical
study is going to be carried out in Section 5.

3. Particular cases of ℓp-SVM-ℓq

In this section, some known approaches as particular cases of the ℓp-SVM-ℓq approach are obtained.

3.1. ℓ1-SVM-ℓq

In this case, for any q ≥ 1 the optimization problem is as follows:

min
w,b

max
i=1,...,d

|wi|

s. t. yi

w′ xi + b


≥ 1, ∀i = 1, . . . , n.

Furthermore,

max
1≤p≤q


max
w,b,b∗


1 − b∗

‖w‖p1

+
1 + b∗

‖w‖q1


=

2
‖w‖∞

=
2

max
i=1,...,d

|wi|
.

That is, given Z+ and Z− linearly separable sets, the maximal margin for any p, q ≥ 1 is obtained for p = 1.

3.2. ℓ∞-SVM-ℓq

If p = ∞, then the unique possibility of q is q = +∞ and, therefore, the metric is the same in both regions. The
optimization problem is as follows:

min
w,b

d−
i=1

|wi|

s. t. yi

w′ xi + b


≥ 1, ∀i = 1, . . . , n

(6)

which is one of the most widely used approaches of SVM since the optimization problem is linear.

3.3. ℓ2-SVM-ℓq

In this case, q ≥ 2 and the optimization problem is as follows:

min
w,b

1
2

‖w‖
2
2

s. t. yi

w′ xi + b


≥ 1, ∀i = 1, . . . , n

(7)

which is a quadratic optimization problem.
It is worth bearing in mind that the most common approach, called the standard primal SVM 2-norm formulation [12],

is obtained for q = 2, and the binary linear classifier becomes f(w,b)(x) = π0 = w′ x+ b, that is b∗
= 0. Hence, the selection

of a different bias in [13,14] can be justified from the point of view of an ℓq norm with q ≥ 2 which is explored in Section 5.
Usually, the most commonly used norms are ℓ2- or ℓ∞ norms and the same norm is considered in the positive and

negative examples. This fact is due to the algorithms which efficiently solve these optimization problems. Hence, we think
that the optimization problem (7) is more relevant than the optimization problem (6) because (i) it is only possible to
consider b∗

= 0 in the classification problem with ℓ∞ norm, and (ii) it is possible to choose different values of ℓq norm
(q ≥ 2) in problem (7) which justifies the selection of the b∗.
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Table 1
Results of the experiment where the best mean accuracy rates are presented.

p+ q− Glass Iris Tiroide Ecoli

2 ∞ 50.282 93.867 95.869 85.212
2 10 50.235 93.867 95.869 85.212
2 5 49.953 93.933 95.869 85.212
2 2.5 51.409 94.533 95.634 85.364
2 2.1 51.925 94.400 95.681 85.515
2 2 58.263 94.400 95.681 85.576

2.1 2 58.545 94.400 95.728 85.667
2.5 2 58.498 94.267 95.634 85.818
5 2 58.404 93.933 95.446 85.788

10 2 58.216 93.867 95.399 85.788
∞ 2 58.216 93.867 95.399 85.788

4. The extension of ℓp-SVM-ℓq

In the same way as in the standard SVM, the ℓp-SVM-ℓq can be generalized to solve nonlinearly separable and
multiclassification problems. Let us turn our attention to these topics.

4.1. Nonlinearly separable case

If some errors are allowed for the constraints [15], then the optimization problem of ℓp-SVM-ℓq can bewritten as follows:

min
w,b


1
2

‖w‖
p1
p1 + C

−
i

ξi


s. t. yi


w′ xi + b


+ ξi ≥ 1, ξi ≥ 0, ∀i = 1, . . . , n

where C is the regularization term and ξi are slack variables.
Note that in the ℓp-SVM-ℓq approach, an upper bound of the number of errors in the classification problem is 2

∑
ξi.

Nevertheless, if p = q, then in the same way as in the standard approach,
∑

ξi becomes an upper bound.

4.2. Multiclassification

A set of possible labels {θ1, . . . , θℓ} (i.e. an unordered set of classes), with ℓ > 2, is considered. Let Z be a training set.
Subsets Zk ∈ Z, defined as Zk = {zi = (xi, yi) : yi = θk}, generate a partition in Z. Let us suppose that the norm given in Zk
is ℓpk norm with pk ≥ 1 for any k.

The 1-v-r SVM and the 1-v-1 SVM approaches [16] are two of themost commonly used alternatives inmulticlassification
problems and can be used jointly with the ℓp-SVM-ℓq. In both approaches, each machine solves bi-classification problems
and the labels distribution generated by the trained machines in the parallel decomposition is into consideration, through
a merging scheme which does not depend on the norm used.

5. Experiment

In this section, the comparison between different bias obtained from (5) is conducted on four widely used data sets from
UCI Repository.4 The experiment has been carried out by following a similar experimental framework to that used in [13].
The selected data sets are: Glass Identification Database, Iris Plants, Thyroid Disease and Protein Localization Sites (Ecoli).

Performance for the 1-v-r SVM, in the form of accuracy rate, has been evaluated onmodels using the linear kernel which
has been chosen as a baseline for the empirical evaluation, and C is explored on a one-dimensional grid with the following
values: C =


2−2, 2−1, . . . , 29, 210


. The criteria employed to estimate the generalized accuracy is the threefold cross-

validation on thewhole set of training data. This procedure is repeated 20 times in order to ensure good statistical behaviour.
It is worth bearing in mind that the generalization error barely depends on p [3,4], the standard primal SVM 2-norm

formulation is always used in this experimentation. Thus, the cross-validation mean rate for the values of C is reported in
Table 1 for the ℓp-SVM-ℓq approach with different values of p and q.

Some analysis can be completed according to the empirical experimentation carried out: (i) The accuracy rate attained
for the standard approach (p = q = 2) can be improved by using a different bias. (ii) No single bias stands out as being the
best. (iii) It has been observed that the difference in the performance between close parameter C is small. (iv) It can be seen
that the generalization error barely depends on the bias.

4 Available at http://www.ics.uci.edu/~mlearn/MLRepository.html.

http://www.ics.uci.edu/~mlearn/MLRepository.html
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6. Conclusions

The SVM 2-norm formulation in the same way as in other approaches based on SVM can be seen as a particular case of
the approach development in this paper. The classification problem (4) in regions with different norms does not depend on
the ℓq norm if q ≥ p and regardless of whether the ℓp norm is considered in positive or negative examples.

Furthermore, the selection of a different bias yields specific results related with the different metrics in each region.
Clearly, the selection of p depends on the optimization problem and for simplicity this problem is usually solved by using
p = 2 or p = ∞.

On the other hand, the kernel ‘trick‘ can improve this approach in those cases where the solution can be written as a
linear combination of the training vector, as happens for p = 2 and p = ∞.
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