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HOMOGENIZATION OF GENERAL QUASI-LINEAR 
DIRICHLET PROBLEMS WITH QUADRATIC 

GROWTH IN PERFORATED DOMAINS 

By Juan CASADO-DfAZ 

ABSTRACT. - In this paper, we study the homogenization of a Dirichlet problem in perforated domains for an 
operator which is the perturbation of the Laplace operator by a general nonlinear term with quadratic growth in 
the gradient. We show that a new term, which does not depend on the gradient, but which is nonlinear, appears 
in the limit problem. We also give a corrector result. 

0. Introduction 

The goal of the present paper is to study the homogenization problem (‘) 

(0-l) 
{ 

- Au’ + H(z,zf, Vu’) = f in ‘D’(V); 
UE E H,1(W) n L”(W), 

where Q2’ is a sequence of open sets which are contained in a fixed bounded open set 
R c RN, f is a function in L”(R) and H(z, s, <) : 0 x R x RN H W is a Caratheodory 
function which has a quadratic growth in the variable [ and is of classe C2 in the variable 
(S> 0. 

The existence of a solution for the problem (0.1) has been established by L. Boccardo, 
F. Murat and J.P. Puel in [B M P] and its uniqueness by G. Barles and F. Murat in [B M]. 
From these works, we also deduce that uE is bounded in Hi (0) n L” (0). Therefore, 
extracting a subsequence, VY converges weakly in Hi(R) and weakly-* in L”(R) to a 
function U. The questions which we address here is to find the problem satisfied by the 
function u and a corrector result. 

It is well known (see [C Ml, [DM Ml], [DM M2], [DM G]) than even for the linear 
problem 

(0.2) 
- Au’ = f in 27’(V), 

uE E H,l(RE), 

(‘) Here and in what follows, we consider the functions uE as defined on the whole of 12 by setting rh6 = 0 
on s1 \ 62” (see Appendix: Notation). 
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the equation satisfied by the function u is not in general 

-Au = f in D’(0), 

but is of the type 

-Au + ~IJ, = f in D’(0), 

where a positive measure /L vanishing on the sets of zero capacity appears. 
In the case of equation (O.l), the nonlinear term H(.c, u”, V 11,~) leads us to a more 

complex equation, in which the new term which appears is no more linear in II,, but 
is of the form T(x, U)/L for some nonlinear function T(Lc, s) and for the same measure 
1~ which appears in the linear case. In [C3], we have studied the particular case where 
H(:x:. II,‘, v UC) = Au’ - y IV 1~’ I’, X > 0, and have proved that in that case 

T(x.s) = s. 
For what concerns the sequence P, we will assume in the present paper that 

(0.3) 

3 ,c E H’(R), 
f = 0 in 0 \ QE. 
p - 1 in H1(62) weakly. 

This implies in particular that the holes 51 \ 0’ are sufficiently small. As proved in [C2], 
this hypothesis is very close to the hypotheses assumed in [C M] (see also [K M]) to study 
the homogenization problem (0.2). A typical example is the case Sz” = R \ T", where T’ 
is the union of balls of radius E* the centers of which are periodically distributed at 
the edges of a cubic network of size E. 

Hypothesis (0.3) implies the existence of a subsequence 1~’ which vanishes in 12 \ 12’ 
and which converges weakly to 1 in H’(R) ( see the precise properties of 7~’ in Section 
1, Theorem 1.3) such that the following corrector result holds: If u E Hi (0) n L”(R), 
the solution u” of (0.2) satisfies 

(0.4) ‘(f - ,Y#U + 0 in H,‘(0) strongly 

or equivalently 

v UC - V ‘/I. - ,uV G -+ 0 in L2 (0)” strongly 

It is however proved in [C3], by the study of the example H(:c. %I,‘, V 11~) = 
X U’ - y /V ,llE 1 2, that (0.4) does not hold in general for the quasi-linear problem (0.1). We 
will nevertheless use ‘IU”U as a test function in the proofs below to estimate V 1~’ when ~1,~ 
is the solution of the quasi-linear problem (0.1): In some sense, we will compare V 1L and 
V u + UV ~1’. We follow the general method designed by L. Tartar (see [T]) to study a 
homogenization problem which consists to test the equation by special test functions. We 
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introduce here an original variant of this method, which consists to make a comparison 
between V 11: and V u + UV wE when uE is the solution of (0. l), u its weak limit and ~1’ 
the corrector for the linear problem. The important fact is that W~YL is no more a corrector 
for the nonlinear equation (0.1) (i.e. (0.4) does not hold here) but this comparison will 
nevertheless to reconstruct the limit equation. Our proof will also make use of nonlinear 
test functions (as done in [B M P]) and of a change of unknown function (as done in 
[B M]) to pass from the quasi-linear equation (0.1) to another equivalent quasi-linear 
equation which satisfies a good “structure condition”. 

The homogenization of the quasi-linear problem (0.1) could as well be carried out 
without assuming any hypothesis on the sequence R”. In this case it is sufficient to replace 
the sequence UI’U by the corrector given in [DM G] (see also [DM Mull, [DM MUM]). One 
could as well consider the case where -A U” is replaced by a monotone or even pseudo- 
monotone operator --d%~ (~(5, ,uE, V 1~~) acting on w,‘,p(0) (in this case the function H 
has to have a growth less than I<]“): One has to use in this latest case the corrector results 
of [DM Mu2]. In view of the technical difficulties which appear in the present paper, and 
which are mostly due to the use of the technique of change of unknown function which 
traces back to [B M], we have prefered to limit ourselves to the case where we assume 
that (0.3) holds. We hope that the reader will be happy of our choice. 

The method we use in the present paper (i.e. the comparison of V %I,” with V u + UV ~1’) 
is also sucessful in the study of the homogenization of Dirichlet problems for nonlinear 
monotone and pseudo-monotne operators of Leray-Lions type. The mehod is presented in 
[C4] in the simple case where monotone operators defined on W,t,ll(0) are considered 
and where an hypothesis similar to (0.3) is made on the sequence f12”. The general case 
of monotone systems without any hypotheses on the sets 6F is treated in [C G]. Note 
finally that even if the basis of the technique used in [C4] and [C G] is the same as in 
the present paper, the situation is simpler there since no change of unknown function is 
necessary when no “quadratic” perturbation occurs. 

The main results obtained in the present paper can be summarized as follows: Let 
62 c Iwav be an open bounded set and let 0’ be a sequence of open sets contained in 62 
such that (0.3) holds true. We consider a Caratheodory function H : (2 x R x R” ti US’ 
such that for almost every z E 62 the function H(x; s, <) is of class C2 in s and [ and 
has at most a quadratic growth in E. We also assume that for a strictly positive constant 
X and for almost every :c E 0 we have 

and that the first and second derivatives in (s, <) of H satisfy reasonable growth conditions 
(actually the same as the derivatives of ]<12, see (1.2) and (4.3) for the precise hypotheses 
made on H). 

Then we have the following homogenization theorem for the quasi-linear problem (0.1) 
(which easily results from Theorem 5.1, Theorem 6.3 and Remark 6.3): 

THEOREM 0.1. - There exists a subsequence of F (still denoted by E), a positive bounded 
Bore1 measure p which vanishes on the sets of zero capacity (11, is the same measure which 
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appears in the homogenization of the linear problem (0.2)) and a Carath&odoT @nction 
T : 0 x R H W, such that for any function f E Lc-(G), the unique solution U’ of (0. I) 
converges strongly in W,“p(0), 1 5 p < 2, weakly in Hi(a), and weakly-* in L”(0) to 
a function u which is the unique solution of the problem: 

(0.5) 
{ 

- Au + T(rc: U)LL + H(z, u, D U) = f in D’(0), 
u E H;(0) n L”(0). 

For p-almost every x E R, the function T(:E, .) is increasing, satisfies T(z, 0) = 0, and 
is locally Hiilder continuous, i.e. satis$es 

IT@, sl) - T(x, s2)1 5 C(s)lsl - &, 

where s = max{(sll, 1~21) and where C : [0, +oo) H [0, +oo) and X : [0,+x1) H [l: +zo) 
are increasing. 

We also have the following corrector result (this result is stated in Theorem 7.1): 

THEOREM 2. - Let E be the subsequence extracted in Theorem 0.1. Define for s E R and 
r1 E N the function s:, as the solution of 

(0.6) 
C 

- As:& + ns: + H(z: sz, D SE) = KY in D’(flE), 
s:, E H;(v) n L”(F) 

and set P,“(s) = V sFL. Consider on the other hand a step function y(x) = C:f, six&, (XL.‘), 
where the Qi are closed subsets of R which satisfy p(Q, n Q:;) = 0 for % # j and where 
the si are real numbers. Let Q and t be dejined by: 

Q = U Qi, 1; = max{w{ll G NIL=), II Y lb(~)). 
i=l 

Then 

(0.7) I 
IV UE - v u - P,(X) y(x))12 dx 

1 
T-5 

: 

where 6 : [0, +m) H [0, foe) and 1 : [O,+oo) H [ 1, -tc0) are increasing functions 
which do not depend neither on the sets Qi, nor on the function y and nor on the right 
hand side f of (0. I). 

The above result provides an approximation of V IL’ in L2(fl)N. Indeed when 
Y(x) = c:“=, %xQ,b) IS a step function which is defined on closed sets Qi with 
p(Q, n Qj) = 0 and when y is close to ‘1~ in L1( 0, dp) (it is possible to construct such test 
functions, see Remark 7.4), then Vu + P:(z, y(z)) is close to V 2~~ in LZ(R)N. Formally 
the idea is to replace V ZL& by V SE, where s is the value of U(X) at the (frozen) point 
.z. This replacement is nevertheless impossible, since the function V s’, = I’,“(,, s) is not 
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a continuous function with respect to s and this leads us to the use of an approximation 
by a step function y. 

The idea for the introduction of s: is the following: For s E Iw given (which will be 
u(z~) for a given x0), we would like to find some fs E L”(R) such that the solution sE of 

(0.8) 
{ 

- As’ + H(z, sE, V s”) = fs in 27’(fl’) 
SE E H,1(V) n L”(R’) 

has the property that sE tends to s. This is impossible for several reasons: The first one is 
that s does not belong to IIt (a), since s # 0 on da. This could be solved by replacing 
s by scp(z) with cp E D(R), but a new difficulty appears: Passing to the limit in (0.8) 
would give, according to Theorem 0.1, 

-A(scp) -t T(z, scp)dp + H(z, scp, sV ‘p) = fs in D’(R) 

and in general fs does not belong to L”(R). For this last reason, we introduce a new 
parameter n. and the penalization n(sz - s) in (0.6); passing to the limit in (0.6) for n 
fixed implies that stL tends to sn in Hi(R) weak, with: 

C - As,, + T(x, G)P + H(x:, s,, V s,) = ns in W(n), 

s, E H;(a) II L”(R) 

and it can be proved that s, tends to s when n tends to infinity. 
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1. Some preliminary results about quasi-linear problems with 
quadratic growth and homogenization in perforated domains 

1.1. Quasilinear problems with quadratic growth 

We first recall some results about the existence and uniqueness of the solution of the 
problem 

(1.1) 
i 

- Au + H(x, 7~. Vu) = f in D’(O), 

u, E H,1(0) n L”(0). 

where 0 is an open set contained in 0. Following the ideas of [B M P] and [B M], we will 
obtain for this problem some estimates which will be useful in the homogenization of (0.1). 

Let us assume that the CarathCodory function H : 12 x R x RX H R satisfies the 
following hypotheses: 

i) For almost every z E R and every < E R”, the function H(z, .: <) is continuously 
differentiable and there exists a constant X > 0 such that 

0.2) 

ii) There exist two increasing functions ~u(~ and II : [0, +a) H [0, +30), such that 

REMARK 1.1. - It is enough to assume that ‘11~ and u are just bounded on the bounded 
sets of [0, +co). We then obtain increasing functions by defining 2jg(s) = ~up(~<~<,~ ,~~,(t) 
and G(s) = SUI)~<~<,~ t)(t). 

L. Boccardo, F. Murat and J.P. Puel proved in [B M P] (see also [Cl]) the following 
existence result for (1.1). 

THEOREM. - Assume that 8 is an open set, 8 c f2, and that H satisJies (1.2) and (1.3) and 
that f E L”(O). Then there existsa solution u of(l.1) such that 11 u lIH;(o) and 11 u IIL-co, 
are bounded by constants which depend only on X, 710, 71, 11 f l)I,-(i2) and the measure qf@. 

In fact, we have 

(1.4 11 u IIL-(o,L awl+ II f III?(0, 
x 

The estimate for II u IIH; co) is more complicated and will not be given explicitly. (It is 
easily deduced from the following Lemma by taking cp = 1 and T = 0 in (1.7). 

LEMMA 1. - (see [B M P]) Assume that 0 is an open set, 0 c St, and that H 
satisfies (1.2) and (1.3) and that f E L”(8). C onsider a constant n/r > 0 and a function 
u E H1(0) n L”(O) such that (I ‘U IIL-cc+j< n/r, and dejine f E H-l(@) + L1(0) by: 

(1.5) -Au-t H(x,u, Vv) = .f in D’(O). 
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Let h E Cl(R) be the function dejined by 

h(s) = 2&003)” 

which depends only on M. This function satisfies 

(1.6) 
h(0) = 0, 

h'(s) - 2w(M)lh(s)l > 1, V’s E W. 

Then, for any T and ‘p such thaz 

7- E Hl(0) n L”(O), ‘p E H1(0) n L”(O), p 2 0, (U - ~)cp E H,1(0); 

we have (’ ) 

(h(u-r)lp+2P,(M) 
J 

’ IOr121h(zmjq 
0 

Proof. - Taking h(a - T)(P E I$(@) n L”(O) as test function in (1 S), we obtain 

s 
VuVh(u-r)cp+ 

s 
h(u - r) vu v p + 

=@(f, h(u - Q&j. ’ 
.I 

H(z, u, v u)h(u - r)(p 
0 

Since V /L(IL - r) = h’(u - r) V (IL - r) and (1.3) we have: 

(1.8) - .I’ pVrVh(u-r)- h(u-r)VuVp 
0 .I 0 

+ boo 1; IQ - +P + 4W J, W21hb - 91~. 

Using the inequality IVu12 5 2lV (r~ - r)12 + 21Vr12 in (1.8) and carrying the term 
2v(M) so JV (r~ - r)121h(u - r)lp to the right-hand side of (1.8) and using (1.6), we 
deduce (1.7). n 

We will use stronger hypotheses about H to obtain a uniqueness result for Problem (1.1). 
Specifically let us assume that for almost every 1c E R the function H(z, ., .) is continuously 
differentiable and that there exists an increasing function Q : [O, +cc) H [0, +cc) such that 

(fW,o) E L”(fl), 

(‘) Here and in what follows, (f,v)~ denotes the duality pairing between H-l(8) + L’(6) and 
Hi ((3) n LK (0) (see Appendix: Notation). 
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REMARK 1.2. - Assumption (1.9) implies the existence of increasing functions 
110: li : [O> +cQ) H [O, + co such that the function H satisfies inequality (1.3). ) 

The following lemma results from a computation which is due to G. Barles and F. Murat 
(see proof of Theorem II.1 in [B MI). 

LEMMA 1.2. - Assume that 0 is an open set, 0 c 0, and that H satisfies (1.2) and (1.9). 
Let u E HI(O) n L”(O) and f E H-l(@) + L1(0) which satisfy 

(1.10) 
{ 

- Au + H(z, U, Vu) = f in D’(S), 

~1 E H1(0) n L”(0): 11 u I[L~(~>)< M, 

for some M > 0. Define for A > 0 and K > 0 the functions $ and 19 = li,-l by: 

(1.11) 

(1.12) 

Qs such that s < ilog( 

Then there exists two constants A, K > 0, which are increasing with respect to M such 
that the function 6 = 19(u) satisjies 

(1.13) 
- A& + B(.2.,ii, Vii) = f in D’(O), 

ii E HI(@) n L”(O), 

where f^ is defined by 

f 
f = 1//‘(G) 

and where the function B : 0 x W x RN H R is a Carathkodory function which satisjies 
a property similar to (1.9): For almost every :c E R the function B(z, . , .) is continuously 
differentiable and there exists an increasing function /3 : [0, +oo) H [0, +CG) such that 

pLo,o) 6 L”(Q), 

(1.14) 

I 

I~(x,i,[)l <Ll(ldl)(l+li12). a.e.n:EQ v(S,i)EWXR”, 

(~(~,6_i)(<II(l~~l)(l+(CI). a.e.zE@ V(s^,i)EWxRN. 

Finally, there exists also a constant n > 0, which depends on A and K, and thus on M, 
and which is increasing with respect to M such that 
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Proof. - The results of Lemma 1.2 are proved in [B M] (proof of Theorem 11.1). Let 
us recall the main points of this proof. 

When K > eAM, the domain of definition of ZY covers [-M, M] . When u is a solution of 
(1.1) the change of unknown function li = ?Y ( U) implies that ii is a solution of (I. 13) where 

It is then easy to prove that (1.14) holds true. 
In order to prove (I. 15), it is sufficient to follow the proof of [B M]. One first fixed A 

sufficiently large, A = Ao(M) (with A,(M) = KZ -t 1 in the notation of [B MI). Then for 
K large enough (more precisely, K > Ko(M, X) where A is the constant which appears 
in (1.2)) one obtains, when n is large enough (n 1 no(M7 X)) 

(1.16) 

which is the desired result. 

REMARK 1.3. - As in Remark 1.2, the inequalities in (1.14) imply the existence of two 
increasing functions Co, 6 : [0, + ) cc H [0, +co) such that the function B satisfies an 
inequality similar to (1.3). 

The following result provides similar estimates to those of Lemma 1.1, which will be 
used later for the homogenization of problem (0.1). The ideas used in the proof follow 
from [B M]. 

LEMMA 1.3. - Assume that 0 is an open set, 0 c R and let B : R x R x IRK H R 
be a Carath&odory function which satisfies properties (1.14) and (1.15). Consider G,,, 5 E 
Hyq n L”(R), with 11 0 [IL-(O)< M, 11 6 [(L-(G)< M, and f,jj E H-l(0) + L1(0) 
which satisjfy 

(1.17) 
- Ail+ B(z,&,V&) = f^ in D’(O), 

{- A8 + B(x, 6, V 6) = lj in D’(0). 

Set S(s) = IsIn-’ s. Then, for any function cp E H1 (0) n L”(O), cp > 0, we have the 
following estimates: 

i) Let G = li - 2. Assume that 29 E Hi(O), we have: 
(1.18) 

1 

1 
z Q .I 

S’(;)IV&12p+ 
S[ 

(B(z,i&Vii) - B(z>6,Vli))S(Lj) + b(&)~V&/2 p 
0 2 I 

= (f - ij, S(ij)(p)Q - 
I 

S(G) v (2) v $9. 
.Q 

Moreover 

(B(x,i&Vii) - B(~,~,VG))S(LJ) + ;S’(&)lVljl” 1 > 0 a.e. in 0. 
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ii) Let 7’ E H1(0) n L”(0) and G = fi - 5 - i. Assume that ijp E H,; ((i), we have: 

iii) Let ij = ii - 6. Assume that G+ E Ht (O), w’e have: 

(1.20) ; ,l) s’(ij+)lv l-2+)* 5 (f - ,Q> s(LJ+)),. 

Proof. - Let i: E H1(0) n L”(O) an d . t se ij = 6 - fi - i. Let cp E H1(8) n L”(8), 
p > 0 be such that Gy E Hi(O). Using S(&)(p (which belongs to Hi(@) n L”(G)) as 
test function in the difference between the two equations of (1.17), we obtain 

.I 
yv (ii - 6) v S(G) + 

I 
S(G) v (ii - 6) v y 

c) (3 

+. ,Iu( I 
x, ii, Vii) - B(x.6, V C)]S(ij)p = (j - 4, S@)(p)(-). 

The equality V S(L) = S’(G) V 2. yields 

(1.21) 

i 

I’ 
’ [B(:r:, ii,, V ,G) - B(:r. ,il, G C)] S(;I)p . (3 S’(lj)]VLj]%p + 

1, (3 

= (f-&s(qy)~ - yViVS(ij) - S(Lj)V(ii-C)Vy. 
.I (3 J (3 

Define the measurable functions b,<, bi by 

I 

b,; : [O, I] x R i--+ R 

(1.22) 
b,(t,z) = ~(:c.t”(:r) + (1 - t)C(x),tVG(x) + (1 - t)V+)). 

bi : [0, I] x iI H R” 

Since B is continously differentiable, b, and bi are measurable on [O, l] x 12. By (1.14); 
we have (*) 

(1.23) 
lb; (i. :c) ( 2 Cnr(l + I Vfi]’ + (VG]2), 

(2) Here and in what follows, C,~I denotes a generic constant which can change from a line to another and 
which is increasing with respect to M (ser Appendix: Notation). 
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We have then using Taylor’s formula: 

i 

[B(x; ii. v ii) - B(z, 6, v iq]S(LJ) 

=.~1$[B(x:tu+(l-f)~.LVii+(l-t)v6)]iitS(L) 
I 

I 
.l 

XC Ir . (I 
b& c?+x(~) + b&t, ,)S(G) v ;] dt 

+ j-l [qt, x)? + b&t, x) v 111 dt S(G). 
0 

Using Young’s inequality and (1.23) yields 

Therefore 

([B(z, 6, v il) - B(2,6, v C)]S(Lq 

i 

1 

(1.25) > -+(o),vw,‘+ 
.I[ 

f&(t, z)&S(&) - - ;g$b~(“‘:)l’]dt 

-c,,[(1+~v~~‘+l~~l’),~,+(l+lvill+lc6/)lv~~](S(~)~. 

Using S(s) = [sin-l s and (1.15), we have: 

and therefore we finally deduce from (1.25) that 

(1.26) 

1 

[B(z,C,Vli) - B(z,iiV6)]S(ij) > -;s’(;),vb,* 

- CM [(l + IVG12 + IV Gj2)1?l + (1 + IV Cl + IV ;/l)lV?l] lijl”. 

When i = 0, (1 .lS) is nothing but (1.21). Moreover (1.26) proves the positivity of the 
second term. Similarly, (1.21) and (1.26) prove (1.19). The proof of (1.20) is similar to 
the proof of (1.19) with i = 0 and cp = 1 taking as test function S(G)+ instead of S(ij)cp 
in the difference of the equations of (1.17). n 
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The uniqueness result obtained by G. Barles and F. Murat in [B M] for equation (1.1) 
is now easily derived: 

THEOREM 1.2. - Assume that H satisfies (1.2) and (1.9) and let 0 c R be an open set. 
Consider u and ‘IJ in H1 ((3) n L”(O) such that: 

- Au + H(z, II,. Vu) < 0 in D’(e), 
- AW + H(z, II, V 71) 2 0 in D’(0). 

Then inequality u 5 v in d@, (i.e. (7~ - II)+ E H;(O)) implies u 5 v almost everywhere 
in 0. 

In particular the problem 

-Au+ H(x,u,VU) = f in D’(0) 
u E H,+(O) n L”(8) 

has a unique solution when H satisfies (1.2) and (1.9) and f E L”(8). 

Proof. - Using Lemma 1.2, the functions 6 = S(u), 6 = d(7)) satisfy, since Q’ > o 

{ 

- A6 + B(z: fi,, V 1^L) < 0 in 2)‘(O), 
- A6 + B(lc, 6, V 6) > 0 in 23’(O). 

The result follows applying (1.20) to these equations. n 

1.2. Homogenization in perforated domains 

Let us now recall some results related with the homogenization of the Poisson’s equation 
with Dirichlet boundary conditions in perforated domains. In the whole of the present paper, 
assume that the sequence R” of open sets with R” c 0, satisfies the following condition: 

(1.27) 
i 

39,~ E H1(R), z > p > 0 (p constant), such that 
f = 0 in 62 \ R’, xE - z in H’(0). 

The following theorem has been proved in [C2]. 

THEOREM 1.3. - Assume that (1.27) holds true. Then for a subsequence of E, that we still 
denote by E, there exist a sequence of functions u)’ and a distribution p which satisfy (“) 

(PI) wE E H1(R) 

w 7~’ = 0 in R \ R” 

(P3) O<w’I:l 
(P4) WE - 1 weakly in H1 (a) and strongly in W1,p( n), 1 < p < 2 

(P5) P E Mm 

(3) Here and in what follows, M:(R) denotes the set of bounded positive Bore1 measures which vanish on 
the sets of zero capacity (see Apendix: Notation) 
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(VU, cp E W(R) n L”(R), 

I Vu” E Hi(P) and Vu E H,‘(R) such that II” - v in Hi(R), (3 
I 

we have 

v E L2(S2, dp) and 
/ 

pV (wEu) V # -+ pVuVvf UVZI(P dp. 
R / .R .I R 

vp E P(R) n L”(R), 

Vv" E H1(R); u" = 0 in R \ R’, such that 11’ - 0 in H1(Q), 
W) we have 

s 
cpUw”Vv’ + 0. 

R 
The following results follow easily from these properties of wE and CL. 

COROLLARY 1.1. - For every cp E H,’ (52) n L”(0), we have 

(1.28) / lVwf12p ---f 1 cP&. 
R R 

Proof. - Use u = 1, cp = 1 and ‘Us = ul’cp in (P6). H 

COROLLARY 1.2. - Consider a sequence 4” such that 

(1.29) v E L”(R), II $” III,-(n)< c. 

Then for any u E H1(R) n L”(R) we have (“) 

(1.30) .I IV (w% - u)1”q!f = s IV WE12U2yY + 0,. n I2 
If $’ also belongs to H1 (0) and converges almost everywhere to zero and if 

p E H1(R) n L”(R) with cp > 0, we have: 

(1.31) 
.I R 

lVw”12FPL (~lv~~l~;)~(/l(,..l:,)‘+o~, 

Proof. - To obtain (1.30) use the fact that V (wEu - r~) = VV w” + (w’ - 1) V u and 
then (P4) and (1.29). 

To obtain (1.3 1) use ?J” = wE@ in (P7) and then (P3) and Cauchy-Schwarz’s 
inequality. n 

REMARK 1.4. - The properties of the sequence of functions wE and the distribution ,LL 
are very close to the hypotheses imposed in [C M] (see also [K M]) for the study of 
the homogenization problem: 

(1.32) 
- Ad = f in D’(W) 

uE E H,+(V). 

(4) Here and in what follows 0, denotes a sequence of real numbers which converges to zero and which can 
change from a line to another (see Appendix: Notation) 
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For this problem, D. Cioranescu and F. Murat ([C M]) have shown that under their 
hypotheses the sequence Q converges weakly in H;(R) to the unique solution II of the 
problem 

(1.33) 
{ 

- A u + ‘U/I. = .f in D’(n) 
u E H,:(f2). 

It is also known (see [C M] and [C2]) that when u E Hi(Q) n L”(O) one has for the 
linear problem (1.32) the following corrector result: 

(1.34) Tf - wru -3 0 in HA (0). 

It is proved however in [C3] by means of an example, that the corrector result (1.34) 
is no more true in general when U’ is the solution of the quasi-linear problem (0.1). In 
spite of this, the main idea of the present paper will be to make a comparison between the 
gradient of u’, solution of (0.1) and the gradient of PU’U; this will provides us with some 
estimates for the gradient of uE which are similar of the properties of the gradient of UI’. 

In constrast with the work of D. Cioranescu and F. Murat the linear problem (1.32) is 
solved without any hypothesis about the sequence IL’ in [DM Ml], [DM M2], [DM G]. 
For what concerns the nonlinear problem (0. l), it is possible to eliminate hypothesis (1.27) 
about R” at the expense of replacing in what follows the sequence W&U by the corrector 
given in [DM G] (see also [DM Mull, [DM Mu2]) for the linear problem (1.32). This 
will however make the exposition of the quasi-linear problem much more tedious. We 
have therefore prefered to remain in the more restictive case in which hypothesis (1.27) 
is assumed. To see how it is possible to extend the results given in the present paper to 
the case where no hypothesis is made on the domains RE, the reader is referred to [C G] 
where this task is carried out for monotone systems in which the corresponding estimates 
are easier to obtain than for the problem (0.1). 

From now on we will assume that (1.27) holds true or more exactly that the properties 
(Pl) to (P7) of Theorem 1.3 hold. 

2. Estimates on the gradients of the solutions 
and first results on the homogenization problem 

In this Section we obtain some estimates on V U’ when ‘11~ is the solution of (0.1). As a 
consequence, we obtain a first representation for the limit problem of (0.1). 

We will actually consider a problem which is more general than (0.1): more pecisely, 
we consider the case where the right-hand sides are a sequence of distributions f” which 
satisfies 

f” E H-l(IY) + Ll(R’), f E H-l(R) + L1(R) such that 

(2.1) 
for any sequence IU~ E Ht (fl’) n L-(V) such that 

V’ - ‘u in HA (12) weak and in L”(R) weak-*, 

we have (f’,+)~2~ + (~.v)Q 
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and such that the following equation holds 

(2.2) -Ad + H(x,~L’; V uE) = f’ in D’(V) 

Let us thus usually to consider f’, f, UF and u such that: 

(2.3) I 
f’ and f satisfy (2.1), U& and f’ satisfy (2.2), 
7f E H;(F) n L”(F), 71, E H:(O) n L”(R), 

11 ,uE III,=(w)1 M, 

UE - u in Hi (0) weak. 

REMARK 2.1. - Consider the solution 71,~ of problem (0.1) for f given in L”(Q). 
Applying Theorem 1.1 implies that u ’ is bounded in HA ($2) f~ L”(R). Thus extracting 
a subsequence such that U’ converges to some U, and setting f’ = f, we deduce that 
f’, f, ~~~ and 11, satisfy (2.3). 

This provides an example which proves that the set of the fE, f, IL’ and u which satisfy 
(2.3) is not empty (once a subsequence has been extracted). We will prove most of the 
results of the present paper in the framework (2.3), which has the advantage of to avoid 
the extraction of a subsequence, since 7~~ is already assumed to converge to some 7~. 

2.1. Strong JJV,‘>~(O) Or, < 2) convergence 

Our first result states the pointwise convergence of the gradient of the sequence ?I?, in 
the spirit of Boccardo-Murat [Bo M]. 

THEOREM 2.1. - Assume that H satisfies (1.2) and (1.9). Consider f’, f, 71: and u which 
sati@ (2.3). Then the sequence 7~’ converges strongly to u in W1’“( O), for any p with 
1 5 p < 2. 

Proof. - The sequence xE = 97~~ - *we71 converges to zero in measure, so by the Egorov’s 
theorem, there exists a sequence 2” which converges to zero almost uniformly, i.e., for 
every 6 > 0 there exists a set Ah with 162 \ AhI < 6 such that zE’ converges uniformly 
to zero in Ah. 

Given 0 > 0, we take TP(zE’) E H,1(f2”‘) I- IF’(&) as test function in (2.2) where 
T, : R H R is the truncation defined by 

We obtain 

I’ V 7~” VT,@‘) + 
s 

H(z, uE’ , V u”‘)TP(zE’) = (fE’, T,,(z”))~~~. 
.n R 

Note that the integrals are written on the whole of R. 
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Using (2.1) and the fact that H(z, uE’ , V k) is bounded in L1 (fl) independently of E’, 
we conclude to the existence of a constant C > 0 such that 

J 
IV ZE’12X {/zq<p} 5 0, + CP - .I 

v (w”‘u) v T&“). 
R R 

By (P6) the last term converges to zero. Since for E’ small enough we have 
A6 c {X E R : /,z”‘(x)/ < p}, we deduce that 

lim sup J IV &I2 < cp. c'-0 .-In 
Since p is arbitrary, this implies that 

(2.4) 

Writing 

51) VZE' lllf2(Q) A+ 11 rw II&) pp: 
we obtain that for any p such that 1 < p < 2, 2” converges strongly to zero in W,‘>“(R). 
Since U/IL converges strongly to u in W,‘*p(0) by (P4), we have that uE’ converges 
strongly to u in WllP(fl). Finally, since the above reasoning holds not only for uE but for 
any subsequence of uE, Theorem 2.1 is proved. n 

2.2. First estimates on V Q 

The following lemma extends in some sense the resuts of Corollary 1.2 to the case 
where w’u is replaced by G, the solution of (0.1). 

LEMMA 2.1. - Assume that H satisjies (1.2) and (1.9). Consider f E, f, uE and u which 
satisfy (2.3), a function cp E H1 (n)n L” (a), p > 0 and a sequence ofjiinctions @ such that 

{ 

cp E H1(R) n L”(R), cp 2 0. 

y’i” E H1(S1) n L”(0), $’ 2 0, 

II ti” IIH’(R) + II @ lb(n)< (7. 
Then there exists a sequence of functions pE which satis$es 

(2.5) 
pE E HA(W) n L”(W), pe 2 0 
pE - 0 in H;(0) weak, (I ,oE I/L-(n)< CM 

such that 

I J IV (u" - u)pj!J'p 5 CM IV WE12?pp 
(2.6) 

R J 
+ (/l:w~l~~)~(~,v~~l~~~~)~+o~. 
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Proof. - Applying estimate (1.7) to equation (2.2) with 0 = fltE, u = u”, T = w’u, 
cp = $“cp and setting 

ZE = uE - w%, 

- 
J 

h(f) v 28 v (+p) + CM IqqI$“(P + CM IV (w”4l”lw)leP. 
w J w J w 

Let us now estimate the various terms of the right-hand side of (2.7): 
By (2.1) we have (fE,h(~E)~Ep)RE = 0, since h(x’) - 0 in H1(R) weak. 
Applying (P6) to 21’ = uh(zE)@~ which belongs to Hi(R’) and tends weakly to zero 

in Hi(R), and using 1) u IjLW(ol< M, we obtain for the second term 

= 0, - 
.I’ 

,tJEpuV wE V h(S) 
R 

- 0, - - 
s 

V wE V (t/Apuh(z”)) + @&(ZE)V WE V u 
cl s R + I* puh( x’) V wE V I/? + 

R .I 
$“uh(z”) V wE V cp 

R 

= 
J 

cpuh(zE) V wE V 4” + 0, 
R 

~~~(s,lV-E,z~)‘(~lV~E121,~E,lz,)~+~,. 
For what concerns the third term of the right-hand side of (2.7) we write 

- lc h(x’) VuE V (@v) = - /, h(2) V (u’ - u) V ($‘cp) + 0, 

= -/ h(z”)cpV(u’-u)V$‘+O, 
R 

The fourth term is 

CM 
s 

Ih(sz’)lu’,‘p = 0,. 
RE 

For the fifth term, we have: 

C M .I Iv W4121h(~‘)l~“cp < CM 
s 

[IV wE12u2 + Iw’~~~VU(~] Ih(.z’)l@p 
RE n 

= CM 
.I 

JV wEJ2u2Jh(zE)J@p + 0, < CM )V’W~)~$~~ + 0,. 
R s R 
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Taking into account the estimates obtained for the right-hand side of (2.7) we have 
proved that: 
(2.8) 

Using (1.30) with $’ = $‘cp and the fact that I/ 7~ IjL=;(L2)< M, we have 

Taking in (2.9) $’ = 1 (which is licit), we obtain 

I’ 
IV (If - 11,)12y 5 C,$I 

. s1 I 
pw’l*y + 0,. 

. S? 

which substituted in (2.9), implies (2.6) with fjE = Cnl )/b(~‘)/~. n 

COROLLARY 2.1. - Assume that H satisjes (1.2) and (1.9). Consider f’, f, 11,~ and IL which 
sati.~j$ (2.31, as well as @: 4~ E H,’ (0) f? L” (n), with $’ > 0, $” bounded in L” (12) and 
$’ converging strongly in HA(R) to 41. Then 

Pro@ - Take y = 1 in (2.6) and observe that sa IV w”I*$” --+ .I;2 Q&L by (P6) with 
,(,’ = r~I,jz*yy andu= p= 1. n 

COROLLARY 2.2. - Assume that H satisjes (1.2) and (1.9). Consider f’, f, 1~’ and 11, 
which satisfy (2.3) and let Y/I’ and 9 be such that 

y E H’(O) n L”(O), p > 0, 

,I)’ E H’ (12) n L”(Q), Y/f > 0, 

f - 0 in Hi (62) n L”(O) weak- * . 

Then we have 

(2.12) 

Proqf. - Inequality (2.11) follows from (2.6), (1.31) and I( pE ((Lm(61)i C.M, while 
inequality (2.12) is deduced from (2.11) and from IVu’12 5 2~V(~r”-u)~*+2~V7~~*. I 
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2.3. Structure of the limit of (0.1) 

The estimates above obtained allow us to give a first result about the structure of the 
problem obtained by passing to the limit in (0,l). 

THEOREM 2.2. - Assume that H satisjes (1.2) and (1.9). Consider f”, f, ~~~ and II, which 
satisfy (2.3). Then, there exists a function E E L”(R, dp) with 11 E I(~~(n,,l,,)< CIll, such 
that II, is a solution of the problem: 

(2.13) 
- AU + Ep + H(z, 9~: Vu) = f in D’(O)! 
II, E H;(O) n L”(O), 

or equivalently (“): 

The ,function E is dejined by: 

i.e., since H(n:,u”.VuE)uf is bounded in L’(R), 

Ep - up + H( 2, IL; V U) = iii; H(z. IL’, V uE)wE in Mb(O) weak- * . 

Proof. - For cp E D(0) we use (as for the linear case, see [C M]) TLI”~ E 
H@) n L”(F) as test function in (2.2). We obtain (note that the integrals can be 
written on the whole of 62) 

Using (P6) and (2.1) we deduce that, as E + 0 

Since H(z. ~b’. V ‘u~)?u~ is bounded in L’(62), we deduce from (2.16) that: 

H( z, If, v uE)71JE - v = f + Au - up, in Mb(O) weak- * . 

(“) Recall that H,’ (62) f’ 15” (0) c L%(R. rllc) (see Appendix: Notation) 
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On the other hand, using (1.9) and 0 < W” < 1, we have for every function cp E D(Q), 

IJ 
R [H(z, UE) v uE)wEp - H(3:. u, v u)wEp] 

<(;1(/(1+~v~urJZ+~8ul2)la--u/I~/+~(1+~vu~I+~V~~)~v(uE-u)ll~l). 
. I? .R 

Using that uE - u converges almost everywhere to zero, that I] uE - u /IL-(o)< 2&f, that 

(2.17) 
IV UE12 < 2p (u’ - u)l2 + 2lV uj2, 

pu’I < IV (u” - u,)I + IV211 

and that 

(2.18) IV (uE - u)I - 0 in L’(Q), 

which is deduced from Theorem 2.1, we get: 

I.1 
R [H(Z, UE, v uE)wEp - H(z, u> Vll)w&;o] / 5 CM I’ IV (u” - “))2l’pI + oc. 

.n 

Passing to the limit in this expression and using (2.10) with $F = Iv], we deduce 

By the Radon-Nikodym’s theorem, we deduce that there exists a function E’ E L”(R, dp) 
with ]I E’ ljL-(o.dti)I C&f such that 

which implies that E defined by E = E’ -t u satisfies 

This proves (2.13) and (2.15). The equivalence between (2.13) and (2.14) follows from a 
result of J. Deny ([D], see also [Z]) which implies that: 

I when p E M:(a), E E L”(R, dp), z E H,‘(a) n L”(O); 
(2.19) 

then (E~,,z)~ = 
.! 

Ezd,u. n 
n 
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3. Comparison of the gradients of two sequences of solutions 

This section is devoted to the proof of the following Lemma, which shows that when uE 
and w’ are the solutions of two problems (0.1) with right-hand sides f and g, which weakly 
converge to u and ‘u, then 11 uE - 21’ - u + 71 IIH~CRj can be estimated by II u - u IILl(n,dP). 

LEMMA 3.1. - Assume that H satisfies (1.2) and (1.9). Consider f E, f, uE and u, and gE, 
g, vE and v which respectively satisfy (2.3). Define: 

rE=uE-7f-u+tl. 

Then, for any function cp E H1(fI) n L”(a), cp > 0, we have (6) 

W) / I R ~~~l~~~~~(i,,vw~l~~)l-~(~lcw~l~lu-v,~~~)~+u~~ 

Proof. - It will be performed in eight steps. 

STEP 1. - In view of Lemma 1.2, there exist two functions $ and 9 = 4-l given by 
(1 .l 1) and (1.12) such that denoting 

(3.2) 

we have 

(3.3) 
- AGE + B(z, ?Y, V 6’) = f^E in D’(R’), 
- A? + B(z, G’, V G”) = 6” in D’(RE), 

where the function B satisfies (1.14) and (1.15). 

STEP 2. We have (7) 

(3.4) Iii - 61 5 CNIIu - VI, 

(3.5) 
{ 

IVii”l 5 C,lVu~I 

piq 5 C~pVEl) 

(3.6) 
{ 

p(Q’-ii)I<CIMp(UE-l(l)~+O~* 

IV (6’ - $)I < c,p (TIE - w)I + Of2) 

(3.7) pw12 5 c,(pq2 + 1 v (v’ - v)121ii’ - VYI”) + ofl, 

(6) Here and in what follows XM denotes a generic constant with X&f 2 0, which can change from a line to 
another and which is increasing with respect to M (see Appendix: Notation) 

(7) Here and in what follows 0: denotes a sequence which converges to zero in X and which can change 
from a line to another (see Appendix: Notation) 
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where analogously to r’, +’ denotes 

Proof. - Inequality (3.4) is clear since rY is locally Lipschitz-continuous. 
The equality V GE = rY’( 71,‘) V ~1,~ implies IV IjE 1 < CA1 JV ~~~ 1 and analogously, we have 

lVC’I 5 CJ~pffl. 
The first inequality of (3.6) (the second one is similar) is deduced from 

v (6' - 6) = 19'(d) v lLC - f/Y'(u) v 'VI, 

= ?Y'(?f) v ( lLE - ,?A) + (7Y'(1LE) - lY'(lL)) v 1I, = lY'(lLZ) v (d - IL) + (f 

In order to prove (3.7), we write 

which implies (3.7). 

STEP 3. - Define 

cc -- = IL ,il’ - ,ru’(G - ‘il). 

Then, for any function cp E H1 (0) n L” ((I), cp > 0, we have 

Proof. - Write 

IV +“I* I, 4p (ii” - ii)l’ + 4p (3 - ,??)I” 

+ 4p (ui’fi - *ii)l” + 4lV (w’il - ;,)I’ 

and then apply (1.30) with ‘4’1’ = ‘p, (3.6) and (2.6) with @ = 1. 

STEP 4. - For any function cp E H1 (0) n L”(R), p 2 0, we have 

(3.9) 

where the constant n is defined in Lemma 1.2 and is increasing with respect to M. 
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Proof. - Applying (1.19), with 0 = GE, 2 = GE, 6 = li’, F = w’(G - 6) and ; = 6’ 
to the difference between the two equations of (3.3), (and writing the integrals on the 
whole of s2) we have 

- 
I 

v (w’(ii - 5)) v S(q) cp - 
.i 

S(ij’) v (2 - GE) v cp 
.R n 

+ CA1 .I[ 
(1 + IV GE12 + IV C”l*)[&(G - C)I 

CP 
+ (1 + IVC”l + lVCEl)lV (WE@ - ;,))I] l~s^l”cp. 

Using in this inequality the property (2.1) of fE and $, and taking into account (P6), (P3), 
(3.4), (3.5), that 7j” converges almost everywhere to 0 and 

(3.10) II 7je IIIPqql CM, 

we have: 

Inequality (2.12) with $’ = 17jEIVL, cp = Iu - VIP, (3.8) and (3.10) implies 

Writing 

IV7fI 5 IV (7f - 7L)I + puI, lVv”I < lV(7f - ‘(I)[ + pul 

and 

IV (w”(C - G))I 5 Iw’(lV (ii - $)I + Ii2 - 611VwEI, 
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and taking into account (3.10) and then using (3.4), Cauchy-Schwarz’s inequality and 
tinally (2.6) with $J” = 1 and cp = Iu - VIP, we obtain: 

I 
. (/ IVwy21U - +y + 0, R 

I: CM 
I 

IV wE12)?A - tlcp + 0,. 
.R 

Inequalities (3.11), (3.12) and (3.13) now give (3.9). 

STEP 5. -For any function cp E H1(b2)nL”(fl), cp > 0 and for any fixed Ic 2 1, we have 

where we have written CM (AY) to remark that the constant depend on k. 

Proof. - Let Sk(s) = Isllc-‘s. Using Sk(rj’)cp as test function in the difference between 
the two equations of (3.3), we have 

I 
v (ii” - 5’) v Sk(7jd) cp + 

* IF .I’ 
Sk@&) v (3 - aEj v cp 

IF 
‘%@i? + ii’, v 2) - B(z, ‘li’, v P))Sk(ij&)(p = (f’, #)QC - (g’, -@$&) 

which using (1.14) and (2. l), implies 

.I’ 
S~(ijyV fjEJ2(P + 

J 
p v (WC@ - G))V Sk(jjd) 

cl R 
5 CM 

I[ 
(1 + Iv&“l2+ IVli”12)1&& -iYI 

* Q 

+ (1+ p?Y -I- lv?Yl)p ( 2 - q] ISk(7jh)l~ + 0,. 

Using in this inequality, (P6) and (3.5), .we have: 

k IVrj’121rjElk-lp 
J’ n 

(3.15) 5 C&f 
I[ 

(IVu”12 + IV?J”12)I&E - P 
.R 

+ (lV?fI + IVv”I)IV (ii’ - OE)l]ljjElkq + 0,. 
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To estimate the first term of the right-hand side of (3.15) we use the triangle inequality, 
(P3) and (2.12) with $J” = l?j’l’+‘. Therefore we have 

+ CM(k) (i,lc-l121”-‘:?)~(l,lv621i-I’:““l(I-i.li))+~; 

Inequalities (3.10) and (3.8) then give 

(puE12 + p?q2)liY - ;i"lliyl"(p 

For what concerns the second term of the right-hand side of (3.15) we use the triangle 
inequality 

I’ 
(lV7q + p?J”I)p(fiE - 7qll7j”l”p 

.R 

and we estimate the two terms of the right-hand side. For the first term, we use the triangle 
inequality, Cauchy-Schwarz’s inequality and (2.6) with 4~” = 1. This gives 

/w4 + IV~‘l)IV7jeIlrjeIkP = ~lclv( 78 - u)I + IV (WC - II)()prjyijclk(p + 0, 

~[(~lv(~~-~l.~)~+(~lv(7~&-7~),2~)’](i;~v~~2,~~~2~-)-+~~~ 

For the second term we make again the computation that we did in (3.13) with now 7~ 

replaced by k. We obtain 

I 
(puEI + pw’l)p (w&(72 - q)llrjcl”p 5 C,,(k) IV,WE121U, - wlp + 0,. 

.R J n 
The estimates we obtained for each term of the right-hand side of (3.15) now give (3.14). 

STEP 6. - For any function cp E H1(R) n L”(G), cp 2 0, we have: 

(3.16) J Iv7j”12v 5 CM 
Cl 

JOURNAL DE MATHeMATIQLJES PURES ET APPLIQUBES 



456 J. CASADO-DiAZ 

Pro@. - We claim that for any ,j 2 1 one has 

an estimate that we now prove by induction. Indeed when j = 1, (3.17) is nothing but 
(3.14) with k: = 1. Assume that (3.17) holds true for some j. i.e. that 

where we denote 

Then using (3.14) and (use that 11 u - v jIL-(o)< 2M) that B* < C,bf(j)AhBk it 
is easy to prove that (3.17) holds for j + 1. 

Taking the first integer j such that 2(2J - 1) is bigger than n - 1 (which only depends 
on n and then on h/r) and using (3. lo), we have 

(3.18) 

Inequalities (3.17), (3.18) and (3.9) now give (3.16). 

STEP 7. - For any function ‘p E H1(S2) n L"(R), cp > 0, we have 

Proqf. - The result is easily obtained by writing 

(3.20) 
I' 

IP+“12P I2 Ivq2$G + 2 IV ((WE - l)(‘iL - ;1))pp. 
.R I . n I . I? 

and then, using (3.16), so lwE - 1j21’c7 (li - li)l’ip = 0,. (3.4) and the inequality 

which follows from 11 ‘u - ‘0 IIL-(Q)< 2M. 
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STEP 8. - Proof of (3.1). 
Using (3.7) the inequality (GE - ?I2 5 C,~~[G” - 6’1 almost everywhere in 62 and the 

triangle inequality, we have 

p~‘12~ + R IV (21” - v)121ii’ - ,iE12p 
.I > 

+ 0, 

zf - v)121f’lip + 1 IV (?I” - v)l2lii - qp) + 0,. 
R 

Inequality (2.1 1) with uE = uE, u = V, yilE = I+‘[ gives 

(3.22) 
.I 

IV w - 412wP I CM 
R 

(l(,v,u-(.i)i(/~(v;~,2~)’ +o,. 

Inequality (3.4) and then (2.6) with $” = 1, cp = )u - ~lcp implies 

(3.23) 
.I 

. p(u’-U)12p-qp~C*f 
(1 .I 

* pw”~2~1L-u’up+o,. 
cl 

From (3.21), (3.19), (3.22) and (3.23), we deduce 

and inequality (3.24) implies (3.1). H 

4. Dependence of the function E with respect to u 

Consider fE, f, uE and u, and gE, g, vE and v which respectively satisfy (2.3). By 
Theorem 2.2, there exist two functions E and F in L”(R, dp) such that u and v satisfy 

(4.1) - Au + Ep + H(rc, u, V u) = f in D’(O); 

(4.2) - Au + Fp + W(x, 11, Vu) = 9 in D’(O). 
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The goal of this Section is to prove estimate (4.4), which in particular implies that 

E(z) = F(z) p- a.e. on {X E 62 : U(X) = V(X)} 

and therefore that there exists a function T : R x R H W such that E is of the form 
E = T(x, u). In order to obtain these results, we need an hypothesis which is stronger 
than (1.9). Further to (1.2), we will assume that: 

i) For almost every z E R, H(z, ., .) is continuously differentiable, and there exists an 
increasing function y : [0, +co) H [0, +a) such that for any (sr, &), (s2, <a) E R x RN 
we have for s = max{lsll, ]~a[} 

(4.3) 

I 

g( 2>Sl,El) - g(x,s2,E2) 
: 

5 Y(W + M2 + IE212)lsl - s21 + (1 + /El1 + 1[21)]<1 - E21]) 

II g( x7 Sl,ll) - 3, S2>h)/ 5 Y(S) [(I + IElI + 1t2N91 - .32I + I& - <2/l. 

REMARK 4.1. - In other terms, H is assumed to be sufficiently smooth (two times 
differentiable in (s, <)) and such that $$ has a quadratic growth in <, @ has a linear 
growth in E while $$ is bounded when s varies in a bounded set. A model example which 
satisfies all the required hipotheses is H(z, s, I) = A(z, s)[[ + Xs, where A is a matrix 
which is sufficiently smooth in s and is such that $$ (2, s) > 0 in the sense of matrices. 

REMARK 4.2. - Hypothesis (4.3) implies (1.9) and hence (1.3). 
The goal of this Section is to prove the following Lemma: 

LEMMA 4.1 - Assume that H satis$es (1.2) and (4.3). Consider f”, f, uE and u, and gE, 
g, vE and v which respectively satify (2.3) and let E and F in L”(R, dp) be the functions 
defined in Theorem 2.2, which thus satisfj, (4.1) and (4.2). Then, we have 

(4.4) IE - FI 2 CMIu - ?,I* p-a.e. in R. 

Proof. 

STEP 1. - Let us first prove that for any function cp E D(0), we have 

(4.5) 
s IH(z, uE, V 2~‘) - H(z, vE, V v’) - H(z, v, V w) + H(z, w, ‘c7 v)llqj 

I:~,(~~~~d~)l--i(~~u-v,~~,d~)~ +O,. 
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For almost every z E R, we define the functions h;, h, : [Cl, l] x 52 H R and 
h;, hE : [0, 11 x R H W by: 

/ 
h:(t,z) = ~(.r,trrE+(l-t)liE,tV~E+(~-t)V~iE), 

h,(t,s)=~(a,tu.+(1-t)w,tVa+(l-t)Vv), 
< 

\ 
h&,x) = ~(~,t~+(1-~)~;fV~~+(1-t)v(l). 

By (1.9) and (4.3), there exists a constant CM such that for almost every x E a, we have: 

IW,~)l 5 CM(~ + lVuE12 + IVvE12), 

b;(o)1 < CM(~ + lVu’[ + lVuEl), 

MO) - h,(b)l I CM[(~ + IVuE12 + ~Vuv”~2 + IVul2 + ~VV~~)(IU” - UI + ltf -vi)] 

+ CM [(I + (VuEI + Ivv”j + (VU1 + IvVl) 

~(l~(~“-~)I+l~(~E-~)l)], 
If@, x) - h,(t, 41 5 CM [(I + (V ‘IL~[ + IV ~‘1 + IV ~1 + IV WI)] ( Iu& - UI + 1~’ - ~1) 

+ CM(lV (21” - u>I + IV (21” - w)I). 
By the previous estimates, we have 

IH(z, UC, Vu’) - H(z, ?F, v 71”) - H(z, u, Vu) + H(z, w, v 7J)I 

= 1[~:(~,~)(u’-wE)+h;(~,.1.)V(2li-wi)-h,(t,:r)(ll--w)-h~(t,~)V(~-w)]~i 
II 0 

< - 
I 

’ Ih:(t,x)ll~‘l dt + J’ Ih;(t,rc) - h,(t,z)llu - WI dt 
0 0 

+ 
I 0 

’ Ih;(t.i)[[Vr’ldlf 1’ Ih;(O4 - h&~W (u - 41 dt, 
0 

where as in Lemma 3.1, rE denotes 

TE = ‘ZLE -WY’-u+w. 

Using (2.17) and (2.18) (applied to u’ and wE) and the fact that IrEI and IV rEI tend to 
zero in L2 (0) weak, we have for any function cp E D(R) 

‘I 
I~(~,~E,V~E)--(Z,~E,vwE)-H(~,U,Vu)+H(Z,w,vw)~~(P~ 

R 

5 CM 
I 

(IV uE12 + IV ~E121ml 
(4.6) ( R 

+cM ~(1v(11.‘-U)/2+Iv(~i--)/2)(1+IUe-7~I+/WE-Wl)IU-Wl)lllpl 
I 

+cM 
I 

(lV(UC - u>I + IV (21” - ~Nl~~.EIIcpl + 0,. R 

JOURNAL DE MATHBMATIQUES PURES ET APPLlQUhES 



460 J. CASADO-DfAZ 

Let us estimate each integral of the right-hand side of (4.6). For the first integral, (2.12) 
with 41’ = IT”/, p = IpI gives: 

For the second integral, we use the fact that 1 + 1~’ - 1~1 + 1~’ - ‘u/ 5 CAjI, then (2.6) 
with T/J” = 1, cp = IU - ,ullpI to obtain 

I 
‘(lV(d - 7L)12 + IV (TIE - w)l’)(l + Id - 7L + I7f - 71l)pu - wIlyI 

. I2 

For the third integral, we have using Cauchy-Schwarz’s inequality and then (2.6) with 
7)” = 1, cp = Iv1 

I 
(IV (7f - 76)l + IV (7F - w)I)IV+p 

.R 

< 
4 

(V (7f - 'L)pp )+ (iflv(7~E-~i,~;,;)(l,lv~&12-)1 + 

I c‘~~ii;lvw~l~l~,)~(,~lv~~l~l~l)~ +o,. 

These estimates of the right-hand side of (4.6) give 

;I ( H(z, 7f. v If) - H(x: WE, v w’) - H(z. 7L. v 7L) + H(z. II; v w) 1 IpI 
II 

5 CM 
[/ 

IVwE12 I 7L - 71 I IPI + 
. 12 

(~~lvww)y/~ l VT’ I2 ,$] +oE. 

We now use the fact that for any AM > 1, then 

then estimate (3.1) and finally the facts (which are respectively deduced from (1.28) with 
‘p = 1~1 and ‘p = Iu, - 74~) that 

/ pw”/2~u-w~~IcpI = / lu-wll~Idp+o~, 
R .n 

complete the proof of (4.5). 
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STEP 2. - The functions E and F are defined by (2.15). Thus, we have for any function 
‘p E Wf2) 

which implies 

and (4.5) we have 

Since for every open set A c R, we have (see [Fo]) 

.I IE - FI d/L = sup 
{II 

(E - F)pdp : ip E D(A), 0 5 cp I 1 
. 62 

we deduce from (4.8) that for any open set A C R, we have 

s IE - FI d/L < ~&L(A)‘-* 
A 

Then, for any open ball B(z,r) c 0, with ~(B(z,T)) > 0, we have 

J&,7.) IE - FI d/h < c J&,, b - TJI 4L * 
/L(B(X, 7.)) - ‘U 

( 
p(B(x: 7.)) 

) 
’ 

which letting T tend to zero and using the measure derivation Theorem, proves 4.4. n 
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5. Construction of the function T 

We have seen in the previous Section that the function E is of the form E(z) = 
T(z, U(X)) for some function T. However the function T is only defined for the pairs 
of the form (2, U(X)) where u is such that there exists f’, f and u&, where fE, f, 
Q and u satisfy (2.3). We begin this Section by showing that for every s E R there 
exists a sequence of such functions u (which we denote by s,) which converges to s in 
Hfo,(R) n L”(s2, dp) where H&,(R) is endowed with its strong topology and L” (0, db) 
with its weak-* topology. 

LEMMA 5.1. - Assume that H satis$es (1.2) and (4.3). Consider s E IR. For any n E N, 
define s”, as the solution of the problem 

(5.1) 
- AS: + nsi i- H(z, si, V 3:) = ns in 2S(V), 

s’, E Hi(W) n L”(W). 

Then, there exists a subsequence of E (which in order to simplify the notation we still 
denote by E), two sequences of functions s, and S, and a function S such that 

(5.2) S, E H;(R) n L”(o)! s, E r(o,dp), s E ryot,dp), 
(5.3) - As, + S,P + ns, + H(z, s,, V s,) = ns in D’(R), 
(5.4) for any n E N fixed, si - s, in Hi(R) weak as E -+ O> 

(5.5) II s’, IIP(Q)l Cl81 and thus II sn lb(~)< Cl+ 

(5.6) s, -+ s in H&(a) and P(R, c&u) (1 5 p < $00) strong, 

(5.7) sn - S in L”(R,dp) weak- * and in L*(R,dp) (1 5 p < +oo) strong, 

(5.8) 11 Sn lb=(n,cip,< Cl.31 and thus II S ll~m(n,ci~)l Cl+ 

Proof. 

STEP 1. - Let n E N be fixed. By Theorems 1.1 and 1.2, there exists a unique solution 
s”, of problem (5.1) such that II si I(H;CnJ,-,L- (o) is bounded by a constant which is 
independent on E but could depend on n. In fact the L”(Q) norm of s”, is bounded 
independently of E and n since in view of (1.4), we have: 

(5.9) II 4 lIP( w0(0) + +I < w0(0) - + Is( = cl+ 
X+n - X 

By the diagonal process, we can thus assume that there exists a subsequence of E and a 
sequence 5, such that s, belongs to Hi(R) n Lm(G) and that (5.4) and (5.5) hold true. 

By Theorem 2.2, there exists for each n E N a function S, E L”(R, dp), with 

(5.10) II sn II P(n,dp)i $1; 

such that s, satisfies (5.3). 
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STEP 2. - For cp E D(n), inequality (1.7) with 0 = R, u = s,, r = s, cp = (p2 and 
f = n(s - sn) - S,p ( o b serve that S,+ E H-l(R) + L1(R) by (5.3)) yields 

J 
IVSn12P2 5 72 

J 
n(s - sJh(s, - s)(p2 - S,h(s, - s)(p2 dp 

R J R 
-2 h(s,- J s)'pV 37% v cp + CIsl J Ih(Sn - 4b2, cl R 

where we used (2.19) with E = S,, x = h(s - s,)(p2. 

Since h’ > 1 and h(0) = 0 (see (1.6)) we have (sn - s)h(s, - s) 2 Is, - s12 almost 
everywhere in R, which implies: 

(5.11) 

i 

J IV s,j2p2 + n J jsn - s12p2 < - J S,h(s, - s)p2 dp 
n R n 

-2 h(s,- J s)cpV sn v P + CIsl 1% - 41'~~. R J R 
By (5.5) and (5.10), the two terms 

Is - Snh(sn - 4'p2 dp , R I II Ih(Sn - s)l'p2 R 
are bounded independently on n, while for the remaining term, we have 

II h(sn - s)cpV sn V cp 111 h(sn - s> llL-(rz,II cpvsn lIP(Q) v cp IILyny . R 
Thus for each cp E D(R) there exists two positive constants a(v), b(cp) such that: 

II cpvsn Il&q~ +n II (sn - sh’ II;‘(n)< a(p) + @‘) 11 ~vsn llP(n)N 

This implies that s, is bounded in H&,( 0) and that fi(s, - s) is bounded in L:‘,(R). 
Thus s, - s converges to zero strongly in L&(R), and weakly in H,1,,(R). By Theorem A6 
in [Cl], the weak convergence in Hfo,(R) implies the p-almost everywhere convergence. 
It is now easy to see that the right-hand side of (5.11) converges to zero. This implies 
that (5.6) holds true. 

STEP 3. - By Lemma 4.1, the sequence S, satisfies 

IS, - S,l 5 Cjslls, - s,( CL-a.e. in R 

and then, since sn is a Cauchy sequence in L1 (R, dp) we deduce that S, converges 
strongly to a function S in L1 (0, dp) . Since I I S, I I ~~ (02,dP)i Clsl, this proves (5.7) which 
completes the proof of Lemma 5.1. n 

REMARK 5.1. - In order to define the function T, the idea is now to set: 

T(z,s) = S(x) CL-a.e. z E s2, V’s E W, 

where for s E R, S = S(z) is the function defined in Lemma 5.1. The problem in this 
definition is the fact that the subsequence of E given by Theorem 5.1 depends on s. In 
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order to avoid this problem we thus define T(z, s) only when s is a rational number, 
and then extend the definition to any real number s by a limit argument. This will be 
carried out in Theorem 5.1. Moreover, we will prove in Section 6 that the subsequence E 
given in Lemma 5.1 may be choosen independently on s and that the functions S,, and 
S which appear in Lemma 5.1 satisfy 

S,, = T(.r:. s,?), S = T(x:. s) jL-a.e. :x’ E c2. 

But in order to prove this result, we need a uniqueness result for the limit problem which 
cannot be proved at this stage. 

THEOREM 5.1. - Assume that H satisjies (1.2) and (4.3). For any q E Q and for any 
u, E N, define qf by 

(5.12) 
{ 

- AyE + ,nf& + H(:r, q,E,. C &) = nq in O(V) 

fg E Hi(W) n L”(W). 
Then there exist u subsequence of c’ which does not depend neither on q nor on U, (and 
which to simplify the notation we still denote by E), two sequences of functions q7, and C),,, 
nnd a function Q such that (5.2) ,..., (5.8) hold true with s = (I, s,, = q,,, S,, = QT1, S = Q. 

De&e the function T : It x Q H R b? 

(5.13) T(:r. q) = Q(Y) p-a.e. .I: in (2. Vq E (2. 

If s E 88 and if qk is a sequence in Q which converges to s, then the sequence T(x, qk) 
converges in Lp(R, dp) strong (1 < p < +30) and in L”(i2. ~,LL) weak-*. Dejine now 
7’ : 52 + R by 

(5.14) T(:r;, s) =hJg;T(:~, qk) in U’(S2, dir) strong (l<p<+x) and in L”(i2, dp) weak-* 

The ,function T : (2 x I&’ H R’ dejined in this way, satisjies: 

(5.15) T(., s) E L”(b2,dp). Vs E R. with 11 T(., ,s) IILX,(f2.C~l,)< C(l.sl) 

(5.16) IT(:c, sl) - T(:r:> +)I < C(s)ls, - s#. s = IIIHX{ /sl I. 1cs21}, 

where C : [O, +oo) H [O. +CO) and X : [l. +3c) H [O, +CO) are increasing ,functions. 

Proof: 

STEP 1. - Since Q is a countable set, by Lemma 5.1 and the diagonal process we can 
extract a subsequence E such that for any Q E Q the results of Lemma 5.1 hold true. This 
proves the first part of Theorem 5.1. 

STEP 2. - Define the function T : (2 x Q H R by (5.13). By (5.8), the function T satisfies 

(5.17) ~T(:I:. q)l < Cini Ic-a.e. .I’ in 62, Vq E Q. 

Consider q and y’ in Q. By the definitions of Q1?, Q:, and Lemma 4.1, we have 

where kl = rnax{ 141, /q’l} and then, passing to the limit in n, we obtain: 

(5.18) IT(:r:, q) - T(:c, q’)I < C,ll(q - ,‘I* kr-a.e. :I: in 62. 
where M = max{lql, 14’1). Th’ IS uniform continuity of the mapping q E Q H T( . . y) E 
Ll(R,dp) and (5.17) allows one to define T(.. s) for any s E R by (5.14). By (5.17) and 
(5.18), the function T satisfies (5.15) and (5.16). H 
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6. The homogenization result and a property of the function T 

6.1. A first homogenization result 

In this subsection we prove that the function T : $2 x W H R defined in Theorem 5.1 
is such that the function E defined by (2.15) may be expressed in the form E = T(z, u). 
Indeed, we will prove: 

THEOREM 6.1. - Assume that H satisjes (1.2) and (4.3). Then for the subsequence & and 
the function T defined in Theorem 5.1 we have the following homogenization result: 

If f”, f, ~~~ and IL satisfy (2.3), the function 11. satisjes 

(6.1) C - A IL + T(z, u)p + H( IC, u, V 7~) = f in D’(O), 
IL E H;(O) n L”(R), 

or equivalently 

Proof. - Consider fE, f, 1~~ and u which satisfy (2.3) and let E be defined by (2.15). 
By applying (4.4) to the problems (2.2) and (5.12) with f’ = f’ and gE = ny - nq:, we 
have for any q E Q and any 71, E N 

JE - QnI < G,I~I~ - qT1/* p-a.e. in R, M = max{sup{ll uE IILm(n)}, Iql} 

and then by passing to the limit in 71, we obtain that for any q E Q 

IE - T(:I:: q)l < CA~/U - qI* b-a.e. z E 0, M = max{sup{l( ?L’ JIL=(o)}, lql}. 

If now s belongs to R, taking a sequence of rational numbers qi which converges to s 
and using the continuity (5.16) of T, we get 

(6.3) (E-T(:c:s)) 5 C~~~~YL--S~~, /A-a.e. n; E 0; M = max{sup{ll 7f (ILOO(n IsI}. 

Considering the points IC where u(x) and E(z) are defined by their representatives and 
then taking s = U,(X), inequality (6.3) implies that 

REMARK 6.1. - Using Theorem 1.1, we can prove that there exists a subsequence (still 
denoted by E) of the subsequence extracted in Theorem 5.1, such that the corresponding 
subsequence of ?L”, solution of (0. l), converges weakly in Hi (R) to a function u which 
is a solution of (6.1). Once uniqueness will be proved for problem (6.1), we will deduce 
that for the subsequence E extracted in Theorem 5.1, the whole subsequence 2, solution 
of (O.l), converges to ?I,, without extracting another subsequence. 
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6.2. The uniqueness of the limit problem 

We will prove in this Subsection the uniqueness of the solution of the limit problem (6.1). 

LEMMA 6.1. - Assume that H satisjes (1.2) and (4.3) and consider the function T dejned 
in Theorem 5.1. For any M > 0, there exist two constants A and K which only depend 
on M and are increasing in M such that ,for the functions 8 and $ dejined by (1.1 I) and 
(1.12) we have 

(6.4) 
T(x, s) 

for any s and t in R such that rnax{lsl, ItI} <_ M. 
Since 4 = tip1 and 19 are increasing functions, the result of Lemma 6.1 states that the 

function s -+ $$$ (or equivalently w) is increasing. 

Proof. 

STEP 1. - We will first prove the following result: Consider f”, f, *(I,‘, u and gE, !J, ?f, 

II which satisfy (2.3). Then, there exist two constants A and K (which are increasing with 
respect to M) such that for the functions 41 and 8 = ii/-l defined by (1.11) and (1.12) 
the functions u and 11 satisfy 

(6.5) 
T(z, u) T(x, v) 

@(6u)) - Yww) > 
(6(u) - d(v)) > 0 p-a.e. z E 0. 

Proof. - By Lemma 1.2 applied to equation (2.2), with 0 = RE, ‘u = U’ and f = f’ 
(respectively u = uE and f = ,9’) there exist two constants A and K which are increasing 
with respect to M, such that the functions GLE = 19(u’) and 6’ = In satisfy 

f” - AC + B(z,,$, v 6”) = - 
I)‘( ii&) 

in D’(V), 
(6.6) 

-A? + B(z,G”JW) = in D’(V), 

where the function B satisfies properties (1.14) and (1.15). Estimate (1.18) applied to these 
equations with 0 = a’, 6 = ?, G = P, .f^ = p and jj = jje, implies that for GE = YY - 6” 
and for any function cp E D(R), ‘p 2 0, we have 

(6.7) x,ii’,Vii”) - B(z,iY,V?))S(3) + ;S’(lj’)/GLjc/2 1 cp 

S(Z) ’ (SE> dl,(,,)hF - J R s(;7 VLf v P, 
where the integrand of the second term is nonnegative. By Theorem 2.1, this integrand 
converges almost everywhere to 

(B(z,Wii) - B(z.,C,VG))S(lj) + ;S(;)lVSi cp, 1 
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with ?I = 6(u), fi = G(w) and 2 = & - 6. Therefore Fatou’s lemma permit us to pass to 
the limit in (6.7) and to obtain 

On the other hand, by Theorem 6.1 the functions u and w satisfy the equations: 

1 

-Au+T(x,u)P++( x, u, VU) = f in D’(R), 

-Av+T(z,+++( x, 21, VU) = g in D’(n), 

where f - T(z, w) and g - T(z, w)~ belong to H-l(R) + L1(R). Applying Lemma 1.2 
to these two equations with the same functions 6 and II, as above (since 11 u [IL-(o)< M 
and II 71 IIL-(o~~ M) and 0 = 0 implies that & and 6 satisfy: 

I* + B(x,C, Vii) = - 
(6.9) 

-AG+# 

- A$ + T;‘;) 

’ in D’(R”) 
Ijl’(G) ’ 

Ap + B(x, 6, v a) = --E- 
‘6 Tw) 

in D’(W). 

Taking S(G)(p with cp E D(n), cp > 0 as test function in the difference of the two equations 
of (6.9) and applying (2.19) with E = $#h - $$#b and z = S(Lj)(p, we get 

J s'(LqvLJ~2qi + J S(lj)VLY7cp+ .I( T(x,u) T(x, w) ~ - ~ R R n 1/lvL) $J'(C) > S(+P dP 
+ JB( J x,6, v 2) - B(z, 6, v q]s(qp = (f, ~~)~ - (9, ~~)ci. 

Comparison with (6.8) implies that 

Since the sign of S(G) coincides with the sign of &, we have proved that (6.6) holds true. 

STEP 2. - Let 4 and q’ be rational numbers with max{ (ql, lq’l} 5 AI. From (6.5) applied 
to the sequences uE = q; and uE = (q’)E, defined by (5.12), we deduce that there exists 
two constants A and K which are increasing with respect to A4 such that for the functions 
$ and 19 defined by (1.11) and (1.12) we have 

T(x, qn) T(x> qb) 

!b'w7n)) - 'WJMJ) > 
(t!J(q,) - S(qL)) > 0 p-a.e. in 0, Vn E N, 

where the functions qn and qk are defined by Theorem 5.1. Taking in this expression the 
limit in n we deduce that 

T(x, d T(x’q’) 4’Md) - !wJW) > 
(79(q) - d(q’)) > 0 p-a.e. in (1. 
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The continuity (5.16) of T then implies (6.4). n 
We are now in position to prove a maximum principle. 

THEOREM 6.2.- Let I? : $1 x R x R” H R be a Carathkodory function (note that H can 
be different of H) which sati@es hypotheses similar to (1.2) and (1.91, i.e.: 

i) For almost every z E R the .function I?(jc, . . .) is continuously derivable and there 
exists a constant ?I > 0, such that .for almost eve? :c E 61 we have 

(6.10) 

ii) There exists an increasing,function iv : [O, +x) I-+ [O, +w) such that 

(W(.,O,O) E Lrn(0), 

Assume that H satisjies (1. 

5 4l.W + K12). a.e. :I: E it, Y(s,[) E 63 x W“ 

2 W4)(l + Ill). a.e. :r E 0, V (s: <) E R X R”. 

2 ) and (4.3) and let T be the function de$ned in Theorem 5. I. 
Consider u and II in H’(n) n L”(R) such that there exist f and y in H-l (0) + L1(0) 
which satisfy 

(6.12) 
- au + T(:e; u)p, + H(, S, U, Vu) = f 5 0 in D’(Q), 
- Au + T(:c, ?I)/” + H( :I:. 11. V 71) = g 2 0 in D’(Q). 

Then inequality u 5 II in X2 (i.e. (U - $11)~ E Hi(Q)) implies that u < II almost everywhere 
in R. 

In particular for f E H-l (62) + L1 ((I), the problem 

(6.13) ~ 
- Au + T(:c, U)/L + jjT( :c, u, Vu) = f in D’(O) 
TL E Hi(Q) n L”(O). 

has at most one solution. 

Pro05 - By Lemma 1.2 with 0 = 12 and H = l?, there exist two constants A and K 
such that for the functions $ and ?Y = $-l defined by (1.11) and (1.12), the functions 
G = 19((u) and ,i, = S(U) respectively satisfy (recall that by (6.12) T(x, ,u)/J and T(.J:.v)~ 
belong to H-l (0) + L1(R) and observe that $J’ > 0) 
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where the function B satisfies properties analogous to (1.14) and (1.15). Moreover, by 
(6.4) we have 

(6.15) 

where 6 = d(u) and li = 8(u). 
Define ij = 6, - fi and apply estimate (1.20) to the two equations of (6.14). By (6.15) 

we have 

1 . T(x, u) T(x, w) 
i 

i 
s’(;+)pij+(2 5 - ~ - ~ 

.R s( R uil’@) lilw > 
S(G+)dp 5 0 h-a.e. in 12 

and thus ij+ = 0 almost everywhere in (2, i.e. 6 < 6 and thus u < II almost everywhere 
in R. H 

6.3. The homogenization result 

As a consequence of Theorem 6.2, we can now prove the following homogenization 
Theorem. 

THEOREM. - Assume that H satisfies (1.2) and (4.3) and consider the subsequence E and 
the function T dejined in Theorem 5.1. 

Let f : R x R x RN H R’ be a Carathkodory function such that: 
i) There exist two increasing functions To, Yl : [O, +oo) ++ [0, +co) and there exists 

Q E [0,2) such that 

(6.16) 

ii) For every x E R the function f(x, ., .) is continuously derivable and there exists an 
increasing function < : [0, +m) +-+ [0, +oc) such that 

(6.17) 

iii) There exists o > 0 such that for almost every x E R 

(6.18) A-g(x,s,<)>u, a.e.inR,V(s,<)ERxRN, 

where X is dejined by (1.2). 
Then the unique solution uE of the problem: 

(6.19) 
- Ad + H(z, uE, V tf) = f(x, 18, V d), in D’(V), 

uE E H;(V) n L”(W), 
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converges weakly in H,1 (O), strongly in W,‘,p(0) (1 5 p < 2) and weakly-* in L”( $1) to 
the unique solution u of the problem 

(6.20) 
- Au + T(z,u)p + H(n:, U, Vu) = f(x, II,, Vu) in ‘D’(Q) 

u E H;(U) n L”(0). 

REMARK 6.1. - Taking f( 2, s, <) = f(z) E L”(R) and taking into account Remark 6.3 
below, we inmediately deduce Theorem 0.1 from Theorem 6.3. 

REMARK 6.2. - As announced in Remark 5.1, Theorem 6.3 implies that the subsequence 
E which appears in the statement of Lemma 5.1 may be chosen as the subsequence E 
given in Theorem 5.1, and thus independently of U. Moreover Theorem 6.3 implies that 
the functions S, and S defined in Lemma 5.1 satisfy 

S, = T(z, So,), S = T(z. s), IL-a.e. :c E 0. 

Proof of Theorem 6.3. - Theorems 1.1 and 1.2 applied to 0 = R’ and H = H - f, imply 
that there exists a unique solution uE of (6.19) and that ‘1~~ is bounded in Hi (0) n L”(R). 
Therefore there exists a subsequence E’ such that u”’ converges weakly in H,1 (Q) and 
weakly-* in L” (0) to a function U. By Theorem 2.1, applied to uE = u”, H = H - f 
and f” = f”’ = 0, we also have that u”’ converges strongly in W1,p(0) (1 5 p < 2) 
to ‘~1. Inequality (6.16) and Lebesgue’s dominated convergence theorem imply thus that 
f( IC, &, V Q’) converges strongly in L1(R) (and thus in the sense of (2.1)), to f(z, U, Vu). 
By Theorem 6.1 we then have that u is a solution of (6.20). Theorem 6.2 applied to 
g = H - f implies the uniqueness of u and therefore the convergence for the whole 
sequence. n 

REMARK 6.3. - As a consequence of the results of the present Section, we also could 
prove the following monotonicity property of the function T(z, .). 

(6.21) 
T(z,O) = 0. /L-a.e. :I: E 0. 
(T(z, sl) - T(:r, s2))(s1 - s2) > 0, /L-a.e. :1: E R, ‘dsi, s2 E Iw. 

Actually this monotonicity property is not very important (except for esthetic reasons). 
What is important for uniqueness is property (6.4), i.e. that w is increasing with 
respect to s, and thus we do not give the proof of (6.21). 

7. Corrector 

In this Section, we use Lemma 3.1 and Lemma 5.1 to give an approximation of V uE 
in the strong topology of L2 (i2)N. 

DEFINITION 7.1. - Define P,” : 0 x Iw --+ RN by Pi(z, s) = V s:(z), wherefor any s E R 
and n E N, SE is de$ned as the unique solution of problem (5.1). 

THEOREM 7.1. - Assume that H satisfies (1.2) and (4.3) and let E be the subsequence 
dejned in Theorem 5.1. Consider f E, f, ‘u,” and u which satisfy (2.3). Then, for any step 
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function y(x) = x2”=, six&,(x) with si E R and Qi closed subsets of RN with Q; c i2, 
which satisfy p(Qi n Qj) = 0 for i # j, we have 

(7.1) 

Q = ij Qi and A4 = ma&v{ll uE IIP(12)~. II !I IIL”(R)I 
i=l 

and where the constant Cfif does not depend on Q, 

REMARK 7.1. - The meaning of Theorem 7.1 is the following: If we could take y = II, 
in (7.1) we would obtain 

limsuplirnsup [Vu” - Vu - P~(z,u)~~ = 0 
TI-CXI i -Q 

which says that V u + Pi(z, U) is a good approximation of V U” in L2(Q)N strongly. 
However this choice is not possible, since P,” is not a Caratheodory function in general and 
since therefore PE(x, U(X)) has not reason to be measurable. This is why we approximate 
11, by the step function y. 

REMARK 7.2. - In the statement of Theorem 7.1, the value of the function y on the 
set Qi n Qj, i # j, does play any role since j~(Qi n Qj) = 0 by hypothesis. Indeed 
estimate (7.2) applied to Q = Qi n Qj and s = s1 and s2, together with the triangle 
inequality, shows that 

REMARK 7.3. - Consider a closed set Q such that /L(Q) = 0. Applying estimate (7.1) 
to y = 0, we obtain 

lim li;:;p (V~L’ - Vu - PJj(z, O)(” = 0. 
1?‘03 J Q 

On the other hand by taking TL~ = ‘u, = 0 and y = 0 in (7.1), which is possible since 
If = 0 satisfies 

- A tf + H(z, d, VU’) = H(z, 0: 0) 
d E H,(V) n L”(F), 

we have 

lim li’f;;p IP~(x,O)~~ = 0. 
72-CC J Q 
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These inequalities show that for uc and ‘1~ as in the statement of Theorem 7.1, one has 

v uE - v YL -+ 0 strongly in L’(Q)‘“> 

for any closed set Q contained in R such that b(Q) = 0 

REMARK 7.4. - It is easy to approach a function u in L’(S2! &L) by a step function 
Y(x) = CL1 sixQ,(x) with s, E BB and Q, closed subsets of RN with Q; c R, such that 
A&? n Q,) = 0 f or 1: # j. for example we can reason in the following way: 

Given S > 0, we choose M > 0 such that 

Since ~(0) < +oo, the set of s E Iw such that ~({LI: E 12 : U(X) = s}) > 0 is at most 
a countable set and thus there exist sr, . . . . .s,,~+I in R such that: 

1 

- M = s1 < s2 < . . . . < s,, < ,s,,,+~ = M, 

.s;+~ - si < S. t/% with 1 5 1: < m. 
,u({x E R : ,u(x) = si}) = 0; ‘di with 2 5 i < m. 

Defining y(z) = cyll six&, (, ) .c w h ere for any % with 1 < Z 5 m, Qi is a closed set of 
FP contained in {X E R : si < U(Z) 5 s;+i} such that 

p({z E R : s, 5 u(x) 5 s;+l} \ Qi) < &> 

we have 

Proof of Theorem 7.1. - Let s E R be and Q be a closed set of R” with Q c 0. By 
Lemma 5.1 and Remark 6.2, the sequence s”, defined by (5.1) converges weakly in H;(R) 
to a function s,, and the sequence s, converges to s strongly in H&,(0) and p-almost 
everywhere. Moreover 11 s”, jILX(62)< f&i. 

Lemma 3.1 implies that for any function cp E 2)(o), ‘p > XQ we have: 

where M = max{sup{ll U& 11 LW(o)}, Is\}. Since ‘p is arbitrary, we have: 

lirnntp Q IV uE 
J’ 

-Vu- P;(x,s) +VS,~* 5 C&(Q))‘~(~~~U - .s,,Jd/~)*; 
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where M = max{ sup{ 11 uE l/~-(o)}, IsI}. Taking in this expression the limit in ‘II and 
using that V s,, converges strongly to zero in L*(Q)” we get 
(7.2) 

lim sup lirri sup 
I, - x c+o 

1; IVuc - Vu - P;(z, s)l” < C&(Q))‘-* (i2 Iu - s/ dp) *. 

where M’ = max{sup{ll uE Ilr,-(o)}, I.sI}. 

Let now Y = cyl1 %xQtT Q = Uz”=, Q; and A4 = max{sup{ 11 U’ (IL=(Q)}, (I y ll~-p)} 
be as in the statement of Theorem 7.1. Adding the inequalities (7.2) for Q = Qi and s = s,, 
and then using Holder’s inequality and the fact that ,u(Q~ f+ Qj) = 0 for i # j we obtain 

< lim sup lims;p 2 J IV 26 - v 71, - P:(x; s;)l" 7Li30 i=l Qp ,,L 

which proves (7.1). n 

Appendix: Notation 

A.1. Standard notation 

We denote by E a parameter which takes its values in a sequence of strictly positive real 
numbers which converges to zero; the subsequences are also denoted by E. 

fl denotes a bounded open set of RN and IRE a sequence of open sets of W” which 
are contained in 0. In the whole of the paper we assume that (1.27) (or more exactly 
(Pl),...,(P7) see Theorem 1.3) hold true. 

‘D(R) denotes the space of smooth functions with compact support in 0. Its dual space 
is the space of distributions which is denoted by D’(G). 

Mb(R) denotes the space of bounded Bore1 measures in 62. 
Given a measure p in R, we define LP(R, &), 1 5 p < +KI, as the space of 

those functions ‘u which are p-measurable and such that Jo [U/P dp < +w. The space 
L”(R, dp) is defined as the space of functions b-essentially bounded. When the measure 
under consideration is the Lebesgue measure, we simplify the notation by writing U(O) 
and Lc” (a), respectively. 
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IV’,p(n) denotes the space of those functions ‘u E P(R) whose first derivatives in the 
sense of distributions belongs to D’( 0). The space W1t2( 52) is denoted by H1 (0). 

$, (0, dp) (respectively IVtOT (0)) d enotes the space of functions which belong to 
P(K, &A) (respectively W’.“(Q)) for any compact set K C s2. 

IV,‘.P(fl) denotes the closure of D(0) in IV’.~‘(Q). 
The characteristic function of the set A c R’v is denoted by XA. 
The Lebesgue measure of the set A c R ?’ is denoted by [Al. 
The capacity of a subset A of 0 is defined as in the following way: 

If A is a compact set, the capacity of A is defined by 

cap(A) = inf{/ lCpl* : ye E D(O). p > x.l}. 
<I, 

If A is an open set, the capacity of A is defined by 

cap(A) = SUP{ CUP(K) : K c A. K compact . 
> 

If A is an arbitrary set, the capacity of A is defined by 

cap(A) = irt,f{cnp(G) : A c G c It, G open} 

M:(R) denotes the set of bounded positive Bore1 measures which vanish on the sets 
of zero capacity. 

It is well known (see [F Z], [Z], [E G]) that a function u E H1(S2) has a representative 
which is well defined except on a set of zero capacity. We always identify u with this 
representative. If ,Y, E Mi (<I), a consequence of this result and of the fact that ,LL is 
bounded is that 

HA(R) UT L”(R) c L”(O,&) c L4(R,dp) for any 9. 1 < q < +oo. 

A.2. Specific notation 

The functions U& E W,‘,“( 0”) will be extended to the whole of R by setting 

{ 

7~’ 
?f x 

in R! 

0 in 0 \ 62’ 

and thus they will be considered as elements of W,‘“( 12). 
We denote by 0, a sequence of real numbers which converges to zero when E tends to 

zero and which can change from a line to another. Similarly, for a Banach space X (which 
will be Ll(fl) or L2(0)), we denote by OY E X a sequence which strongly converges to 
zero in X and which can change from a line to another. 

For a real parameter M, we denote by C.&f and XAJ generic constants which can change 
from a line to another and which are increasing with respect to M; The constants Xhl 
will allways be assumed to satisfy X kr > 1. These constants will neither depend on E 
nor on the right-hand side of the homogenization problem (O.l), but can depend on the 
function H and on R. 

For an open set 0 c R we denote by (f, U)O the duality pairing between 
f E H-l(@) + L1(8) and 11 E H,l(O) n L”(8). 
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