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Abstract

In the present work we revisit the existence, stability and dynamical properties of moving
discrete breathers in β-FPU lattices. On the existence side, we propose a numerical procedure,
based on a continuation along a sequence of velocities, that allows to systematically construct
breathers traveling more than one lattice site per period. On the stability side, we explore
the stability spectrum of the obtained waveforms via Floquet analysis and connect it to the
energy-frequency bifurcation diagrams. We illustrate in this context examples of the energy
being a multivalued function of the frequency, showcasing the coexistence of different moving
breathers at the same frequency. Finally, we probe the moving breather dynamics and observe
how the associated instabilities change their speed, typically slowing them down over long-
time simulations.

1 Introduction
Discrete breathers are time-periodic nonlinear modes that arise in lattices due to the interplay of
dispersion and nonlinearity [2, 3, 18]. The most common form of such excitations are station-
ary bright breathers, originally called intrinsic localized modes [26, 31, 35] due to their spatial
localization. Breathers were found to exist in Hamiltonian and damped-driven lattices and were
experimentally observed in a variety of nonlinear discrete systems, including Josephson junction
arrays [5, 36], forced-damped arrays of coupled pendula [13], electrical lattices [17, 27, 30], mi-
cromechanical systems [32–34], the denaturation of the DNA double strand [28] and granular
chains [6, 8, 11, 38].

In the years since the breathers were first discovered [25], there has been much progress in
understanding their existence, spectral stability and dynamical properties [3, 18, 20]. For instance,
explicit criteria for linear [21] and nonlinear [14] stability of stationary breathers have been put
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forth. Additionally, it was observed that instability of stationary breathers sets them in motion, and
long-lived traveling breathers have been found numerically in various nonlinear lattices [7, 10, 12,
19, 31]. Breather mobility is of considerable interest because it is associated with energy transport
in the lattice; indeed such coherent structures have been proposed as a prototypical means for
achieving targeted energy transfer in discrete nonlinear systems [22]. An exact moving breather is
time-periodic modulo a shift by one or more lattice spaces. The period is an integer multiple of
the period of internal vibrations. Such solutions have been constructed using the Newton iterative
method, e.g., for Klein-Gordon [1, 4, 12] and β-FPU [12, 37] lattices. For generic interaction
potentials that do not possess a certain symmetry [15,16], moving breathers are no longer spatially
localized: instead, they possess oscillatory wings whose amplitude depends on the internal breather
frequency and its propagation velocity.

The first detailed analysis of this dependence for a β-FPU lattice was performed in [37]. The
authors constructed numerically exact moving breathers for several different rational values of the
period-wise velocity V1 = r/s, where r is the number of lattice sites the breather travels over s
periods of the internal vibration. Performing a continuation in internal frequency ω at fixed V1, they
investigated how the wing energy (or, equivalently, amplitude) of these breathers depends on their
internal frequency. In particular, they studied the mechanism for resonances in the wing amplitude
and derived an approximate formula for the resonant frequencies. They also briefly summarized
the results of linear stability investigation (without providing a systematic analysis thereof) for the
computed solutions.

Motivated by these earlier studies, we revisit the problem and conduct a more detailed investi-
gation of the breather existence, stability, dynamics and resonance features. Our analysis extends
the results of the earlier work in several ways. Importantly, we consider moving breathers prop-
agating by more than one lattice space (r > 1) over its period, extending the earlier work that
had focused chiefly on the r = 1 case. To compute such solutions, we developed a numerical
procedure based on a continuation along a sequence of rational values of V1. We show that the
total breather energy (the Hamiltonian) and the wing energy are in fact multivalued functions of
the internal frequency ω, so that there are several moving breathers with the same ω and different
energies. Moreover, our results reveal the truly nonlinear form of the resonances: a rapid increase
in wing energy is followed by a more gradual one. Subsequently, we provide a detailed analy-
sis of the linear stability of the obtained solutions focusing on the consequences of the instability
associated with real Floquet multipliers µ > 1. In particular, we investigate the dynamics of the
breathers perturbed along the corresponding unstable eigenmodes and show that after repeated in-
teractions with the wing oscillations due to the periodic boundary conditions the breather gradually
decelerates and eventually becomes nearly stationary, with its velocity oscillating around zero.

The paper is organized as follows. We formulate the problem in Sec. 2 and describe our nu-
merical procedures in Sec. 3. In Sec. 4 we examine the dependence of the moving breather with
different period-wise velocities on the internal frequency and discuss the multivalued nature of the
obtained energies, resonances and stability. Consequences of the observed real instabilities in the
breather dynamics are explored in Sec. 5. Concluding remarks can be found in Sec. 6, along with
some suggestions for future work. In the Appendix, we discuss additional solutions that coexist
with the ones described in the main text but have different linear spectra.

2



2 Problem formulation
We consider a lattice of N particles with nearest-neighbor interactions governed by a β-FPU po-
tential. In dimensionless variables the Hamiltonian of the system is given by

H =
1

2

N∑
n=1

p2n +
N∑

n=1

(
1

2
(qn+1 − qn)2 +

β

4
(qn+1 − qn)4

)
=

N∑
n=1

en, (1)

where qn denotes the displacement of the nth particle, pn = q̇n = dqn/dt is its momentum (the
mass is rescaled to unity), β measures the strength of the nonlinear coupling, and

en =
1

2
p2n +

1

4

[
(qn+1 − qn)2 + (qn − qn−1)2

]
+
β

8

[
(qn+1 − qn)4 + (qn − qn−1)4

]
(2)

is the site energy density. The equations of motion are

q̈n = qn+1 + qn−1 − 2qn + β
[
(qn+1 − qn)3 − (qn − qn−1)3

]
. (3)

In what follows, we assume thatN is even and prescribe periodic boundary conditions: qn+N = qn,
pn+N = pn. In the numerical results presented in this work we set β = 1.

The β-FPU problem (3) is known to have two types of stationary discrete breather solutions
qn(t) = xn(t) that are time-periodic, xn(T ) = xn(0), and spatially localized in terms of the relative
displacements xn − xn−1. Here, T = 2π/ω is the period of internal oscillations with frequency ω.
The first type is the site-centered Sievers-Takeno (ST) mode [35], with displacement that has even
symmetry about the center, and the second type is the bond-centered Page (P) mode [26], with odd
displacement. The P mode is linearly stable, while the ST mode is unstable [31]. Perturbing an ST
mode along an eigenmode corresponding to the instability sets the breather in motion.

Our focus here is on moving discrete breathers that propagate r lattice sites over s periods
T = 2π/ω of internal oscillations and satisfy [37][

{qn(sT )}Ni=1

{pn(sT )}Nn=1

]
− (−1)r

[
{qn−r(0)}Nn=1

{pn−r(0)}Nn=1

]
= 0, (4)

where the indices are mod N due to periodic boundary conditions. Here s and r are integers, and

V1 =
r

s
(5)

denotes the period-wise velocity of the breather (the number of lattice sites transversed over the
period of one internal oscillation), while its translational velocity is given by

V2 =
V1
T

=
r

sT
. (6)

3 Numerical Methods
To obtain moving breathers, we must find fixed points of the map defined by (4) using the Newton
iterative method, with an appropriately perturbed unstable ST stationary breather, whose instability
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induces the breather mobility, as an initial seed. Here and in what follows, we use symplectic and
explicit fourth-order Runge-Kutta-Nyström algorithm [9] to integrate the equations of motion. We
found that over the course of the simulations, the maximum absolute relative difference of the total
energy when compared to the initial total energy is on the order of 10−10. We start by constructing
an ST breather xn(t) with the given internal frequency ω, using the Newton iterative method and
numerical continuation from the anticontinuous limit [24]. Linearizing (3) around the ST breather
by setting qn(t) = xn(t) + εyn(t) and considering O(ε) terms, we obtain

ÿn − (yn+1 + yn−1 − 2yn)− 3
(
(xn+1 − xn)2(yn+1 − yn)− (xn − xn−1)2(yn − yn−1)

)
= 0,

which is used to compute the monodromy matrix F defined by[
y(T )
ẏ(T )

]
= F

[
y(0)
ẏ(0)

]
, (7)

where the vector functions y(t) and ẏ(t) have components yn(t) and ẏn(t), respectively. The Flo-
quet multipliers µ are obtained by finding the eigenvalues of F , once the iterative procedure has
converged. A Floquet multiplier satisfying |µ| > 1 indicates instability. An ST mode has an unsta-
ble eigenmode corresponding to a real Floquet multiplier µ > 1; naturally, due to the Hamiltonian
nature of the problem, there exists a complementary (inverse) one with µ < 1. Following [10], we
obtain the initial seed for a moving breather by applying a kinetic perturbation of the ST breather.
Specifically, we use the momentum part δp of the eigenvector associated with the instability, so
that our initial guess for the moving breather is given by[

q
p

]
=

[
x(0)
0

]
+ λ

[
0
δp

]
, (8)

where λ is the strength of the perturbation.
To construct moving breathers with V1 = 1/s for some integer s ≥ 1, we use the Newton

iterative method to find fixed points of (4) with initial guess (8) as the values of λ are being incre-
mented within some interval. We typically start with λ = −1 and increase it by 10−2 up to λ = 1.
Once this has been completed, we look at the solutions for which the square of the `2 norm of
the objective function of the Newton iteration, defined by the left hand side of (4), is below some
threshold. Doing this allows us to obtain moving breathers on different branches in the (ω, H)
plane near the resonance values of ω, as described below. Solutions with other frequency values
are then found using parameter continuation along each branch. Typically, this continuation was
done in ω, but near the turning points for ω we used H as a continuation parameter. We found
that this method successfully generates moving breathers with r = 1 but has not worked in the
examples we considered for velocities with r > 1.

To compute moving breathers with period-wise velocity V1 = r/s, where r > 1, we have
developed the following numerical procedure. We use one of the moving breathers with V1 =
1/s0 for some integer s0 as an initial guess and construct a monotone sequence v1, v2, ..., vk of
rational values of the period-wise velocity that are close enough together and satisfy v1 = 1/s0
and vk = r/s. These values are chosen in a way that minimizes s while staying within a prescribed
step difference, empirically selected to be between 0.018 and 0.022. Depending on the value of ω
chosen, it is possible that for one of the chosen vi, the moving breather solution will be close to
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a resonance; in this case, a larger step in vi is needed to bypass the resonance. For example, to
compute a moving breather with V1 = 5/7 we used the sequence

{vi} = {1/2, 12/23, 13/24, 9/16, 7/12, 23/38, 5/8, 20/31, 2/3, 11/16, 5/7}.

We then use a continuation procedure that involves obtaining the moving breather with velocity
vi using Newton’s iterative method and the breather with velocity vi−1 as the initial guess. An
example of a moving breather with V1 = 14/23 and ω = 2.5 obtained using this method is shown
in Fig. 1(a,b).
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Figure 1: (a) Verification of the relation described in (4) for the moving breather with period-wise velocity V1 =
14/23 and internal frequency ω = 2.5. The blue circles are the displacements at time t = 23T , while the solid red
line is the displacement at time t = 0 shifted to the right by 14 lattice sites. The inset shows the absolute difference
between the two sets of displacements. (b) Space-time evolution of the site energy en(t). (c) Floquet multipliers µ
associated with the linearization around the solution of panels (a)-(b). The absence of multipliers lying off of the unit
circle suggests the spectral stability of the relevant waveform.
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To determine the stability of a computed moving breather, we linearize (3) about it and con-
struct the monodromy matrix F defined by[

{yn+r̃(s̃T )}Nn=1

{ẏn+r̃(s̃T )}Nn=1

]
= F

[
{yn(0)}Nn=1

{ẏn(0)}Nn=1

]
, (9)

where r̃ = r, s̃ = s if r is even and r̃ = 2r, s̃ = 2s if r is odd. Fig. 1(c) shows the Floquet
multipliers for the breather with V1 = 14/23 and internal frequency ω = 2.5. This breather
appears to be linearly stable.

To explore the consequences of an instability associated with a real Floquet multiplier µ > 1
for a moving breather, we perturb it along the corresponding eigenmode and use the following
method to approximate the translational velocity V2 of the ensuing waveform as a function of time.
The procedure involves computing the location of the center of the energy density of the moving
breather. We divide the time interval [ti, tf ], where ti is the initial and tf is the final time, into
subintervals of length ∆t, thus selecting sample times ti such that tj+1 − tj = ∆t. Typically, we
set ∆t = sT , where T is the internal period and s is the number of periods the unperturbed breather
needs to advance r sites. At each time tj , we compute the energy density en,j and use it to obtain
an approximation for the center Xj of the wave

Xj =

∑
n∈{core} nen,j∑
n∈{core} en,j

. (10)

In order to improve the accuracy of this approximation, we use a spline interpolation of the energy
density. We then compute (10) including the interpolated points in the core of the moving breather.
To determine the width of the core, we start from the maximum of the energy density. We then
traverse the chain until the absolute difference between the energy density and wing energy, which
is determined by averaging the ten particles that make up the wings, is on the order of 10−4. The
distance between the particle where the maximum occurs and the cutoff particle is half of the core
width. We choose as a center point the maximum of the interpolated energy density. Once the
weighted energy center has been found, we repeat the above procedure using the weighted energy
center as the center point. This has little effect for waveforms with small-amplitude wings, but
when the wings have larger amplitude, the recalculation is necessary to compensate for the effect
they have on the energy density as the center crosses a boundary. The translational velocity V2(t)
of the wave is then approximated by

V2(tj) ≈
Xj+1 −Xj

tj+1 − tj
. (11)

4 Frequency dependence, resonances and stability
We now investigate the dependence of the moving breather solutions on the internal frequency ω
at fixed period-wise velocity V1 and the lattice size N . The results for V1 = 1/3 and N = 60
are shown in Fig. 2. Panel (a) shows the total energy (Hamiltonian) H as a function of ω. One
can see that there is a number of resonances at certain frequency values. At these values, the
amplitude of the wing oscillations rapidly increases. Near the resonance frequencies, the breather
energy is a multivalued function of ω. Indeed, near each resonance frequency, the curve can be
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Figure 2: (a) Energy H , (b) the normalized average site energy ewing/emax of the wings and (c) the maximum
moduli of the Floquet multipliers µ along different branches as functions of ω at V1 = 1/3 and N = 60 near the
resonance ω = 2.237. The Floquet multiplier with the maximum modulus has nonzero real and imaginary parts
along dashed portions the curve and is real along the solid one. Insets illustrate that this transition occurs due to the
collision of a pair of real Floquet multipliers and subsequent emergence of a quadruplet of complex-valued multipliers
symmetric about the unit circle (only the pair of such multipliers outside the unit circle is shown in the second inset).
Different colors correspond to different branches in (a). The numbers in (b) are the values of m for each resonance
(see the text for detail).

split into three pieces: the top branch, the middle branch, and the bottom branch, where the middle
and bottom branches are connected to each other by a turning point. We distinguish between the
bottom and top branches by alternating colors between green and blue at each resonance. Note
that the bottom branch corresponding to one resonance frequency eventually merges with the top
branch near another resonance. Along the three branches near each resonance, there are distinct
moving breathers with the same internal frequency, as illustrated in Fig. 3 for ω = 2.126.

Panel (b) of Fig. 2 shows the corresponding average site energy in a wing portion of the
breather, normalized by the maximum site energy. One can clearly see the nonlinear character
of the resonances, with rapid increase in wing energy followed by a more gradual one. Both the

7



2.1255 2.126 2.1265
0.57

0.58

0.59

0.6

0.61

H

0 50
n

-0.2

-0.1

0

0.1

0.2

q
n

0 50

-0.2

-0.1

0

0.1

0.2

0 50

-0.2

-0.1

0

0.1

0.2

Figure 3: The top panel shows a zoomed-in view of the resonance near ω = 2.126. The black vertical line marks
ω = 2.126 at which three different moving breathers coexist. These breathers are shown in the three bottom panels,
where colors match the respective branches depicted in the top panel. Here V1 = 1/3 and N = 60.

nonlinear form of the resonances and the multivalued nature of the frequency dependence were,
apparently, missed in the earlier computations [12, 37].

Yoshimura and Doi in [37] used a normal mode analysis to approximate resonance frequen-
cies. For completeness, we briefly describe the main steps of their derivation. The normal mode
coordinates Qm(t), m = −N/2− 1, . . . , N/2, are defined by [29]

qn(t) =
(−1)n√
N

N/2∑
m=−(N/2−1)

Qm(t)

[
cos

(
2π

N
mn

)
− sin

(
2π

N
mn

)]
, n = 1, 2, . . . , N

and have the natural frequency associated with the dispersion relation:

Ωm = 2 cos
(πm
N

)
. (12)

For stationary breathers these modes are approximated in [37] using the method in [23] with fre-
quency ω, which yields Qm(t) ≈ Am cos(ωt), where

Am =
π

2
√

6βN
sech

[
π2m

N
√
ω2 − 4

]
. (13)

Complex normal modes Um(t) = 1
2
(Qm+Q−m)+ i

2
(Qm−Q−m) are then used to construct moving

breather solutions with V1 = r/s in the form

Um(t) = ψm(t)e−i
mr
Ns

ωt,

where ψm(t) are complex-valued functions satisfying

d2ψm

dt2
− i2mrω

Ns

dψm

dt
+

{
Ω2

m −
(mrω
Ns

)2}
ψm

= − β
N

Nh∑
i,j,k=−Nh

ΩmΩiΩjΩkψiψjψk · ei[{m−(i+j+k)}r/Ns]ωt∆(m− (i+ j + k)),

(14)
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where ∆(m) = (−1)m if r = mN for m ∈ Z and zero otherwise, Nh = N/2 − 1, and Ωm is
defined in (12). The solution of (14) is then sought in the form

ψm(t) = ψ0
m(t) + um(t), ψ0

m(t) =
∑
`=±1

Ame
i`ωt, um(t) =

∞∑
n=−∞

am,ne
in(ω/s)t, (15)

where um(t) is the deviation from the stationary breather ψ0
m(t) with Am given by (13), and both

components are periodic functions with period sT that are expanded in Fourier series, with coeffi-
cients am,n for um(t). Here, only the dominant fundamental frequency components are kept in the
expansion for ψ0

m(t) = Am cos(ωt). Substituting (15) into (14) and considering the leading-order
approximation in terms of um(t) results in a linear system for am,n. Analysis of this system shows
that |am,n| becomes large when its coefficient is close to zero. Setting these coefficients to zero
thus yields an approximation for the resonance frequency values ωm, |m| < N/2, at which themth
normal mode is excited. The approximate resonance condition [37] is given by∣∣∣n

s
− mr

Ns

∣∣∣ωm = Ωm

√
1 +

2

N

√
ω2
m − 4, (16)

where n may take values n = ±s or n = ±(s ± r), depending on the frequency interval and the
value of V1 = r/s, and we also recall (12). Using (16), we computed the values of m and ωm for
each resonance shown in Fig. 2(b); the corresponding values of m are shown in the plot. Table 1
compares the predicted values of resonance frequencies with the numerical ones.

numer ωm approx ωm m
2.126 2.129 13
2.237 2.244 12
2.342 2.352 11
2.440 2.454 10
2.464 2.483 −15
2.352 2.364 −16
2.229 2.236 −17

Table 1: Comparison of numerical and approximate resonance values ωm for V1 = 1/3 and N =
60. The approximate values are computed using (16). The numerical values were computed by
using the wing energy plots, such as Fig. 2(b), and estimating the frequency at the center of the
gap that separates branches corresponding to each resonance.

Panel (c) of Fig. 2 shows the maximal moduli of the Floquet multipliers associated with the
computed breathers near the resonance ω = 2.237 as a representative example. As the top branch
nears a resonance, a real instability, which corresponds to a real Floquet multiplier µ > 1, man-
ifests itself. As ω continues to increase along the branch, and the wings of the moving breathers
become more pronounced, this real instability is accompanied by the emergence of complex in-
stability modes associated with Floquet multipliers µ that have nonzero imaginary part and satisfy
|µ| > 1. As can be seen in the insets, the largest real multiplier is accompanied by a smaller real
one that eventually collides with it. This collision results in the formation of a symmetric quadru-
plet of complex-valued multipliers. Meanwhile, both the bottom branch and the middle branch are
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stable near the resonance frequency. Understanding the relevant turning point structure that con-
nects the two is an interesting question for future work. In the case of the middle branch, stability
only persists over a short interval of ω, as complex instabilities quickly arise. In this case, the
modulus of the complex instabilities is larger than that of any real instabilities that emerge. The
real instabilities exist as pairs of real multipliers that collide, separate and rejoin, shifting between
complex and real, similar to what is seen in the top branch. This behavior is demonstrated in panel
(c) of Fig. 4. The lower branch only becomes unstable as it merges with the top branch for the next
resonance.

The results for V = 2/5 andN = 60 are shown in Fig. 4 and Table 2. Overall, they are similar
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Figure 4: (a) Energy H , (b) the normalized average site energy ewing/emax of the wings and (c) maximum moduli
of the Floquet multipliers µ along different branches as functions of ω at V1 = 2/5 and N = 60 near the resonance
ω = 2.337. The Floquet multiplier with the maximum modulus has nonzero real and imaginary parts along dashed
portions of the curve and is real along the solid one. Insets illustrate that transitions between these regimes occur due
to the collisions of pairs of real and complex Floquet multipliers. Different colors correspond to different branches in
(a). The numbers in (b) are the values of m for each resonance (see the text for details).

to the case V1 = 1/3, but the number of resonances is smaller over the same interval of ω. In both
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numer ωm approx ωm m
2.337 2.348 19
2.494 2.510 18
2.423 2.434 −12
2.300 2.306 −13

Table 2: Comparison of approximate and numerical resonance values ωm for V1 = 2/5 and N =
60. The approximate values are computed using (16).

examples, one of the resonances is not accounted by (16). As can be seen in the respective figures,
both positive and negative integer resonances manifest themselves sequentially in the context of
(16), yet one cannot be included in this sequence. This also constitutes an intriguing question
for future study. Additionally, in panel(c) of Fig. 4, the maximum moduli of Floquet multipliers
along the middle branch which satisfy |µ| > 1 are determined by two pairs of complex Floquet
multipliers that start near the point µ = 1, in contrast to the case discussed above. These complex
multipliers eventually collide to form a pair of real multipliers, which initially separate but then
start moving toward each other, as shown in the insets.

5 Dynamical consequences of real instabilities
We now consider the consequences of the instability of a moving breather with real Floquet multi-
pliers µ > 1. To this end, we perturb the breather along the corresponding eigenmode by solving
Eq. (3) with the initial displacement vector set to q(0) + εδq and initial momentum to p(0) + εδp,
where p(t) and q(t) are the displacement and momentum vector functions, respectively, for the
moving breather, δq and δp are the displacement and momentum parts of the unstable eigenmode,
and ε measures the strength of the applied perturbation along this unstable eigendirection.

We consider the unstable moving breather with V1 = 1/3, ω = 2.424 andN = 60, from the top
(blue) branch in Fig. 2, which has the maximum real Floquet multiplier µ = 1.0989 (see Fig. 5).
Note that the breather has wings of relatively small amplitude. Fig. 6 shows the evolution of the
translational velocity V2 when the breather is perturbed with ε = −0.01 (panel (a)) and ε = 0.01
(panel (b)). In both cases, after initial transients leading to substantial deceleration, the velocity of
the perturbed breather appears to stabilize and oscillate around specific values, before decreasing
again and eventually coming to oscillate around zero. As an inspection of the relative sizes of the
horizontal and vertical axes reveals, this is a particularly slow process. Interestingly, the ε = −0.01
perturbation case takes much longer to reach this state.

Figure 7 shows the space-time evolution of the energy density at the lattice nodes early on in
the simulation for the case when ε = 0.01. As can be seen in Fig. 7(a), the core of the perturbed
breather emits a backwards traveling wave. This corresponds to a minimum in the translational
velocity V2 as can be seen in Fig. 7(b). Once this offshoot wave travels around the chain of par-
ticles and strikes the core, a secondary wave is emitted. This additional wave travels around the
chain and its collision with the core is associated with a maximum in V2 as can be seen in Fig. 7(b).
As more and more waves are emitted, the time between successive extrema decreases due to more
frequent collisions. Consequently, the oscillation of V2 becomes more and more pronounced. Nev-
ertheless, this phenomenology reflects the instability manifestation and explains the progressive
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Figure 5: (a) Displacement profiles qn of the unperturbed moving breather with V1 = 1/3, ω = 2.424, and N = 60.
(b) Floquet multipliers µ. The largest real multiplier is µ = 1.0989.
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Figure 6: Time evolution of the translational velocity V2 for the moving breather with largest real Floquet multiplier
µ = 1.0989 at (a) ε = −0.01; (b) ε = 0.01. Here V1 = 1/3, ω = 2.424 and N = 60. After an initial transient
resulting from the instability manifestation, the breather can be seen to incur a very slow velocity decrease over the
long time evolution.

decrease of the energy harbored within the breather the corresponding increase of energy redis-
tributed throughout the lattice.
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Figure 7: (a) Space-time evolution of the site energy en(t) and (b) time evolution of the velocity V2 near the start of
the simulation with ε = 0.01. The arrows pointing left and right in (a) correspond to the arrows pointing up and down,
respectively, in (b). Here V1 = 1/3, ω = 2.424 and N = 60.

6 Conclusions
In the present work we have revisited the topic of the identification, stability classification and
dynamical instability manifestation of discrete breathers in the well-known β-FPU lattice. Our
exploration has enabled a number of insights into this problem. In particular, we developed a nu-
merical procedure of continuation along a sequence of rational values of the period-wise velocity
that allows for the examination of different breather families traversing r sites of the lattice over s
multiples of the breather period. The continuation of the relevant waves over the frequency of the
breather revealed an intriguing resonance structure, as well as the multivalued nature of the corre-
sponding energy-vs-frequency dependence, enabling the identification of multiple breather wave-
forms for the same frequency. The resonance structure was elucidated quantitatively for different
integer harmonics of frequencies around the breather in comparison with ones of the continuous
spectrum, following the work of [37]. The specific harmonics leading to the observed resonances
were explicitly identified. At the stability level, the Floquet multipliers of the different branches
involved in the resonances were discussed, including also their potential collisions and bifurcations
in the complex plane. We remark that in contrast to stationary breathers [21], the emergence of
real instability in this case was not associated with the change in the monotonicity of energy as a
function of frequency. Finally, long-time simulations of the dynamical evolution were performed
using a symplectic method in order to reveal the manifestation of the relevant instabilities (via the
emission of and collision with offshoot waves) and their net result in decelerating and eventually
stopping the initially moving breather state.

Naturally, while this study has provided new insights into the dynamics of moving breathers, it
has also raised some questions that require further consideration. For instance, among the interest-
ing technical questions that arose were the specific bifurcation structure of the associated periodic
orbits in the vicinity of the highly nonlinear resonances that we explored. Another related as-
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pect concerned the fact that we could enumerate all positive and negative resonances in sequence,
in connection with the analytical condition of (16) but for a single one. It is also interesting to
investigate whether the results obtained in this work extend to Klein-Gordon lattices.

In addition, there exist larger scale questions for future studies. For instance, it would be
interesting to explore how the resonance structure and nonlinear state continuation would manifest
themselves in higher-dimensional models. In the latter, the issue of transverse (modulational along
a stripe or a ring) stability of the relevant waveforms would need to be considered as well. Another
aspect of consideration that at the moment eludes a systematic mathematical formulation is the
existence of traveling waveforms with genuinely real (rather than rational) period-wise velocity.
Such questions are of substantial interest for potential future investigations.

Appendix: Additional traveling breather solutions
Investigations of the resonances suggest that a second set of solutions coexists along with the
solutions discussed in the main text. These additional solutions can be found by employing a
method similar to the one described in Sec. 3 for obtaining moving breathers from stationary
breathers. By scaling the momentum vector of the moving breather solution and using this scaled
momentum along with the unscaled displacement vector as an initial guess, Newton’s method can
be employed to obtain these secondary solution branches. The primary and secondary solutions
typically differ in how the Floquet multipliers at the origin evolve after a resonance. In what
follows, these dual solution sets are examined for the middle branch near the resonance at ω =
2.352 when N = 60 and V1 = 1/3.

An example of this systematic comparison can be seen in Fig. 8. Panels (a), (d) and (g) of Fig. 8
show the energy-frequency dependence along the two different solution branches (blue and red)
near the resonance frequency. As the amplitude of the wings increases, the gap between the two
solutions increases as well. Panels (b), (e) and (h) compare the displacements of the two solutions
with the same energy (shown by horizontal line in panels (a), (d) and (g), respectively) and slightly
different frequency. Note that the wings appear to be essentially in phase with each other. We
emphasize that the two solutions are not simply different time snapshots of the same breather. This
can be seen by observing the difference in the Floquet multipliers near unity. The multipliers are
depicted in panels (c), (f) and (i) for the pairs of solutions shown in panels panels (b), (e) and (h),
respectively. Note that for the blue branch we see the emergence of two real Floquet mulitpliers
that separate from the ones at µ = 1. However, for the red branch, the Floquet multipliers that leave
µ = 1 move along the unit circle (rather than the real axis). Thus, one solution branch develops a
real instability associated with a small real multiplier, while the other does not. This is reminiscent
of the commensurability effect discussed in Chapter 4 of [12] (see, for example, Fig. 4.11 therein).

In Fig. 9, the dependence of the energy H and maximum real Floquet multipliers µ on the
breather frequency is shown near the turning point connecting the middle and bottom branches.
The colors in each figure correspond to those used in Fig. 8. As can be seen, while the real Floquet
multipliers along the red branch, in which the Floquet multipliers emerge along the unit circle,
staying close to µ = 1, the largest real Floquet multiplier along the blue branch increases steadily
as the energy increases. It should be explicitly mentioned here that the energy of the two branches
cannot be distinguished over the scale of the left panel.

A key question is whether the real instability seen along the blue branch is a true instability
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Figure 8: Coexisting solutions. Panels (a), (d) and (g) show the energy H versus frequency ω along two coexisting
solution branches, red and blue, near the resonance at ω = 2.352. The horizontal black line marks the energy of the
two solutions whose displacements qn are compared in panels (b), (e) and (h), respectively. Panels (c), (f) and (i) show
the corresponding Floquet multipliers, with insets zooming in on the multipliers near µ = 1. In each case, a pair of
Floquet multipliers is separating from the initial sextuple at µ = 1. Here V1 = 1/3 and N = 60.

given its relatively small size. To examine this, we perturbed a selected moving breather along
its real unstable eigenmode with a perturbation strength ε = 10−7, as explained in Sec. 5. Here,
µ = 1.0023 is the largest real multiplier, V1 = 1/3 and ω = 2.355. In Fig. 10, we show a
semilogarithmic plot of the time evolution of the absolute difference of the computed velocity
c and the initial translational velocity V2 = 1/(3T ). As can be seen, the growth of the perturbed
moving breather has two regimes. The first, shown in Fig. 10(a), is dominated by the real instability
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Figure 9: (a) Energy H versus frequency ω and (b) the maximum real Floquet multipliers µ along the two solutions
near the resonance at ω = 2.352. The colors correspond to those used in Fig. 8. Here V1 = 1/3 and N = 60. In
the left panel the blue and red branches cannot be distinguished over the scale of the figure (see also the magnified
pictures in the left panels of Fig. 8).
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Figure 10: Time evolution of the absolute difference between the computed speed c and the initial initial translational
velocity V2 = 1/(3T ) for the moving breather with the largest real Floquet multiplier µ = 1.0023 perturbed along the
corresponding unstable eigenmode. Panels (a) and (c) show the early and late stages of the evolution, while panel(b)
depicts over the entire time span. The maximum modulus of the Floquet multipliers is |µ| = 1.0104. In panels (a) and
(c), the red lines correspond to the best linear fit measuring the growth rate of the wave. The line in panel (a) measures
the initial growth due to the real instability, and the second line measures the growth due to the complex instability. In
panel (b), the darker region corresponds to the emergence of the complex instability as the main factor in the growth of
the perturbed moving breather. Here N = 60, ω = 2.355, V1 = 1/3, and the strength of the perturbation is ε = 10−7.

associated with an eigenmode along which the dynamics was initially perturbed. The second,
depicted in Fig. 10(c), is determined by the maximal-modulus Floquet multipliers µ = 0.5034 ±
0.8761i with |µ| = 1.0104. The middle panel of Fig. 10(b) captures the transition from the former
to the latter. We note that this is different from the example shown in Sec. 5, where the real Floquet
multiplier corresponding to the eigenmode along which the moving breather was perturbed also
had the largest modulus among the Floquet multipliers. The red lines in panels (a) and (c) measure
the growth rate and have the slope ln(|µ|)/(6T ), where µ is the corresponding multiplier and we
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have used the fact that V1 = 1/3 for the unperturbed breather. Comparing the lines of growth
rate for maximum real multiplier and the complex multiplier with maximum modulus to the early
and late stages, respectively, of the evolution in the simulation results yields an absolute difference
of size O(10−5) in both cases, indicating that the two regimes are indeed dominated by the two
distinct types of instability. At later times, the velocity evolution is similar to that for the examples
discussed in Sec. 5. In short, this detailed examination of the associated dynamical evolution
revealed that the instability growth rates captured by our Floquet analysis, even when very small,
accurately reflect the instability features of the associated solutions and hence appear to be real
features of the wave dynamics.
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