
Derivation of test objectives automatically

J. J. Gutiérrez, M. J. Escalona, M. Mejías, J. Torres

Department of Computer Languages and Systems.

University of Seville.

{javierj, escalona, risoto, jtorres}@lsi.us.es

A vital task of software development is to test the correct implementation of
functional requirements. Use cases are widely used artefacts that define the
functionality of a software system in early stages of the development proc-
ess. This paper exposes the lack of automatism in existing approaches that
deal with the derivation of test cases, and introduces a new approach and
tool to derive systematically test objectives from the use cases of the system
under test.

KEYWORDS

System testing, test objectives, generation of test cases, open-source tools.

1. Introduction

The growing complexity of software systems increases the need to assure their
quality. The system testing is a technique that helps to ensure the quality of soft-
ware systems. It is defined as a black-box procedure to verify the satisfaction of
the requirements of the system under test (SUT) [3]. Several kinds of tests might
be performed during the system testing phase. Some of them are: navigational
testing, reliability testing, usability testing, etc [3]. This paper is focused on the
functional testing from the point of view of external actors and, specifically, from
a human user point of view through a graphical interface. Thus, a test case substi-
tutes an actor of the system and simulates the interactions with the actor to check
that this system does what it is expected to do. For this reason, the main artefact to

2 J. J. Gutiérrez, M. J. Escalona, M. Mejías, J. Torres

obtain system test cases is its functional requirements since they describe all the
expected behaviours that have to be tested by the system test cases.

Functional requirements are often defined as use cases. Use cases offer a gen-
eral vision of the system. They are easier to study and validate for non-technical
users. In early development phases, when requirements are being discovered, de-
fined and negotiated, it is quite easier to modify use cases defined as prose or
structured natural language, than to make changes in formal requirements.

Most of software testing in industry is conducted at the system level. However,
the most formal research has been focused on the unit level [15]. Thus, most sys-
tem-level techniques are only informally described. The system testing requires a
formal process to identify the most important test cases and to measure the grade
of efficiency. Another important problem is that the system testing is performed at
the end of the development process, when the system is codified. Due to a tight
schedule time, the design and execution of system testing are frequently only su-
perficially performed or not at all. This paper tries to resolve one of these lacks. It
proposes a systematic process to derive test objectives from use cases, in order to
verify the successful implementation of these use cases in the final software sys-
tem.

A test objective is a named element that describes what should be tested [21].
The test objectives derived from use cases define what we have to test to ensure
the right implementation of the use case and the complete implementation of the
use cases. Designing good objectives is a vital task for the testing as well as for
the software development. However, the UML Testing Profile [21] does not de-
fine any notation to represent test objectives. We have resolved this gap using ac-
tivity diagrams and sequences of activities.

An activity diagram has several advantages over other UML diagrams. UML
sequence diagrams need information about the components of the systems and the
signatures and parameters of the calls among the components. Moreover, sequence
diagrams do not allow to represent alternative or erroneous scenarios. UML state
diagrams are focused on the states and transitions of the system, but they do not
clearly show the interactions between the actors and the system.

This paper is organized as followed: section 2 briefly describes several surveys
about approaches that deal with the derivation of test objectives. Then, section 3
proposes a model and template to define use cases. Section 4 introduces a real ap-
plication using a case study. Then, section 5 describes the process to derive test
objectives from use cases using the template of section 3, and illustrates the proc-
ess with the system described in section 4. Section 6 describes other related ap-
proaches. Finally, section 7 lists the conclusions and future works.

2. State of the art

While writing this paper, we have identified several approaches to generate test
objectives. Two surveys that analyse and compare 21 different approaches (in to-

Derivation of test objectives automatically 3

tal) may be found in [5] and [10]. Next paragraphs reference some of these ap-
proaches. A complete list of references may be found in both surveys.

The existing approaches might be divided into three groups depending on the
artefacts used for the generation of test cases. The first group includes approaches
that generate test objectives directly from use cases, like [2] and [11]. The second
group includes approaches that generate a behavioural model from the use cases
and derive test objectives from them, like [18], [13] or [17]. Some of the notations
used in this group are: activity diagrams, state-machines diagrams, use case transi-
tions systems or scenario trees. The third group describes approaches focused on
variables and test values. These approaches identify variables in use cases and per-
form partition of the domains, like [2] and [16].

The approaches might also be divided into two groups depending on the scope
of the generated test objectives. In the first group, we find approaches that gener-
ate test objectives from isolated use cases, like [2], [11] or [17]. The second group
includes approaches that generate test objectives from sequences of use cases, like
[18] or [13]. However, none of the approaches of the first group might automati-
cally derive behavioural models and test objectives from use cases. We can also
point out a lack of supporting tools. In the second group, the reference [13] gener-
ates test objectives in an automatic way for sequences of use cases, not for isolated
use cases. These facts justified a new approach to generate a behavioural model
and to derive test objectives in an automatic way. Next section describes the
model and template used to define use cases.

3. A use case model and template for testing.

The systematic generation of test objectives implies some drawbacks. One of them
is the need for defining a concrete model for the use cases that may be manipu-
lated in a systematic and automatic way, without loosing the advantages of using
prose text. A widely used solution is to structure the use cases in templates that
combine prose texts with a concrete structure and fields.

We use the requirement model proposed by the Navigational Development
Technique (NDT) [6]. Although NDT is focused on the navigational aspect of web
and hypermedia systems, it offers a complete, formal and flexible requirement
model. This model may be used with all kind of information systems, as demon-
strated [8]. The requirement model of NDT also proposes a template to define
functional requirements like use cases. This template is quite similar to the ones
proposed by other authors. We have chosen the NDT requirement model and
template for three main reasons. First, this model is based on a formal UML meta-
model [6], [14]. Second, the templates proposed in NDT only contain the more
relevant elements for the use case definition and test objectives derivation, and
might be easily extended. Finally, the NDT requirement model has been applied in
many real and complex projects like [8]. NDT has also a supporting tool called
NDT-Tool.

4 J. J. Gutiérrez, M. J. Escalona, M. Mejías, J. Torres

We have performed a minimal extension to the NDT templates to improve it
testability and to allow a systematic and automatic process to derive test objec-
tives. An example of the NDT extended template model is shown in table 1. A
real use case defined by this template may be found in table 2.

Table 1. Use case template.

Name UC-01. …
Precondition …
Main sequence 1. The actor…..

2. The system …
…

Errors / alter-
natives

1.1.i. If the system … then … and the result is ….
2.1.p. If the actor … then … and the result is ….
3.1.i. At any time, the [system/actor] may …. then …. and the
result is …

Results 1. System …
…

Post condition …
Reliability …
Priority …

Several fields in the template, like precondition, post-condition, etc., are com-
mon to other templates approaches and are widely known and described in other
papers and books [4]. Next paragraphs describe special fields and particular char-
acteristics of the extension. The ideas exposed in next paragraphs may be easily
adapted to other requirement techniques and models.

Name: Te name describes the goal of the use case. Every use case has a unique
identifier that starts with “UC” letters following one number.

Main sequence: The main sequence is composed of the steps of the use cases
execution to allow the actor to obtain his objective. Every step of the main se-
quence is composed of an identifier (the steps are numerated consecutively start-
ing from number one), who performs the step (an actor or the system) and the per-
formed action.

Errors / alternatives: These steps describe the behaviour of the system when
an error is found or some alternative flow may be executed. An error or alternative
step has got the same elements as the main sequence and some additional ele-
ments.

The identification of an error or an alternative step is composed of two num-
bers. The first number must be an existing step of the main sequence. The second
number allows to distinguish among different alternatives or errors of the same
step. Every step in an error / alternative section must have an evaluated condition
to decide if the error or alternative step might be executed, and also to decide the
executed action when the condition is true, and the result, for example the end of
the use case or the repetition of a set of steps. Sometimes the action might be the
same as the result and the result might be omitted.

Derivation of test objectives automatically 5

Fig. 1. A use case model.

The conditions of an error or alternative are classified in preconditions or in-

variants. A precondition is evaluated before the step starts its execution. An in-
variant is evaluated during the execution of the step.

Result: It indicates which steps (in main sequence and in alternative or errone-
ous sequences) end with the use case and which is the obtained result to the main
actor. Some use cases have not a visible result, or their definition is out of the
scope of the use case. This fact is pointed out showing that the result is not a visi-
ble result.

Next section describes the system used to apply the approach presented in this
paper and it exposes some examples of use cases defined with the template of ta-
ble 1.

4. Case study

The system under test is a web application that allows to manage an on-line link
catalogue (found in www.codecharge.com). The system includes two actors: the
user and the administrator. However, in this case study, we will only consider the
user actor. The UML Use Case diagram of the user is shown in figure 1.

The use cases of the case study are the following ones: “Search link by de-
scription” and “Show results”. Due to their inclusion relation, both use cases are
defined using one instance of the template of section 3 (table 2).

Table 2. The use case: "Search link by description".

Name UC-02. Search link by description
Precondition No.
Main sequence 1. The user asks the system for searching links by description.

2. The system asks for the description.
3. The user introduces the description.
4. The system searches for the links which matches up with the
description introduced by the user.
5. The system shows the results.

6 J. J. Gutiérrez, M. J. Escalona, M. Mejías, J. Torres

Errors / alter-
natives

3.1.i. At any time, the user may cancel the search, then the use
case ends.
4.1.p. If the actor introduces an empty description, then the
system searches for all stored links and the result is to continue
the execution of this use case.
4.2.i. If the system finds any error performing the search, then
an error message is shown and this use case ends.
5.1.i. If the result is empty, then the system shows a message
and this use case ends.

Results 5. The system shows the results of UC-05.
3.1.i. Out of the limits of this use case.
4.2.i. Error message.
5.1.p. Message of no found results.

Post condition No
The alternative steps are annotated with ‘p’ if they are preconditions and ‘i’ if

they are invariants. Next section describes how to obtain test objectives from use
cases and how to apply the process over this use case.

5. Test objectives from use cases

To derive test objectives, first, a behavioural model from a use case is built. Then,
the behavioural model is rounded trip to identify the test objectives. Point 5.1 de-
scribes the generation of the behavioural model. Then, point 5.2 describes how to
derive test objectives, and point 5.3 describes how to manage the coverage of the
use case by the test objectives.

5.1. Building of a behavioural model

The first task is to build a behavioural model from the use case. As mentioned in
section 1, a behavioural model is a UML activity diagram. This model represents
the different scenarios or instances of a use case. Next paragraphs describe the
steps to build a behavioural model from the use case which is defined with the
template of table 1.

In the main sequences, each step is an activity of the behavioural model. A
transition is added through two consecutive steps. A behavioural model has got, at
least, one ending point. Figure 2 shows an example of a behavioural model from
the main sequences of the use case of table 2.

Each alternative or error step is a decision node. If the alternative or error step
is a precondition, it is added before the related action. If the step is invariant, it is
added after the related action. If the alternative or error step performs an action,
the latest will be a new activity. If the result of the use case is to repeat a previous
step, a transition to the activity representing the step is added. The condition
evaluated in the alternative is attached to a decision node. Alternative and errone-

Derivation of test objectives automatically 7

ous steps are also classified into three categories. First one, called end, indicates
that the alternative ends the use case. An example is shown in figure 3 (alternative
1). Second one, called goto, indicates that the alternative repeat a previous activ-
ity. Third one, called action, indicates that he alternative performs a new activity.
An example is shown in figure 3 (alternatives 2, 3). Every category is processed in
a different way, as can be seen in algorithm “BuildBehaviourModel”.

Fig. 2. Activity model from the main sequence of use case.

Fig. 3. The complete behavioural model.

8 J. J. Gutiérrez, M. J. Escalona, M. Mejías, J. Torres

If there is a sequence of decisions nodes, all of them belong to the same actor
(including system). They should be merged into one decision node. Finally, the
activities are classified by classifiers. The behavioural model will have a classifier
for each actor and one more for the system. Each classifier will contain the activi-
ties performed by the actor or by the system. Figure 3 shows the final result.

Algorithm “BuildBehaviourModel” describes the algorithm used in the sup-
porting tool to generate the test objectives. A model variable is an activity graph
as defined in UML [20], whereas a step variable is a step from a use case, as de-
fined in section 4. Helper functions have a self descriptive name and their defini-
tion has not been included.

algorithm BuildBehaviourModel
var model : ACTIVITYGRAPH

alternativeSteps : LIST[USECASESTEP]
step : USECASESTEP

init
foreach (step in useMase.mainSequence)

alternativeSteps = useCase.getAlternatives(pre, step)
if (not_empty(alternativeSteps))

traverse_alternativeSteps(behaviourModel, alternativeSteps)
end if
behaviourModel.addActivity(step)
alternativeSteps = useCase.getAlternatives(inv, step)
if (not_empty(alternativeSteps))

traverse_alternativeSteps(behaviourModel, alternativeSteps)
end if

end foreach
end init
function traverse_alternativeSteps(behaviourModel, alternativeSteps)

alternative : STEP
decision = behaviourModel.addDesicion(alternativeSteps))
foreach (alternative in alsternativeSteps)

if (is_activity(alternative.action))
node = behaviourModel.addActivity(alternative.action)

end if
if (is_end(alternative.action))

node = behaviourModel.addActivity(activityEnd)
end if
if (is_gotoActivity(alternative.action))

node = behaviourModel.getActivity(alternative.action)
end if
behaviouralModel.addTransition(decision, node)

end foreach
end function

Derivation of test objectives automatically 9

If each step of the use case defines only one activity, then the maximum num-
ber of nodes (activities and decisions; start and end nodes are not included) of a
test objective model is: the number of steps in main sequences plus (number of al-
ternative and error steps x 2). From the use case of table 2, we can see that the
maximum number of nodes is 5 + (4 x 2) = 13 nodes. The behavioural model of
figure 3 shows only 11 nodes, because step 3.1.i does not generate any activity
and steps 4.2.i and 5.1.p have been combined in the same decision (decision 3 in
figure 3).Next point describes how to identify loops in the behavioural model.

5.2. Derivation of test objectives

After the building of a behavioural model, the test objectives are systematically
derived from them. The test objectives are defined as paths over the behavioural
model. These paths might also be expressed like activity diagrams or text. An ex-
ample of test objectives is shown in table 3 and figure 4.

However, a test objective is not a test case because it cannot be executed over
the system under test. The test objectives have to be completed with test values
and expected results, and should be executed in a test director tool or translate into
test scripts. An example of how to implement test objectives may be found in [13]
and [9].

Several coverage criteria might be chosen to generate sequences from a graph.
For example, two classic criteria are all-nodes and all-edges criteria. However, the
coverage criterion selected for this approach is the all scenarios criterion (AS). A
set of test objectives satisfies the whole scenarios criterion for a behavioural
model if each scenario involved in the use case is exercised by one and only one
test objective. A scenario is an instance, or a concrete execution, of a use case.

The AS coverage criterion assure that all the obtained objectives are reachable
and none of the objectives is repeated. Two test objectives are the same when they
have the same number of activities appearing in the same order.

Algorithm “BuildTestObjectives” describes the algorithm used in the support-
ing tool to generate test objectives. Helper functions have a self descriptive name
and their definition has not been included.

algorithm BuildTestObjectives
var objective : PATH

objectives : LIST(PATH)
init

objective = < empty >
objectives = < empty >
traverse(initialNode, path)

end init

function traverse(in node, inout objective)

if (is_desicion(node))
traverse_desicion(node, objective)

10 J. J. Gutiérrez, M. J. Escalona, M. Mejías, J. Torres

exit function
end if
objective.add(node)
if (isEnd(node))

objectives.add(objective)
exit function

end if
nextNode = next_node(node)
traverse(nextNode, objective)

end function

function traverse_desicion(in node, inout objective)

foreach (alternative in node.alternatives)
path.add(alternative)
nextNode = next_node(alternative)
traverse(nextNode, objective)

end foreach
end function

A set of test objectives are obtained after the application of algorithm 2 on the
behavioural model. The test objectives with a AS coverage are listed in the follow-
ing table 3. The id 1 path is the test objective of the main sequence of the use case.

Table 3. Derived test objectives.

Id Path
1 01 -> 02 -> 03 -> D1(No) -> D2(No)-> 04 -> D3(No error & Results) -> 05
2 01 -> 02 -> 03 -> D1(No) -> D2(No)-> 04 -> D3(No error & No Results) -> 05.1
3 01 -> 02 -> 03 -> D1(No) -> D2(No)-> 04 -> D3(Error) -> 04.2
4 01 -> 02 -> 03 -> D1(No) -> D2(Yes)-> 04.1 -> D3(No error & Results) -> 05
5 01 -> 02 -> 03 -> D1(No) -> D2(Yes)-> 04.1 -> D3(No error & No Results) -> 05.1
6 01 -> 02 -> 03 -> D1(No) -> D2(Yes)-> 04.1 -> D3(Error) -> 04.2
7 01 -> 02 -> 03 -> D1(Yes)

The test objectives might also be represented by activity graphs. Figure 4 shows
the activity diagrams that match paths 1 (4(a)) and 7 (4(b)).

As mentioned below, the objectives of table 7 cover 100% of scenarios of the
use case. The next section describes a criterion to select the desired coverage.

5.3. Coverage of use cases.

The coverage of test objectives measures the number of scenarios from a use case
with an attached test objective. The coverage of test objectives might be calculated
with the formula of figure 5.

Derivation of test objectives automatically 11

Fig. 4. Test objectives as activity graphs.

A higher coverage implies more test objectives and more test cases. A coverage
of 1, means that every possible scenario has one test objective and will have, at
least, one test case (as seen in the section below).

Fig. 5. Measure of the test objective coverage.

The coverage, and the number of test objectives, might be determined by the
relevance or frequency of the use case. Both elements are included in the template
model proposed in section 3. A coverage criterion is shown in table 4.

Table 4. Coverage criterion.

Priority Coverage
0 No test objectives are generated from the use case.
1 Only one test objective is generated from the main sequences.
2 Main sequence and all decisions nodes in actor classifiers.
3 All the test objectives are generated.

Next section exposes conclusions and ongoing works.

7. Conclusions

Test objectives are basic for a successful testing. They indicate which test cases
have to be built to test the implementation of a use case. This paper has presented

12 J. J. Gutiérrez, M. J. Escalona, M. Mejías, J. Torres

a new approach of the systematic derivation of test objectives for use cases. In
section 2, we justified the need for a new approach because we have not found any
process to derive automatically test objectives from isolated use cases.

A previous work described how to generate test cases from use cases for web
application using existing approaches [9]. However, this approach is highly based
on manual work and the decisions of test engineers. The automatic generation of
test objectives presented in this paper continues this research and is also the first
step to obtain a complete process for the generation of test cases, as we will see in
ongoing works. Our approach generates the same test objectives as the referenced
approaches of section 2. However, the main advantages are the definition of a
semiformal model to define use cases and the automatic generation of test objec-
tives. All derived objectives are also reachable, as seen in section 4.3. The ap-
proach does not generate repeated objectives. The algorithms described in section
4 have been implemented in a prototype tool. This tool may be downloaded from
www.lsi.us.es/~javierj/ and is being improved with loop management and XMI
support.

Future works aim at extending the presented approach. Our final goal is to gen-
erate test scripts from test objectives in an automatic way. Some preliminary
works about the generation of test scripts may be found in [9].

REFERENCES

[1] Bertolino, A., Gnesi, S. 2004. PLUTO: A Test Methodology for Product Fami-
lies. Lecture Notes in Computer Science. Springer-Verlag Heidelberg. 3014 /
2004. pp 181-197.

[2] Binder, R.V. 1999. Testing Object-Oriented Systems. Addison Wesley.
[3] Burnstein, I. 2003. Practical software Testing. Springer Professional Comput-

ing. USA.
[4] Cockburn, A. 2000. Writing Effective Use Cases. Addison-Wesley 1st edition.

USA.
[5] Denger, C. Medina M. 2003. Test Case Derived from Requirement Specifica-

tions. Fraunhofer IESE Report.
[6] Escalona M.J. 2004. Models and Techniques for the Specification and Analy-

sis of Navigation in Software Systems. Ph. European Thesis. Department of
Computer Language and Systems. University of Seville. Seville, Spain.

[7] Escalona M.J. Martín-Pradas A., De Juan L.F, Villadiego D., Gutiérrez J.J.
2005 El Sistema de Información de Autoridades del Patrimonio Histórico
Andaluz Proceedings of V Jornadas de Bibliotecas Digitales (JBiDi 2005).
ISBN: 84-9732-453-6 Granada, Spain. September, 2005.

[8] Gutierrez J.J. Escalona M.J. Mejías M. Torres J. 2004. Aplicando técnicas de
testing en sistemas para la difusión Patrimonial. V Congreso Nacional de
Turismo y Tecnologías de la Información y las comunicaciones
(TURITEC'2004). pp. 237-252. Málaga, Spain.

Derivation of test objectives automatically 13

[9] Gutiérrez J.J., Escalona M.J., Mejías M., Torres J. 2005. A practical approach
of Web System Testing. Advances in Information Systems Development:
Bridging the gap between Academia and Industry. pp. 659-680. Ed. Springer
Verlag Karlstad, Sweden.

[10] Gutiérrez, J.J., Escalona M.J., Mejías M., Torres, J. 2006. Generation of test
cases from functional requirements. A survey. 4º Workshop on System Test-
ing and Validation. Potsdam. Germany.

[11] Heumann , J. 2002. Generating Test Cases from Use Cases. Journal of Soft-
ware Testing Professionals.

[12] Myers G. 2004. The art of software testing. Second edition. Addison-Wesley.
USA.

[13] Nebut C. Fleury F. Le Traon Y. Jézéquel J. M. 2006. Automatic Test Genera-
tion: A Use Case Driven Approach. IEEE Transactions on Software Engineer-
ing Vol. 32. 3. March.

[14] Koch N. Zhang G. Escalona M. J. 2006. Model Transformations from Re-
quirements to Web System Design. Webist 06. Portugal.

[15] Offutt, J. et-al. 2003. Generating Test Data from Sate-based Specifications.
Software Testing, Verification and Reliability. 13, 25-53. USA.

[16] 16 T. J., Balcer M. J. 1988. Category-Partition Method. Communications of
the ACM. 676-686.

[17] Ruder A. 2004. UML-based Test Generation and Execution. Rückblick Meet-
ing. Berlin.

[18] Labiche Y., Briand, L.C. 2002. A UML-Based Approach to System Testing,
Journal of Software and Systems Modelling (SoSyM) Vol. 1 No.1 pp. 10-42.

[19] Several authors. 2004. SWEBOK. Guide to the Software Engineering Body
of Knowledge. IEEE Computer Society. [21] Object Management Group.
2002. The UML 2.0 Testing Profile. www.omg.org

[20] Object Management Group. 2003. Unified Modelling Language 2.0.
www.omg.org

[21] Object Management Group. 2003. The UML Testing Profile. www.omg.org

