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Abstract

The present paper is devoted to the study of the existence of a solution u for a quasilinear second order differential equation 
with homogeneous Dirichlet conditions, where the right-hand side tends to infinity at u = 0. The problem has been considered 
by several authors since the 70’s. Mainly, nonnegative right-hand sides were considered and thus only nonnegative solutions were 
possible. Here we consider the case where the right-hand side can change sign but is non negative (finite or infinite) at u = 0, 
while no restriction on its growth at u = 0 is assumed on its positive part. We show that there exists a nonnegative solution in a 
sense introduced in the paper; moreover, this solution is stable with respect to the right-hand side and is unique if the right-hand 
side is nonincreasing in u. We also show that if the right-hand side goes to infinity at zero faster than 1/|u|, then only nonnegative 
solutions are possible. We finally prove by means of the study of a one-dimensional example that nonnegative solutions and even 
many solutions which change sign can exist if the growth of the right-hand side is 1/|u|γ with 0 < γ < 1.
© 2020 L’Association Publications de l’Institut Henri Poincaré. Published by Elsevier B.V. All rights reserved.
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1. Introduction

The existence of a nonnegative solution for a singular semilinear second order partial differential problem with 
homogeneous Dirichlet conditions such as

{
−div(A(x)∇u) = F(x,u) in �

u = 0 on ∂�,
(1.1)
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is a classical problem which has been first considered by several authors. Here � is a bounded open set of RN , 
A ∈ L∞(�)N×N is uniformly elliptic and the right-hand side F : � × (0, ∞) → R satisfies

lim
s→0

F(x, s) = +∞, a.e. x ∈ �. (1.2)

In [8], it is shown the existence and uniqueness of a nonnegative solution assuming that the limit in (1.1) is uniform 
in � and F = F(x, s) decreasing in s. Indeed, in [8] the equation is not written in a divergence form and the solution 
is a classical solution, i.e. it is in C2(�) ∩ C0(�̄), which is strictly positive in �. The authors also study the behavior 
of the solution at the boundary and give some partial results about the existence of solution when F is not necessarily 
decreasing in s. In [7] it is considered the case where A is the identity and F = F(x, s) = 1/sγ + (λs)q with γ, λ, q >

0. It is shown that for every γ > 0 and every q > 1, there exists λ̃ ∈ (0, ∞) such that a solution exists if λ < λ̃ and 
there is not solution if λ ≥ λ̃. The existence and uniqueness of classical solution for every λ ≥ 0 and p < 1 was before 
proved in [19].

Looking for solutions in a Sobolev space, the problem has been considered in [3], where it is studied the case 
F(x, s) = f (x)/sγ , with γ > 0, f ≥ 0 not identically zero, f ∈ Lr(�), for some r ≥ 1. It is proved the existence of 
a solution in H 1

loc(�) ∩ W
1,1
0 (�), which is strictly positive in �. The authors also study the integrability of u and ∇u

depending on γ and r . In that paper the function u is a solution in the distributional sense, that is, taking test functions 
in D(�). It is proved in [1] that more general test functions can be considered and that there is just one solution which 
can be obtained as the limit of the solutions corresponding to replacing F by Fn(x, s) = fn(x)/(s + 1/n) where 
fn ≥ 0 increases to f . Moreover it is studied the homogenization result corresponding to replacing A in (1.1) by a 
sequence of matrix functions An.

In [13], it is considered the case where F satisfies

0 ≤ F(x, s) ≤ h(x)

(
1

sγ
+ 1

)
, a.e. x ∈ �, ∀ s ≥ 0, (1.3)

with 0 < γ ≤ 1 and h in a certain space Lr(�), r > 1. In this case, the authors provide a new definition of nonnegative 
solution which does not need the use of the strong maximum principle. It is shown that this solution is stable when 
we replace the function F by a sequence Fn converging pointwise to F and satisfying (1.3) with h and γ independent 
on F . In particular, this shows that these are the solutions we find by approximating the singular function F by non-
singular functions. It is also proved the uniqueness of solution if F is decreasing in s. The results are used to carry out 
the homogenization when the open set � is replaced by a sequence of open sets �ε satisfying similar conditions to 
those which appear in [6]. The extension of the existence, stability and uniqueness results to the “strong singular”case 
where F satisfies the weaker assumption

0 ≤ F(x, s) ≤ h(x)

�(s)
, a.e. x ∈ �, ∀ s ≥ 0, (1.4)

with h as above and � a Lipschitz function, strictly increasing, and such that �(0) = 0 is carried out in [14] (see also 
[12] and [16]). The corresponding extension of the homogenization result for varying domains is considered in [15].

Excepting [8] where F(x, s) decreasing in s implies that F(x, s) can take negative values for s bigger enough, 
the rest of the papers we have mentioned above consider a function F : � × [0, ∞) → [0, ∞) in (1.1). Thus, by the 
maximum principle, if there exists a solution for (1.1), it must be nonnegative. However, taking F which can take 
nonnegative values introduces several questions such as: Is there still a positive solution? Can we find nonnegative 
solutions or even solutions changing sign? To give an answer to these questions is the first motivation of the present 
paper. Indeed, with respect to the existence of nonpositive solutions we must refer for example to [9], [10], where it is 
considered the existence of nonnegative solutions for⎧⎨

⎩−�u = λG(x,u) − 1

|u|β in �

u = 0 on ∂�,

(1.5)

with λ > 0, G nonsingular and strictly positive (some other conditions are needed) and β ∈ (0, 1). Then, it is proved 
that a nonnegative solution exists if and only if λ is bigger than a certain λ̃ > 0. Replacing u by −u, this provides an 
example of a singular function
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F(x, s) = 1

|s|β − λG(x, s)

satisfying (1.2) for which problem (1.1) has a negative solution.
In [11], it is also considered the case F(x, s) = g(x, s) + f (x), with |g(x, s)| ≤ λ|s|p−1, 0 < p < 1, f ∈ Lm(�), 

m > N/2. Assuming A symmetric, the solution is defined as a minimum point for the functional

1

2

∫
�

A∇u · ∇udx −
∫
�

G(x,u)dx, G(x, s) =
s∫

0

F(x, t) dt,

and can change sign. The definition of solution given by the authors uses test functions which vanish at u = 0 and thus 
the equation is satisfied in � \ {u = 0}. It is proved the uniqueness for nonnegative solutions and g(x, .) decreasing.

In the present paper, more generally than (1.1) we deal with the problem{
−diva(x,u,∇u) = F(x,u) in �

u = 0 on ∂�,
(1.6)

with a : � ×R ×RN → RN a Carathéodory function satisfying usual assumptions in such way that the operator

v ∈ W
1,p

0 (�) �→ −diva(x, v,∇v) ∈ W−1,p′
(�), (1.7)

is pseudo-monotone in the sense of Leray-Lions ([17], [18]), for some p > 1 and it is such that a(x, 0, 0) = 0 (see 
(2.6), (2.7), (2.8) and (2.9) below for the exact assumptions on a).

In the first part of the paper we are interested in the existence of nonnegative solutions for (1.6) although F can take 
nonnegative values. We assume F = F(x, s) a Carathéodory function from � ×[0, ∞) into R ∪{∞}. It is nonnegative 
at s = 0 (being able to take an infinite value) and has a growth at s → +∞ at most of order p − 1. Namely, there 
exists ν > 0 not too large such that for every δ > 0, there exists kδ ∈ Lp′

(�), kδ ≥ 0, such that

F(x, s) ≤ kδ(x) + νsp−1, a.e. x ∈ �, ∀ s ≥ δ.

Observe that this assumption is guaranteed if F satisfies (1.4). Since we do not assume F to be nonnegative, we also 
introduce a below estimate assuring that F−(x, v) is in W−1,p′

(�) for every v ∈ W
1,p

0 (�) (see (2.15)). With these 
general hypotheses we show that a nonnegative solution still exists. In fact, similarly to [13] and [14] we introduce 
a suitable definition of solution (it is in particular a solution in the distribution sense) for which we show existence, 
stability with respect to the right-hand side and uniqueness for F(x, s) non increasing in s and a independent of s. 
The estimates we use to get the result are inspired by [13] and [14] although we use more general test functions. In 
particular, we observe that due to the nonlinearity of the operator given by (1.7), some duality arguments used in the 
choice of the test functions in [13] and [14] cannot be used in the present setting.

In the second part of the paper we consider the question relative to the existence of nonpositive solutions or even 
solutions changing sign. Thus, the function F is now assumed to be defined in � ×R. In Section 4 we show that if 
there exists δ, τ > 0 such that

F(x, s) ≥ τ

|s| , ∀ s ∈ (−δ,0), (1.8)

then every solution of (1.6) is necessarily nonnegative. That is, although, now F can take nonnegative values, the fact 
that it is very large near s = 0 is enough to preclude the existence of solutions taking negative values in a portion of 
�. Taking in particular F of the form

F(x, s) = f (x)

|s|γ − g(x), (1.9)

with f (x) ≥ ρ a.e. in � for some ρ > 0, and γ ≥ 1, we get that all the solutions for (1.6) are nonnegatives. Now, 
the question is What happens if γ < 1? As we said above, references [9], and [10] show that it is possible to get 
nonpositive solutions. Here we give in Section 5 a different example in the simple case � = (0, l) ⊂ R, a(x, s, ξ) = ξ

and F given by (1.9) with f and g positive constants and γ ∈ (0, 1). By a suitable change of variables, the problem is 
transformed into
879
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⎧⎨
⎩−w′′ = 1

|w|γ − 1 in (0, l)

w(0) = w(l) = 0.

(1.10)

We show that although there is a unique strictly positive solution, there also exist nonpositive solutions and even 
solutions changing sign, but only if l is large enough. In fact the number of solutions increases with l and tends to 
infinity when l tends to infinity.

The paper is organized as follows:

• In Section 2 we show the existence of nonnegative solutions for (1.6) in the singular case and the stability and 
uniqueness of these solutions.

• In Section 3 we prove the results corresponding to Section 2.
• In Section 4 we show that (1.8) implies that only nonnegative solutions are possible. The proof of these results is 

given at the end of the Section.
• In Subsection 5.1 we state the results corresponding to the one-dimensional example. The corresponding proofs 

are given in Subsection 5.2.

2. Existence, stability and uniqueness of nonnegative solutions for the singular problem

The present section is devoted to the existence, in a sense which we describe below, of nonnegative solutions for 
problem{

−diva(x,u,∇u) = F(x,u) in �

u = 0 on ∂�,
(2.1)

where F = F(x, s) can take the value +∞ at s = 0. We also give a stability result with respect to F for this kind of 
solutions. To finish, we show a uniqueness result when F is decreasing in s and a = a(x, s, ξ) does not depend on s
and is strictly monotone in ξ . The proof of these results will be given in Section 3.

We assume the following conditions on �, p, a = a(x, s, ξ) and F = F(x, s):
• For � and p we assume:

� is a bounded open set in RN, N ≥ 1. (2.2)

p ∈ (1,∞). (2.3)

Moreover, we define p∗ ∈ (1, ∞], p′ ∈ (1, ∞) and (p∗)′ ∈ [1, ∞) by⎧⎪⎪⎨
⎪⎪⎩

p∗ = Np

N − p
if p < N

p∗ is a fixed number in (1,∞) if p = N

p∗ = +∞ if p > N,

(2.4)

p′ = p

p − 1
, (p∗)′ = p∗

p∗ − 1
. (2.5)

• For the function a : � × [0, ∞) ×RN → RN we assume:
◦ The function a is a Carathéodory function, i.e.{

a(., s, ξ) is measurable in �, ∀ (s, ξ) ∈ [0,∞) ×RN

a(x, ., .) is continuous in [0,∞) ×RN, a.e. x ∈ �.
(2.6)

◦ There exist α, γ , a0 such that{
α > 0, γ ≥ 0, a0 ∈ L(p∗)′(�), a0 ≥ 0

a(x, s, ξ) · ξ ≥ α|ξ |p − γ sp − a0(x)s, ∀ (s, ξ) ∈ [0,∞) ×RN, a.e. x ∈ �.
(2.7)

◦ There exist β , b such that
880
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{
β > 0, b ∈ Lp(�), b ≥ 0,

|a(x, s, ξ)| ≤ β(
∣∣ξ | + s + b(x)

)p−1
, ∀ (s, ξ) ∈ [0,∞) ×RN, a.e. x ∈ �.

(2.8)

◦ The function a is monotone in the second variable, i.e.(
a(x, s, ξ) − a(x, s, η)

) · (ξ − η) ≥ 0, ∀ s ∈ [0,∞), ∀ ξ, η ∈RN, a.e. x ∈ �. (2.9)

Moreover, we define λ by

λ = lim inf
R→∞ min

⎧⎨
⎩ R∫

�
|v|pdx

: v ∈ W
1,p
0 (�) \ {0},

∫
�

(
a(x, v,∇v) · ∇v + γ |v|p)dx = R

⎫⎬
⎭ . (2.10)

• For the function F : � × [0, ∞) → R ∪ {+∞}, we assume:
◦ The function F is a Carathéodory function, i.e.

F(., s) is measurable in �, ∀ s ∈ [0,∞), F (x, .) is continuous in [0,∞), a.e. x ∈ �. (2.11)

◦
F(x,0) ≥ 0, a.e. x ∈ �. (2.12)

◦ There exists ν ≥ 0 such that for every δ > 0, there exists kδ satisfying

kδ ∈ L(p∗)′(�), kδ ≥ 0, F (x, s) ≤ kδ(x) + νsp−1, ∀ s ≥ δ, a.e. x ∈ �. (2.13)

◦ The constants γ in (2.7), ν in (2.13), and λ defined by (2.10) are related by

γ + ν < λ. (2.14)

◦

If p ≤ N,

{
∃ν̃ ≥ 0, k̃ ∈ L(p∗)′(�), k̃ ≥ 0

F(x, s) ≥ −k̃(x) − ν̃sp∗
, ∀ s ≥ 0, a.e. x ∈ �

If p > N,

{
∀m ∈ N, ∃k̃m ∈ L1(�), k̃m ≥ 0,

F (x, s) ≥ −k̃m(x), ∀ s ∈ [0,m], a.e. x ∈ �.

(2.15)

Remark 2.1. The minimum in (2.10) is well defined, thanks to (2.7).
If a does not depend on s and satisfies the homogeneity condition

a(x, tξ) = tp−1a(x, ξ), ∀ ξ ∈RN, ∀ t ≥ 0, a.e. x ∈ �,

then λ agrees with the first eigenvalue of the operator v ∈ W
1,p
0 (�) �→ −diva(x, ∇v), defined by

λ = min
v∈W

1,p
0 (�)

v �=0

∫
�

a(x,∇v) · ∇v dx∫
�

|v|pdx
.

Moreover, if λp denotes the first eigenvalue of the p-Laplacian operator, then, we have

αλp ≤ λ. (2.16)

This inequality can be proved as follows: We take a sequence Rn tending to infinity and a sequence un ∈ H 1
0 (�) such 

that

Rn =
∫
�

(
a(x,un,∇un) · ∇un + γ |un|p

)
dx, lim

n→∞
Rn∫

�
|un|pdx

= λ. (2.17)

In particular ‖un‖Lp(�) tends to infinity while the first equality, (2.7) and the definition of λp gives
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λ ≥ lim sup
n→∞

∫
�
(α|∇un|p − a0|un|)dx∫

�
|un|pdx

≥ αλp.

From (2.16) we deduce that a sufficient condition to have (2.14) is to assume

γ + ν < αλp.

Remark 2.2. Condition (2.7) on a implies

a(x,0,0) = 0, a.e. x ∈ �. (2.18)

In fact, taking in (2.7) s = 0, replacing ξ by tξ with t > 0, and dividing by t , we get

a(x,0, tξ) · ξ ≥ αtp−1|ξ |p, ∀ ξ ∈ RN, ∀ t > 0, a.e. x ∈ �.

Letting t tend to zero, this provides

a(x,0,0) · ξ ≥ 0, ∀ ξ ∈ RN, a.e. x ∈ �,

and then (2.18).

The definition of nonnegative solution for the singular problem (2.1) is as follows

Definition 2.3. For a bounded open set � ⊂ RN and functions a, F satisfying (2.6), ..., (2.9), (2.11), ..., (2.15), we 
say that u : � → R is a nonnegative solution of (2.1) if it satisfies

u ∈ Lp∗
(�) (2.19)

u ≥ 0 a.e. in � (2.20)

(u − δ)+ ∈ W
1,p

0 (�), ∀ δ > 0 (2.21)

ϕ ∇u ∈ Lp(�)N, ∀ϕ ∈ W
1,p

0 (�) ∩ L∞(�) (2.22)

F(x,u)+ϕp ∈ L1(�), ∀ϕ ∈ W
1,p
0 (�) ∩ L∞(�), ϕ ≥ 0 (2.23)⎧⎪⎪⎨

⎪⎪⎩

∫
�

a(x,u,∇u) · ∇(
h(u)ϕp)dx =

∫
�

F(x,u)h(u)ϕp dx

∀ϕ ∈ W
1,p
0 (�) ∩ L∞(�), ϕ ≥ 0, ∀h ∈ W 1,∞(0,∞).

(2.24)

Remark 2.4. Assumption (2.15) on F and (2.19) implies that F(x, u)− belongs to L1(�) for every nonnegative 
solution u of (2.1). By (2.23), this proves

F(x,u)ϕp ∈ L1(�), ∀ϕ ∈ W
1,p

0 (�) ∩ L∞(�), ϕ ≥ 0. (2.25)

Moreover, using

∇(h(u)ϕp) = h′(u)∇uϕp + p h(u)ϕp−1∇ϕ,

and assumptions (2.8), (2.22), we also have that a(x, ∇u)∇(h(u)ϕ) is in L1(�) for every ϕ and h in the conditions of 
(2.24). Thus, the two integrals which appear in (2.24) have a sense.

Assumption (2.21) in combination with (2.20) gives

0 ≤ u < δ on ∂�, ∀ δ > 0,

which gives a sense to the boundary condition u = 0 on ∂�.
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The following proposition shows that in (2.24) we can enlarge the set of test functions by introducing

W =
{
w ∈ W 1,p(�), ∃ϕ ∈ W

1,p
0 (�) ∩ L∞(�), ϕ ≥ 0 a.e. in �,

|w| ≤ ϕp a.e. in �,
|∇w|
ϕp−1 χ{ϕ �=0} ∈ Lp(�)

}
.

(2.26)

Observe that contrarily to the test functions used in (2.24), this set does not depend on the solution u. We have 
preferred to give the definition of solution taking test functions of the form h(u)ϕp with ϕ ∈ W

1,p
0 (�) ∩ L∞(�), 

ϕ ∈ W
1,p
0 (�), h ∈ W 1,∞(0, ∞), instead of functions in W , in order to compare with the definition of solution given 

in [13] and [14].

Proposition 2.5. The space W is a vectorial subspace of W 1,p

0 (�). It contains the space of functions in W 1,p(�) ∩
L∞(�) with compact support in � and satisfies

wv ∈ W, ∀w ∈ W, ∀v ∈ W 1,p(�) ∩ L∞(�). (2.27)

If a function u : � → R is a nonnegative solution of (2.1) in the sense established in (2.3), then it also satisfies

F(x,u) = 0, a.e. in {u = 0} (2.28)

|∇u|p−1|∇w| ∈ L1(�), ∀w ∈ W (2.29)∫
�

a(x,u,∇u) · ∇w dx =
∫
�

F(x,u)w dx, ∀w ∈ W. (2.30)

Remark 2.6. Proposition 2.5 proves in particular that every nonnegative solution of (2.1) in the sense given by Defi-
nition 2.3 is a solution in the distribution sense, i.e. we have

−diva(x,u,∇u) = F(x,u) in D′(�). (2.31)

By (2.22), we also know that u is in W 1,p
loc (�) and then, for every open set ω strictly contained in �, we have that 

diva(x, u, ∇u) is in W−1,p′
(ω) while by (2.23) F(x, u) is in L1(ω). It is well known that then (2.31) implies that 

F(x, u)v belongs to L1(�) for every v ∈ W 1,p(�) with compact support and∫
�

a(x,u,∇u) · ∇v dx =
∫
�

F(x,u)v dx, ∀v ∈ W 1,p(�) with compact support in �. (2.32)

The following theorem provides a stability result for the nonnegative solutions of (2.1) when the right-hand side 
varies.

Theorem 2.7. We consider a bounded open set � ⊂ RN , a function a : � × [0, ∞) × RN → RN , satisfying (2.6), 
(2.7), (2.8) and (2.9), and a sequence of functions Fn : � × R → R ∪ {∞} such that (2.11), (2.12), (2.13) (2.14)
and (2.15) hold, with constants ν, ν̃ and functions kδ , k̃ and k̃m independent of n. We also assume the existence of 
F : � ×R → R ∪ {∞} such that

For a.e. x ∈ �, we have: tn ≥ 0, tn → t =⇒ Fn(x, tn) → F(x, t). (2.33)

Then, if un is a sequence of nonnegative solutions of{
−diva(x,un,∇un) = Fn(x,un) in �

un = 0 in �,
(2.34)

there exists a nonnegative solution u of (2.1) such that for a subsequence of n, still denoted by n, we have

un → u in Lq(�), ∀q < p∗ (2.35)

un ⇀ u in Lp∗
(�) (2.36)

(un − δ)+ ⇀ (u − δ)+ in W
1,p

(�), ∀ δ > 0. (2.37)
0

883



J. Casado-Díaz and F. Murat Annales de l’Institut Henri Poincaré – Analyse non linéaire 38 (2021) 877–909
Thanks to Theorem 2.7 we will deduce the existence of nonnegative solutions for (2.1) which is given in the 
following theorem.

Theorem 2.8. Let � be a bounded open set of RN . Then, for every function a : � × [0, ∞) × RN → RN which 
satisfies (2.6), (2.7), (2.8) and (2.9), and every function F which satisfies (2.11), (2.12), (2.13), (2.14) and (2.15), 
there exists a nonnegative solution of problem (2.1) in the sense of Definition 2.3.

We finish this section with the following comparison result for the nonnegative solutions of (2.1) when the operator 
a = a(x, s, ξ) does not depend on s. It proves in particular the uniqueness of nonnegative solutions when a is strictly 
monotone in ξ and F = F(x, s) is nondecreasing in s. In the case when a depends on s it is also possible to extend 
some uniqueness results for pseudomonotone problems (see e.g. [2], [4], [5]), but the corresponding proofs are more 
complicated.

Theorem 2.9. Let � be a bounded open set of RN and let a : � × [0, ∞) × RN → RN be independent on s and 
satisfying (2.6), (2.7), (2.8) and

(a(x, ξ1) − a(x, ξ2)) · (ξ1 − ξ2) > 0, ∀ ξ1, ξ2 ∈RN, a.e. x ∈ �. (2.38)

We consider two functions F1 and F2 which satisfy (2.11), (2.12), (2.13) and (2.15). We also assume

∃i ∈ {1,2} such that Fi(x, ·) is nonincreasing, a.e. x ∈ � (2.39)

F1(x, s) ≤ F2(x, s), ∀ s ∈ [0,∞), a.e. x ∈ �. (2.40)

Then, if u1, u2 are nonnegative solutions of{
−diva(x,∇ui) = Fi(x,ui) in �

u = 0 in �,
i = 1,2, (2.41)

we have

u1 ≤ u2 a.e. in �. (2.42)

3. Proof of the stability, existence and uniqueness results

Let us prove in this section the different results exposed in Section 2 relative to the existence and properties of the 
nonnegative solutions for the singular problem (2.1).

Proof of Proposition 2.5. In order to show that W is contained in W 1,p
0 (�), we consider w ∈ W and ϕ ∈ W

1,p
0 (�)

such that

w ∈ W, ϕ ∈ W
1,p

0 (�) ∩ L∞(�), ϕ ≥ 0, |w| ≤ ϕp a.e. in �,
|∇w|
ϕp−1 χ{w �=0} ∈ Lp(�). (3.1)

Then, taking ϕn ∈ W 1,p(�), ϕn ≥ 0, with compact support which converges to ϕ in W 1,p
0 (�) and is bounded in 

L∞(�), it is immediate to show that the sequence

wn = [
w ∨ (−ϕ

p
n )

]∧ ϕ
p
n ∈ W

1,p

0 (�),

converges to w in W 1,p(�). This proves that w is in W 1,p
0 (�).

Now, we consider w ∈ W
1,p
0 (�) ∩ L∞(�) with compact support. Let us prove that w is in W . It is enough to 

observe that for every ϕ ∈ C1
c (�) with ϕ ≥ ‖w‖L∞(�) in suppw, the functions w and ϕ satisfy (3.1).

Let us prove that W is stable by addition. For this purpose, we take w1, ϕ1 and w2, ϕ2 which are related as in (3.1), 
then taking into account that for i = 1, 2 ∇wi = 0 a.e. in {wi = 0} ⊂ {ϕi = 0} it is simple to check that w1 + w2, 
ϕ1 + ϕ2 also satisfy (3.1).

To show (2.27), we take w ∈ W and v ∈ W 1,p(�) ∩ L∞(�), which we can assume not identically zero, then we 
observe that for ϕ satisfying (3.1), we have
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|wv| ≤ (
ϕ‖v‖

1
p

L∞(�)

)p
,

|∇(wv)|
‖v‖

p−1
p

L∞(�)ϕ
p−1

χ{ϕ �=0} ≤
⎛
⎜⎝ |∇w|

ϕp−1 ‖v‖
1
p

L∞(�)
+ |∇v|ϕ

‖v‖
p−1
p

L∞(�)

⎞
⎟⎠χ{ϕ �=0} ∈ Lp(�).

Assume now u a nonnegative solution of (2.1) in the sense of Definition 2.3 and consider a function ϕ ∈ W
1,p
0 (�) ∩

L∞(�), ϕ ≥ 0 a.e. in �. For Sε : [0, ∞) → R defined by

Sε(s) =
(

1 − s

ε

)
∨ 0, ∀ s ≥ 0, (3.2)

we take h = Sε in (2.24) to deduce

−1

ε

∫
{u<ε}

a(x,u,∇u) · ∇uϕpdx + p

∫
�

a(x,u,∇u) · ∇ϕ Sε(u)ϕp−1dx

=
∫
�

F(x,u)Sε(u)ϕpdx.

(3.3)

In the first term of this equality we use (2.7) and (2.18) to deduce

1

ε

∫
{u<ε}

a(x,u,∇u) · ∇uϕpdx ≥ α

ε

∫
{0<u<ε}

|∇u|pϕpdx −
∫

{0<u<ε}
(γ εp−1 + a0)ϕ

pdx

and then

lim sup
ε→0

1

ε

∫
{0<u<ε}

a(x,u,∇u) · ∇uϕpdx ≥ α lim sup
ε→0

1

ε

∫
{0<u<ε}

|∇u|pϕpdx.

For the second term, we observe that (2.8), (2.22) and Hölder’s inequality imply that the function a(x, u, ∇u) ·
∇ϕ ϕp−1 belongs to L1(�). Using then that Sε(u) converges a.e. to χ{u=0} and (2.18), and the Lebesgue dominated 
convergence theorem we deduce

lim
ε→0

∫
�

a(x,u,∇u) · ∇ϕ Sε(u)ϕp−1dx = 0. (3.4)

For the third term in (3.3), we use (2.25), which allows us to apply Lebesgue dominated convergence theorem to get

lim
ε→0

∫
�

F(x,u)Sε(u)ϕpdx =
∫

{u=0}
F(x,0)ϕpdx.

Therefore, taking the limit in (3.5) when ε tends to zero we obtain

0 ≥
∫

{u=0}
F(x,0)ϕpdx + α lim sup

ε→0

1

ε

∫
{0<u<ε}

|∇u|pϕpdx,

which by (2.12) shows (2.28) and

lim
ε→∞

1

ε

∫
{0<u<ε}

|∇u|pϕp dx = 0, ∀ϕ ∈ W
1,p
0 (�) ∩ L∞(�), ϕ ≥ 0. (3.5)

Let us now prove (2.29) and (2.30), for w ∈ W . Decomposing w = w+ + w−, where both w+ and w− belong to 
W , we can assume w nonnegative. We take ϕ such that (3.1) holds. Using

|∇u|p−1|∇w| ≤
(
|∇u|p−1ϕp−1

)( |∇w|
ϕp−1 χ{ϕ �=0}

)
, a.e. in �

and taking into account (2.22) and (3.1) we conclude that (2.29) is a simple consequence of Hölder’s inequality.
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For ε ∈ (0, 1), we define Zε ∈ W 1,∞(0, ∞) by

Zε(s) =
( s

ε
− 1

)+ ∧ 1. (3.6)

Then, for δ > 0, we use (2.24) with

ϕ =
((

2s

ε
− 1

)+
∧ 1

)
(w + δ)

1
p ∈ W

1,p

0 (�) ∩ L∞(�), h = Zε

Observing that

h(u)ϕp = Zε(u)(w + δ),

we get∫
�

a(x,u,∇u) · ∇w Zε(u)dx + 1

ε

∫
{ε<u<2ε}

a(x,u,∇u) · ∇u (w + δ) dx

=
∫
�

F(x,u) (w + δ)Zε(u)dx.

Since Zε(u) vanishes on the set {u < ε} and (2.21), (2.13) and (2.15) hold, we can pass to the limit when δ tends to 
zero, to get∫

�

a(x,u,∇u) · ∇w Zε(u)dx + 1

ε

∫
{ε<s<2ε}

a(x,u,∇u) · ∇uw dx =
∫
�

F(x,u)wZε(u)dx.

Thanks to (2.25), (2.8), (2.29), (3.1), (3.5) and Lebesgue dominated convergence theorem we can pass to the limit in 
this equality to deduce (2.30). �
Proof of Theorem 2.7. The first part of the theorem is devoted to obtain some a priori estimates for un.

Taking into account the definition of λ given by (2.10) and (2.14), we can fix in the proof R0, ε > 0 such that⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(ν + γ )

∫
�

|v|pdx ≤ (1 − ε)

∫
�

(
a(x, v,∇v) · ∇v + γ |v|p) dx

∀v ∈ W
1,p

0 (�) with
∫
�

(
a(x, v,∇v) · ∇v + γ |v|p) dx ≥ R0.

(3.7)

For δ, k > 0, we take (un − δ)+ ∧ k ∈ W , as test function in (2.34) which gives∫
{k+δ>un>δ}

a(x,un,∇un) · ∇un dx =
∫
�

Fn(x,un)
(
(un − δ)+ ∧ k

)
dx.

Here, thanks to (2.21), (2.15) and (2.23), we have that Fn(x, un)(un − δ)+ belongs to L1(�). Thus, we can pass to 
the limit when k tends to infinity to get∫

{un>δ}
a(x,un,∇un) · ∇un dx =

∫
�

Fn(x,un)(un − δ)+dx.

Taking into account that for every t > 0, there exists Ct > 0 such that

xp ≤ (1 + t)(x − δ)p + Ctδ
p, ∀x > δ > 0, (3.8)

and defining the Sobolev constant C� by (C� does not depend on � if p < N )

‖v‖Lp∗
(�) ≤ C�‖∇v‖Lp(�), ∀v ∈ W

1,p
(�), (3.9)
0
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we have for every t > 0∫
{un>δ}

a(x,un,∇un) · ∇un dx =
∫
�

Fn(x,un)(un − δ)+ dx

≤
∫
�

(
kδ + νu

p−1
n

)
(un − δ)+dx ≤ 1

p′tp′ ‖kδ‖p′
L(p∗)′ (�)

+ tpC
p

�

p

∫
{un>δ}

|∇un|pdx

+ν(1 + t)

∫
{un>δ}

(un − δ)pdx + νCtδ
p|�|.

(3.10)

If ∫
{un>δ}

(
a(x,un,∇un) · ∇un + γ u

p
n

)
dx ≤ R0, (3.11)

then, thanks to (2.7) we easily get

(un − δ)+ is bounded in W
1,p

0 (�). (3.12)

If (3.11) does not hold, using (3.7) with v = (un − δ)+ we deduce from (3.10)

(
1 − (1 − ε)(1 + t)

) ∫
{un>δ}

a(x,un,∇un) · ∇un dx

≤ 1

p′tp′ ‖kδ‖p′
L(p∗)′ (�)

+ tpC
p

�

p

∫
{un>δ}

|∇un|pdx + νCtδ
p|�|,

which using (2.7) and taking t small enough to have

α
(
1 − (1 − ε)(1 + t)

)− tpC
p

�

p
> 0,

proves that (3.12) is also true when (3.11) does not hold.
Observe that decomposing un as un = (un ∧ 1) + (un − 1)+, estimates (3.12) and (3.9) also imply

un is bounded in Lp∗
(�). (3.13)

We have obtained an estimate for ∇un on the set {un > δ}. Let us now obtain an estimate on the set {un < δ}. For 
this purpose, we take (δ − un)

+ϕp with ϕ ∈ W
1,p

0 (�) ∩ L∞(�), ϕ ≥ 0 a.e. in �, as test function in (2.34). We get

−
∫

{un<δ}
a(x,un,∇un) · ∇un ϕpdx + p

∫
�

a(x,un,∇un) · ∇ϕ ϕp−1(δ − un)
+dx

=
∫
�

Fn(x,un)(δ − un)
+ϕp dx.

(3.14)

Taking into account (2.7), (2.8) and ∇un = 0 a.e. in {un = 0}, we deduce

α

δ

∫
{un<δ}

|∇un|pϕpdx +
∫
�

F+
n (x,un)

(
1 − un

δ

)+
ϕpdx

≤
∫

{un<δ}
(γ δp−1 + a0)ϕ

pdx + β

∫
{un<δ}

(|∇un| + δ + b
)p−1|∇ϕ|ϕp−1dx

+
∫

F−
n (x,un)ϕ

p dx,

(3.15)
{un<δ}
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which using (2.15) easily implies the existence of C > 0 such that

1

δ

∫
{un<δ}

|∇un|pϕpdx +
∫
�

F+
n (x,un)

(
1 − un

δ

)+
ϕpdx ≤ C

(
‖ϕ‖p

L∞(�) + ‖∇ϕ‖p

Lp(�)N

)

∀ϕ ∈ W
1,p
0 (�) ∩ L∞(�), ϕ ≥ 0 a.e. in �, ∀ δ ∈ (0,1).

(3.16)

From this inequality, (3.12) and (2.13) applied to Fn, we deduce in particular

|∇un|ϕ bounded in Lp(�), Fn(x,un)
+ϕp bounded in L1(�), ∀ϕ ∈ W

1,p
0 (�) ∩ L∞(�). (3.17)

Taking into account (3.12), (3.13), (2.33), Rellich-Kondrachov’s compactness theorem and Fatou’s lemma we 
deduce the existence of a subsequence of un, still denoted by un, and a function u such that{

u ∈ Lp∗
(�), u ≥ 0 a.e. in �, (u − δ)+ ∈ W

1,p
0 (�), ∀ δ > 0

|∇u|ϕ ∈ Lp(�), F (x,u)+ϕ ∈ L1(�), ∀ϕ ∈ W
1,p

0 (�) ∩ L∞(�),
(3.18)

and such that (2.35), (2.36) and (2.37) hold.
Returning now to (3.15) and using (2.15) applied to Fn, (2.33), (2.12) and the Rellich-Kondrachov compactness 

theorem we deduce

lim
δ→0

lim sup
n→∞

⎛
⎜⎝1

δ

∫
{un<δ}

|∇un|pϕpdx +
∫
�

F+
n (x,un)

(
1 − un

δ

)+
ϕpdx

⎞
⎟⎠ = 0, (3.19)

for every ϕ ∈ W
1,p

0 (�) ∩ L∞(�), ϕ ≥ 0.
Let us now prove that u is a nonnegative solution of (2.1). By (3.18), it just remains to show (2.24). Even more, let 

us prove (2.30).

Taking into account (3.17) and (2.8), we can assume the existence of σ ∈ L
p′
loc(�)N , such that

a(x,un,∇un)ϕp−1 ⇀ σ ϕp−1 in Lp′
(�)N , ∀ϕ ∈ W

1,p
0 (�) ∩ L∞(�), ϕ ≥ 0. (3.20)

Taking w ∈ W as test function in (2.34), we get∫
�

a(x,un,∇un) · ∇w dx =
∫
�

Fn(x,un)w dx. (3.21)

In the left-hand side of this equality we use

a(x,un,∇un) · ∇w =
(
a(x,un,∇un)ϕ

p−1
)

·
( ∇w

ϕp−1

)
χ{ϕ �=0},

with ϕ ∈ W
1,p
0 (�) ∩ L∞(�) associated to w following Definition (2.26) of W . Thanks to (3.20) we can then pass to 

the limit when n tends to infinity, to get

lim
n→∞

∫
�

a(x,un,∇un) · ∇w dx =
∫
�

σ · ∇w dx. (3.22)

In the right-hand side of (3.21), we use (2.36), (2.37), (3.19) and assumptions (2.13), (2.15) applied to Fn to also 
obtain

lim
n→∞

∫
�

Fn(x,un)w dx =
∫
�

F(x,u)w dx.

Therefore, we have shown∫
σ · ∇w dx =

∫
F(x,u)w dx, ∀w ∈ W. (3.23)
� �
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To finish, let us prove

σ = a(x,u,∇u) a.e. in �, (3.24)

which combined with (3.18) and (3.23) will prove that u is a nonnegative solution of (2.1).
Taking m > 0 and (un ∧ m)ϕ, with ϕ ∈ C∞

c (�) as test function in (2.34), we have∫
{un<m}

a(x,un,∇un) · ∇un ϕ dx +
∫
�

a(x,un,∇un) · ∇ϕ (un ∧ m)dx

=
∫
�

Fn(x,un)(un ∧ m)ϕ dx,

where we can pass to the limit thanks to (2.35), (2.36), (2.37), (2.33) and (3.19) to get

lim
n→∞

∫
{un<m}

a(x,un,∇un) · ∇un ϕ dx +
∫
�

σ · ∇ϕ (u ∧ m)dx =
∫
�

F(x,u)(u ∧ m)ϕ dx.

On the other hand, using w = (u ∧ m)ϕ in (3.23), we have∫
{u<m}

σ · ∇uϕ dx +
∫
�

σ · ∇ϕ (u ∧ m)dx =
∫
�

F(x,u)(u ∧ m)ϕ dx.

Thus, we have proved

lim
n→∞

∫
{un<m}

a(x,un,∇un) · ∇un ϕ dx =
∫

{u<m}
σ · ∇uϕ dx, ∀m > 0.

This equality allows us to use the Minty rule (see e.g. [17], [18]) to deduce (3.24). �
Proof of Theorem 2.8. For every n ∈N , we define Fn : � × [0, ∞) → R by

Fn(x, s) = [F(x, s) ∨ (−n)] ∧ n, ∀ s ∈R, a.e. x ∈ �.

Then, we extend Fn to � ×R and a to � ×R ×RN by taking

Fn(x, s) = Fn(x,0), a(x, s, ξ) = a(x,0, ξ), ∀ (s, ξ) ∈ (−∞,0) ×RN, a.e. x ∈ �.

Taking into account that Fn is a Carathéodory function and |Fn(x, s)| ≤ n a simple application of the Schauder fixed 
point theorem and the theory of monotone operators provides a solution un of{−diva(x,un,∇un) = Fn(x,un) in �

un ∈ W
1,p
0 (�).

(3.25)

Multiplying (3.25) by −u−
n , we have∫

{un<0}
a(x,0,∇un) · ∇un dx =

∫
{un<0}

Fn(x,0)un dx,

which using (2.7) and (2.12) proves un ≥ 0, i.e. un is a nonnegative solution of (3.25). Applying Theorem 2.7 to this 
sequence we deduce the existence of a subsequence of un which converges to a nonnegative solution of (2.1). �
Proof of Theorem 2.9. For δ, k > 0, we consider the function

z = [(
u1 − u2 − δ

)+ ∧ k
]2

,

which satisfies
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∇z = 2
(
u1 − u2 − δ

)∇(u1 − u2)χ{u2+δ<u1<k+u2+δ}
and therefore

|∇z| ≤ 2
(
(u1 − δ)+ ∧ k

)(|∇u1| + |∇u2|
)

a.e. in �.

By u1, u2 nonnegative solutions of (2.41) and properties (2.21) and (2.22) of the nonnegative solutions, we get that z
is a nonnegative function of W 1,p

0 (�) ∩L∞(�) and therefore zp belongs to the space W defined by (2.26). Taking zp

as test function in the difference of the equations satisfied by u1 and u2, we get

2p

∫
{u2+δ<u1<k+u2+δ}

(a(x,∇u1) − a(x,∇u2)) · ∇(u1 − u2)
(
u1 − u2 − δ

)2p−1
dx

=
∫
�

(
F1(x,u1) − F2(x,u2)

)[(
u1 − u2 − δ

)+ ∧ k
]2p

dx.

(3.26)

Let us first assume F1(x, .) nonincreasing, then using F1(x, u2) ≤ F2(x, u2) a.e. in �, we have

2p

∫
{u2+δ<u1<k+u2+δ}

(a(x,∇u1) − a(x,∇u2)) · ∇(u1 − u2)
(
u1 − u2 − δ

)2p−1
dx

≤
∫
�

(
F1(x,u1) − F1(x,u2)

)[(
u1 − u2 − δ

)+ ∧ k
]2p

dx.

Here, we observe that

u1 ≤ u2 =⇒ [(
u1 − u2 − δ

)+ ∧ k
] = 0,

while by F1 nonincreassing we have

u1 ≥ u2 =⇒ F1(x,u1) − F1(x,u2) ≤ 0,

Therefore, the right-hand side of (3.26) is nonpositive which, taking into account (2.38), proves

∇u1 = ∇u2 a.e. in {u2 + δ < u1 < k + u2 + δ}, ∀ δ > 0, ∀ k > 0,

and then

∇u1 = ∇u2 a.e. in {u2 < u1},
or equivalently, ∇(u1 − u2)

+ = 0 a.e. in �. This proves that (u1 − u2)
+ is constant in every connected component of 

�, which combined with (ui − δ)+ ∈ W
1,p

0 (�) for every δ > 0, i = 1, 2, proves u1 ≤ u2 a.e. in �.
Assume now F2(x, .) nonincreasing. Using F1(x, u1) ≤ F2(x, u1) in (3.26) we get

2p

∫
{u2+δ<u1<k+u2+δ}

(a(x,∇u1) − a(x,∇u2)) · ∇(u1 − u2)
(
u1 − δ − u2

)2p−1
dx

≤
∫
�

(
F2(x,u1) − F2(x,u2)

)[(
u1 − u2 − δ

)+ ∧ k
]2p

dx.

This allows to repeat the above reasoning to deduce again u1 ≤ u2 a.e. in �. �
4. Nonexistence of a solution taking negative values when F is too large near s = 0

In Section 2, we have proved the existence of a nonnegative solution for problem (2.1) when the function F =
F(x, s) on the right-hand side can take the value plus infinity at s = 0. In the present section we prove that if F(x, s)
is bigger than τ/|s|, τ > 0, when s is close to zero, then every solution of the semilinear problem is necessarily 
nonnegative. This result is a consequence of the following lemma.
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Lemma 4.1. Let � be a bounded open set of RN , p > 1, and a : � ×R ×RN →RN be a function which satisfies{
a(., s, ξ) is measurable in �, ∀ (s, ξ) ∈R×RN

a(x, ., .) is continuous in R×RN, a.e. x ∈ �.
(4.1)

◦ There exist α, γ , a0 such that{
α > 0, γ ≥ 0, a0 ∈ L(p∗)′(�), a0 ≥ 0

a(x, s, ξ) · ξ ≥ α|ξ |p − γ |s|p − a0(x)|s|, ∀ (s, ξ) ∈ R×RN, a.e. x ∈ �.
(4.2)

◦ There exist β , b such that{
β > 0, b ∈ Lp(�), b ≥ 0,

|a(x, s, ξ)| ≤ β(
∣∣ξ | + |s| + b(x)

)p−1
, ∀ (s, ξ) ∈R×RN, a.e. x ∈ �.

(4.3)

Let u and H be two measurable functions in � such that

(u + δ)− ∈ W
1,p
0 (�), ∀ δ > 0 (4.4)

H ∈ L1({u < −δ}), ∀ δ > 0 (4.5)

∃ τ, δ0 > 0 such that H ≥ τ

|u| a.e. in {−δ0 < u < 0} (4.6)

⎧⎪⎪⎨
⎪⎪⎩

∫
�

a(x,u,∇u) · ∇v dx =
∫
�

Hv dx

∀v ∈ W
1,p

0 (�) ∩ L∞(�), such that ∃ δ > 0 with v = 0 in {u > −δ}.
(4.7)

Then, we have

u ≥ 0 a.e. in �. (4.8)

The previous Lemma implies that any solution of problem (2.1) cannot take negative values when F(x, s) ≥ τ/|s|, 
τ > 0, for s small. More exactly, one has:

Theorem 4.2. Let � be a bounded open set of RN and p > 1. We consider a function a : � ×R ×RN → RN which 
satisfies (4.1), (4.2) and (4.3) and a function F : � ×R →R ∪ {∞}, which satisfies

F(·, s) is measurable in �, ∀ s ∈ R, F (x, ·) is continuous in R \ {0}, a.e. x ∈ � (4.9)

∃ δ0, τ > 0, with F(x, s) ≥ τ

|s| , ∀s ∈ (−δ0,0), (4.10)

and ⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

if p ≤ N,

{ ∃νδ ≥ 0, kδ ∈ L1(�), kδ ≥ 0, ∀ δ > 0

|F(x, s)| ≤ kδ(x) + νδ|s|p∗
, ∀ s with |s| > δ, a.e. x ∈ �

if p > N,

{
∃km,δ ∈ L1(�), km,δ ≥ 0, ∀m ∈N, ∀ δ > 0

|F(x, s)| ≤ km,δ(x), ∀ s with δ < |s| < m, a.e. x ∈ �.

(4.11)

Then, any measurable function u : � → R which is a solution of{
−diva(x,u,∇u) = F(x,u) in � \ {u = 0}
u ≥ 0 on ∂�,

(4.12)

in the following sense:
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⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(u + δ)− ∈ W
1,p

0 (�), ∀ δ > 0∫
�

a(x,u,∇u) · ∇v dx =
∫
�

F(x,u)v dx

∀v ∈ W
1,p
0 (�) ∩ L∞(�), such that ∃ δ > 0 with v = 0 in {|u| < δ},

(4.13)

satisfies

u ≥ 0 a.e. in �. (4.14)

Remark 4.3. Problem (4.12) is non standard since the equation takes place in the set � \ {u = 0} which depends on 
the solution u. In general this set is not an open set since u has not reason to be continuous.

The fact that the equation takes place in � \ {u = 0} is reflected in the (mathematically correct) formulation (4.13)
where the test functions v have to vanish on the set {u = 0}.

Remark 4.4. Definition 2.3 in Section 2 was concerned with nonnegative solutions. Thus, the functions a = a(x, s, ξ)

and F = F(x, s) were only defined for s nonnegative. It is clear that Definition 2.3 could be extended in a natural 
way to the case where F is defined for s ∈R and where the solution can take negative values. In this new setting, any 
such solution to (2.1) would have to be nonnegative in view of Theorem 4.2 when the function F satisfies assumption 
(4.10), reinforcing in this case the uniqueness result of Theorem 2.9.

Remark 4.5. If in Lemma 4.1 we replace assumptions (4.4), (4.5), (4.6) and (4.7) by

(u − δ)+ ∈ W
1,p

0 (�), ∀ δ > 0, H ∈ L1({u > δ}), ∀ δ > 0,

∃ τ, δ0 > 0 such that H ≤ − τ

|u| a.e. in {0 < u < δ}⎧⎪⎪⎨
⎪⎪⎩

∫
�

a(x,u,∇u) · ∇v =
∫
�

Hv dx

∀v ∈ W
1,p

0 (�) ∩ L∞(�), such that ∃ δ > 0 with v = 0 in {u < δ}.
Then, instead of (4.8) we have that u ≤ 0 a.e. in �. The proof of this result just follows by applying Lemma 4.1 to the 
functions ã, ũ and H̃ defined by

ã(x, s, ξ) = −a(x,−s,−ξ), ũ = −u, H̃ = −H.

Using this result one can also modify Theorem 4.2 to prove that the solution u of a nonlinear problem with a singular 
right-hand side term F(x, u) such that

F(x,u) ≤ −τ

u
, if 0 < u < δ, for some δ > 0,

which is nonpositive on the boundary is necessarily nonpositive in the whole of �.

The results stated in Lemma 4.1 and Theorem 4.2 are based on the fact that the sign of u on the boundary is known. 
When no boundary conditions are given it is still possible to show Lemma 4.6 below. It proves that the solution of a 
nonlinear problem with a singular term, which is sufficiently large for u close to zero, cannot change sign.

Lemma 4.6. Assume � ⊂ RN , open, a : � × R × RN → R satisfying (4.1), (4.2) and (4.3). We assume there exist 
u ∈ W

1,p

loc (�) and H ∈ L1
loc(�) such that there exist τ, δ0 > 0 satisfying one of the following conditions:⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

|H | ≥ τ

|u| a.e. in {0 < u < δ0}∫
�

a(x,u,∇u) · ∇v dx =
∫
�

Hv dx

∀v ∈ W 1,p(�) ∩ L∞(�), spt(v) ⊂ � compact, ∃ δ > 0 with v = 0 in {v < δ},

(4.15)
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or ⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

|H | ≥ τ

|u| a.e. in {−δ0 < u < 0}∫
�

a(x,u,∇u) · ∇v dx =
∫
�

Hv dx

∀v ∈ W 1,p(�) ∩ L∞(�), spt(v) ⊂ � compact, ∃ δ > 0 with v = 0 in {v > −δ}.

(4.16)

Then, one of the following assertions holds:

u ≥ 0 a.e. in � or u ≤ 0 a.e. in �. (4.17)

Proof of Lemma 4.1. For ε < δ0/2, we take

vε :=
(

1 + u

ε

)− ∧ 1 ∈ W
1,p

0 (�) ∩ L∞(�), ∀ ε > 0, (4.18)

as test function in (4.7). We have

−1

ε

∫
{−2ε<u<−ε}

a(x,u,∇u) · ∇udx =
∫
�

Hvε dx =
∫

{u≤−δ0}
H dx +

∫
{−δ0<u}

Hvε dx,

and thus

−
∫

{u≤−δ0}
H dx = 1

ε

∫
{−2ε<u<−ε}

a(x,u,∇u) · ∇udx +
∫

{−δ0<u}
Hvε dx. (4.19)

By (4.6), we know that H ≥ 0 a.e. in {−δ0 < u < 0}. This allows us to use the monotone convergence theorem in the 
last term, which combined with (4.2), proves

lim sup
ε→0

α

ε

∫
{−2ε<u<−ε}

|∇u|pdx +
∫

{−δ0<u<0}
H dx ≤ −

∫
{u≤−δ0}

H dx,

and thus, taking into account (4.5), we get

H ∈ L1({u < 0}), lim sup
ε→0

1

ε

∫
{−2ε<u<−ε}

|∇u|pdx ≤ − 1

α

∫
{u<0}

H dx. (4.20)

Now, we observe that thanks to (4.6), for 0 < 2ε < δ0, we have

1

2ε

∣∣{x ∈ � : −2ε < u < −ε
}∣∣ ≤

∫
{−2ε<u<−ε}

1

|u| dx ≤ 1

τ

∫
{−2ε<u<−ε}

H dx,

and then, by the first assertion in (4.20)

lim
ε→0

1

ε

∣∣{x ∈ � : −2ε < u < −ε
}∣∣ = 0. (4.21)

Let us now take � ∈ C∞
c (RN)N . Since vε defined by (4.18) belongs to W 1,p

0 (�), we have

∫
vε div�dx = −

∫
∇vε · �dx = 1

ε

∫
∇ u · �dx. (4.22)
� � {−2ε<u<−ε}

893



J. Casado-Díaz and F. Murat Annales de l’Institut Henri Poincaré – Analyse non linéaire 38 (2021) 877–909
Taking into account (4.20) and (4.21), we have on the first hand

lim sup
ε→0

1

ε

∫
{−2ε<u<−ε}

|∇u||�|dx

≤ lim
ε→0

⎛
⎜⎝1

ε

∫
{−2ε<u<−ε}

|∇u|p dx

⎞
⎟⎠

1
p (

1

ε

∣∣∣{x ∈ ω : −2ε < u < −ε
}∣∣∣)

1
p′

‖�‖L∞(�)N = 0.

On the other hand, using the definition (4.18) of vε and Lebesgue’s dominated convergence theorem, we have

lim
ε→0

∫
�

vε div�dx =
∫

{u<0}
div�dx.

Thus, (4.22) provides

0 =
∫
�

χ{u<0}div�dx, ∀� ∈ C∞
c (RN)N =⇒ ∇χ{u<0} = 0 in D′(RN). (4.23)

This proves that χ{u<0} is a constant function in RN , but {x ∈ � : u(x) < 0} ⊂ � implies that χ{u<0} vanishes outside 
�. Therefore χ{u<0} = 0 a.e. in RN . �
Proof of Theorem 4.2. It is easily deduced from Lemma 4.1 with H(x) = F(x, u(x)). Namely, we observe that 
(4.13) implies (4.4) and (4.7), while Sobolev’s embedding theorem and (4.11) provide (4.5). Finally, assumption (4.6)
follows from (4.10). �
Proof of Lemma 4.6. To fix ideas we assume in the following that (4.15) holds. The other case is completely similar. 
The proof follows the ideas of Lemma 4.1.

We take ϕ ∈ W 1,p(�) ∩ L∞(�). Then, for ε > 0, we define

vε :=
[(u

ε
− 1

)+ ∧ 1
]
.

Taking v = vεϕ in (4.15), we get

1

ε

∫
{ε<u<2ε}

a(x,u,∇u) · ∇uϕ dx +
∫
�

a(x,u,∇u) · ∇ ϕ vε dx =
∫
�

Hvεϕ dx.

Then, using Lebesgue dominated convergence theorem we can pass to the limit when ε tends to zero to deduce

lim
ε→0

1

ε

∫
{ε<u<2ε}

a(x,u,∇u) · ∇uϕ dx =
∫

{0<u}

(
Hϕ − a(x,u,∇u) · ∇ϕ

)
dx,

which combined with (4.2) shows

lim sup
ε→0

1

ε

∫
{ε<u<2ε}

|∇u|pϕ dx < +∞. (4.24)

On the other hand, for ε < δ0/2, we have

τ

ε

∫
{ε<u<2ε}

ϕ dx ≤
∫

{ε<u<2ε}
|H |ϕ dx,

and so,

lim
ε→0

1

ε

∫
ϕ dx = 0. (4.25)
{ε<u<2ε}
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From (4.24) and (4.25) we then deduce similarly to (4.23) (observe that now the support of � is contained in �).∫
{u>0}

div�dx = 0, ∀� ∈ C∞
c (�)N .

This shows that the distributional gradient of χ{u>0} is zero and so that χ{u>0} is constant a.e. in �, i.e. u ≥ 0 a.e. in 
� or u ≤ 0 a.e. in �. �
5. A one-dimensional example of a singular equation with many solutions which change sign

In Section 2 we have proved the existence of a nonnegative solution for the semilinear problem (2.1) where F =
F(x, s) is nonnegative at s = 0 and can take the value +∞. Later, in Section 4, we have shown that if F(x, s) is bigger 
than τ/|s|, τ > 0, when s is negative and close to zero, then every solution of (2.1) is nonnegative. If contrarily, the 
right-hand side F tends to +∞ when s tends to 0 with a speed of order 1/|s|γ , 0 < γ < 1, then some examples in [9]
and [10] show that a nonpositive solution can also exist. This proves that condition (4.10) in Theorem 4.2 is optimal 
in the sense that it cannot be relaxed by

F(x, s) ≥ τ

|s|γ a.e. in {δ0 < s < 0}, with δ0, τ > 0, γ < 1.

In the present section we explore the simple example in dimension N = 1 given by⎧⎨
⎩−u′′ = f

|u|γ − g in (0,L)

u(0) = u(L) = 0,

(5.1)

with L, f, γ positive constants and g ∈R. We will describe all the possible solutions.
Theorems 2.8 and 2.9 applied to (5.1) show the existence and the uniqueness of a nonnegative solution for (5.1), 

for every f, γ > 0 and g ∈ R. For γ ≥ 1, Theorem 4.2 shows that every solution of the problem is nonnegative. So, 
the solution given by Theorem 2.8 is the unique solution to this problem. Also, if γ < 1 and g ≤ 0, the right-hand side 
in problem (5.1) is nonnegative and then, the classical weak maximum principle implies that every solution has also 
to be nonnegative. Thus, we will assume in what follows

f,g > 0, 0 < γ < 1.

We first observe that a change of scale in the variables x and u allows us to reduce the number of parameters. 
Namely, for r, t > 0 to be chosen, we define the new unknown function w by

w(x) = ru(tx), x ∈ (0,L/t). (5.2)

The differential equation in (5.1) is then transformed into

−w′′ = f rγ+1t2

|w|γ − grt2 in (0,L/t).

Taking

r =
(

g

f

) 1
γ

, t = f
1

2γ

g
γ+1
2γ

, l = L

t
, (5.3)

problem (5.1) reduces to⎧⎨
⎩−w′′ = 1

|w|γ − 1 in (0, l)

w(0) = w(l) = 0.

(5.4)

The main results of this section are Theorems 5.3 and 5.7 below. They show in particular the existence of solutions 
to problem (5.1) which take negative values and even change its sign when l is big enough. Moreover the number of 
such solutions increases as l increases.
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5.1. Statements of the results concerning problem (5.4)

In the introduction to this section we were speaking about solutions of problem (5.4) and (5.1), but we did not 
define what we understand by a solution of these singular problems. The definition that we will use is the following 
one:

Definition 5.1. Let γ be such that

0 < γ < 1.

A measurable function w : (0, l) → R is a solution of (5.4) if it satisfies

w ∈ L1(0, l) (5.5)

(|w| − δ)+ ∈ W
1,1
0 (0, l), ∀ δ > 0 (5.6)

1

|w|γ ∈ L1
loc(0, l) (5.7)

−w′′ = 1

|w|γ − 1 in D′(0, l). (5.8)

This definition could seem to be weaker than the one given by Definition 2.3 for nonnegative solutions, but this is 
not the case because of the following Proposition.

Proposition 5.2. Let w be a solution of (5.4) in the sense of Definition 5.1. Then one has

w ∈ W 2,1(0, l) ∩ H 1
0 (0, l), (5.9)

and then in particular

1

|w|γ ∈ L1(0, l), w ∈ C1([0, l]). (5.10)

Moreover, defining c ≥ 0 by

c = |w′(0)|2, (5.11)

one has

|w′|2 = b(w) + c in [0, l], (5.12)

where b : R → R is the function defined by

b(s) = − 2

1 − γ

s

|s|γ + 2s, ∀ s ∈R, (5.13)

where b(0) is understood as zero.
Finally, when c �= 0 one has

w ∈ W 2,q(0, l),
1

|w|γ ∈ Lq(0, l), ∀q <
1

γ
. (5.14)

In the case where γ = 1/2, we are able to describe all the solutions of problem (5.4) in the sense of Definition 5.1. 
This is the most simple case of the main result of this section

Theorem 5.3. Let γ be such that

γ = 1

2
.

Define T0 by

T0 = 2
√

2π.

Then, the set of the solutions of problem (5.4) in the sense of Definition 5.1 is the union of the following branches:
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1. For every l > 0, there exists 1 solution of problem (5.4) which is positive in (0, l). This solution is the unique 
nonnegative solution of (5.4).

2. For l = T0, there exists 1 solution of problem (5.4) which is negative in (0, l). This solution is the unique negative 
solution of (5.4).

3. For every l > T0, there exist 4 solutions of problem (5.4) which are as follows: the first one is negative in (0, l), 
and is the unique solution (strictly) negative on (0, l); the 3 other ones change sign at every zero and are negative 
on 1 nonempty subinterval of (0, l) and positive on 1 or 2 nonempty subintervals of (0, l).

4. For l = 2T0, there exists 1 solution of problem (5.4) which is negative in (0, T0) ∪ (T0, 2T0) but which vanishes at 
T0.

5. For every l > 2T0, there exist 4 solutions to problem (5.4) which change sign at every zero and are negative on 2 
nonempty subintervals of (0, l) and positive on 1, 2 or 3 nonempty subintervals of (0, l).

6. Similarly, for every k ∈N , with k ≥ 3, for every l = kT0, there exists 1 solution of problem (5.4) which is negative 
on 

⋃k−1
j=0(jT0, (j + 1)T0) but which vanishes at t = jT0, j ∈ {1, ..., k − 1}.

7. Similarly, for every k ∈ N , with k ≥ 3, for every l > kT0, there exist 4 solutions to problem (5.4) which change 
sign at every zero and are negative on k nonempty subintervals of (0, l) and positive on k −1, k or k +1 nonempty 
subintervals of (0, l).

Therefore when γ = 1/2, problem (5.4) has exactly

1 + 4k solutions if kT0 < l < (k + 1)T0, ∀ k ≥ 0, (5.15)

4k − 2 solutions if l = kT0, ∀ k ≥ 1. (5.16)

Remark 5.4. Let us denote by Bj
k , with k ∈ N , k ≥ 1, and j = 1, 2, 3, 4, the 4 functions which to any l > k associate 

the 4 solutions of problem (5.4) in (0, l), which are negative on k subintervals of (0, l), described in the latest point 
of Theorem 5.3, or more exactly their extensions by zero to (0, ∞) of these 4 solutions. Since these 4 solutions are 
uniquely defined by formulas (5.38) and (5.42) below, it is not difficult to prove that the functions Bj

k are continuous 

on (kT0, +∞) with values in L1(0, ∞) or even in W 1,p
0 (0, ∞) for any p < ∞. This proves that in the case where 

γ = 1/2, the set of all the solutions of (5.4) coincide with a set made of a countable number of bundles of 4 continuous 
branches originating at every point l = kT0, with k ≥ 1, to which one has to add the branch originating at l = 0
consisting of the nonnegative solution. A representation of these branches with the type of solutions corresponding to 
each branch is given in Fig. 2.

Remark 5.5. As already said in the introduction of this section, problems (5.1) and (5.4) are equivalent through the 
change of (independent and dependent) variables (5.2). In the case γ = 1/2, since (5.3) implies that

g =
(

f l

L

) 2
3

,

setting

M =
(

f T0

L

) 2
3

,

Theorem 5.3 implies that problem (5.1) has a unique solution (which is positive) when 0 < g < M , and a unique 
negative solution when g ≥ M . Moreover at every value g = Mk

2
3 , with k ∈ N , a bundle of 4 branches of solutions 

appears, so that problem (5.1) has exactly 1 + 4k solutions for Mk
2
3 < g < M(k + 1)

2
3 , k ≥ 0 and 4k − 2 solutions for 

g = Mk
2
3 , k ≥ 1.

Theorem 5.3 refers to the case γ = 1/2. In the case γ ∈ (0, 1/2) ∪ (1/2, 1) we do not know the exact number of 
solutions of problem (5.4) and the structure of such solutions. However we can still show some related results. For 
this purpose consider the function b defined by (5.13), whose graph is given in Fig. 1. The following proposition gives 
some properties of this function b we will need later to state and prove the results corresponding to the existence of 
solutions for problem (5.4).
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Fig. 1. Graph of the function b.

Fig. 2. Branches of solutions for γ = 1/2.

Proposition 5.6. For γ ∈ (0, 1), the function b defined by (5.13) satisfies⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

b is strictly increasing in (−∞,−1) and (1,∞), b is strictly decreasing in (−1,1)

lim
s→−∞b(s) = −∞, b(−1) = 2γ

1 − γ
, b(1) = − 2γ

1 − γ
, lim

s→∞b(s) = ∞

b vanishes at s = − 1

(1 − γ )
1
γ

, s = 0, s = 1

(1 − γ )
1
γ

.

(5.17)

• For 0 ≤ c < 2γ /(1 − γ ), the equation b(s) + c = 0 has three solutions z1(c), z2(c) and z3(c) with z1(c) < −1, 
0 ≤ z2(c) < 1, 1 < z3(c).

• For c = 2γ /(1 − γ ) the equation b(s) + c = 0 has two solutions z1(2γ /(1 − γ )) < −1 and z2(2γ /(1 − γ )) = 1.
• For c > 2γ /(1 − γ ), equation b(s) + c = 0 has a unique solution z1(c) and z1(c) < 1.

We define T − : [0, ∞) → R and T + : [0, 2γ /(1 − γ )) → R by

T −(c) = 2

0∫
dt√

b(t) + c
, ∀ c ∈ [0,∞). (5.18)
z1(c)
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T +(c) = 2

z2(c)∫
0

dt√
b(t) + c

, ∀ c ∈
[

0,
2γ

1 − γ

)
. (5.19)

Then, we have

T − ∈ C0([0,∞)), T ∗ := min
c≥0

T −(c) > 0, lim
c→∞T −(c) = ∞ (5.20)

T + ∈ C0
([

0,
2γ

1 − γ

))
, T + is strictly increasing, T +(0) = 0, lim

c→ 2γ
1−γ

T +(c) = ∞. (5.21)

Using the function T − defined by (5.18) we can now state our main result about the existence of solution for 
problem (5.8) for γ ∈ (0, 1).

Theorem 5.7. Let γ be in (0, 1). Define T ∗ by (5.20) and T0 by

T0 = T −(0). (5.22)

Then, we have:
If T − is strictly increasing in [0, ∞), then all the results in the statement of Theorem 5.3 still hold true.
If T − is not necessarily strictly increasing, we have:

1. For every l > 0, there exists 1 solution of problem (5.4) which is positive in (0, l). This solution is the unique 
nonnegative solution of (5.4).

2. For every l < kT ∗, k ≥ 1, there is not any solution of problem (5.4) which is negative on at least k nonempty open 
subintervals of (0, l) and vanishes on the boundary of these intervals.

3. For every l ≥ T ∗, there exists at least 1 solution of problem (5.4) which is negative in (0, l).
4. For every l = kT0, k ≥ 1, there exists 1 solution of problem (5.4) which is negative on 

⋃k−1
j=0(jT0, (j + 1)T0) but 

which vanishes at t = jT0, j ∈ {1, ..., k − 1}.
5. For every l > kT0, k ≥ 1, there exist at least 4 solutions of problem (5.4) which are negative on exactly k disjoint 

open subintervals of (0, l), they vanish on the boundary of these subintervals and are positive on the rest of (0, l), 
which is composed by k − 1, k or k + 1 disjoint open subintervals.

In particular, for γ ∈ (0, l), problem (5.4) has at least

1 + 4k solutions if kT0 < l < (k + 1)T0, ∀ k ≥ 0, (5.23)

4k − 2 solutions if l = kT0, ∀ k ≥ 1. (5.24)

Remark 5.8. By Theorem 5.7, the number of solutions of (5.4) agrees with (5.15) or (5.16), when the function T −
is strictly increasing. In the case where γ = 1/2 this follows from the next proposition which provides an explicit 
expression for T −. In the general case we do not know when this is true or not. A numerical computation provides 
Fig. 5 showing the graph for T − for several values on γ . It seems to indicate the existence of γ̃ ≤ 1/2, close to 1/2, 
such that T − is not strictly increasing for γ ∈ (0, γ̃ ), while it is strictly increasing for γ ≥ γ̃ .

Proposition 5.9. Assume γ = 1
2 . Then, the functions z1 and z2 defined by Proposition 5.6 are given by

z1(c) = −
(

2 + c

2
+ √

4 + 2c
)

, ∀ c ≥ 0, z2(c) = 2 − c

2
− √

4 − 2c, ∀ c ∈ [0,2]. (5.25)

The functions T − and T + defined by (5.18) are given by

T −(c) = 2
√

2

(
π − 2 arctan

√
−z1(c) − 2

√−z1(c)√−z1(c)
+

√
−z1(c) − 2

√−z1(c)

)
, ∀ c ≥ 0, (5.26)

T +(c) = 2
√

2

(
2 arctanh

√
z2(c)√

2
√

z (c) − z (c)
−

√
2
√

z2(c) − z2(c)

)
, ∀ s ∈ [0,2). (5.27)
2 2
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The function T + is a strictly increasing function in [0, ∞).

5.2. Proof of the results corresponding to the one-dimensional example

The results exposed above are essentially a consequence of Theorem 5.10 below. First of stating and proving this 
result, let us show Propositions 5.2 and 5.6.

Proof of Proposition 5.2. We start by observing that if w is a solution of (5.4) in the sense of Definition 5.1, then, 
(5.7) and (5.8) imply that w is in W 2,1

loc (0, l), and therefore w′ is in C1(0, l). Multiplying equation (5.8) by w′, we get

−
( |w′|2

2

)′
= w′

|w|γ − w′ in (0, l),

and thus, there exists a constant c ∈R such that

|w′|2 = − 2

1 − γ

w

|w|γ + 2w + c in (0, l). (5.28)

Since w ∈ L1(0, l), we deduce from this equality that |w′|2 belongs to L1(0, l) and therefore w ∈ H 1(0, l). Then, 
(5.6) implies that w belongs to H 1

0 (0, l). In particular, w belongs to C0([0, l]) and then (5.28) shows that |w′| is in 
C0([0, l]).

Integrating equation (5.8) in (δ, l − δ), with δ > 0, we also have

l−δ∫
δ

dx

|w|γ = −w′(l − δ) + w′(δ) + l − 2δ.

Since |w′| in C0([0, l]) implies w′ in L∞(0, l), the monotone convergence theorem implies that

1

|w|γ ∈ L1(0, l), (5.29)

and then (5.8) proves that w is in W 2,1(0, l). In particular, this means that w′ is in C0([0, l]) and by (5.28) that (5.12)
holds.

If c �= 0, then, using that w ∈ C1([0, l]) and that |w′(s)| = c2 for every s ∈ [0, l] such that w(s) = 0, we deduce 
that 1/|w|γ belongs to Lq(0, l) for every q < 1/γ which combined with (5.4) shows (5.14). �
Proof of Proposition 5.6. Statement (5.17) and the results about the number and position of the zeros of the function 
b follow immediately by studying the sign of the derivative of b.

The continuity of the functions T − and T + defined by (5.18) and (5.19) is simple to check. Moreover, the definition 
of T + and z2(0) = 0 imply T +(0) = 0. Since for c = 2γ /(1 − γ ), we have z2(c) = 1 and b(1) + c = b′(1) = 0, we 
get

lim
c→ 2γ

1−γ

T +(c) = 2 lim
c→ 2γ

1−γ

z2(c)∫
0

dt√
b(t) + c

= ∞. (5.30)

In order to prove that T + is strictly increasing, we recall that Theorems 2.8 and 2.9 show that problem (5.1) has 
a unique nonnegative solution for every l ≥ 0. Taking into account Theorem 5.10 below (see (5.41)) this solution is 
necessarily obtained as the restriction to [0, l] of a periodic function of period T −(c) + T +(c), with l = T +(c) for 
some c ∈ [0, 2γ /(1 − γ )). Moreover, by (5.42), it is given by

w(x) =

⎧⎪⎨
⎪⎩

G−1(x) if x ∈
[
0,

l

2

]
G−1(l − x) if x ∈

[ l
, l
]
,

2
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with G defined by (5.36). This provides the implicit definition of w⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

x =
w(x)∫
0

dt√
b(t) + c

if x ∈
[
0,

l

2

]

x =
z2∫

0

dt√
b(t) + c

+
z2∫

w(x)

dt√
b(t) + c

if x ∈
[ l

2
, l
]
.

The uniqueness of w implies then that for every l ∈ [0, ∞), there exists a unique c ∈ [0, 2γ /(1 − γ )), which satisfies 
T +(c) = l. Combined with T +(0) = 0, (5.30) and T continuous, this shows that T + is strictly increasing.

In order to study the values of T −, we consider the function R defined by

R(z) = T −(z−1
1 (−z)), ∀ z ∈ (z−1

1 (0),∞), (5.31)

which is obtained by writing the function T − in the variable z = −z1(c). Then, recalling definition (5.13) of b and 
that z1(c) is the unique negative root of b + c, we get that R is given by

R(z) = 2

z∫
0

dr√
2

1−γ

(
r1−γ − z1−γ

)+ 2(z − r)
, ∀ z ≥ 1

(1 − γ )
1
γ

. (5.32)

Now, for z ∈ (0, ∞) we define ψ : [0, ∞) → R by

ψ(r) = 2

1 − γ

(
r1−γ − z1−γ

)+ 2

zγ
(z − r), ∀ r > 0.

Then, using

ψ(z) = 0, ψ ′(r) = 2

(
1

rγ
− 1

zγ

)
≥ 0, ∀ r ∈ (0, z],

we deduce that ψ(r) ≤ 0 for every r ∈ [0, z], which implies

2

1 − γ

(
r1−γ − z1−γ

)+ 2(z − r) ≤ 2

(
1 − 1

zγ

)
(z − r), ∀ r ∈ [0, z],

and then, for every z > 1, we have

z∫
0

dr√
2

1−γ

(
r1−γ − z1−γ

)+ 2(z − r)
≥ 1√

2
(
1 − 1

zγ

)
z∫

0

dr√
z − r

=
√

2zγ+1

zγ − 1
.

Taking into account (5.32), the function z → zγ+1/(zγ − 1) increasing for z > (1 + γ )
1
γ and (1 − γ )

− 1
γ > (1 + γ )

1
γ

for 0 < γ < 1, we deduce

R(z) ≥
√

2

γ (1 − γ )
1
γ

, ∀ z ≥ 1

(1 − γ )
1
γ

, lim
z→∞R(z) = ∞.

Returning to the variable c = z−1
1 (−z), we have then proved

T −(c) ≥
√

2

γ (1 − γ )
1
γ

, ∀ c ≥ 0, lim
c→∞T −(c) = ∞. � (5.33)

Theorem 5.10. Assume that w is a solution of (5.4) and define c by (5.11).
• If 0 ≤ c < 2γ /(1 − γ ), then w is the restriction to [0, l] of a function in W 2,1

loc (R) (W 2,q

loc (R), for every q < 1/γ if 
c > 0), still denoted by w, which is a solution of
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−w′′ = 1

|w|γ − 1 in R, (5.34)

periodic of period

T (c) := T −(c) + T +(c), (5.35)

with T −, T + defined by (5.18), (5.19). Defining G by

G(s) =
s∫

0

dt√
b(t) + c

, ∀ s ∈ [z1(s), z2(s)], (5.36)

we have that one of the two following conditions hold:
a)

l = kT (c), k ≥ 1 or l = kT (c) + T −(c), k ≥ 0 (5.37)

and for every j ∈ Z, we have

w(x) =

⎧⎪⎪⎨
⎪⎪⎩

G−1(jT (c) − x
)

if x ∈
[
jT (c) − T +(c)

2
, jT (c) + T −(c)

2

]
G−1(x − (jT (c) + T −(c))

)
if x ∈

[
jT (c) + T −(c)

2
, (j + 1)T (c) − T +(c)

2

]
.

(5.38)

{
w
(
jT (c)

) = w
(
jT (c) + T −(c)

) = 0

w < 0 in
(
jT (c), jT (c) + T −(c)

)
, w > 0 in

(
jT (c) + T −(c), (j + 1)T (c)

) (5.39)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

w is strictly decreasing in
[
jT (c) − T +(c)

2
, jT (c) + T −(c)

2

]
w is strictly increasing in

[
jT (c) + T −(c)

2
, (j + 1)T (c) − T +(c)

2

]
w
(
jT (c) + T −(c)

2

)
= z1(c), w

(
(j + 1)T (c) − T +(c)

2

)
= z2(c)

w
(
jT (c) + T −(c)

2
− r

)
= w

(
jT (c) + T −(c)

2
+ r

)
, ∀ r ∈

[
0,

T (c)

2

]
,

(5.40)

b)

l = kT (c), k ≥ 1 or l = kT (c) + T +(c), k ≥ 0 (5.41)

w(x) = z(x − T +(c)) with z satisfying (5.38), (5.39) and (5.40). (5.42)

• If c ≥ 2γ /(1 − γ ), then

l = T −(c). (5.43)

Defining G by (5.36) in [z1(c), 1], we have that w is the restriction to [0, l] of a function in W 2,q
loc (R) for every q < 1/γ

solution of (5.34) defined by

w(x) =

⎧⎪⎨
⎪⎩

G−1(−x) if x ∈
(

− ∞,
l

2

)
,

w(x) = G−1(x + l
)

if x ∈
[ l

2
,∞

)
.

(5.44)

Moreover, w satisfies

w > 0 in R \ (0, l), w < 0 in (0, l) (5.45)
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Fig. 3. The cases γ = 1
2 , c = 0, c = 1.8, c = 1.9999.

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

w is strictly decreasing in
(

− ∞,
l

2

)
, w is strictly increasing in

( l

2
,∞

)
w
( l

2

)
= z1(c), w

( l

2
− r

)
= w

( l

2
+ r

)
, ∀ r ∈ (0,∞)

lim
x→±∞w(x) =

{
1 if c = 2γ

1−γ

+∞ if c >
2γ

1−γ

(5.46)

Reciprocally, for every c ∈ R and l given by (5.37) or (5.41) if c < 2γ /(1 − γ ) and (5.43) if c ≥ 2γ /(1 − γ ), the 
above expressions provide a solution of (5.4).

For γ = 1/2, the graph of the different types of solutions given by Theorem 5.10 is represented in Figs. 3 and 4.

Proof of Theorem 5.10. We distinguish the different cases depending on the value of c:
Case 1: 0 ≤ c < 2γ /(1 − γ ).
By (5.12) and Proposition 5.6 we know that w([0, l]) is contained either in [z1(c), z2(c)] or [z3(c), ∞), but since 

z3(c) > 0 and w(0) = w(l) = 0, the last possibility cannot hold true. Thus, we have

w(x) ∈ [z1(c), z2(c)], ∀x ∈ [0, l].
J. Casado-Díaz and F. Murat Annales de l’Institut Henri Poincaré – Analyse non linéaire 38 (2021) 877–909
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Fig. 4. The cases γ = 1
2 , c = 2, c = 2.1.

Fig. 5. The graph of T − for γ = 0.2, γ = 0.4, γ = 0.5, γ = 0.7
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From w(0) = w(l) = 0, there exists r ∈ (0, l) such that w′(r) = 0, which combined with (5.12) implies w(r) = z1(c)

or w(r) = z2(c). To fix ideas we assume

∃ r ∈ (0, l) with w(r) = z1(c), (5.47)

the case w(r) = z2(c) is similar. Using (5.4) and z1(c) < −1, we have

w′(r) = 0, w′′(r) > 0. (5.48)

This implies that for x close to r , w′(x) is negative if x < r and positive if x > r . Taking into account (5.12), we then 
have

w′
√

b(w) + c
=

{
−1 in the biggest interval (α, r) such that b(w) + c > 0 in (α, r)

1 in the biggest interval (r, β) such that b(w) + c > 0 in (r, β).
(5.49)

Extending w as the solution of the differential equation (5.49) in the case α = 0 or β = l, we can assume

w(α) = w(β) = z2(c). (5.50)

Using that b′(z1(c)), b′(z2(c)) �= 0 we get that the function s → 1/
√

b(s) + c is integrable in [z1(c), z2(c)]. Then, 
integrating in [x, r] or [r, x] in (5.49), and defining G : [z1(c), z2(c)] → R by (5.36), we get

G(w(x)) =

⎧⎪⎪⎨
⎪⎪⎩

r − x − T −(c)

2
if x ∈

[
r − T (c)

2
, r
]

x − r − T −(c)

2
if x ∈

[
r, r + T (c)

2

]
,

(5.51)

with T −(c) and T (c) defined by (5.18), (5.35), i.e.⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

T −(c) = 2

0∫
z1(c)

dt√
b(t) + c

= −2G(z1(c))

T (c) = 2

z2(c)∫
z1(c)

dt√
b(t) + c

= 2
(
G(z2(c)) − G(z1(c))

)
.

(5.52)

Observe that

G(s) < 0 if s ∈ [z1(c),0), G(s) > 0 if s ∈ (0, z2(c)],
implies

w < 0 in
(
r − T −(c)

2
, r + T −(c)

2

)
, w > 0 in

(
r − T (c)

2
, r − T −(c)

2

)⋃(
r + T −(c)

2
, r + T (c)

2

)
.

Equation (5.51) provides the function w in the interval [α, β] = [r − T (c)/2, r + T (c)/2]. Recalling (5.48) we can 
now extend the definition of w to [r − T (c), r + T (c)]. Continuing with this process and taking into account that by 
assumption w(0) = 0 we conclude that w is periodic of period T (c) and its is given by formula (5.38) if w′(0) ≤ 0
or by (5.42) if w′(0) > 0. The properties of w stated in (5.40) easily follow from (5.38). The fact that l must satisfy 
(5.37) or (5.41) just follows from w(l) = 0.

Case 2: c = 2γ /(1 − γ ).
Using (5.28) and then that b + c is nonnegative on the range of w, we deduce by Proposition 5.6 that w([0, l]) is 

contained in [z1, +∞). By (5.28) and w(0) = 0, we get that in a neighborhood of zero, the function w is the solution 
of one of the two following Cauchy’s problems{

w′ = √
b(w) + c

w(0) = 0
or

{
w′ = −√

b(w) + c

w(0) = 0
(5.53)
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In the first case, defining G by (5.36), and using that the unique point bigger than zero, where b + c vanishes is 1, we 
deduce that for every δ ∈ (0, l) such that in the interval (0, δ), the function w is increasing and less than 1, we have

G(w(x)) = x in (0, δ), (5.54)

but for c = 2γ /(1 − γ ), we have b(1) = b′(1) = 0, and thus

G(1) =
1∫

0

dt√
b(t) + c

= ∞. (5.55)

Then (5.54) would provide the expression of G in the whole interval [0, l]. However the function constructed in this 
way is positive in (0, ∞) in contradiction with w(l) = 0. This proves that only the second possibility in (5.53) can 
hold true. But since w(0) = w(l) = 0, there exists r ∈ (0, l) such that w′(r) = 0. Since we know w′(0) ≤ 0, by (5.28)
and denoting z1 the unique negative zero of b + c, we must have w(r) = z1. Now, we can repeat the reasoning in the 
case c < 2γ /(1 − γ ) when we assumed (5.48). This shows that (an extension of) w satisfies (5.51) where now, thanks 
to (5.55), we have

T = 2

1∫
z1(c)

dt√
b(t) + c

= ∞.

Then, (5.48) provides the expression of w in the whole of R. Since w(l) = 0, we get by symmetry that r = l/2 and 
we easily conclude (5.43), (5.44), (5.45) and (5.46).

Case 3: c > 2γ /(1 − γ ).
Now, the unique zero of the function b + c is z1(c) and by (5.28), we have that w([0, l]) is contained in [1, ∞). 

Taking into account w(0) = w(l) = 0, we deduce as above the existence of r ∈ (0, l) such that w′(r) = 0, w(r) =
z1 < −1 and then that (5.51) holds with the difference that now, there is not any point z2 bigger than z1 such that 
b(z2) + c = 0. Therefore T must be defined as

T = 2

∞∫
z1(c)

dt√
b(t) + c

= ∞.

Statement (5.51) then provides an expression of (an extension of) w in the whole of R. By w(0) = w(l) = 0 we 
conclude again by symmetry that (5.43), (5.44), (5.45) and (5.46) hold where now the limit of w at infinity is +∞
and not 1. �

Let us now prove Theorem 5.7. Observe that Theorem 5.3 follows from this result and Proposition 5.9. Thus, the 
proof of Theorem 5.3 will not explicitly given.

Proof of Theorem 5.7. By Theorems 2.7 and 2.9, we know that problem (5.4) has a unique positive solution for 
γ ∈ (0, 1).

If l < T ∗, then we have T −(c) > l for every c ≥ 0, but since w(0) = w(l) = 0, w < 0 in (0, l), we get that 
Theorem 5.10 (see (5.39)), (5.43)) implies l = T −(c). Therefore, it cannot exist a negative solution of (5.4) in (0, l) for 
l < T ∗. Analogously, for l < kT ∗ it cannot exist a solution of (5.4) which is negative in k nonempty open subintervals 
of (0, l) and vanishes on the boundary.

Assume l ≥ T ∗. Since T − is continuous and tends to infinity as infinity, we have that for every l ≥ T ∗, there exists 
c ≥ 0 such that T −(c) = l. Defining then w by (5.38) if c < 2γ /(1 − γ ) or (5.44) if c ≥ 2γ /(1 − γ ) we deduce the 
existence of a negative solution of (5.4). If T − is strictly increasing then T ∗ = T0 and equation T −(c) = l has a unique 
solution, and so there is a unique negative solution for problem (5.4).

Assume l > T0. By Proposition 5.6, the function T − + T + is continuous in [0, 2γ /(1 − γ )) and satisfies

min
c∈[0,2γ /(1−γ ))

(T −(c) + T +(c)) ≥ T −(0) + T +(0) = T0, lim
c→ 2γ

(T −(c) + T +(c)) = +∞,
1−γ
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therefore, there exists c ∈ (0, 2γ /(1 − γ )) such that T −(c) + T +(c) = l. Equation (5.38) then provides a solution of 
problem (5.4) which is negative in (0, T −(c)) and positive in (T −(c), l), with 0 < T −(c) < l, while (5.42) provides 
a solution which is positive in (0, T +(c)) and negative in (T +(c), l). On the other hand, using also that T − + 2T + is 
continuous in [0, 2γ /(1 − γ )) and

min
c∈[0,2γ /(1−γ ))

(T −(c) + 2T +(c)) ≥ T −(0) + 2T +(0) = T0, lim
c→ 2γ

1−γ

(T −(c) + 2T +(c)) = +∞,

we can also find another number c ∈ (0, 2γ /(1 − γ )) such that T −(c) + 2T +(c) = l. Equation (5.38) then provides 
a solution of problem (5.4) which is negative in (0, T −(c)) ∪ (T (c), T (c) + T −(c)) and positive in (T −(c), T (c)), 
with 0 < T −(c) < T (c) + T −(c) < l. Adding the branch consisting of the negative solution in (0, l) found above, this 
proves the existence of at least 4 solutions of (5.4) which are negative in a nonempty interval of (0, l) and positive in 
zero, one or two nonempty intervals of (0, l).

In the case l > kT0, k ≥ 2 a similar reasoning provides 4 solutions which are negative in k nonempty intervals of 
(0, l) and positive in k − 1, k or k + 1 intervals.

For l = kT0, k ≥ 2, equation (5.38) with c = 0 provides a solution which is nonpositive in (0, l) but vanishes on 
jT0 for j = 1, . . . , k − 1. Observe that by Theorem 5.10 and T +(c) > 0 for every c > 0, we get that this is the unique 
solution satisfying this property.

If the function T − is strictly increasing, then the function mT − + nT + is strictly increasing for every m, n ∈ N , 
with m + n ≥ 1 and then it is injective. Therefore the solutions described above are the only ones which are negative 
in k nonempty intervals of (0, l). �
Proof of Proposition 5.9. We recall that z1(c) < z2(c) are the smallest solutions of the equation b(s) + c = 0, with b
given by (5.13). For γ = 1/2 this equation reduces to

4
√−s + 2s + c = 0 if s < 0, −4

√
s + 2s + c = 0 if s > 0,

whose resolution provides (5.25).
Let us now compute T −, i.e. the integral in (5.18), which written as function of

η = √−z1(c) ⇐⇒ c = −4η + 2η2, (5.56)

reads as

−2

0∫
−η2

dt√
2t + 4

√−t + 2η2 − 4η
,

or, using the change of variables t = −p2 ⇐⇒ p = √−t , as

η∫
0

4p dp√−2p2 + 4p + 2η2 − 4η
= 2

√
2

η∫
0

p dp√
η2 − p2 − 2(η − p)

.

Using a second change of variables√
η2 − p2 − 2(η − p) = r(η − p) =⇒ p = r2η − η + 2

r2 + 1
=⇒ dp = 4r(η − 1)

(r2 + 1)2 dr,

we can transform this integral into a rational integral. Namely, denoting

r1 =
√

η2 − 2η

η
, (5.57)

we have

T −(c) = 4
√

2

∞∫
r2η − η + 2

(r2 + 1)2 dr = 8
√

2(η − 1)

∞∫
r2

(r2 + 1)2 dr + 4
√

2(2 − η)

∞∫
dr

r2 + 1
,

r1 r1 r1
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where a primitive of r2/(1 + r2)2 is given by∫
r2

(r2 + 1)2 dr = −1

2

∫
r

d

dr

(
1

r2 + 1

)
dr = − r

2(r2 + 1)
+ 1

2
arctan r.

Using (5.57), we then get

T −(c) = 2
√

2π − 4
√

2 arctan

√
η2 − 2η

η
+ 2

√
2η2 − 4η. (5.58)

By (5.56), this provides expression (5.26) for T −.
Let us now show that T − is strictly increasing in c. By (5.58) and η = √−z1(c) strictly increasing in c, we just 

need to show that the function

φ(η) = −2
√

2 arctan

√
η2 − 2η

η
+

√
2η2 − 4η

is strictly increasing in 
[√−z1(0), ∞) = [2, ∞). This just follows from

φ′(η) = (2η − 1)(η − 2)

(η − 1)
√

2η2 − 4η
≥ 0, ∀η ∈ (2,∞). �
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